JP2000128650A - Amorphous refractory for casting application - Google Patents

Amorphous refractory for casting application

Info

Publication number
JP2000128650A
JP2000128650A JP10298862A JP29886298A JP2000128650A JP 2000128650 A JP2000128650 A JP 2000128650A JP 10298862 A JP10298862 A JP 10298862A JP 29886298 A JP29886298 A JP 29886298A JP 2000128650 A JP2000128650 A JP 2000128650A
Authority
JP
Japan
Prior art keywords
refractory
spinel
mgo
calcined
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10298862A
Other languages
Japanese (ja)
Inventor
Toshihiro Isobe
利弘 礒部
Shiyouichi Itose
彰一 糸瀬
Masafumi Nakajima
理文 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP10298862A priority Critical patent/JP2000128650A/en
Publication of JP2000128650A publication Critical patent/JP2000128650A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/065Burnable, meltable, sublimable materials characterised by physical aspects, e.g. shape, size or porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00887Ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an amorphous refractory for casting application, capable of being used for the linings of steel-melting vessels, etc., and having excellent durability. SOLUTION: This amorphous refractory for casting application comprises refractory aggregates and refractory coarse granules containing alumina and MgO.Al2O3-based spinel as main materials. Therein, organic fibers are added, and 3-20 wt.% of the MgO.Al2O3-based spinel comprises calcined MgO.Al2 O3-based spinel ultrafine powder having an average particle diameter of <=5 μm, wherein the total amount of the refractory aggregates and the refractory coarse granules is 100 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に溶鋼容器の内
張りに好適な流し込み施工用不定形耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an irregular-shaped refractory for casting, which is particularly suitable for lining a molten steel container.

【0002】[0002]

【従来の技術】溶鋼取鍋、タンデッシュ、溶鋼真空脱ガ
ス炉などの溶鋼容器の内張りに使用する流し込み施工用
不定形耐火物(以下、流し込み材)として、アルミナ−
スピネル質が提案されている(特開平1-87577号公報、
特開平2-225379号公報、特開平4-59665号公報、特開平5
-238838号公報等)。この材質は、アルミナがもつ耐食
性および容積安定性とスピネルによる耐スラグ浸透性に
よって、優れた耐用性を発揮する。
2. Description of the Related Art Amorphous refractories (hereinafter referred to as "casting materials") for casting are used for lining of molten steel containers such as molten steel ladle, tundish, and molten steel vacuum degassing furnace.
Spinel has been proposed (JP-A-1-87577,
JP-A-2-225379, JP-A-4-59665, JP-A-5
-238838). This material exhibits excellent durability due to the corrosion resistance and volume stability of alumina and the slag penetration resistance of spinel.

【0003】[0003]

【発明が解決しようとする課題】しかし、近年における
溶鋼容器の使用条件は、溶鋼温度の上昇、滞湯時間の延
長、ガス吹き込み撹拌などによる苛酷化により、従来の
内張り材では十分な耐用性が得られない。そこで、上記
従来の材質よりさらに優れた耐用性の流し込み材の提供
が強く求められている。
However, in recent years, the conditions of use of molten steel containers are that the durability of conventional lining materials is not sufficient due to increased temperature of molten steel, prolonged stagnation time, and harshness due to gas blowing and stirring. I can't get it. Therefore, there is a strong demand for providing a more durable casting material than the above-mentioned conventional materials.

【0004】[0004]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、アルミナおよびMgO・Al系スピネルを
主材とした耐火骨材と耐火粗大粒とを含む流し込み施工
用不定形耐火物において、有機質ファイバーを添加する
と共に、耐火骨材および耐火粗大粒の合量100wt%に
占める割合で、前記MgO・Al系スピネルのう
ち3〜20wt%を平均粒径5μm以下の仮焼MgO・Al
系スピネル超微粉とした流し込み施工用不定形耐
火物である。
A feature of the present invention is that the refractory aggregate mainly composed of alumina and MgO.Al 2 O 3 -based spinel and the refractory coarse-grained refractory for casting. In the above method, 3-20 wt% of the MgO.Al 2 O 3 -based spinel is calcined with an average particle size of 5 μm or less in a ratio of 100 wt% of the total amount of the refractory aggregate and the refractory coarse particles, while adding organic fibers. MgO / Al
A construction for monolithic refractories poured which was 2 O 3 spinel micronized.

【0005】流し込み材の組成は、耐火骨材とは別に耐
火粗大粒を添加することが知られている(特開平4-5966
5号公報)。耐火粗大粒は耐火物組織内に発生した亀裂
の進展を寸断し、亀裂の発達を防止することで流し込み
材の耐スポーリング性を向上する。
[0005] It is known that the composition of the casting material is such that refractory coarse grains are added separately from the refractory aggregate (Japanese Patent Laid-Open No. 4-5966).
No. 5). The refractory coarse grains cut the growth of cracks generated in the refractory structure and prevent the growth of cracks, thereby improving the spalling resistance of the cast material.

【0006】しかし、耐火粗大粒は流し込み材の施工時
の流動性を低下させる。この流動性の低下は、迅速な施
工が困難、狭い個所への充填が容易でない、施工体の緻
密性が劣る等の問題を生じる。
[0006] However, the refractory coarse particles reduce the fluidity of the cast material during construction. This decrease in fluidity causes problems such as difficulty in quick construction, difficulty in filling small places, and inferior compactness of the construction body.

【0007】そこで、粒径5μm以下のMgO・Al
系スピネル(以下、スピネルと称す)超微粉の添加
により、流動性の改善と共に耐スラグ浸透性を向上させ
ることが提案されている(特開平5-238838号公報)。し
かし、耐用性においては決して十分なものではない。
Therefore, MgO.Al 2 having a particle size of 5 μm or less
It has been proposed to improve the fluidity as well as the slag permeation resistance by adding ultrafine powder of O 3 -based spinel (hereinafter referred to as spinel) (Japanese Patent Laid-Open No. 5-238838). However, durability is not enough.

【0008】本発明はスピネル超微粉として、特に仮焼
スピネル超微粉を使用する。この仮焼スピネル超微粉の
添加は、流動性に加え、熱間強度の向上によって優れた
耐用性が得られる。
[0008] The present invention uses ultra-fine spinel powder, particularly ultra-fine calcined spinel powder. The addition of the ultrafine calcined spinel powder provides excellent durability by improving hot strength in addition to fluidity.

【0009】一般に耐火原料は、耐火度、緻密性等の向
上を目的とし高温で強焼して製造される。耐火原料とし
てのスピネルの焼成温度は通常、1800〜2000℃である。
従来使用されているスピネル超微粉も、この強焼品を微
粉砕したものである。これに対し本発明で使用する仮焼
スピネル超微粉は、焼成温度が例えば1600℃以下といっ
た低温焼成されたものである。
Generally, a refractory raw material is produced by strong firing at a high temperature for the purpose of improving the degree of fire resistance and denseness. The firing temperature of spinel as a refractory raw material is usually 1800 to 2000 ° C.
Conventionally used spinel ultrafine powder is also obtained by finely pulverizing this strongly fired product. On the other hand, the calcined spinel ultrafine powder used in the present invention has been calcined at a low temperature of, for example, 1600 ° C. or less.

【0010】耐火粗大粒使用の材質は、耐火物損耗過程
において耐火物粗大粒の界面を起点とした微細亀裂の発
生、耐火粗大粒の剥落等などが生じやすい。仮焼スピネ
ル超微粉は低温焼成で製造されたことによって化学的に
活性であり、その焼結効果で耐火粗大粒を強固に保持
し、前記した微細亀裂や剥落を防止し流し込み材の熱間
強度を向上させる。また、耐火粗大粒の周囲にこの耐火
粗大粒と強固に焼結したスピネル組織が存在することに
なり、耐火粗大粒界面へのスラグ浸透が防止される。
[0010] The material using the refractory coarse grains is liable to generate fine cracks starting from the interface of the refractory coarse grains in the wear-out process of the refractory, peeling of the refractory coarse grains, and the like. The calcined spinel ultrafine powder is chemically active because it is produced by low-temperature sintering, and its sintering effect firmly holds the refractory coarse grains, prevents the fine cracks and spalling described above, and sets the hot strength of the cast material. Improve. In addition, the refractory coarse grains and the strongly sintered spinel structure exist around the refractory coarse grains, thereby preventing the slag from penetrating into the interface of the refractory coarse grains.

【0011】しかし、仮焼スピネル超微粉は耐火粗大粒
使用による流動性の低下を克服させるだけの量を添加す
ると、その反応性の高さから流し込み材組織の過焼結を
招き、耐スポーリング性低下の原因となる。溶鋼取鍋等
の内張りは、耐スポーリング性に劣ると溶鋼の受湯・排
出に伴う熱衝撃で剥離損傷を生じ、耐用性の向上が望め
ない。本発明はこの耐スポーリング性の低下を、有機フ
ァイバーの添加で防止する。
However, if the calcined spinel ultrafine powder is added in an amount sufficient to overcome the decrease in fluidity due to the use of refractory coarse grains, its reactivity leads to oversintering of the cast material structure, resulting in spalling resistance. It may cause a decline in sex. If the lining of a molten steel ladle or the like is inferior in spalling resistance, peeling damage occurs due to thermal shock caused by receiving and discharging molten steel, and improvement in durability cannot be expected. The present invention prevents the spalling resistance from lowering by adding an organic fiber.

【0012】有機ファイバーは流し込み材の乾燥促進剤
として知れている。また、焼結防止剤としても知られて
いる(特開平2-225379号公報)。しかし、仮焼スピネル
超微粉による過焼結を防止する目的に有機ファイバーを
添加することは知られていない。
Organic fibers are known as drying aids for casting materials. It is also known as a sintering inhibitor (Japanese Patent Application Laid-Open No. 2-225379). However, it has not been known to add organic fibers for the purpose of preventing oversintering due to ultra-fine calcined spinel powder.

【0013】本発明において、耐火粗大粒による耐スポ
ーリング性と、仮焼スピネル超微粉による流動性および
熱間強度の向上の効果は、この有機ファイバーの添加で
はじめて発揮される。
In the present invention, the spalling resistance due to the refractory coarse grains and the effect of improving the fluidity and hot strength due to the calcined spinel ultrafine powder are exhibited only by the addition of the organic fiber.

【0014】[0014]

【発明の実施の形態】本発明で使用する仮焼スピネル超
微粉の製造方法は特に限定されない。例えば、仮焼アル
ミナ、水酸化アルミニウム等のアルミナ源と軽焼マグネ
シア、水酸化マグネシウム等のマグネシア源とを任意の
割合で混合し、低温度域で焼成後、微粉砕して得る。具
体的な焼成温度は1600℃以下が好ましい。1600℃を超え
ると活性度が低下して流し込み材の焼結効果が乏しい。
焼成温度の下限は、アルミナとマグネシアの相互の反応
でスピネル結合を生じさせるために1100℃が好ましい。
また、最も好ましい焼成温度は1100〜1500℃である。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing the ultrafine calcined spinel powder used in the present invention is not particularly limited. For example, an alumina source such as calcined alumina or aluminum hydroxide and a magnesia source such as lightly-baked magnesia or magnesium hydroxide are mixed at an arbitrary ratio, fired in a low temperature range, and then finely pulverized. The specific firing temperature is preferably 1600 ° C. or lower. If it exceeds 1600 ° C., the activity decreases and the sintering effect of the cast material is poor.
The lower limit of the sintering temperature is preferably 1100 ° C. in order to cause spinel bonding by mutual reaction between alumina and magnesia.
The most preferable firing temperature is 1100 to 1500 ° C.

【0015】仮焼スピネル超微粉の化学組成は、例えば
MgO:10〜35wt%、残部がAl 主体とする。
MgOが多過ぎると施工水との水和の問題があり、好ま
しくない。
The chemical composition of the calcined spinel ultrafine powder is, for example,
MgO: 10-35 wt%, the balance being Al 2O3Be the subject.
If there is too much MgO, there is a problem of hydration with construction water,
Not good.

【0016】スピネル超微粉の平均粒径は5μm以下と
する。平均粒径が5μmを超えると焼結効果に乏しく、
本発明における熱間強度向上の効果が得られない。さら
に好ましい平均粒径は0.2〜3μmである。平均粒径が
0.2μm以下であっても本発明の効果は得られるが、粉
砕に要する労力によって生産性の面から好ましくない。
また、平均粒径の特定化は例えばレーザー式粒度分布測
定器で行うことができる。
The average particle size of the ultrafine spinel powder is 5 μm or less. If the average particle size exceeds 5 μm, the sintering effect is poor,
The effect of improving hot strength in the present invention cannot be obtained. A more preferred average particle size is 0.2 to 3 μm. Average particle size
Although the effect of the present invention can be obtained even when the thickness is 0.2 μm or less, it is not preferable in terms of productivity due to the labor required for pulverization.
The average particle size can be specified by, for example, a laser type particle size distribution analyzer.

【0017】スピネル超微粉の割合は、耐火骨材と耐火
粗大粒との合量100wt%に占める割合で、3wt%未満
では熱間強度および流動性に劣り、20wt%を超えると
過焼結となって耐スポーリング性が低下する。
The proportion of the ultrafine spinel powder is the proportion of the total amount of the refractory aggregate and the refractory coarse particles in the total amount of 100 wt%. If it is less than 3 wt%, the hot strength and the fluidity are inferior. And the spalling resistance decreases.

【0018】スピネルは前記した超微粉以外に、この超
微粉より粒径の大きなスピネルを組み合わせて使用して
もよい。その場合は、前記した超微粉も含めたスピネル
全体の割合は、耐火骨材と耐火粗大粒との合量100wt
%に占める割合で40wt%を超えないことが好まし
い。40wt%を超えると耐スポーリング性に劣る。ま
た、仮焼スピネル超微粉以外のスピネルは、通常の強焼
品あるいは電融品を使用することができる。
As the spinel, in addition to the above-mentioned ultrafine powder, a spinel having a larger particle diameter than the ultrafine powder may be used in combination. In that case, the ratio of the entire spinel including the ultrafine powder described above is 100 wt.
% Is preferably not more than 40 wt%. If it exceeds 40 wt%, the spalling resistance is poor. Further, as the spinel other than the calcined spinel ultrafine powder, an ordinary strongly fired product or an electrofused product can be used.

【0019】耐火骨材としてのアルミナは、電融品、焼
結品のいずれでもよい。また、微粉部には仮焼品を使用
してもよい。ばん土けつ岩、ボーキサイト等の天然原料
はAl純度が低いことから、これらを使用する場
合は一部にとどめ、Al 純度が高い合成品を主体
にすることが好ましい。
Alumina as a refractory aggregate is used for electrofusion, firing
Any of the products may be used. In addition, calcined product is used for fine powder part
May be. Natural raw materials such as sand shale and bauxite
Is Al2O3Due to the low purity,
If only a part, Al2O 3Mainly synthetic products with high purity
Is preferable.

【0020】耐火骨材としてのアルミナの割合は、耐火
骨材と耐火粗大粒との合量100wt%に占める割合で3
5〜85wt%が好ましい。35wt%未満では耐スポ
ーリング性に劣り、85wt%を超えると耐スラグ浸透
性に劣る。
The proportion of alumina as the refractory aggregate is 3% in the total amount of 100 wt% of the refractory aggregate and the refractory coarse particles.
5 to 85 wt% is preferred. If it is less than 35 wt%, the spalling resistance is poor, and if it exceeds 85 wt%, the slag penetration resistance is poor.

【0021】耐火骨材としてスピネルおよびアルミナ以
外に、例えばマグネシアを組み合わせ使用してもよい。
マグネシアを組み合わせる場合は、耐スポーリング性を
低下させないために、耐火骨材と耐火粗大粒の合量100
wt%に占める割合で10wt%以下が好ましい。また、
マグネシアを組み合わせた場合は、その分、仮焼スピネ
ル超微粉以外のスピネルの割合を低減することが好まし
い。
As the refractory aggregate, for example, magnesia may be used in combination in addition to spinel and alumina.
When combining magnesia, the total amount of refractory aggregate and refractory coarse particles should be 100 to avoid lowering spalling resistance.
It is preferably at most 10 wt% as a percentage of wt%. Also,
When magnesia is combined, it is preferable to reduce the proportion of spinel other than the calcined spinel ultrafine powder.

【0022】他にもシリカ、ムライト、カルシア、マグ
ネシア−カルシア、ジルコン、ジルコニア、クロミア、
炭素、炭化物、窒化物、ほう化物、粘土、ムライト等を
一部に組み合わせてもよいが、量が多いと熱間強度を低
減させるので、これらは耐火骨材と耐火粗大粒の合量10
0wt%に占める割合で5wt%以下であることが好まし
い。
In addition, silica, mullite, calcia, magnesia-calcia, zircon, zirconia, chromia,
Carbon, carbide, nitride, boride, clay, mullite, etc. may be partially combined.However, if the amount is large, the hot strength is reduced.
It is preferable that the content is 5% by weight or less as a proportion of 0% by weight.

【0023】各耐火骨材の粒径は、本発明で使用する仮
焼スピネル超微粉を考慮した上で、従来の流し込み材と
同様に、粗粒,中粒、微粒に調整する。
The particle size of each refractory aggregate is adjusted to coarse particles, medium particles, and fine particles in the same manner as in the conventional casting material, taking into account the calcined spinel ultrafine powder used in the present invention.

【0024】耐火粗大粒の材質は、アルミナ、スピネル
等の焼結品または電融品、あるいはこれらを主材とした
耐火物廃材を使用することができる。
As the material of the refractory coarse particles, a sintered product such as alumina or spinel or an electrofused product, or a refractory waste material containing these as a main material can be used.

【0025】耐火粗大粒の割合は、耐火性骨材および耐
火粗大粒の合量100wt%に占める割合で、10〜35w
t%が好ましい。少ないと耐火粗大粒がもつ耐スポーリ
ング性の効果が不十分となる。多すぎると施工時の流動
性の低下で密充填組織が得られない。
The ratio of the refractory coarse particles is a ratio of 10 to 35 watts in the total amount of 100 wt% of the refractory aggregate and the refractory coarse particles.
t% is preferred. If the amount is small, the effect of spalling resistance of the refractory coarse particles becomes insufficient. If it is too large, a tightly packed structure cannot be obtained due to a decrease in fluidity during construction.

【0026】耐火骨材の最大粒径は一般に3〜8mmで
ある。耐火骨材は、この最大粒径以下の範囲で粗粒、中
粒、微粒に調整する。耐火粗大粒の粒径は、耐火骨材よ
りさらに大きい。
The maximum particle size of the refractory aggregate is generally 3 to 8 mm. The refractory aggregate is adjusted to coarse, medium, and fine particles within the range of the maximum particle size or less. The particle size of the refractory coarse particles is even larger than that of the refractory aggregate.

【0027】耐火粗大粒の具体的な粒径は耐火骨材の最
大粒径にも関係するが、通常は10〜50mmである。粗大
粒子の粒径が小さ過ぎると粗大粒がもつ耐スポーリング
性の効果られない。大き過ぎると狭い個所への充填が出
来なくなる他、流動性の低下が著しい。
The specific particle size of the refractory coarse particles depends on the maximum particle size of the refractory aggregate, but is usually 10 to 50 mm. If the particle size of the coarse particles is too small, the spalling resistance of the coarse particles cannot be obtained. If it is too large, it will not be possible to fill narrow locations, and the fluidity will be significantly reduced.

【0028】有機質ファイバーは、例えばビニロン(ポ
リビニールアルコールを含む)、レーヨン、ポリエステ
ル、ナイロン、ポリプロピレン、ポリエチレンなどの高
分子有機質とする。長さは1〜10mmが好ましい。ま
た、その割合は耐火骨材と耐火粗大粒との合量100w
t%に対して0.05〜1wt%が好ましい。少ないと
耐スポーリング性の効果が得られず、多いと耐食性の低
下を招く。
The organic fiber is a polymer organic material such as vinylon (including polyvinyl alcohol), rayon, polyester, nylon, polypropylene and polyethylene. The length is preferably 1 to 10 mm. In addition, the ratio is 100 w combined amount of refractory aggregate and refractory coarse particles.
0.05 to 1 wt% is preferable to t%. If the amount is too small, the effect of spalling resistance cannot be obtained, and if it is too large, the corrosion resistance decreases.

【0029】結合剤はアルミナセメントが最も好ましい
が、これに限らずマグネシアセメント等でもよい。その
割合は結合剤の種類にもよるが、耐火骨材と耐火粗大粒
との合量100wt%に対して1〜15wt%が好まし
い。
The binder is most preferably alumina cement, but is not limited thereto and may be magnesia cement or the like. The ratio depends on the type of the binder, but is preferably 1 to 15 wt% with respect to 100 wt% of the total amount of the refractory aggregate and the refractory coarse particles.

【0030】また、流し込み材の添加剤として知られて
いる分散剤、硬化促進剤、硬化遅延剤、乾燥促進剤、A
l等の金属粉、揮発シリカ、塩基性乳酸アルミニウム、
ガラス粉、ピッチ粉、炭素質ファイバー、金属質ファイ
バー(例えばステンレス鋼ファイバー)、セラミックフ
ァイバー等をどを添加してもよい。
Dispersants, curing accelerators, curing retarders, drying accelerators, and A
metal powder such as l, volatile silica, basic aluminum lactate,
Glass powder, pitch powder, carbon fiber, metal fiber (for example, stainless steel fiber), ceramic fiber, etc. may be added.

【0031】この中で分散剤は流動性付与のために最も
一般的に使用される。分散剤の具体例としては、例えば
トリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウル
トラポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、
ホウ酸ソーダ、炭酸ソーダなどの無機塩、クエン酸ソー
ダ、酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸
ソーダ、ポリメタリン酸塩、ポリカルボン酸塩、β−ナ
フタレンスルホン酸塩類、ナフタリンスルフォン酸等で
ある。耐火骨材と耐火粗大粒との合量100wt%に対
して0.01〜0.5wt%程度添加される。
Among these, dispersants are most commonly used for imparting fluidity. Specific examples of the dispersant include, for example, sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium acid hexametaphosphate,
Inorganic salts such as sodium borate and sodium carbonate; sodium citrate; sodium tartrate; sodium polyacrylate; sodium sulfonate; polymetaphosphate; polycarboxylate; It is added in an amount of about 0.01 to 0.5 wt% with respect to 100 wt% of the total amount of the refractory aggregate and the refractory coarse particles.

【0032】金属質ファイバーを添加する場合、その割
合は耐火骨材と耐火粗大粒との合量100wt%に対し
て4wt%以下が好ましい。
When metal fibers are added, the ratio is preferably 4 wt% or less based on 100 wt% of the total amount of the refractory aggregate and the refractory coarse particles.

【0033】本発明の流し込み材の施工は常法どおり、
以上の配合組成全体に対して外掛け4〜8wt%程度の
施工水を添加・混合し、流し込み施工される。施工時に
は、充填性を高めるためにバイブレータにより振動を付
与するのが好ましい。また、溶鋼容器等に中子を使用し
て直接施工する他、予め流し込み施工して得たプレキャ
ストブロックとして内張りしてもよい。
The casting of the casting material of the present invention is carried out as usual.
About 4 to 8 wt% of construction water is added to and mixed with the entire composition described above, and the construction is poured. At the time of construction, it is preferable to apply vibration with a vibrator in order to enhance the filling property. In addition to directly using a core in a molten steel container or the like, a precast block obtained by casting in advance may be lined.

【0034】[0034]

【実施例】表1は、本発明実施例と比較例で使用したス
ピネル超微粉の粒径、化学分析値および焼成温度であ
る。表2は本発明実施例とその比較例について、配合組
成とその試験結果を示す。表2に示した試験について、
その試験方法は以下のとおりである。
EXAMPLES Table 1 shows the particle diameters, chemical analysis values and firing temperatures of the ultrafine spinel powder used in the examples of the present invention and the comparative examples. Table 2 shows the composition and test results of the inventive examples and comparative examples. For the tests shown in Table 2,
The test method is as follows.

【0035】流動性:表2に示した配合組成に施工水分
を外掛け6wt%添加し、ミキサーにて混練後、タップ
フロー値を測定した。数値は流動した後の底辺の直径で
あり、数値が大きいほど流動性が高い。
Fluidity: 6 wt% of the working water was added to the composition shown in Table 2 and kneaded with a mixer, and the tap flow value was measured. The numerical value is the diameter of the base after flowing, and the larger the numerical value, the higher the fluidity.

【0036】熱間曲げ強さ:表2に示した配合組成に施
工水分を外掛け6wt%添加し、ミキサーにて混練後、
振動を付与した型枠に流し込み、養生・乾燥後、140
0℃下の熱間で曲げ強さを測定し、熱間強度を評価し
た。
Hot bending strength: To the composition shown in Table 2, 6% by weight of the working moisture was added and kneaded with a mixer.
Pour into a vibrating formwork, cure and dry.
The bending strength was measured at a temperature of 0 ° C. to evaluate the hot strength.

【0037】耐スポーリング性;前記と同様にして得た
流し込み成形体を、1650℃×30分加熱後、空冷
し、これを6回くり返し、亀裂発生状況で評価した。◎
…亀裂無し、○…亀裂極少、△…亀裂少、×…亀裂大。
Spalling resistance: The cast molded article obtained in the same manner as above was heated at 1650 ° C. for 30 minutes, air-cooled, repeated 6 times, and evaluated for the occurrence of cracks. ◎
… No cracks, ○… Minimal cracks, Δ… Small cracks, ×… Large cracks.

【0038】耐食性:前記で得た流し込み成形体につい
て試験した。重量比で鋼片:転炉スラグ(FeO含有
量;20重量%)=1:1を侵食剤とし、1650℃×
4時間の回転侵食試験を行い、溶損寸法を測定した。
Corrosion resistance: The cast molding obtained above was tested. A steel slab: converter slag (FeO content; 20% by weight) = 1: 1 by weight ratio as an erosion agent, 1650 ° C. ×
A 4-hour rolling erosion test was performed to measure the erosion size.

【0039】耐スラグ浸透性:前記の回転侵食試験後、
スラグ浸透寸法を測定した。 耐用性;100トン溶鋼取鍋に中子を用いて流し込み施
工し、養生後、約1000℃で加熱乾燥後、使用し、耐
用チャージ数を測定した。試験結果の欄が空欄のもの
は、試験しなかったものである。
Slag penetration resistance: After the above-mentioned rotational erosion test,
The slag penetration size was measured. Durability: The core was poured into a 100-ton molten steel ladle using a core, cured, heated and dried at about 1000 ° C., and used, and the number of usable charges was measured. If the column of the test result is blank, the test was not performed.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】表2の試験結果が示すように、本発明実施
例は流動性、熱間強度、耐スポーリング性、、耐食性、
耐スラグ浸透性に優れ、その結果、実機での耐用性の向
上もきわめて顕著である。これに対し比較例1は、仮焼
スピネル超微粉の平均粒径が大きいために、熱間強度お
よび耐食性について十分な効果が得られない。
As shown by the test results in Table 2, the examples of the present invention show that fluidity, hot strength, spalling resistance, corrosion resistance,
The slag penetration resistance is excellent, and as a result, the improvement of the durability in actual equipment is very remarkable. On the other hand, in Comparative Example 1, since the calcined spinel ultrafine powder has a large average particle size, sufficient effects on hot strength and corrosion resistance cannot be obtained.

【0043】比較例2は仮焼スピネル超微粉を使用して
おらず、超微粉として仮焼アルミナを使用したものであ
り、熱間強度、耐食性および耐スラグ浸透性に劣る。比
較例3は仮焼スピネル超微粉の割合が多すぎ、耐スポー
リング性に劣るためか耐用性の向上が顕著でない。
In Comparative Example 2, the calcined spinel ultrafine powder was not used, and calcined alumina was used as the ultrafine powder, and was inferior in hot strength, corrosion resistance and slag penetration resistance. In Comparative Example 3, the ratio of the ultra-fine calcined spinel powder was too large, and the spalling resistance was poor.

【0044】焼結スピネル超微粉を使用した比較例4お
よび比較例5は、熱間強度、耐食性および耐スラグ浸透
性に劣る。有機質ファイバーの添加がない比較例6およ
び耐火粗大粒を含まない比較例7は、共に耐スポーリン
グ性に劣る。
Comparative Examples 4 and 5 using the ultrafine sintered spinel powder are inferior in hot strength, corrosion resistance and slag penetration resistance. Comparative Example 6 in which no organic fiber was added and Comparative Example 7 in which no refractory coarse particles were contained were both inferior in spalling resistance.

【0045】[0045]

【発明の効果】本発明の流し込み材は、アルミナ−スピ
ネル質が本来もつ耐スラグ浸透性に加え、流動性、耐ス
ポーリング性、耐食性および熱間強度に優れた効果を発
揮する。その結果、溶鋼容器等おける近年の苛酷化な使
用条件にも十分な耐用性を示す。
The cast material of the present invention exhibits excellent effects on the fluidity, spalling resistance, corrosion resistance and hot strength in addition to the slag penetration resistance inherent in alumina-spinel. As a result, it shows sufficient durability even under recent severe use conditions in a molten steel container or the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミナおよびMgO・Al系ス
ピネルを主材とした耐火骨材と耐火粗大粒とを含む流し
込み施工用不定形耐火物において、有機質ファイバーを
添加すると共に、耐火骨材および耐火粗大粒の合量100
wt%に占める割合で、前記MgO・Al系スピ
ネルのうち3〜20wt%を平均粒径5μm以下の仮焼Mg
O・Al系スピネル超微粉とした流し込み施工用
不定形耐火物。
1. An irregular shaped refractory for casting including a refractory aggregate mainly composed of alumina and MgO.Al 2 O 3 -based spinel and refractory coarse grains, wherein an organic fiber is added, and the refractory aggregate and Total amount of refractory coarse grains 100
3 to 20 wt% of the MgO.Al 2 O 3 -based spinel is a calcined Mg having an average particle size of 5 μm or less.
O.Al 2 O 3 -based spinel ultra-fine powder, refractory for casting.
【請求項2】 仮焼MgO・Al系スピネル超微
粉の焼成温度が1600℃以下である請求項1記載の流し込
み施工用不定形耐火物。
2. The irregular shaped refractory for casting according to claim 1, wherein the calcined MgO.Al 2 O 3 -based spinel ultrafine powder has a firing temperature of 1600 ° C. or less.
JP10298862A 1998-10-20 1998-10-20 Amorphous refractory for casting application Pending JP2000128650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298862A JP2000128650A (en) 1998-10-20 1998-10-20 Amorphous refractory for casting application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298862A JP2000128650A (en) 1998-10-20 1998-10-20 Amorphous refractory for casting application

Publications (1)

Publication Number Publication Date
JP2000128650A true JP2000128650A (en) 2000-05-09

Family

ID=17865163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298862A Pending JP2000128650A (en) 1998-10-20 1998-10-20 Amorphous refractory for casting application

Country Status (1)

Country Link
JP (1) JP2000128650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001548A (en) * 2006-06-21 2008-01-10 Kurosaki Harima Corp Monolithic refractory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001548A (en) * 2006-06-21 2008-01-10 Kurosaki Harima Corp Monolithic refractory

Similar Documents

Publication Publication Date Title
US7166551B2 (en) Monothilic refractory composition
JP2920726B2 (en) Cast refractories
JP4527905B2 (en) Castable refractories for blast furnace firewood
JP2874831B2 (en) Refractory for pouring
JP2000203953A (en) Castable refractory for trough of blast furnace
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP4336030B2 (en) Unstructured refractory lining structure for ladle
JP2003040684A (en) Castable refractory for molten iron
JP2000128650A (en) Amorphous refractory for casting application
EP1502905A1 (en) Monothilic refractory composition
JP2604310B2 (en) Pouring refractories
JP3212856B2 (en) Irregular cast refractories and their moldings
JP4034858B2 (en) Indeterminate refractories for casting construction
JP4388190B2 (en) Unshaped refractory for hot metal ladle hot water
JP2000143356A (en) Prepared unshaped refractory for lining and casting execution of ladle stand part for molten steel
JPH07330450A (en) Flow-in refractory material
JPH11100280A (en) Monolitihic refractory for tundish lining
JP2004059390A (en) Castable refractory for blast furnace trough
JPH10330170A (en) Prepared unshaped refractory for casting and molten steel container lined with the same
JPH06199575A (en) Alumina-spinel castable refractory
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
CN116199517A (en) Low-carbon corundum spinel impact brick for tundish and preparation method thereof
JP2004307293A (en) Monolithic refractory composition
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this
JPH0967170A (en) Refractory for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113