JP2000129351A - Production of thick high tensile strength steel plate - Google Patents

Production of thick high tensile strength steel plate

Info

Publication number
JP2000129351A
JP2000129351A JP10298524A JP29852498A JP2000129351A JP 2000129351 A JP2000129351 A JP 2000129351A JP 10298524 A JP10298524 A JP 10298524A JP 29852498 A JP29852498 A JP 29852498A JP 2000129351 A JP2000129351 A JP 2000129351A
Authority
JP
Japan
Prior art keywords
rolling
thickness
toughness
steel sheet
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10298524A
Other languages
Japanese (ja)
Inventor
Toshimichi Omori
俊道 大森
Hisafumi Maeda
尚史 前田
Takayuki Komai
孝行 古米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10298524A priority Critical patent/JP2000129351A/en
Publication of JP2000129351A publication Critical patent/JP2000129351A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an on-line type method for producing thick high tensile strength steel plate excellent in the toughness of the center part in the plate thickness. SOLUTION: A rolling stage is composed of two stages, as to the 1st rolling stage, the slab heating temp. is controlled to >=1200 deg.C, and rolling in a temp. region of at least >1150 deg.C is made possible, and, as to the 2nd rolling stage, the slab heating temp. is controlled to <1075 deg.C, and rolling of at least one pass in the recrystallization temp. region is executed. The former rolling solves the defect of the size equal to or below that detectable by UST in the center part of the plate thickness (micro cavity not rolled-in yet), and, in the latter rolling, crystal grain refining is executed. After that, heat treatment is executed in on-line. Moreover, the chemical components are formed into the ones of suppressing the coagulating and coarsening of precipitated carbides, and, the improvement of the toughness in the center part of the plate thickness is executed also from the point of fracture generating characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、橋梁、タンク、水
圧鉄管、倉庫、建築物などの溶接構造物に用いられる高
張力鋼板であって、連続鋳造により製造され、加工熱処
理、加速冷却、直接焼入れなどオンライン型工程により
製造される厚肉の高張力鋼板に関するものである。圧延
後、オフラインにて焼準熱処理、焼鈍熱処理、焼入れ熱
処理が施される高張力鋼板は本発明の対象から外れる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel sheet used for welding structures such as bridges, tanks, penstocks, warehouses, buildings, and the like. The present invention relates to a thick high-strength steel sheet manufactured by an online process such as quenching. High-strength steel sheets subjected to normalizing heat treatment, annealing heat treatment, and quenching heat treatment offline after rolling are out of the scope of the present invention.

【0002】[0002]

【従来の技術】溶接構造物に用いられる高張力鋼におい
ては厚肉化の要望が従来より強く、これまでに特公昭5
1−10568、特開平2−170917などオフライ
ン熱処理工程を前提としたもので、数多く検討されてき
た。
2. Description of the Related Art In high-tensile steels used for welded structures, there has been a strong demand for thicker steel than ever before.
It is based on an off-line heat treatment step such as 1-110568 and JP-A-2-170917, and many studies have been made.

【0003】しかし、オフライン熱処理型の厚肉高張力
鋼板は、そのC量が0.1〜0.2%で、合金添加量も
多いことから一般的に溶接性は良好と言えず、また、オ
フライン熱処理工程と相俟って高製造コストになってい
るのが現状である。
However, the off-line heat treatment type high-strength high-strength steel sheet generally has poor weldability due to its C content of 0.1 to 0.2% and a large amount of alloy addition. At present, high production costs are associated with the off-line heat treatment process.

【0004】溶接性の改善には、C量の低減が有効であ
るが、高価な合金元素添加量の増量やB添加が必要とな
り、それぞれコスト高や溶接継手熱影響部の硬化に伴う
靭性低下などが懸念される。しかしながら、溶接性の改
善は溶接構造物のト−タルコスト低減をもたらすため、
製造コストの上昇や溶接継手部の健全性を損なわずに、
厚肉化する技術に対する潜在的要望は強い。
In order to improve the weldability, it is effective to reduce the amount of C. However, it is necessary to increase the amount of expensive alloying elements and to add B, thereby increasing the cost and reducing the toughness due to the hardening of the heat-affected zone of the welded joint. And so on. However, since the improvement in weldability results in a reduction in the total cost of the welded structure,
Without increasing production costs or impairing the soundness of the welded joints,
The potential demand for thickening technology is strong.

【0005】オンライン型高張力鋼板はこの要望に応え
る技術の一つであるが、オフライン熱処理を実施しない
ことから、変態前のオ−ステナイト結晶が一般的に粗粒
であり、板厚中心部(1/2t)の靭性確保が難しいと
されている。特に、連続鋳造鋼片から板厚の厚い鋼板を
製造する場合、国内外で稼動している厚鋼板製造事業所
が保有する大型圧延設備をもってしても、板厚が75m
mを越えると板厚中心部に作用する圧縮応力が表層や1
/4t部と比べて著しく減少し、さらに、連続鋳造鋼片
厚さが、おおむね300mm以下であり、圧下量を大き
くとれないことから、内質欠陥とともに、靭性の低下と
不安定性が生じるとされる。
[0005] An on-line high-strength steel sheet is one of the techniques to meet this demand. However, since off-line heat treatment is not performed, austenite crystals before transformation are generally coarse grains, and the central part of the sheet thickness ( It is said that it is difficult to secure toughness of (tt). In particular, when manufacturing thick steel plates from continuous cast billets, even with large rolling mills owned by steel plate manufacturing plants operating in Japan and overseas, the plate thickness is 75 m.
m, the compressive stress acting on the central part of the sheet thickness becomes
/ 4t portion, significantly reduced, and the thickness of the continuous cast steel slab is generally 300 mm or less, and the amount of reduction cannot be increased. You.

【0006】特開昭57−127504,特開平5−2
61403,同5−261404は、粗圧延工程で異形
断面鋼片とし、圧延方法の工夫によって、効率よくセン
ターポロシテイの圧着を図る製造技術である。また、特
開昭56−84104,同61−238404,特開平
2−55605,同5−228502は高形状比強圧下
圧延や低速圧延、被圧延材の表面と中心部の温度差によ
る変形抵抗差を利用し、超音波欠陥として検出されるセ
ンターポロシテイの軽減を図りつつ、靭性の改善を図っ
たものである。特開昭60−56017、特開平3−4
4417は、温度差による変形抵抗差を利用した圧延、
連続鋳造方法の改善、および、高形状比強圧下圧延を組
合わせ、センターポロシテイの軽減を図りつつ、靭性の
改善を図ったものであるが、靭性の安定性についての具
体的記述はなく、前者の適用板厚は80mmにすぎな
い。
JP-A-57-127504, JP-A-5-25-2
No. 61403 and No. 5-261404 are manufacturing techniques for efficiently deforming the center porosity by using a deformed steel slab in the rough rolling step and devising a rolling method. JP-A-56-84104, JP-A-61-238404, JP-A-2-55605 and JP-A-5-228502 disclose a difference in deformation resistance due to a high shape ratio high-pressure rolling, low-speed rolling, and a temperature difference between the surface and the center of a material to be rolled. In this method, toughness is improved while reducing center porosity detected as an ultrasonic defect. JP-A-60-56017, JP-A-3-4
4417 is rolling using deformation resistance difference due to temperature difference,
The improvement of continuous casting method, and the combination of high shape ratio heavy reduction rolling, aiming at improvement of toughness while reducing center porosity, but there is no specific description of toughness stability, The former applied plate thickness is only 80 mm.

【0007】特開昭63−2433220、同63−3
07216、特開平5−228506は、上述の温度差
圧延の適用にくわえて、被圧延材の表層部冷却―復熱過
程を活用し、板厚中心部の組織制御、特に制御圧延の効
果を高めることで靭性改善を図ったが、靭性の安定性に
ついて言及されていない。同様の技術にセンターポロシ
テイの低減を加味し、靭性改善を図った特開昭64−5
7901の適用板厚は50mmにすぎない。
JP-A-63-2433220 and JP-A-63-3
07216, JP-A-5-228506, in addition to the application of the above-mentioned temperature difference rolling, utilize the surface layer cooling-reheating process of the material to be rolled to control the structure of the central portion of the sheet thickness, and particularly to enhance the effect of controlled rolling. However, there is no mention of stability of toughness. Japanese Unexamined Patent Publication No. Sho 64-5, which improved the toughness by adding the center porosity to the same technology.
The applied plate thickness of 7901 is only 50 mm.

【0008】特開昭63−50421〜同50428は
低温加熱鋼片を圧延工程中にAr3〜Ar3 +150
℃の温度に再加熱し、被圧延材の板厚方向の温度分布の
均一化を図るものであって、制御圧延効果の板厚方向の
均等化によって、板厚中心部と表層部の機械的性質差の
低減が目的である。
Japanese Patent Application Laid-Open Nos. 63-50421 to 50428 disclose that Ar 3 to Ar 3 +150 are used during rolling of a low-temperature steel slab.
℃ to re-heat the material to achieve a uniform temperature distribution in the sheet thickness direction of the material to be rolled. The purpose is to reduce the difference in properties.

【0009】特開昭59−211529は板厚70mm
を超える厚肉化において、低温加熱と高形状比強圧下圧
延により、組織を微細化し、板厚中心部の靭性改善を図
ったもので、50キロ級厚肉高張力鋼板で良好な靭性を
達成しているが、その安定性については言及されていな
い。
Japanese Patent Application Laid-Open No. Sho 59-211529 has a plate thickness of 70 mm.
High-strength steel with a thickness of more than 50 mm has been refined by low-temperature heating and high-shape-ratio rolling under reduced pressure to improve the toughness at the center of the thickness. However, its stability is not mentioned.

【0010】特開昭60−258410,特開平3−1
3524,同4−165015,同8−295928,
同8−302427は、いずれも低温加熱と制御圧延、
または、さらに強圧下圧延を組合わせ、厚肉高張力鋼を
製造するが同様に板厚中心部の靭性の安定性に関する配
慮はされていない。
JP-A-60-258410, JP-A-3-1
3524, 4-165015, 8-295959,
8-302427 is a low-temperature heating and controlled rolling,
Alternatively, a high-strength high-strength steel is manufactured by further combining high-pressure rolling, but no consideration is given to the stability of the toughness at the center of the sheet thickness.

【0011】特開平8−325668,同9−1314
3,同10−17929は板厚中心部の靭性確保を組織
最適化、さらには、高形状比強圧下圧延を組合わせて製
造する600N/mm2 級鋼に関する技術であるが,
センターポロシテイに関する配慮は認められない。
JP-A-8-325668 and JP-A-9-1314
3, No. 10-17929 is a technology relating to a 600 N / mm2 class 2 steel which is manufactured by combining microstructure optimization to secure the toughness of a central portion of the sheet thickness, and furthermore, to produce a high shape ratio strong rolling reduction.
No consideration is given to center porosity.

【0012】[0012]

【発明が解決しようとする課題】以上述べたように、厚
肉高張力鋼板の板厚中心部の靭性の改善を、センターポ
ロシテイの低減や制御圧延効果の確保に主眼を置いた組
織制御の観点からおこなう提案がいくつかなされてい
る。
As described above, the improvement of the toughness at the center of the thickness of a thick-walled high-tensile steel sheet is achieved by controlling the structure of the steel sheet with a focus on reducing the center porosity and ensuring the effect of controlled rolling. Several proposals have been made from a viewpoint.

【0013】しかし、連続鋳造によるオンライン型厚肉
高張力鋼板の場合、特に必要とされるようになる板厚中
心部の靭性、およびその安定性の両者の改善について、
これらを同時に解決しようとする技術は、いまだに提案
されていない。
However, in the case of an on-line thick high-strength steel sheet by continuous casting, the improvement of both the toughness and the stability of the central part of the thickness, which are particularly required, is discussed.
Techniques for solving these at the same time have not yet been proposed.

【0014】すなわち、極厚鋼板の製造において、安定
して良好な板厚中心部靭性を得ようとすると、連続鋳造
鋼片の中心部欠陥を圧着させ、かつ、変態前のオーステ
ナイト組織を微細化しなければならない。
That is, in the production of an extremely thick steel plate, in order to stably obtain a good thickness central portion toughness, a central defect of a continuously cast steel slab is pressed and the austenite structure before transformation is refined. There must be.

【0015】しかしながら、鋼片中心部の欠陥圧着のた
めには、高温域での圧延が必要であり、必然的にオース
テナイト組織は粗大結晶粒を含む混粒組織となるが、現
時点で、そのような組織の微細化のため、再結晶低温域
で有効な圧下力を付与しうる圧延機がないこと、およ
び、一方、低温加熱では、微細組織は得られるものの、
鋼片中心部の欠陥圧着が十分でないことから、工業的に
上記課題を解決する圧延方法はみいだされていなかっ
た。そこで、本発明では、板厚中心部の靭性が安定し、
かつ、良好な,連続鋳造によるオンライン型厚肉高張力
鋼板の製造方法を提供することを目的とする。
However, rolling in a high temperature range is necessary for defect compression at the center of the steel slab, and the austenite structure inevitably becomes a mixed grain structure containing coarse crystal grains. In order to refine the microstructure, there is no rolling mill that can give an effective rolling force in the recrystallization low temperature range, and, on the other hand, the microstructure can be obtained by low temperature heating,
Due to insufficient defect compression at the center of the billet, no rolling method has been found industrially to solve the above problems. Therefore, in the present invention, the toughness of the central portion of the plate thickness is stable,
Further, an object of the present invention is to provide a method for producing an on-line thick high-strength steel sheet by good continuous casting.

【0016】[0016]

【課題を解決するための手段】本発明者らは連続鋳造鋼
片を用いて製造される厚肉高張力鋼の板厚中心部の靭性
に及ぼす種々の因子の影響について鋭意検討をおこな
い、従来、その影響が全く知られていなかった板厚中心
部に存在するUST(超音波探傷試験)検出限界以下で
ある0.1mm程度以下の微細なセンターポロシテイ
(未圧着ザク性欠陥)の軽減と結晶粒微細化が両立した
場合、安定して、かつ、良好な靭性が確保できることを
知見し、具体的解決方法として、圧延工程をそれぞれの
目的に即する二工程(第1 の圧延工程、第2 の圧延
工程)とすることが有効であることを把握した。
Means for Solving the Problems The present inventors have conducted intensive studies on the effects of various factors on the toughness of the central part of the thickness of a thick-walled high-strength steel manufactured using a continuous cast billet. And reduction of fine center porosity (uncompressed zigzag defects) of about 0.1 mm or less, which is below the detection limit of UST (ultrasonic testing) existing in the center of the sheet thickness, the effect of which was not known at all. It was found that when crystal grain refinement was compatible, stable and good toughness could be secured. As a specific solution, the rolling process was divided into two processes (first rolling process, first rolling process, 2 rolling process) is effective.

【0017】また、化学成分についても検討を行い、析
出炭化物の凝集粗大化を抑制し、微細分散化を促進さ
せ、破壊発生特性改善の観点から、靭性の向上と安定性
を確保する組成を見出し、さらに、強度,溶接性、およ
び、溶接継手靭性を確保する必要要件についても明確に
した。
[0017] Further, the chemical components are also examined, and a composition that suppresses agglomeration and coarsening of precipitated carbides, promotes fine dispersion, and improves toughness and stability from the viewpoint of improving fracture initiation characteristics is found. In addition, the requirements for ensuring strength, weldability, and weld joint toughness were clarified.

【0018】すなわち、本発明は、 (1)スラブに対してその板厚中心部の欠陥を解消する
圧延を施す第1の圧延工程と、第1の圧延工程で圧延さ
れたスラブに金属組織を微細化する圧延を施す第2の圧
延工程と、これら圧延後にオンライン上で熱処理を行う
熱処理工程と、を備えたことを特徴とする厚肉高張力鋼
板の製造方法。
That is, the present invention provides: (1) a first rolling step in which a slab is subjected to rolling to eliminate defects at the center of the sheet thickness, and a metal structure is formed on the slab rolled in the first rolling step. A method for producing a high-strength high-strength steel sheet, comprising: a second rolling step of performing rolling to reduce the size; and a heat treatment step of performing a heat treatment online after the rolling.

【0019】(2)第1の圧延工程は、スラブ加熱温度
1200℃以上とする工程と、最終製品板厚より、少な
くとも15mm以上厚い板厚に圧延する工程とを備え、
第2の圧延工程は、スラブ加熱温度900℃以上107
5℃未満とする工程と、仕上圧延後の板厚を最終製品板
厚とする工程とを備え、第1の圧延工程と第2の圧延工
程との間に、第1の圧延工程後に、一旦変態点以下の温
度まで冷却する工程を更に備えていることを特徴とする
上記(1)に記載の厚肉高張力鋼板の製造方法。
(2) The first rolling step includes a step of increasing the slab heating temperature to 1200 ° C. or higher, and a step of rolling to a sheet thickness at least 15 mm or more larger than the final product sheet thickness.
In the second rolling step, the slab heating temperature is 900 ° C. or higher and 107
A step of lowering the temperature to less than 5 ° C., and a step of setting the sheet thickness after finish rolling to a final product sheet thickness. Between the first rolling step and the second rolling step, once after the first rolling step, The method for producing a thick high-tensile steel sheet according to the above (1), further comprising a step of cooling to a temperature below the transformation point.

【0020】(3)第1の圧延工程の前に、中心偏析軽
減のための均熱処理工程を更に備えたことを特徴とする
上記(1)、(2)に記載の厚肉高張力鋼板の製造方
法。 (4)均熱処理工程は、1250℃以上の温度で3時間
以上均熱処理する工程を備えたことを特徴とする上記
(3)に記載の厚肉高張力鋼板の製造方法。
(3) The high-strength steel sheet according to (1) or (2), further comprising, before the first rolling step, a soaking step for reducing center segregation. Production method. (4) The method for producing a thick high-tensile steel sheet according to the above (3), wherein the soaking step includes a soaking step at a temperature of 1250 ° C. or more for 3 hours or more.

【0021】(5)第1の圧延工程及び/ 又は第2の
圧延工程は、ld/hm≧0.7を満たす圧延パスを1
回以上実施する工程を備えたことを特徴とする上記
(1)〜(4)のいずれかに記載の厚肉高張力鋼板の製
造方法。
(5) In the first rolling step and / or the second rolling step, one rolling pass satisfying ld / hm ≧ 0.7 is set.
The method for producing a thick high-tensile steel sheet according to any one of the above (1) to (4), comprising a step of performing the step more than once.

【0022】ただし、ld=√(R*(hi―h
o)),hm=(hi+2*ho)/3,ここでR:圧
延ロ−ル半径、hi:圧延入り側板厚、ho:圧延出側
板厚を表す。 (6)鋼板の化学成分は、重量%で0.06≦C≦0.
10%,1.0≦Mn≦2.0%、0.02≦Al≦
0.1%,0.001≦N≦0.006%を含有し、P
cm=C+Si/30+Mn/20+Cu/20+Ni
/60+Cr/20+Mo/15+V/10+5Bで与
えられるPcm値が0.21%未満であることを特徴と
する上記(1)〜(5)のいずれかに記載の溶接性と靭
性に優れた厚肉高張力鋼板の製造方法。
Where ld = √ (R * (hi-h
o)), hm = (hi + 2 * ho) / 3, where R is the rolling roll radius, hi is the thickness of the rolled side, and ho is the thickness of the rolled out side. (6) The chemical composition of the steel sheet is 0.06 ≦ C ≦ 0.
10%, 1.0 ≦ Mn ≦ 2.0%, 0.02 ≦ Al ≦
0.1%, 0.001 ≦ N ≦ 0.006%
cm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni
The Pcm value given by / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is less than 0.21%, and the high wall thickness excellent in weldability and toughness according to any one of (1) to (5) above. Manufacturing method of high tension steel sheet.

【0023】(7)Cu≦1%,Ni≦1%,Cr≦1
%,Mo≦0.5%,0.005%≦Nb≦0.05
%,0.001%≦V≦0.1%の一種または二種以上
を含有し、Ceq=C+Mn/6+Si/24+Ni/
40+Cr/5+Mo/4+V/14で表されるCeq
値が0.37%以上であることを特徴とする上記(6)
に記載の溶接性、および、靭性に優れた厚肉高張力鋼板
の製造方法。
(7) Cu ≦ 1%, Ni ≦ 1%, Cr ≦ 1
%, Mo ≦ 0.5%, 0.005% ≦ Nb ≦ 0.05
%, 0.001% ≦ V ≦ 0.1%, and Ceq = C + Mn / 6 + Si / 24 + Ni /
Ceq expressed by 40 + Cr / 5 + Mo / 4 + V / 14
(6) wherein the value is 0.37% or more.
The method for producing a thick high-strength steel sheet excellent in weldability and toughness described in 1 above.

【0024】(8)さらにTi≦0.005%、B≦
0.0003%に規制することを特徴とする上記
(6),又は(7)に記載の溶接性、溶接継手靭性、お
よび、靭性に優れた厚肉高張力鋼板の製造方法である。
(8) Ti ≦ 0.005%, B ≦
The method for producing a thick high-strength steel sheet excellent in weldability, weld joint toughness, and toughness according to the above (6) or (7), characterized in that the thickness is regulated to 0.0003%.

【0025】[0025]

【発明の実施の形態】本発明は、圧延工程を二工程に分
割することにより、それぞれ単独に圧延する場合の欠点
を補完するための工程を最適化し、複合させた製造方法
である。第1の圧延工程は中心部欠陥の解消を目的に、
第2 の圧延工程では組織の均一微細化を目的に、スラ
ブ加熱温度、圧延条件の最適化を行い、これらの相乗作
用により板厚中心部で安定して良好な靭性を達成してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a manufacturing method in which the rolling process is divided into two steps to optimize the steps for compensating for the drawbacks of rolling independently and to combine them. The first rolling process aims at eliminating the center defect,
In the second rolling step, the slab heating temperature and the rolling conditions were optimized for the purpose of uniform micronization of the structure, and a stable toughness was achieved at the center of the sheet thickness by a synergistic effect of these.

【0026】さらに、第1の圧延工程の前に、中心偏析
解消のための均熱処理を、また、圧延を二工程に分割す
ることにより作用効果は上記の欠点の補完に留まらず、
鋳造組織の解消、組織微細化が達成され、一層の靭性改
善をおこなうことも可能である。
Further, before the first rolling step, a soaking treatment for eliminating center segregation is performed, and by dividing the rolling into two steps, the operation and effect are not limited to the above-mentioned disadvantages.
The elimination of the cast structure and the refinement of the structure are achieved, and the toughness can be further improved.

【0027】以下に本発明の構成を説明する。 1.均熱工程:連続鋳造材の中心偏析を軽減させるた
め、スラブを1250℃以上の温度で3時間以上均熱す
る。第1、第2の圧延工程の靭性改善効果をより、確実
なものとする場合、実施する。
The configuration of the present invention will be described below. 1. Soaking process: In order to reduce the center segregation of the continuous cast material, the slab is soaked at a temperature of 1250 ° C. or more for 3 hours or more. This is performed when the toughness improving effect of the first and second rolling steps is further ensured.

【0028】2.第1 の圧延工程:本圧延は、中心部
欠陥を解消し、靭性を改善することを目標とする。本発
明で対象とする欠陥は、従来、全く、検討されていなか
ったUST検出限界以下の欠陥(図1は本発明における
このような微小欠陥の検出方法を示すものであり、厚肉
鋼板より、全厚*任意幅*10mm程度の試験片を採取
し、板厚中心を頂点とした曲げ試験を行い、微小欠陥を
開口させ、評価をおこなう。)であり、このような中心
部欠陥を解消するため、スラブ加熱温度(圧延温度)と
圧下力を規定する。また、第2の圧延工程での、粒径微
細化に有効な圧下量を確保するため、仕上げ板厚を規定
する。
2. First rolling process: This rolling aims to eliminate the defects at the center and improve the toughness. The defects targeted in the present invention are defects below the UST detection limit, which have not been studied at all (FIG. 1 shows a method for detecting such minute defects in the present invention. A specimen having a total thickness * arbitrary width * about 10 mm is sampled, a bending test is performed with the plate thickness center at the apex, a minute defect is opened, and evaluation is performed.) Therefore, the slab heating temperature (rolling temperature) and the rolling force are defined. In addition, in order to secure a reduction amount effective for reducing the grain size in the second rolling step, the finished plate thickness is specified.

【0029】(1)スラブ加熱温度は、中心部欠陥を圧
着するため、少なくとも1150℃を超える温度域で圧
延を終了させるよう、1200℃以上とする。 (2)圧延は板厚中心部に圧縮応力を作用させるため、
圧延形状比(ld/hm)≧0.7の圧延を少なくと
も、1パス実施する。圧下力は圧延形状比(ld/h
m)と相関があり、圧延形状比と板厚中心に作用する圧
下力の関係について検討の結果、ld/hm≧0.7の
圧延パスの場合、静水圧分布の極小値を圧縮応力とする
ことができ、さらに、ld/hm≧1.2となると、板
厚中心に働く静水圧極大値は被圧延材の変形抵抗を超え
るようになるため、中心欠陥の解消に有利であり、設備
能力が許す限り高く設定することが好ましいためであ
る。ここで、ld=√(R*(hi―ho)),hm=
(hi+2*ho)/3,R:圧延ロ−ル半径、hi:
圧延入り側板厚、ho:圧延出側板厚を表す。
(1) The slab heating temperature is set to 1200 ° C. or higher so that rolling is completed in a temperature range exceeding at least 1150 ° C. in order to press the center defect. (2) In rolling, a compressive stress acts on the center of the sheet thickness.
Rolling at a rolling shape ratio (ld / hm) ≧ 0.7 is performed at least for one pass. The rolling force is the rolling shape ratio (ld / h
m), and as a result of studying the relationship between the rolling shape ratio and the rolling force acting on the center of the plate thickness, in the case of a rolling pass of ld / hm ≧ 0.7, the minimum value of the hydrostatic pressure distribution is defined as the compressive stress. Further, when ld / hm ≧ 1.2, the maximum value of the hydrostatic pressure acting on the center of the sheet thickness exceeds the deformation resistance of the material to be rolled. Is preferably set as high as possible. Here, ld = √ (R * (hi-ho)), hm =
(Hi + 2 * ho) / 3, R: rolling roll radius, hi:
Rolled-in side thickness, ho: Rolled-out side thickness.

【0030】以下にこれらの規定による効果を説明す
る。図3にスラブの加熱温度と板厚中心部の欠陥頻度の
関係を示す。スラブ加熱温度を1200℃以上、好まし
くは1250℃とし、高形状比の強圧下圧延を実施した
場合、板厚中心部の欠陥頻度が低減することがわかる。
このように、板厚中心部の欠陥が減少した結果、安定し
て良好な靭性を得ることが可能となる。
The effects of these rules will be described below. FIG. 3 shows the relationship between the heating temperature of the slab and the frequency of defects at the center of the thickness. When the slab heating temperature is set to 1200 ° C. or more, preferably 1250 ° C., and the high-deformation rolling is performed at a high shape ratio, it is found that the frequency of defects at the center of the sheet thickness is reduced.
As described above, as a result of reducing the defects at the central portion of the plate thickness, it is possible to stably obtain good toughness.

【0031】図2に中心部の欠陥頻度(個/m)が靭性
に与える影響を示す。図2より、中心部欠陥頻度が減少
した場合、靭性が安定して、良好になることが明らかで
ある。550N/mm2 級厚肉鋼板の場合、板厚中心
部で安定して、−40℃程度以下の破面遷移温度となる
ことが望ましく、中心部欠陥頻度が100個/m未満と
なると、達成される。
FIG. 2 shows the effect of the defect frequency (pieces / m) at the center on the toughness. It is apparent from FIG. 2 that the toughness is stable and good when the frequency of the center defect is reduced. In the case of a 550 N / mm 2 class thick steel sheet, it is desirable that the fracture surface transition temperature be stable at the center of the sheet thickness and be about −40 ° C. or less, and be achieved when the frequency of center defect is less than 100 pieces / m. Is done.

【0032】(3)仕上げ板厚は、第2 の圧延工程
で、組織微細化のため、必要な圧下量を確保できるよ
う、最終仕上げ板厚(製品板厚)より、15mm以上厚
くする。 3.冷却工程:第2 の圧延工程における効果を、一層
改善させる場合、第1の圧延工程後、スラブを変態温度
以下に冷却し、連続鋳造による凝固組織を消失させる。
(3) In the second rolling step, the thickness of the finished plate is made 15 mm or more larger than the final finished plate thickness (product plate thickness) so as to secure a necessary amount of reduction in order to refine the structure. 3. Cooling step: To further improve the effect of the second rolling step, after the first rolling step, the slab is cooled to a transformation temperature or lower to eliminate a solidified structure by continuous casting.

【0033】4.第2 の圧延工程:本圧延では、圧延
後の変態前オーステナイト結晶粒径を均一微細粒にする
ため、スラブ加熱温度、圧延条件を規定する。 (1)スラブ加熱温度は低温加熱が前提で、再結晶域圧
延を可能とするため、900℃以上に加熱し、一方、圧
延前オーステナイト粒径を細粒とするため、1075℃
未満とする。
4. Second rolling step: In this rolling, the slab heating temperature and the rolling conditions are specified in order to make the austenite crystal grain size before transformation after rolling uniform and fine. (1) The slab heating temperature is premised on low-temperature heating. In order to enable recrystallization zone rolling, the slab is heated to 900 ° C. or more. On the other hand, in order to make the austenite grain size before rolling fine, 1075 ° C.
Less than

【0034】(2)圧延は、製品板厚までの15mm以
上の圧下代において、板厚中心部組織を微細化するた
め、再結晶温度域(再結晶温度域が縮小するNb添加鋼
では950℃以上、好ましくは1000℃)で、少なく
とも1パスの高形状比(ld/hm≧0.7)の強圧下
圧延を行う。高圧延形状比の圧延パスは、第1 の圧延
工程後にも残存する板厚中心部の欠陥を減少させる効果
も有している。本圧延では、平均結晶粒径と最大結晶粒
径の両者を、一定寸法以下とすることが必要である。
(2) Rolling is performed in a redrawing temperature range (950 ° C. for Nb-added steel in which the recrystallization temperature range is reduced) in order to refine the structure in the center of the thickness in a rolling allowance of 15 mm or more up to the product thickness. Above, preferably at 1000 ° C.), high-pressure rolling is performed in at least one pass with a high shape ratio (ld / hm ≧ 0.7). The rolling pass having a high rolling shape ratio also has an effect of reducing defects in the central portion of the sheet thickness remaining after the first rolling step. In the main rolling, it is necessary that both the average crystal grain size and the maximum crystal grain size be equal to or smaller than a certain size.

【0035】図4 に板厚中心部の靭性に及ぼす変態前
のオーステナイト結晶粒径の影響を示す。板厚中心部の
靭性として−40℃以下を得るためには、平均結晶粒径を
70μm以下しなければならない。また、靭性の安定性
に関しては、図2より、最大粒径を100μm以下とす
る必要がある。靭性の安定性は、直接的な目標値とし
て、−5℃でのシャルピー吸収エネルギーのMOTE値
(確率論的に試験数3本の最小値)で200J以上であ
ることで判断する。尚、MOTEによる靭性評価方法は
日本溶接協会から、高張力鋼板の靭性評価試験であるC
TOD試験を対象に、その結果のバラツキを排除する手
段として提案(WES1109−1995)されてい
る。
FIG. 4 shows the effect of the austenite grain size before transformation on the toughness at the center of the sheet thickness. In order to obtain a toughness of −40 ° C. or less at the center of the sheet thickness, the average crystal grain size must be 70 μm or less. As for the stability of toughness, it is necessary to set the maximum grain size to 100 μm or less according to FIG. The stability of the toughness is determined as a direct target value of 200 J or more in terms of the MOTE value of the Charpy absorbed energy at −5 ° C. (minimum value of the number of the three tests stochastically). In addition, the toughness evaluation method by Mote was evaluated by the Japan Welding Association as a toughness evaluation test for high-strength steel sheets.
It has been proposed (WES1109-1995) as a means for eliminating the variation in the results for the TOD test.

【0036】一方、本圧延におけるスラブ加熱温度、圧
延形状比が組織微細化に及ぼす効果は図5、6に示され
る。これらの図より、スラブ加熱温度を、1075℃未
満、圧延形状比0.7以上とした場合、変態前のオース
テナイト組織において必要とされる均一微細化組織の得
られることが確認される。
On the other hand, the effects of the slab heating temperature and the rolling shape ratio in the main rolling on the refinement of the structure are shown in FIGS. From these figures, it is confirmed that when the slab heating temperature is less than 1075 ° C. and the rolling shape ratio is 0.7 or more, a required uniform fine structure in the austenite structure before transformation is obtained.

【0037】本発明に係る圧延方法は、溶接構造用高張
力鋼板として一般的な成分に対し、効果を発揮するが、
特に好ましい成分組成は、以下に示すもので、析出炭化
物の凝集粗大化を抑制し、微細分散化を促進させ、破壊
発生特性改善の観点から、靭性の向上と安定性を確保す
るものである。
The rolling method according to the present invention exerts an effect on general components as a high-strength steel sheet for a welded structure.
Particularly preferred component compositions are those shown below, which suppress the agglomeration and coarsening of precipitated carbides, promote the fine dispersion, and secure the improvement of toughness and stability from the viewpoint of improving the fracture occurrence characteristics.

【0038】C:母材強度を確保するため添加する。C
量0.06%未満ではCu,Ni,Cr,Moなどの焼
入れ性向上元素の多量添加を要し、コスト高、溶接性の
劣化を招き、また、大入熱溶接を施す場合、溶接金属へ
のCの希釈が少なくなり、継手強度を確保することが困
難となるため、0.06%以上添加する。過剰な添加
は、溶接性を損ない、板厚中心部の炭化物粗大化を助長
し、靭性低下を招くので0.1%以下に規制する。
C: added to ensure base material strength. C
If the amount is less than 0.06%, a large amount of hardenability improving elements such as Cu, Ni, Cr, and Mo must be added, resulting in high cost and deterioration of weldability. Since the dilution of C becomes small and it becomes difficult to secure the joint strength, 0.06% or more is added. Excessive addition impairs weldability, promotes carbide coarsening at the center of the sheet thickness, and lowers toughness.

【0039】Si:強度や脱酸に有効に働くので0.0
1%以上添加して差し支えないが、0.4%を超える添
加は溶接割れ感受性と溶接継手靭性を劣化させるので避
けるべきである。
Si: 0.0 since it works effectively for strength and deoxidation
Although 1% or more may be added, addition exceeding 0.4% should be avoided because it deteriorates the weld cracking susceptibility and the weld joint toughness.

【0040】Mn:母材強度と溶接強度を確保するため
1.0%以上添加する。過剰な添加は溶接割れ感受性を
劣化させると同時に、連続鋳造時の中心偏析を助長し、
ミクロ組織を硬化させ、板厚中心部の靭性とその安定性
を損なうため、上限を2.0%以下、好ましくは1.8
%以下、さらに好ましくは1.6%以下に規制する。
Mn: 1.0% or more is added to secure base metal strength and welding strength. Excessive addition deteriorates weld cracking susceptibility, and at the same time promotes central segregation during continuous casting,
In order to harden the microstructure and impair the toughness at the center of the sheet thickness and its stability, the upper limit is 2.0% or less, preferably 1.8%.
% Or less, more preferably 1.6% or less.

【0041】Al:鋼の脱酸のため、通常0.005%
以上、含有するものであるが、ミクロ組織の微細化のた
めには、0.02%,好ましくは0.03%以上添加す
る。過剰添加は表面傷などをひきおこすため、上限を
0.1%,好ましくは0.06%とする。
Al: usually 0.005% for deoxidizing steel
Although it is contained as described above, it is added in an amount of 0.02%, preferably 0.03% or more in order to refine the microstructure. Excessive addition causes surface scratches and the like, so the upper limit is made 0.1%, preferably 0.06%.

【0042】N:Al,Nbなどと反応し、析出物を形
成することでミクロ組織を微細化する。Nb,Vを添加
した場合の焼戻し時、析出硬化による強度上昇をもたら
すので0.001%,好ましくは0.002%以上含有
させる。過剰添加は母材、溶接継手の靭性を損なうの
で,上限を0.006%,好ましくは0.005%とす
る。
N: Reacts with Al, Nb, etc. to form precipitates, thereby refining the microstructure. At the time of tempering when Nb and V are added, the strength is increased by precipitation hardening, so that the content is made 0.001%, preferably 0.002% or more. Excessive addition impairs the toughness of the base metal and the welded joint, so the upper limit is made 0.006%, preferably 0.005%.

【0043】Ti,B:Tiはミクロ組織の細粒化や、
B 添加鋼の場合においては、焼入れ性に有効なBを確
保するため、積極的に添加される。しかし、本発明で
は、溶接熱影響部の硬化防止のため、Bを不純物として
扱い、その混入量を規制するので、Tiを積極的に添加
する必要性はなく、またNb,Vを添加する場合はNを
固定する作用が著しく、NbやVの炭窒化物析出挙動を
変化させ好ましくないので、不純物元素として0.00
5%未満に規制する。尚、Bは0.0003%未満に規
制する。
Ti, B: Ti is a fine grained microstructure,
In the case of B-added steel, it is added positively in order to secure B effective for hardenability. However, in the present invention, B is treated as an impurity to prevent hardening of the weld heat-affected zone, and the amount of B is regulated. Therefore, it is not necessary to add Ti actively, and when Nb and V are added. Has a remarkable effect of fixing N and changes the carbon nitride precipitation behavior of Nb and V, which is not preferable.
Restrict to less than 5%. In addition, B is regulated to less than 0.0003%.

【0044】P,S:いずれも不純物元素であり、健全
な母材および溶接継手を得るため、0.015%以下、
好ましくは0.01%以下に規制されることが望まし
い。以上が成分設計における基本成分組成の考え方であ
るが、必要とする特性(板厚、強度,予熱工程、機能的
特性等)に応じて、Ceq,Pcm規定をおこない、さ
らに、選択的に以下の元素を添加することは差し支えな
い。
P, S: Both are impurity elements, and 0.015% or less to obtain a sound base metal and a welded joint.
Preferably, the content is regulated to 0.01% or less. The above is the concept of the basic component composition in the component design. Ceq and Pcm are defined in accordance with the required properties (plate thickness, strength, preheating step, functional properties, etc.). The addition of elements is not a problem.

【0045】Cu,Ni,Cr,Mo,Nb,V:本発
明鋼として、600N/mm2 級高張力鋼を得る場合
や、耐候性を必要とする場合、一種または二種以上を添
加する。その場合、Cu,Ni,Crについては1%を
上限に、Moについては溶接性の確保と必要以上の焼入
れ性を防止するため、その上限を0.5%とすることが
好ましい。Nbは厚肉高張力鋼板の板厚方向の強度を一
定に保ちつつ(焼入れ性調整機能)、強度を確保すると
同時に、ミクロ組織中の炭化物を微細分散させ、靭性を
確保する働きのある極めて有効な元素である。これらの
効果をえるため、少なくとも0.005%以上添加する
が、0.03%を超えると焼入れ性調整機能が減少し、
さらに、0.05%を超えると溶接継手靭性劣化の傾向
も認められるので上限を0.05%,好ましくは0.0
3%とする。
Cu, Ni, Cr, Mo, Nb, V: When obtaining 600 N / mm 2 class high strength steel as the steel of the present invention or when weather resistance is required, one or more kinds are added. In this case, the upper limit of Cu, Ni, and Cr is preferably set to 1%, and the upper limit of Mo is set to 0.5% in order to secure weldability and prevent unnecessary hardenability. Nb is an extremely effective material that maintains the strength in the thickness direction of a thick-walled high-strength steel sheet at a constant thickness (hardenability adjusting function), and at the same time, secures the strength, and at the same time, finely disperses carbides in the microstructure to ensure toughness. Element. In order to obtain these effects, at least 0.005% or more is added, but if it exceeds 0.03%, the hardenability adjusting function decreases,
Further, if it exceeds 0.05%, a tendency of deterioration of the weld joint toughness is also observed, so the upper limit is 0.05%, preferably 0.0%.
3%.

【0046】焼入れ性調整機能とは、例えば、直接焼入
れ型厚肉高張力鋼板の場合において、強冷却される表層
側に対し、緩冷却される板厚中心部で顕著な焼入れ性向
上が認められる効果であり、Nb添加系の場合、析出効
果作用が加味され、板厚中心部の強度確保のために必要
な合金添加量を低減できる。VはNbと同様な効果を示
すので、600N/mm2 級高張力鋼の場合、0.0
1%以上添加することが望ましい。添加量が0.1%を
超えると溶接割れ感受性、、母材靭性を劣化させるた
め、上限を0.1%とする。Nbと同様な効果は0.0
8%以上で飽和する傾向にあるため、好ましい添加量の
上限を0.08%とする。
The function of adjusting hardenability means that, for example, in the case of a directly hardened type high-thickness steel sheet, a remarkable improvement in hardenability is observed in the central part of the steel sheet which is slowly cooled with respect to the surface layer which is strongly cooled. This is an effect. In the case of the Nb-added system, the effect of the precipitation effect is taken into consideration, and the amount of alloy addition necessary for securing the strength at the center of the plate thickness can be reduced. V has the same effect as Nb, so in the case of 600 N / mm 2 class high-strength steel, 0.0
It is desirable to add 1% or more. If the addition amount exceeds 0.1%, the weld cracking sensitivity and the base material toughness deteriorate, so the upper limit is made 0.1%. The effect similar to Nb is 0.0
Since the content tends to be saturated at 8% or more, the upper limit of the preferable addition amount is set to 0.08%.

【0047】Ceq:引張強さ550N/mm2 以上
で、板厚75mmを超える厚肉鋼板とする場合、Ceq
値(Ceq=C+Mn/6+Si/24+Ni/40+
Cr/5+Mo/4+V/14)を0.37以上となる
よう成分を調整する。
Ceq: When a thick steel plate having a tensile strength of 550 N / mm 2 or more and a thickness of more than 75 mm is used, Ceq
Value (Ceq = C + Mn / 6 + Si / 24 + Ni / 40 +
The component is adjusted so that (Cr / 5 + Mo / 4 + V / 14) becomes 0.37 or more.

【0048】Pcm:通常の環境における溶接施工にお
いて、予熱工程を省略、または予熱温度を低減させるた
め、Pcm値(C+Si/30+Mn/20+Cu/2
0+Ni/60+Cr/20+Mo/15+V/10+
5B)を0.21未満に規制する。
Pcm: Pcm value (C + Si / 30 + Mn / 20 + Cu / 2) in order to omit the preheating step or reduce the preheating temperature in welding work in a normal environment.
0 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 +
5B) is regulated to less than 0.21.

【0049】尚、本発明で対象とする高張力鋼板は、そ
の強度、板厚を特に限定するものではないが、特に、5
50N/mm2 級の板厚75mmを超える厚肉鋼板の
品質向上に、大きな効果を発揮する。
The strength and thickness of the high-strength steel sheet of the present invention is not particularly limited.
50N / mm It is very effective for improving the quality of thick steel plate exceeding 75mm of 2nd class.

【0050】[0050]

【実施例】表1に本発明の効果を調査するために用いた
鋼の化学成分を示す。いずれの鋼も本発明に係る製造方
法の効果を得るのに適した組成となっている。供試鋼は
溶製後鋼塊となし、表2、表3に示す種々の条件で所定
の板厚に熱間圧延後、オンライン型製造方法の一例とし
て直接焼入れを施し、620〜640℃で焼戻しをおこ
なった。
EXAMPLES Table 1 shows the chemical components of steel used for investigating the effects of the present invention. Each steel has a composition suitable for obtaining the effects of the production method according to the present invention. The test steel was made into a steel ingot after smelting, hot-rolled to a predetermined thickness under various conditions shown in Tables 2 and 3, and then directly quenched as an example of an online die manufacturing method. Tempered.

【0051】表2、表3には鋼板の板厚、板厚中心部の
欠陥頻度、平均結晶粒径、最大結晶粒径および機械的性
質(強度、靭性)を示す。機械的性質の試験片は採取位
置:板厚中心において、主圧延方向と垂直な方向より採
取したJIS4号試験片を用いた。靭性はシャルピ−衝
撃試験を試験温度−5℃で6 〜18本を行い、その安
定性を評価するとともに、破面遷移温度をもとめるた
め、各温度で3本の試験を試験温度をかえておこなっ
た。変態前のオ−ステナイト結晶粒径は、機械的性質の
評価実施位置と同一部位にて、0.5*0.5mm2
程度の面を対象に、変態組織のミクロ観察から求めた。
板厚中心部の欠陥頻度は、図1に示した鋼板全幅を対象
とする板厚中心部のZ方向曲げ試験から評価した。
Tables 2 and 3 show the thickness of the steel sheet, the frequency of defects at the center of the thickness, the average crystal grain size, the maximum crystal grain size, and the mechanical properties (strength and toughness). A JIS No. 4 test piece sampled from a direction perpendicular to the main rolling direction at a sampling position: plate thickness center was used as a test piece having mechanical properties. For toughness, 6 to 18 Charpy impact tests were conducted at a test temperature of -5 ° C, and the stability was evaluated. To determine the fracture transition temperature, three tests were performed at each temperature at different test temperatures. Was. The austenite grain size before the transformation was 0.5 * 0.5 mm 2 at the same site as the mechanical property evaluation position.
It was determined from the microscopic observation of the transformed structure for the degree surface.
The defect frequency at the center of the sheet thickness was evaluated from the Z-direction bending test of the center of the sheet thickness shown in FIG.

【0052】表2、表3中、実施例No.1〜19はA
鋼を用いた本発明例および比較例である。No.7〜1
1、13〜16、19は本発明例であり、第1 の圧延
工程、第2 の圧延工程ともに、所定の条件で実施して
いるため、板厚中心部の欠陥頻度は100個/m未満で
あり、かつ、変態前の結晶粒径で平均値70μm以下、
最大値100μm以下を実現した。その結果、破面遷移
温度は−40℃を下回り、−5℃における吸収エネルギ
ーのMOTE値も200J以上と安定して良好な靭性を
示した。
In Tables 2 and 3, Example No. 1-19 are A
It is a present invention example and a comparative example using steel. No. 7-1
1, 13 to 16 and 19 are examples of the present invention. Since both the first rolling step and the second rolling step are performed under predetermined conditions, the defect frequency at the center of the sheet thickness is less than 100 / m. And the average crystal grain size before transformation is 70 μm or less,
A maximum value of 100 μm or less was realized. As a result, the fracture surface transition temperature was lower than −40 ° C., and the MOT value of the absorbed energy at −5 ° C. was 200 J or more, showing a stable and good toughness.

【0053】一方、比較例No.1〜6は従来法(一工
程の圧延)による。比較例No.1〜3は本発明の第2
の圧延工程における変態前のオ−ステナイト結晶組織
に関する要件:低温加熱、強圧下圧延を満足してはいる
ものの、第1 の圧延工程の要件は満足しないので、板
厚中心部の欠陥頻度が100個/mを超え、−5℃にお
ける吸収エネルギーのMOTE値は低く、靭性は不安
定、かつ良好でない。比較例No.4、5は、第1 お
よび第2の圧延工程の要件を満足しないので、欠陥頻度
とともに変態前のオ−ステナイト結晶組織が適正でな
く、靭性が悪い。比較例No.6 、12は本発明の要
件を満たす第1 の圧延工程により、板厚中心の欠陥頻
度の大幅な改善が達成されたが、第2 の圧延工程の加
熱温度が1075℃を超えたため、変態前のオ−ステナ
イト結晶組織の平均粒径と最大粒径が目標に達せず、靭
性が悪い。
On the other hand, in Comparative Example No. 1 to 6 are based on a conventional method (one-step rolling). Comparative Example No. 1-3 are the second of the present invention
Of the austenite crystal structure before transformation in the rolling process of No .: Although the low-temperature heating and the strong rolling were satisfied, the requirements of the first rolling process were not satisfied. M / m, the mote value of the absorbed energy at -5 ° C is low, and the toughness is unstable and not good. Comparative Example No. Since Nos. 4 and 5 do not satisfy the requirements of the first and second rolling steps, the austenite crystal structure before transformation together with the defect frequency is not appropriate and the toughness is poor. Comparative Example No. In Nos. 6 and 12, the first rolling process that satisfies the requirements of the present invention achieved a significant improvement in the frequency of defects at the center of the sheet thickness, but the heating temperature in the second rolling process exceeded 1075 ° C. The average grain size and the maximum grain size of the austenite crystal structure did not reach the target, and the toughness was poor.

【0054】比較例No.17,18はNo.6,12
と同様、第2 の圧延工程の加熱温度が1075℃を超
え、本発明の範囲外である。No.6,12に比較し
て、第2 の圧延工程を、より大きな圧下率で圧延した
ため、平均結晶粒径は70μmを下回っているが、混粒
組織に含まれる粗大粒を再結晶により微細化することは
困難であり、最大粒径が本発明の目標値を満足せず、靭
性が劣る。
Comparative Example No. Nos. 17 and 18 are Nos. 6,12
Similarly to the above, the heating temperature in the second rolling step exceeds 1075 ° C. and is outside the scope of the present invention. No. Since the second rolling step was performed at a higher rolling reduction in comparison with Nos. 6 and 12, the average crystal grain size was less than 70 μm, but coarse grains contained in the mixed grain structure were refined by recrystallization. This is difficult, the maximum grain size does not satisfy the target value of the present invention, and the toughness is poor.

【0055】実施例No.20〜31はA〜D鋼による
本発明例および比較例である。No.24〜26,29
〜31は本発明例であり、良好で安定した靭性を示す。
尚、Ceq値が0.37を上回り、かつ、Nb,Vを含
む成分組成による実施例は全て550N/mm2 を越
える引張強さとなっているが、No.30は、Ceqが
0.37未満で、Nbなどの合金元素を含まないため、
引張強さは500N/mm2 を下回る。No.31は
Nb,Vを含有するため、No.30より、引張強さは
高いが、Ceq値が0.37未満であり、引張強さは5
50N/mm2より、低い。
Example No. 20 to 31 are examples of the present invention and comparative examples using A to D steel. No. 24-26,29
-31 are examples of the present invention and show good and stable toughness.
In addition, in all the examples having a Ceq value exceeding 0.37 and a component composition containing Nb and V, the tensile strength exceeded 550 N / mm 2 , 30 has a Ceq of less than 0.37 and does not contain alloying elements such as Nb,
Tensile strength is below 500 N / mm 2 . No. No. 31 contains Nb and V. Although the tensile strength is higher than 30, the Ceq value is less than 0.37, and the tensile strength is 5
Lower than 50 N / mm 2 .

【0056】No.20,22は比較例であり、強圧下
圧延による一工程の圧延のみで、板厚中心の欠陥頻度減
少と組織の均一微細化を試みたものであるが、No.
4,5と同様に厚肉材でこれらの両立は困難である。
No. Nos. 20 and 22 are comparative examples in which the reduction of the defect frequency at the center of the sheet thickness and the uniform refinement of the structure were attempted only by one-step rolling by high-pressure rolling.
As in the case of 4, 5, it is difficult to achieve both of them with a thick material.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】[0060]

【発明の効果】本発明は板厚中心部の機械的性質に優れ
た厚肉高張力鋼の製造方法に関するもので、圧延工程を
板厚中心部のUST検出可能なサイズ以下の欠陥(未圧
着ザク性欠陥)の解消に適した圧延(第1 の圧延工
程)と結晶粒微細化に適した圧延(第2 の圧延工程)
の二工程とし、その後、オンラインで熱処理するととも
に、化学成分を適正化することにより、板厚75mm以
上の厚肉材であっても、溶接性、溶接継手性能に優れた
高張力鋼で、板厚中心部において、安定して良好な靭性
(−5 ℃でのシャルピー吸収エネルギーのMOTE値
で200J以上)を確保することが可能となり、工業
上、極めて有意義なものである。
The present invention relates to a method for producing a thick high-strength steel having excellent mechanical properties at the center of a sheet thickness. Rolling (first rolling process) suitable for eliminating zack defects) and rolling (second rolling process) suitable for grain refinement
After that, heat treatment is performed on-line, and the chemical composition is optimized, so that even a thick material with a thickness of 75 mm or more, high strength steel with excellent weldability and weld joint performance can be used. In the center of the thickness, it is possible to stably maintain good toughness (200 J or more in terms of the MOTE value of Charpy absorbed energy at -5 ° C), which is extremely significant industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】板厚中心部における未圧着ザク性欠陥の欠陥頻
度評価方法の一例(Z方向曲げ試験)を示す図。
FIG. 1 is a diagram showing an example of a defect frequency evaluation method (Z-direction bending test) of an uncompressed zuck defect at a center portion of a sheet thickness.

【図2】欠陥頻度、変態前のオーステナイト組織の最大
粒径が靭性の安定性におよぼす影響を示す図。
FIG. 2 is a graph showing the influence of the frequency of defects and the maximum grain size of the austenite structure before transformation on the stability of toughness.

【図3】第1 の圧延工程の加熱温度、圧延における圧
延形状比が板厚中心部の欠陥頻度に及ぼす影響を示す
図。
FIG. 3 is a diagram showing the influence of the heating temperature in the first rolling step and the rolling shape ratio in rolling on the frequency of defects at the center of the sheet thickness.

【図4】変態前のオーステナイト組織の平均結晶粒径が
板厚中心部の破面遷移温度に及ぼす影響を示す図。
FIG. 4 is a view showing the influence of the average crystal grain size of the austenite structure before transformation on the fracture surface transition temperature at the center of the sheet thickness.

【図5】第2 の圧延工程の加熱温度が変態前のオース
テナイト結晶粒径に及ぼす影響を示す図。
FIG. 5 is a view showing the effect of the heating temperature in the second rolling step on the austenite grain size before transformation.

【図6】第2 の圧延工程の加熱温度と圧延形状比が変
態前のオーステナイト結晶粒径に及ぼす影響を示す図。
FIG. 6 is a diagram showing the effect of the heating temperature and the rolling shape ratio in the second rolling step on the austenite crystal grain size before transformation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古米 孝行 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K032 AA01 AA02 AA04 AA14 AA16 AA19 AA21 AA22 AA23 AA31 AA35 AA36 BA01 CA03 CB02 CF02 CF03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takayuki Furume 1-2-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Nihon Kokan Co., Ltd. 4K032 AA01 AA02 AA04 AA14 AA16 AA19 AA21 AA22 AA23 AA31 AA35 AA36 BA01 CA03 CB02 CF02 CF03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】スラブに対してその板厚中心部の欠陥を解
消する圧延を施す第1の圧延工程と、第1の圧延工程で
圧延されたスラブに金属組織を微細化する圧延を施す第
2の圧延工程と、これら圧延後にオンライン上で熱処理
を行う熱処理工程と、を備えたことを特徴とする厚肉高
張力鋼板の製造方法。
1. A first rolling step for rolling a slab to eliminate defects at the center of its thickness, and a rolling step for reducing the metal structure of the slab rolled in the first rolling step. 2. A method for manufacturing a high-strength high-strength steel sheet, comprising: a rolling step of No. 2;
【請求項2】第1の圧延工程は、スラブ加熱温度120
0℃以上とする工程と、最終製品板厚より、少なくとも
15mm以上厚い板厚まで圧延する工程を備え、 第2の圧延工程は、スラブ加熱温度900℃以上107
5℃未満とする工程と、仕上圧延後の板厚を最終製品板
厚とする工程とを備え、 第1の圧延工程と第2の圧延工程との間に、第1の圧延
工程後に、一旦変態点以下の温度まで冷却する工程を更
に備えていることを特徴とする請求項1に記載の厚肉高
張力鋼板の製造方法。
2. The first rolling step includes a slab heating temperature of 120.
0 ° C. or more, and a step of rolling to a sheet thickness at least 15 mm or more larger than the final product sheet thickness.
A step of lowering the temperature to less than 5 ° C. and a step of setting the sheet thickness after finish rolling to a final product sheet thickness. Between the first rolling step and the second rolling step, once after the first rolling step, The method for producing a thick-walled high-tensile steel sheet according to claim 1, further comprising a step of cooling to a temperature below the transformation point.
【請求項3】第1の圧延工程の前に、中心偏析軽減のた
めの均熱処理工程を更に備えたことを特徴とする請求項
1又は2に記載の厚肉高張力鋼板の製造方法。
3. The method according to claim 1, further comprising a soaking step for reducing center segregation before the first rolling step.
【請求項4】均熱処理工程は、1250℃以上の温度で
3時間以上均熱処理する工程を備えたことを特徴とする
請求項3に記載の厚肉高張力鋼板の製造方法。
4. The method according to claim 3, wherein the soaking step includes a soaking step at a temperature of 1250 ° C. or more for 3 hours or more.
【請求項5】第1の圧延工程及び/ 又は第2の圧延工程
は、ld/hm≧0.7を満たす圧延パスを1回以上実
施する工程を備えたことを特徴とする請求項1〜4のい
ずれかに記載の厚肉高張力鋼板の製造方法。ただし、l
d=√(R*(hi―ho)),hm=(hi+2*h
o)/3,ここでR:圧延ロ−ル半径、hi:圧延入り
側板厚、ho:圧延出側板厚を表す。
5. The method according to claim 1, wherein the first rolling step and / or the second rolling step includes a step of performing at least one rolling pass satisfying ld / hm ≧ 0.7. 4. The method for producing a thick high-tensile steel sheet according to any one of 4. Where l
d = √ (R * (hi-ho)), hm = (hi + 2 * h
o) / 3, where R: radius of rolling roll, hi: thickness of rolled side, and ho: thickness of rolled out.
【請求項6】鋼板の化学成分は、重量%で0.06≦C
≦0.10%,1.0≦Mn≦2.0%、0.02≦A
l≦0.1%,0.001≦N≦0.006%を含有
し、Pcm=C+Si/30+Mn/20+Cu/20
+Ni/60+Cr/20+Mo/15+V/10+5
Bで与えられるPcm値が0.21%未満であることを
特徴とする請求項1〜5のいずれかに記載の溶接性と靭
性に優れた厚肉高張力鋼板の製造方法。
6. The chemical composition of the steel sheet is 0.06 ≦ C by weight%.
≦ 0.10%, 1.0 ≦ Mn ≦ 2.0%, 0.02 ≦ A
1 ≦ 0.1%, 0.001 ≦ N ≦ 0.006%, Pcm = C + Si / 30 + Mn / 20 + Cu / 20
+ Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5
The method for producing a thick high-strength steel sheet excellent in weldability and toughness according to any one of claims 1 to 5, wherein the Pcm value given by B is less than 0.21%.
【請求項7】Cu≦1%,Ni≦1%,Cr≦1%,M
o≦0.5%,0.005%≦Nb≦0.05%,0.
001%≦V≦0.1%の一種または二種以上を含有
し、Ceq=C+Mn/6+Si/24+Ni/40+
Cr/5+Mo/4+V/14で表されるCeq値が
0.37%以上であることを特徴とする請求項6に記載
の溶接性、および、靭性に優れた厚肉高張力鋼板の製造
方法。
7. Cu ≦ 1%, Ni ≦ 1%, Cr ≦ 1%, M
o ≦ 0.5%, 0.005% ≦ Nb ≦ 0.05%, 0.
001% ≦ V ≦ 0.1%, and Ceq = C + Mn / 6 + Si / 24 + Ni / 40 +
The method according to claim 6, wherein the Ceq value represented by Cr / 5 + Mo / 4 + V / 14 is 0.37% or more.
【請求項8】さらにTi≦0.005%、B≦0.00
03%に規制することを特徴とする請求項6、又は7に
記載の溶接性、溶接継手靭性、および、靭性に優れた厚
肉高張力鋼板の製造方法。
8. The method according to claim 1, wherein Ti ≦ 0.005% and B ≦ 0.00.
The method for producing a high-strength high-strength steel sheet having excellent weldability, weld joint toughness, and toughness according to claim 6 or 7, wherein the thickness is regulated to 03%.
JP10298524A 1998-10-20 1998-10-20 Production of thick high tensile strength steel plate Pending JP2000129351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298524A JP2000129351A (en) 1998-10-20 1998-10-20 Production of thick high tensile strength steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298524A JP2000129351A (en) 1998-10-20 1998-10-20 Production of thick high tensile strength steel plate

Publications (1)

Publication Number Publication Date
JP2000129351A true JP2000129351A (en) 2000-05-09

Family

ID=17860852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298524A Pending JP2000129351A (en) 1998-10-20 1998-10-20 Production of thick high tensile strength steel plate

Country Status (1)

Country Link
JP (1) JP2000129351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7967923B2 (en) 2008-10-01 2011-06-28 Nippon Steel Corporation Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
WO2012005330A1 (en) 2010-07-09 2012-01-12 新日本製鐵株式会社 Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
US9260771B2 (en) 2011-09-28 2016-02-16 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7967923B2 (en) 2008-10-01 2011-06-28 Nippon Steel Corporation Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
WO2012005330A1 (en) 2010-07-09 2012-01-12 新日本製鐵株式会社 Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME
US8882942B2 (en) 2010-07-09 2014-11-11 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same
US9260771B2 (en) 2011-09-28 2016-02-16 Nippon Steel & Sumitomo Metal Corporation Ni-added steel plate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CA2941202C (en) Method for producing a high-strength flat steel product
JP3504561B2 (en) High strength hot rolled steel sheet with high yield ratio and excellent formability
US20150078955A1 (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
EP3859041A1 (en) High-strength cold rolled steel sheet having high hole expansion ratio, high-strength hot-dip galvanized steel sheet, and manufacturing methods therefor
EP2258886A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
JP4901623B2 (en) High-strength steel sheet with excellent punching hole expandability and manufacturing method thereof
US20220010399A1 (en) High-strength steel with excellent durability and method for manufacturing same
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
EP3964600A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
US20220298594A1 (en) Steel sheet, member, and methods for producing the same
JPH11335735A (en) Manufacture of extra thick shape steel excellent in weldability, strength and toughness
JPH07316650A (en) Production of high strength hot rolled steel plate with low yield ratio
JP2000345289A (en) On-line type weather resistant thick steel plate
JP2000008123A (en) Production of high tensile strength steel excellent in low temperature toughness
JPH08311541A (en) Production of steel sheet having high young&#39;s modulus
JP4438614B2 (en) High-strength hot-rolled steel sheet and manufacturing method thereof
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JP2001089815A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
EP4056724A1 (en) High-strength steel having high yield ratio and excellent durability, and method for producing same
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP2000129351A (en) Production of thick high tensile strength steel plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040615

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040709