JP2000128993A - Crystallization of polymeric resin - Google Patents

Crystallization of polymeric resin

Info

Publication number
JP2000128993A
JP2000128993A JP30516998A JP30516998A JP2000128993A JP 2000128993 A JP2000128993 A JP 2000128993A JP 30516998 A JP30516998 A JP 30516998A JP 30516998 A JP30516998 A JP 30516998A JP 2000128993 A JP2000128993 A JP 2000128993A
Authority
JP
Japan
Prior art keywords
resin
gas
autoclave
sample
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30516998A
Other languages
Japanese (ja)
Other versions
JP3026209B1 (en
Inventor
Masahiro Oshima
正裕 大嶋
Iori Hashimoto
伊織 橋本
Masanori Tanigaki
昌敬 谷垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP30516998A priority Critical patent/JP3026209B1/en
Application granted granted Critical
Publication of JP3026209B1 publication Critical patent/JP3026209B1/en
Publication of JP2000128993A publication Critical patent/JP2000128993A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of the crystallization for a crystalline polymeric resin with both high degree of crystallinity and heat resistance. SOLUTION: This method comprises the following procedure: a pelletized high-impact polypropylene sample S as a resin to be crystallized is placed in an autoclave 1 where the sample S is melted under heating to erase the heat history involved therein so far; subsequently, the autoclave 1 is filled with carbon dioxide gas from a cylinder 2 via valves V1 and V2 to dissolve the gas in the resin under a pressure of 15-60 atm followed by withdrawing the autoclave from the oil bath, and heat release of the autoclave in ambient air results in the cooling and recrystallization of the sample S. The crystal structure of the resin thus afforded represents entire α-phase, wherein, as the pressure inside the autoclave increases, rise in both the crystallinity and melting point of the resin is recognized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、結晶化度、耐熱性等の
改良された高分子材料および成形体の結晶化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer material having improved crystallinity and heat resistance and a method for crystallizing a molded product.

【0002】[0002]

【従来の技術】結晶性樹脂、そのなかでもポリオレフイ
ン樹脂は、汎用樹脂として広い分野で利用されている高
分子樹脂である。通常、そのような樹脂から電気製品部
材や自動車用部材を作る際、樹脂を溶融して、金型に流
し込んだり、押し出したりした後、冷却することにより
樹脂を固化して製品を得る。その際、冷却の仕方(速度
・温度履歴)により、出来あがった成形体の結晶特性、
融点特性が大きく異なる。現在では樹脂の結晶性を調節
するために、冷却速度を変更することしか利用されてお
らず、成形体の結晶性を上げようとすると、冷却速度を
抑え、ゆっくりと冷却せざるを得ない。このような冷却
速度を抑える方法は生産性の向上を著しく阻害してき
た。したがって現実には、樹脂の結晶性の向上をするこ
とを放棄し、外観の形状のひけ(冷却したことにより起
こる樹脂の縮み)を防止する観点のみから冷却速度を決
定しているに過ぎない。
2. Description of the Related Art Crystalline resins, among which polyolefin resins, are polymer resins widely used as general-purpose resins. Usually, when an electric product member or an automobile member is made from such a resin, the resin is melted, poured into a mold or extruded, and then cooled to solidify the resin to obtain a product. At that time, depending on the cooling method (speed / temperature history), the crystal characteristics of the completed compact,
Melting point characteristics are significantly different. At present, only changing the cooling rate is used in order to adjust the crystallinity of the resin, and in order to increase the crystallinity of the molded product, the cooling rate must be suppressed and the molded product must be cooled slowly. Such a method of suppressing the cooling rate has significantly impeded the improvement of productivity. Therefore, in reality, the cooling rate is determined only from the viewpoint of preventing the improvement of the crystallinity of the resin and preventing the shrinkage of the external shape (shrinkage of the resin caused by cooling).

【0003】学術的には、結晶性樹脂の結晶性を向上さ
せる結晶化方法として、高圧下で冷却し結晶化させる手
法が報告されている。しかし、この手法では、たとえば
融点を1℃上げるためには40気圧上で加圧することが
必要となり、より結晶性の高い製品や融点のより高い製
品を得るためには、操作圧力が数百気圧と高くなり装置
設計上の問題がある。
[0003] Scientifically, as a crystallization method for improving the crystallinity of a crystalline resin, a method of cooling and crystallizing under high pressure has been reported. However, in this method, for example, in order to raise the melting point by 1 ° C., it is necessary to apply pressure above 40 atm. In order to obtain a product having higher crystallinity or a product having a higher melting point, the operating pressure must be several hundred atmospheres. And there is a problem in device design.

【0004】[0004]

【発明が解決しようとする課題】本発明は、数十気圧程
度の加圧下で、高い結晶性を有しかつ融点を例えば5〜
10℃の範囲で向上した結晶化樹脂を製造する方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has a high crystallinity and a melting point of, for example, 5 to 5 atm.
It is an object of the present invention to provide a method for producing a crystallized resin improved in the range of 10 ° C.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、結晶性高分子樹脂をその樹脂に溶解性を
持つ気体の雰囲気下で冷却し結晶化させることによっ
て、樹脂の結晶性を向上させ、樹脂の融点を上昇させる
ことができる高分子樹脂の結晶化方法に関する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method of crystallizing a crystalline polymer resin by cooling and crystallizing the polymer in an atmosphere of a gas having solubility in the resin. The present invention relates to a method for crystallizing a polymer resin capable of improving the property and increasing the melting point of the resin.

【0006】より詳しく述べると、本発明の高分子樹脂
の結晶化方法は、結晶性高分子樹脂を溶融状態で該高分
子樹脂に対して溶解性を有する気体の加圧雰囲気に曝
し、気体を樹脂中に溶解させ、加圧気体雰囲気中で冷却
することによって樹脂を固化させることを特徴とする、
高分子樹脂の結晶化方法。
More specifically, in the method for crystallizing a polymer resin of the present invention, the crystalline polymer resin is exposed in a molten state to a pressurized atmosphere of a gas having solubility in the polymer resin, and the gas is exposed. Characterized by being dissolved in a resin and solidifying the resin by cooling in a pressurized gas atmosphere,
Crystallization method for polymer resin.

【0007】上記結晶化法でなぜ結晶化高分子樹脂の結
晶性が向上するのかの理由は、学術的にはまだ明確には
なっていないが、以下のように考えられる。二酸化炭素
や窒素ガスのような低分子が高分子鎖で構成される樹脂
に溶け込むことにより、高分子鎖間の相互作用は弱ま
り、高分子鎖の移動度(動きやすさ)が増す。高分子鎖
が動きやすい状態下で、樹脂を冷却・固化することによ
り、より高分子鎖の配列がより高い秩序構造をもったエ
ネルギーポテンシャルの低い状態に至りやすくなるた
め、より結晶性の高い固体樹脂が得られる。
The reason why the crystallization method improves the crystallinity of the crystallized polymer resin has not been clarified scientifically, but is considered as follows. When low molecules such as carbon dioxide and nitrogen gas dissolve into the resin composed of the polymer chains, the interaction between the polymer chains is weakened, and the mobility (movability) of the polymer chains is increased. By cooling and solidifying the resin in a state where the polymer chains are easily movable, the arrangement of the polymer chains tends to reach a state with a higher ordered structure and a lower energy potential, so that a more crystalline solid A resin is obtained.

【0008】[0008]

【発明の実施の態様】以下に、本発明について説明す
る。 (1)結晶性高分子樹脂 本発明にいう結晶性高分子樹脂とは、分子配列がかなり
の秩序をもち、明瞭な結晶性X線回折が認められる高分
子樹脂をいう。一般には、高分子鎖のサイドグループが
嵩高くなる樹脂ほど、その配列が無秩序になるほど結晶
性が低下する。市販のポリエチレン、ポリプロピレン
は、すべて結晶性高分子である。その他、サイドグルー
プであるベンゼン基の配列方向性が揃った、アイソタク
テックポリスチレン、清涼飲料水の容器に使われるポリ
エチレンテレフタレート(PET)も、結晶性高分子樹
脂である。具体的には、ポリエチレン系重合体、ポリプ
ロピレン重合体等のポリオレフィン樹脂等を挙げること
ができ、より具体的にはポリエチレン、ポリプロピレ
ン、ポリエチレンテレフタレート、アイソタクテックポ
リスチレンを挙げることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below. (1) Crystalline polymer resin The term “crystalline polymer resin” as used in the present invention refers to a polymer resin in which the molecular arrangement has considerable order and clear crystalline X-ray diffraction is observed. In general, as the side group of the polymer chain becomes bulkier, the crystallinity decreases as the arrangement becomes more disordered. Commercially available polyethylene and polypropylene are all crystalline polymers. Other crystalline polymer resins include isotactic polystyrene having uniform orientation of benzene groups, which are side groups, and polyethylene terephthalate (PET) used for soft drink containers. Specific examples include polyolefin resins such as a polyethylene polymer and a polypropylene polymer, and more specific examples include polyethylene, polypropylene, polyethylene terephthalate, and isotactic polystyrene.

【0009】(2)溶解性気体 溶解性気体について『溶解』とは、高分子樹脂にガスが
溶解するか否かは、学術的には、混合前後の自由エネル
ギー差ΔGが負であるか否かによって定義される。現実
には、溶融した樹脂を密閉系でガスに曝し、樹脂の重量
変化あるいはガスの圧力変化を計測することにより、単
位重量あたりの樹脂に対して樹脂中に存在するガスのモ
ル数を求め、その値を溶解度(SolubiSolubility)と定
義する。樹脂に対して溶解度がゼロでないガスをここで
は溶解性気体という。樹脂に対するガスの溶解性の高さ
とは、同温度・同圧力下での溶解度の高さのことをい
う。本発見の対象となるポリエチレン、ポリプロピレン
樹脂に対しては、二酸化炭素ならびに窒素は、ガス加圧
圧力に比例して溶解度がほぼ直線的に増加することが分
かっている。二酸化炭素の溶解性は樹脂に対しては、ポ
リプロピレンに対する方がポリエチレンに対するより大
きい。また、同じポリプロピレンでは、二酸化炭素の方
が窒素よりどの温度・圧力下でも溶解性は高い。結晶性
高分子樹脂に溶解性を有する気体であれば、原則として
本発明の結晶化方法に使用することができる。気体の溶
解性が高いほど、本発明の狙いとする結晶化の効果が大
きい。従来、溶解性の高い気体としてフロンガスが知ら
れているが、環境問題の観点から、フロンガスは全廃の
方向にあり、好ましくない。フロンガスより溶解性は落
ちるが、環境問題の観点から二酸化炭素・窒素が好まし
い。
(2) Dissolvable gas “Dissolving” with respect to a soluble gas means whether or not the gas dissolves in the polymer resin, academically, whether or not the free energy difference ΔG before and after mixing is negative. Is defined by In reality, the molten resin is exposed to gas in a closed system, and by measuring the change in the weight of the resin or the change in the pressure of the gas, the number of moles of the gas present in the resin with respect to the resin per unit weight is obtained. The value is defined as solubility (SolubiSolubility). A gas having a non-zero solubility in a resin is referred to herein as a soluble gas. The high solubility of the gas in the resin refers to the high solubility at the same temperature and the same pressure. It has been found that the solubility of carbon dioxide and nitrogen increases almost linearly in proportion to the gas pressurization pressure for the polyethylene and polypropylene resins targeted for this discovery. The solubility of carbon dioxide for resin is higher for polypropylene than for polyethylene. In the same polypropylene, carbon dioxide has higher solubility than nitrogen at any temperature and pressure. As long as the gas is soluble in the crystalline polymer resin, it can be used in principle for the crystallization method of the present invention. The higher the solubility of the gas, the greater the crystallization effect targeted by the present invention. Conventionally, fluorocarbon gas has been known as a highly soluble gas, but from the viewpoint of environmental problems, fluorocarbon gas is in the direction of total elimination, which is not preferable. Although solubility is lower than that of fluorocarbon gas, carbon dioxide and nitrogen are preferable from the viewpoint of environmental problems.

【0010】結晶性高分子樹脂の結晶相には、気体は溶
解できないため、溶融状態で樹脂に溶けこんだ気体は、
結晶化した樹脂部分には残らない。特に、ポリオレフィ
ンと二酸化炭素あるいは窒素ガス系では、ポリオレフィ
ン樹脂が常圧・常温にあるときは、結晶相並びにアモル
ファス相とも殆ど気体は溶けこまない。
Since gas cannot be dissolved in the crystalline phase of the crystalline polymer resin, the gas dissolved in the resin in a molten state is
It does not remain in the crystallized resin part. In particular, in a polyolefin and carbon dioxide or nitrogen gas system, when the polyolefin resin is at normal pressure and normal temperature, almost no gas is dissolved in both the crystalline phase and the amorphous phase.

【0011】(3)結晶化工程 本発明の高分子樹脂の結晶化方法は、結晶性高分子樹脂
を加熱・溶融し、樹脂に溶解性の加圧気体雰囲気に溶融
樹脂に曝し、再度冷却することによって結晶化する。冷
却・結晶化工程は樹脂に溶解性を有する気体の存在下に
行う。
(3) Crystallizing Step According to the method for crystallizing a polymer resin of the present invention, the crystalline polymer resin is heated and melted, exposed to a molten gas in a pressurized gas atmosphere soluble in the resin, and cooled again. Crystallizes. The cooling / crystallization step is performed in the presence of a gas having solubility in the resin.

【0012】溶融条件 樹脂を溶解するためには加熱して、温度を上げることが
不可欠となるが、通常温度を上げると気体が樹脂に溶解
する量が減少する。従って、樹脂の加熱温度は原料樹脂
の融点よりも多少高めに設定する。例えば、ポリプロピ
レンの場合には170℃前後、ポリエチレンの場合は1
60℃前後とする。
Melting Conditions In order to dissolve the resin, it is indispensable to increase the temperature by heating, but usually, when the temperature is increased, the amount of gas dissolved in the resin decreases. Therefore, the heating temperature of the resin is set slightly higher than the melting point of the raw resin. For example, in the case of polypropylene, it is around 170 ° C.
It should be around 60 ° C.

【0013】冷却条件 オートクレーブをオイルバスから空気中に取り出し、例
えば、4時間自然放冷する。これは、冷却速度に換算す
ると0.52℃/分で冷却することに相当する。
Cooling conditions The autoclave is taken out of the oil bath into the air and allowed to cool naturally, for example, for 4 hours. This corresponds to cooling at a rate of 0.52 ° C./min in terms of a cooling rate.

【0014】加圧条件 気体の加圧条件の設定は、樹脂への気体の溶解度を制御
する観点と、装置設計上の問題から行われる。溶解度
は、二酸化炭素・窒素ともにポリエチレン、ポリプロピ
レンに対しては、加圧圧力の増加とともに増大する。ち
なみに、160℃〜180℃の設定温度範囲で、二酸化
炭素のプロピレンに対する溶解度は0気圧で0から10
0気圧で1.8〜2.0[mol-gas/kg-polymer]まで、直
線的に上昇すると報告されている。したがって、本発明
の狙いとする結晶化の効果も加圧圧力を大きくすればす
るほど効果が大きいと考えられるが、装置上の問題から
ここでは、2−60atmとしmとした。
Pressurizing Conditions Setting of the pressurizing conditions of the gas is performed from the viewpoint of controlling the solubility of the gas in the resin and a problem in designing the apparatus. The solubility increases with polyethylene and polypropylene for both carbon dioxide and nitrogen with increasing pressure. By the way, in the set temperature range of 160 ° C. to 180 ° C., the solubility of carbon dioxide in propylene is 0 to 10 at 0 atm.
It is reported that the pressure increases linearly from 1.8 to 2.0 [mol-gas / kg-polymer] at 0 atm. Therefore, it is considered that the effect of crystallization aimed at by the present invention increases as the pressurizing pressure is increased. However, from the viewpoint of the apparatus, the effect is set to 2 to 60 atm and m.

【0015】より詳しく述べると、溶融状態の樹脂に溶
解した気体の量に応じて、冷却・固化した樹脂の融点の
上昇度は異なる。即ち、加圧圧力を高くすれば気体の樹
脂への溶解量は増加し、得られた結晶化樹脂の融点は上
昇する。通常二酸化炭素ガスボンベは最大60atmに
設定されており、このような二酸化炭素ガスボンベを用
いて、溶融樹脂に二酸化炭素ガスを溶融させれば本発明
の効果は十分得られる。
More specifically, the degree of increase in the melting point of the cooled and solidified resin varies depending on the amount of gas dissolved in the molten resin. That is, if the pressure is increased, the amount of gas dissolved in the resin increases, and the melting point of the obtained crystallized resin increases. Normally, the carbon dioxide gas cylinder is set to a maximum of 60 atm, and if the carbon dioxide gas is melted in the molten resin using such a carbon dioxide gas cylinder, the effect of the present invention can be sufficiently obtained.

【0016】[0016]

【実施例】以下に、具体例をもって発明をさらに説明す
る。 対象樹脂 ハインパクトポリプロピレン(別名:ブロックポリプロ
ピレン)を用いた。ハインパクトポリプロピレンは、ホ
モポリマーを一段日の重合反応器で重合させ、一段目の
反応容器で得られたホモポリマーに対し2段目の重合反
応器でエチレンプロピレンゴムを混ぜ合わせながら重合
して製造したものである。
The present invention will be further described below with reference to specific examples. Target resin High impact polypropylene (alias: block polypropylene) was used. High-impact polypropylene is produced by polymerizing a homopolymer in the first-stage polymerization reactor, and then mixing the homopolymer obtained in the first-stage reaction vessel with ethylene-propylene rubber in the second-stage polymerization reactor. It was done.

【0017】樹脂の物性 実験に使用したポリプロピレンの物性は、MI(AST
M−D12138に準拠して測定したメルトインデク
ス)が18g/10分、EPR成分は18%、エチレン
成分は約8%である。ハインパクトポリプロピレンの初
期形状はベレット状であった。
Physical Properties of Resin The physical properties of the polypropylene used in the experiment were MI (AST
(Melt index measured according to M-D12138) is 18 g / 10 min, the EPR component is 18%, and the ethylene component is about 8%. The initial shape of the high impact polypropylene was a bellet shape.

【0018】実験装置 図1に示す装置で実験をおこなった。実験装置は、バル
ブV1、V2を介してオートクレーブ型加圧セル1に二
酸化炭素ボンベ2(純度99.9%以上)が連結され、
加圧セル1には安全バルブV3と気体逃がしバルブV4
と圧力ゲージGが連結されている。オートクレープ1は
加熱するオイルバス中のオイルに浸漬してある。試験サ
ンプルSは、オートクレーブ1中に配置されている。
Experimental Apparatus An experiment was performed using the apparatus shown in FIG. In the experimental apparatus, a carbon dioxide cylinder 2 (purity of 99.9% or more) is connected to an autoclave-type pressurized cell 1 via valves V1 and V2,
The pressure cell 1 has a safety valve V3 and a gas release valve V4.
And the pressure gauge G are connected. The autoclave 1 is immersed in oil in an oil bath to be heated. The test sample S is arranged in the autoclave 1.

【0019】実験手順 i)オートクレープ中に、直径1cm程度の円柱状また
は2cm四方のシート上に成形した試料を宙吊りにし、
1atm・180℃(オイルバスの設定温度)の圧力・
温度で15分間加熱する。加熱により試料を溶融状態に
戻し、今までの熱履歴を消す。加熱後、オートクレープ
内を加庄した気体で4時間満たし、気体を樹脂中に溶解
させる。その後、オートクレープをオイルバスから取り
出し、自然放熱により試料を冷却・再結晶化(固化)さ
せる。
Experimental Procedure i) In an autoclave, a sample formed on a cylindrical or 2 cm square sheet having a diameter of about 1 cm was suspended in the air,
1atm ・ 180 ℃ (oil bath set temperature) pressure ・
Heat at temperature for 15 minutes. The sample is returned to the molten state by heating, and the heat history up to now is erased. After the heating, the inside of the autoclave is filled with the added gas for 4 hours, and the gas is dissolved in the resin. Thereafter, the autoclave is taken out of the oil bath, and the sample is cooled and recrystallized (solidified) by natural heat radiation.

【0020】ii) 温度処理の仕方は変えず、二酸化炭
素による加圧圧力を変え、再結晶した樹脂の結晶性に及
ぼす影響を解析した。二酸化炭素は、同一温度において
は、圧力の上昇と共に溶解度が増す。従って、加圧圧力
の変化は、樹脂への溶解度の変化と等価となる。
Ii) The effect of the temperature treatment on the crystallinity of the recrystallized resin was analyzed by changing the pressurizing pressure with carbon dioxide. At the same temperature, the solubility of carbon dioxide increases with increasing pressure. Therefore, a change in the pressurizing pressure is equivalent to a change in the solubility in the resin.

【0021】iii)比較のために、温度処理の仕方は
変えず、窒素ガス50atmで加圧した実験も行った。
窒素ガスは、二酸化炭素に比べ、同一温度・圧力では、
試料への溶解度は低い。
Iii) For comparison, an experiment was performed in which the pressure was increased by 50 atm of nitrogen gas without changing the manner of the temperature treatment.
Nitrogen gas, compared to carbon dioxide, at the same temperature and pressure,
Low solubility in sample.

【0022】iv)さらに比較のため、温度処理の仕方
は同じで、空気1atmのままで、冷却・際結晶化させ
る実験も行った。
Iv) For further comparison, an experiment was conducted in which the temperature treatment was the same, and cooling and crystallization were performed while maintaining the air at 1 atm.

【0023】評価方法 i)融点 再結晶した試料の融点を、示差走査熱量分析装置(DS
C)により、35℃より10℃/分の加熱速度で吸収熱
量を測定し求めた。
Evaluation method i) Melting point The melting point of the recrystallized sample was measured by a differential scanning calorimeter (DS).
According to C), the amount of heat absorbed was measured at a heating rate of 10 ° C./min from 35 ° C. and determined.

【0024】ii)結晶構造1 再結晶した試料の結晶構造を、CuEα型の波長が1.
54Åの線回折(WÅ)装置で測定しピーク位置ならび
に半値幅を計測した。
Ii) Crystal Structure 1 The crystal structure of the recrystallized sample was determined to have a CuEα type wavelength of 1.
The peak position and half width were measured by a 54 ° line diffraction (W °) apparatus.

【0025】iii)結晶構造2 再結晶した試料の結晶構造を、透過型電子顆微鏡(TE
M)でも観測した。
Iii) Crystal structure 2 The crystal structure of the recrystallized sample was determined by using a transmission electron condyle microscope (TE).
M).

【0026】結果 i)二酸化炭素15、30、60atmの加圧下で再結
晶させて得られたサンプルのDSC測定結果を図2に示
す。圧力の上昇に伴い、カーブが高温側にずれている。
Results i) FIG. 2 shows the DSC measurement results of the sample obtained by recrystallization under the pressure of carbon dioxide of 15, 30, and 60 atm. The curve shifts to the high temperature side as the pressure increases.

【0027】ii)DSCの吸収熱曲線のピーク値を融
点として求め、二酸化炭素加圧圧力値に対してプロット
したのが図3である。加圧圧力の増加に伴い、融点が上
昇していることがわかる。
Ii) The peak value of the DSC curve was determined as the melting point and plotted against the carbon dioxide pressure. It can be seen that the melting point increases as the pressure increases.

【0028】iii)窒素50atmで結晶化させた試
料の融点を図3に●印でプロットした。二酸化炭素を溶
解させた試料は、窒素を溶解させたものよりも融点が高
いことがわかる。これから、加圧圧力が直接的に結晶性
に影響を与えるのではなく、気体の溶解性が直接の要因
であることがわかる。図3の中で、1atmの◆印で示
される融点は、空気中で再結晶化させた試料のものであ
る。この結果から、明らかに溶解気体の存在ができた再
結晶の試料の融点上昇に影響を与えていることがわか
る。
Iii) The melting point of the sample crystallized with 50 atm of nitrogen is plotted in FIG. It can be seen that the sample in which carbon dioxide is dissolved has a higher melting point than the sample in which nitrogen is dissolved. From this, it can be understood that the pressure pressure does not directly affect the crystallinity, but the solubility of the gas is a direct factor. In FIG. 3, the melting point indicated by a symbol of 1 atm is that of a sample recrystallized in air. From this result, it can be seen that the presence of the dissolved gas clearly affects the increase in the melting point of the recrystallized sample.

【0029】iv)二酸化炭素15atmで再結晶化さ
せた試料と30atmで再結晶化させた試料ならびに6
0atmで再結晶化した試料の線回折図を図4に示す。
線の2βのピーク値は、いずれも13.8,16.7、
18.4、20.9、21.60に現れており、二酸化
炭素の存在の有無に関わらず、得られた結晶構造はいず
れもα相である。一方で、各ピークの半値幅は圧力を高
くすれば次第に小さくなっている。すなわち、加圧圧力
の増加と共に、結晶性が高くなっているといえる。
Iv) A sample recrystallized at 15 atm of carbon dioxide, a sample recrystallized at 30 atm, and 6
FIG. 4 shows a line diffraction pattern of the sample recrystallized at 0 atm.
The peak values of 2β in the lines were 13.8, 16.7,
18.4, 20.9, and 21.60, and all of the obtained crystal structures are in the α phase regardless of the presence or absence of carbon dioxide. On the other hand, the half width of each peak becomes gradually smaller as the pressure is increased. In other words, it can be said that the crystallinity increases as the pressure increases.

【0030】v)結晶性が向上していることを確認する
ために、二酸化炭素60atmで再結晶化させた試料の
結晶構造を染色TEMで観測した。その写真を図5に示
す。通常の数十Åの結晶ラメラ厚さが数百Åとなってい
るのが写真よりわかる。
V) In order to confirm that the crystallinity was improved, the crystal structure of the sample recrystallized with 60 atm of carbon dioxide was observed with a stained TEM. The photograph is shown in FIG. It can be seen from the photograph that the thickness of the normal crystal lamella is several hundred mm.

【0031】[0031]

【発明の効果】以上説明したように、本発明の結晶化手
法を用いれば、結晶性高分子樹脂の結晶性をより向上さ
せた成形品を得ることができ、かつ融点を上昇させた耐
熱性に優れた成形品が得られる。
As described above, by using the crystallization method of the present invention, it is possible to obtain a molded article with further improved crystallinity of the crystalline polymer resin, and to improve the heat resistance with the increased melting point. Excellent molded product is obtained.

【0032】二酸化炭素を利用することができることか
ら、環境の観点からも有効である。
Since carbon dioxide can be used, it is also effective from an environmental point of view.

【0033】圧力による結晶化の促進ではなく、気体の
溶解性による結晶化の促進であるため、溶解性の高い気
体を使えば、低圧で設備が実現でき製造コストの点でも
有利である。
Since the crystallization is not promoted by the pressure but by the solubility of the gas, the use of a highly soluble gas is advantageous in terms of the production cost because the equipment can be realized at a low pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の結晶性高分子樹脂の結晶化方法を行
うために用いる装置を模式的に表す。
FIG. 1 schematically shows an apparatus used for performing a method for crystallizing a crystalline polymer resin of the present invention.

【図2】 二酸化炭素15、30、60atmの加圧下
で再結晶させて得られたサンプルのDSC測定結果を示
す。
FIG. 2 shows DSC measurement results of a sample obtained by recrystallization under a pressure of carbon dioxide of 15, 30, and 60 atm.

【図3】 DSCの吸収熱曲線のピーク値を融点として
求め、二酸化炭素加圧圧力値に対してプロットしたグラ
フである。
FIG. 3 is a graph obtained by determining a peak value of an absorption heat curve of DSC as a melting point and plotting the peak value against a carbon dioxide pressure.

【図4】 二酸化炭素15atmで再結晶化させた試料
と30atmで再結晶化させた試料ならびに60atm
で再結晶化した試料の線回折図を示す。
FIG. 4 shows a sample recrystallized at 15 atm of carbon dioxide, a sample recrystallized at 30 atm, and 60 atm.
FIG. 3 shows a line diffraction diagram of the sample recrystallized in FIG.

【図5】 二酸化炭素60atmで再結晶化させた試料
の結晶構造を染色TEMで観測した写真である。
FIG. 5 is a photograph obtained by observing the crystal structure of a sample recrystallized with 60 atm of carbon dioxide using a stained TEM.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F070 AA13 AA15 AA18 AA47 AB19 AC01 AC16 BA02 BA03 BA04 BA09 BB06 FA03 FA07 FB02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F070 AA13 AA15 AA18 AA47 AB19 AC01 AC16 BA02 BA03 BA04 BA09 BB06 FA03 FA07 FB02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶性高分子樹脂を溶融状態で該高分子
樹脂に対して溶解性を有する気体の加圧雰囲気に曝し、
気体を樹脂中に溶解させ、加圧気体雰囲気中で冷却する
ことによって樹脂を固化させることを特徴とする、高分
子樹脂の結晶化方法。
1. Exposing a crystalline polymer resin in a molten state to a pressurized atmosphere of a gas having solubility in the polymer resin,
A method for crystallizing a polymer resin, comprising dissolving a gas in a resin and solidifying the resin by cooling in a pressurized gas atmosphere.
【請求項2】 前記気体は、二酸化炭素あるいは窒素で
あることを特徴とする請求項1に記載の高分子樹脂の結
晶化方法。
2. The method according to claim 1, wherein the gas is carbon dioxide or nitrogen.
【請求項3】 前記高分子樹脂は、ポリエチレン系重合
体またはプロピレン重合体であることを特徴とする請求
項1または2に記載の高分子樹脂の結晶化方法。
3. The method according to claim 1, wherein the polymer resin is a polyethylene polymer or a propylene polymer.
JP30516998A 1998-10-27 1998-10-27 Crystallization method of polymer resin Expired - Lifetime JP3026209B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30516998A JP3026209B1 (en) 1998-10-27 1998-10-27 Crystallization method of polymer resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30516998A JP3026209B1 (en) 1998-10-27 1998-10-27 Crystallization method of polymer resin

Publications (2)

Publication Number Publication Date
JP3026209B1 JP3026209B1 (en) 2000-03-27
JP2000128993A true JP2000128993A (en) 2000-05-09

Family

ID=17941903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30516998A Expired - Lifetime JP3026209B1 (en) 1998-10-27 1998-10-27 Crystallization method of polymer resin

Country Status (1)

Country Link
JP (1) JP3026209B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018481A1 (en) * 2000-08-28 2002-03-07 Mitsui Chemicals, Inc. Polymer composition, molded articles containing the same and processes for the production of both
WO2012096091A1 (en) 2011-01-13 2012-07-19 積水化学工業株式会社 Method for producing polymer molded article, and polymer molded article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032839B1 (en) * 2021-07-30 2022-03-09 ユニチカ株式会社 Polyolefin resin aqueous dispersion and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018481A1 (en) * 2000-08-28 2002-03-07 Mitsui Chemicals, Inc. Polymer composition, molded articles containing the same and processes for the production of both
WO2012096091A1 (en) 2011-01-13 2012-07-19 積水化学工業株式会社 Method for producing polymer molded article, and polymer molded article
JP5060658B2 (en) * 2011-01-13 2012-10-31 積水化学工業株式会社 Method for producing polymer molded product
CN103298863A (en) * 2011-01-13 2013-09-11 积水化学工业株式会社 Method for producing polymer molded article, and polymer molded article
CN103755990A (en) * 2011-01-13 2014-04-30 积水化学工业株式会社 Method for producing polymer molded article, and polymer molded article
CN103298863B (en) * 2011-01-13 2014-05-07 积水化学工业株式会社 Method for producing polymer molded article, and polymer molded article
US8846795B2 (en) 2011-01-13 2014-09-30 Sekisui Chemical Co., Ltd. Method for producing polymer molded article, and polymer molded article

Also Published As

Publication number Publication date
JP3026209B1 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
Pawlak Cavitation during tensile deformation of high-density polyethylene
Keller et al. Crystallization phenomena in polymers-Preliminary investigation of the crystallization characteristics of polyethylene terephthalate
Varga β-Modification of polypropylene and its two-component systems
Day et al. A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites
EP1023388B2 (en) Polypropylene composition useful for making solid state oriented film
CA2985179C (en) Polyethylene for superior sheet extrusion thermoforming performance
JPH0661813B2 (en) Extrusion method
Crystal The crystalline morphology of poly (N-vinylcarbazole)
DE10320374A1 (en) A polypropylene resin composition based on polypropylenes of two different swelling ratios giving heat shrinkable films useful in packaging, e.g. of several items with heat shrinkage and fixing
US11746212B2 (en) Additive composition and method for producing a polymer composition using the same
Yang et al. Deformation and pore formation mechanism of β nucleated polypropylene with different supermolecular structures
Sun et al. Crystallization of syndiotactic polystyrene under pressure
JP4230007B2 (en) Molded product comprising ethylene-vinyl alcohol copolymer
JP3026209B1 (en) Crystallization method of polymer resin
Weinhold et al. The effect of surface nucleation on the crystallization of the α phase of poly (vinylidene fluoride)
Zeng et al. Isothermal crystallization and melting behavior of polypropylene with lanthanum complex of cyclodextrin derivative as a β‐nucleating agent
Kofinas et al. Melt processing of semicrystalline E/EP/E triblock copolymers near the order-disorder transition
US2997743A (en) Biaxially oriented crystalline polystyrene
US3052924A (en) Process for the manufacture of biaxially oriented crystalline polystyrene
JP2675140B2 (en) Method and device for manufacturing plastic continuum
Li et al. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene
JPH07112699B2 (en) Method for manufacturing resin molded products
Qian et al. Influence of Thermo-degradation on the Crystallization Kinetics of Isotactic Polypropylene with a β-Nucleating Agent
JP2004027188A (en) Polypropylene-based resin composition for heat-shrinking film, method for producing the resin composition and heat-shrinking film
Cooney Effect of morphology on biaxial stress rupture of polyethylene

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991221

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term