JP2000127194A - Manufacture and device of thermoplastic resin molding - Google Patents

Manufacture and device of thermoplastic resin molding

Info

Publication number
JP2000127194A
JP2000127194A JP10304121A JP30412198A JP2000127194A JP 2000127194 A JP2000127194 A JP 2000127194A JP 10304121 A JP10304121 A JP 10304121A JP 30412198 A JP30412198 A JP 30412198A JP 2000127194 A JP2000127194 A JP 2000127194A
Authority
JP
Japan
Prior art keywords
gas
resin
thermoplastic resin
airtight container
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10304121A
Other languages
Japanese (ja)
Other versions
JP3285830B2 (en
Inventor
Koji Harada
浩次 原田
Hitoshi Kawachi
斉 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP30412198A priority Critical patent/JP3285830B2/en
Publication of JP2000127194A publication Critical patent/JP2000127194A/en
Application granted granted Critical
Publication of JP3285830B2 publication Critical patent/JP3285830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin molded product manufacturing method for manufacturing a molded product efficiently even when a resin is hard-to-mold. SOLUTION: A plurality of pressure-resistant chambers 3a and 3b are connected in parallel with a resin feed opening of an injection molding machine 6, and a gas impregnated resin is fed from one pressure-resistant chamber 3a into the injection molding machine 6, and simultaneously carbon dioxide gas is impregnated in the other pressure-resistant chamber 3b to manufacture a gas impregnated resin, and one pressure-resistant chamber 3a is changed over to the other pressure-resistant chamber 36 to feed the gas impregnated resin into the injection molding machine 6 continuously. The molding pressure can be reduced to a large extent particularly for a general-purpose thermoplastic resin and also a mold can be made smaller and the pressure distribution in a product generated at the time of molding can be reduced to improve the dimension accuracy by the arrangement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂、特
に、溶融粘度が高くて溶融成形が困難な樹脂、熱分解し
やすい樹脂、低沸点の添加剤もしくは熱分解しやすい添
加剤等を含む樹脂などの樹脂材料を用いた成形品の製造
方法およびこの製造方法に用いる熱可塑性樹脂成形品の
製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin, in particular, a resin having a high melt viscosity, which is difficult to melt-mold, a resin which is easily decomposed by heat, an additive having a low boiling point or an additive which is easily decomposed by heat. The present invention relates to a method for producing a molded article using a resin material such as a resin, and an apparatus for producing a thermoplastic resin molded article used in the production method.

【0002】[0002]

【従来の技術】熱可塑性樹脂の中には、溶融粘度が高く
て溶融成形が困難な樹脂や、分解しやすい樹脂、低沸点
の添加剤もしくは熱分解しやすい添加剤を有する樹脂な
ど、成形が困難な樹脂材料(以下、「難成形樹脂」と記
す)がある。
2. Description of the Related Art Among thermoplastic resins, there are moldings such as a resin having a high melt viscosity, which is difficult to melt-mold, a resin which is easily decomposed, and a resin having a low boiling point additive or an additive which is easily thermally decomposed. There are difficult resin materials (hereinafter, referred to as “hard-to-mold resins”).

【0003】たとえば、粘度が高く溶融成形が困難な樹
脂としては、超高分子量ポリエチレン、超高重合度ポリ
塩化ビニル、高塩素化度ポリ塩化ビニル、ポリテトラフ
ルオロエチレン、ポリイミド等が挙げられる。
For example, resins having high viscosity and difficult to melt-mold include ultrahigh molecular weight polyethylene, ultrahigh polymerization degree polyvinyl chloride, high chlorination degree polyvinyl chloride, polytetrafluoroethylene, polyimide and the like.

【0004】熱分解しやすい樹脂としては、ポリ乳酸、
ポリヒドロキシブチレート等の生分解生樹脂、高塩素化
度ポリ塩化ビニル、ポリアクリロニトリル等が挙げられ
る。
[0004] Resins which are easily decomposed by heat include polylactic acid,
Biodegradable resins such as polyhydroxybutyrate, polyvinyl chloride with high chlorination degree, polyacrylonitrile and the like can be mentioned.

【0005】たとえば、従来、難成形樹脂のうち、溶融
粘度が高く溶融成形が困難な樹脂から成形品を成形する
には、次のような方法が採られている。
For example, conventionally, the following method has been employed to mold a molded article from a resin having a high melt viscosity and being difficult to be melt-molded among difficult-to-mold resins.

【0006】(1)コンプレッション(圧縮)成形ある
いはラム押出成形などにより、板状あるいは棒状の成形
品を作成し、この成形品を切削などの切り出し加工によ
り所望の製品に賦形する方法。
(1) A method in which a plate-shaped or rod-shaped molded product is prepared by compression (compression) molding or ram extrusion molding, and the molded product is formed into a desired product by cutting out such as cutting.

【0007】(2)難成形樹脂を有機溶媒に溶解し、キ
ャスティング(注型)法により、フィルム化またはシー
ト化する方法。
(2) A method in which a difficult-to-mold resin is dissolved in an organic solvent and formed into a film or a sheet by a casting method.

【0008】(3)難成形樹脂に有機溶媒を加えて得ら
れる分散物または混合物を加熱溶融した後賦形し、賦形
後に有機溶媒を揮散させる方法(特公平4−47608
号公報等参照)。
(3) A method in which a dispersion or mixture obtained by adding an organic solvent to a difficult-to-mold resin is heated and melted, followed by shaping, followed by volatilization of the organic solvent after shaping (Japanese Patent Publication No. 4-47608).
Reference).

【0009】しかしながら、上記(1)の方法は、生産
性が極めて悪いという欠点がある。また、(2)、
(3)の方法では、得られる成形品の物性の低下を防止
するため、成形後に加熱して溶媒を揮散させなければな
らないが、完全に溶媒を揮散させるのに大掛かりな装置
が必要であるとともに、成形時間もかかり生産性が悪い
上、そのまま溶媒を揮散させたのでは環境汚染を招く恐
れがある。したがって、溶媒の回収を行わなければなら
ず、回収設備等の設備コストが嵩むと言う問題がある。
However, the method (1) has a disadvantage that productivity is extremely low. Also, (2),
In the method (3), in order to prevent the physical properties of the obtained molded article from being deteriorated, it is necessary to heat and evaporate the solvent after molding. However, a large-scale apparatus is required to completely evaporate the solvent. In addition, the molding time is long, the productivity is low, and the evaporation of the solvent as it is may cause environmental pollution. Therefore, there is a problem that the solvent must be recovered, and the equipment cost of the recovery equipment and the like increases.

【0010】そこで、有機溶媒に代えて環境汚染を招く
恐れのない二酸化炭素ガス(以下、「炭酸ガス」と記
す)などの常温・常圧で気体状態のガス(以下、「ガ
ス」とのみ記す。)を常圧または高圧状態で熱可塑性樹
脂に含浸させ、微細な独立セル構造の発泡体を射出成形
する方法が、すでに提案されている(特開平8−851
28号公報参照)。
Therefore, instead of an organic solvent, a gas in a gaseous state at normal temperature and normal pressure (hereinafter referred to as "gas") such as carbon dioxide gas (hereinafter referred to as "carbon dioxide gas") which does not cause environmental pollution. ) Is impregnated with a thermoplastic resin at normal pressure or high pressure, and a foam having a fine independent cell structure is injection-molded (JP-A-8-851).
No. 28).

【0011】すなわち、上記方法は、射出成形装置のホ
ッパとスクリュ内蔵シリンダとの間に気密容器である一
つの耐圧チャンバを設け、まず、ペレット形状の原料熱
可塑性樹脂(以下、「原料樹脂」と記す)をホッパから
室温状態に保った耐圧チャンバに供給し、この耐圧チャ
ンバ内で原料樹脂にガスを常圧でまたは高圧状態で含浸
させて易可塑化状態のガス含浸樹脂とする。つぎに、こ
のガス含浸樹脂を可塑化装置としての射出成形機に供給
し、射出成形機内で混練して可塑化したのち、得られた
可塑化樹脂を金型に射出して発泡成形品を得るようにな
っている。
That is, in the above method, one pressure-resistant chamber, which is an airtight container, is provided between the hopper of the injection molding apparatus and the screw built-in cylinder, and first, a pellet-shaped raw thermoplastic resin (hereinafter referred to as “raw resin”). Is supplied from a hopper to a pressure-resistant chamber maintained at room temperature, and the raw resin is impregnated with gas at normal pressure or high pressure in the pressure-resistant chamber to obtain a gas-impregnated resin in an easily plasticized state. Next, the gas-impregnated resin is supplied to an injection molding machine as a plasticizing device, kneaded and plasticized in the injection molding machine, and the obtained plasticized resin is injected into a mold to obtain a foam molded product. It has become.

【0012】[0012]

【本発明が解決しようとする課題】ところで、熱可塑性
樹脂へのガスの含浸量は、図9および図10に示すごと
く、圧力と時間に依存する。そこで、一定量のガスを樹
脂に含浸するためには、1)一定圧力に耐圧チャンバ内
を保つ、2)飽和含浸量に必要な時間以上、耐圧チャン
バ内に樹脂を放置しておく必要がある。また、上記1)
の要件を満たすためには、耐圧チャンバの空間を成形機
から遮断された密閉状態にする必要がある。
The amount of gas impregnated in the thermoplastic resin depends on the pressure and time as shown in FIGS. 9 and 10. Therefore, in order to impregnate the resin with a certain amount of gas, it is necessary to 1) keep the inside of the pressure-resistant chamber at a constant pressure, and 2) leave the resin in the pressure-resistant chamber for a time required for the saturated impregnation amount or more. . The above 1)
In order to satisfy the requirement, it is necessary to make the space of the pressure-resistant chamber closed in a closed state from the molding machine.

【0013】したがって、上記方法の場合、所定量のガ
ス含浸樹脂が耐圧チャンバから射出成形機に供給された
後でないと、つぎのガス含浸工程を実施することができ
ないと言う問題がある。
Therefore, in the above method, there is a problem that the next gas impregnation step cannot be performed unless a predetermined amount of the gas impregnation resin is supplied from the pressure-resistant chamber to the injection molding machine.

【0014】すなわち、連続的に成形を行うために、ガ
ス含浸と成形機への樹脂の供給を同時に行った場合(常
に耐圧チャンバと成形機とを接続している場合)は、成
形機からのガス漏れにより圧力が安定しない。また、初
期に成形機に供給される樹脂は、十分なガス含浸時間が
確保されないため、ガス含浸量が少なく、難成形樹脂の
粘度低下が不十分で成形不良を生じたり、ガス含浸量が
非常に少ない場合は全く成形ができないなどの問題を引
き起こす恐れが生じたりする。特に、発泡体を成形する
場合、製品毎に発泡倍率が異なるなどの問題を引き起こ
す恐れが生じてしまう。
That is, when the gas impregnation and the supply of the resin to the molding machine are performed simultaneously to continuously perform the molding (when the pressure-resistant chamber and the molding machine are always connected), the molding machine receives the gas from the molding machine. Pressure is not stable due to gas leakage. In addition, the resin initially supplied to the molding machine has a small gas impregnation time because a sufficient gas impregnation time is not ensured. If the amount is too small, there is a possibility that a problem such as impossible molding may be caused. In particular, in the case of molding a foam, there is a risk of causing a problem such as a difference in the expansion ratio for each product.

【0015】したがって、上記の方法では、結果として
樹脂溶解過程と成形過程とを時間的に分解したバッチ方
式とせざるを得ない。
Therefore, in the above method, as a result, the resin dissolving process and the molding process have to be performed in a batch system in which the process is temporally decomposed.

【0016】因みに、原料樹脂として、粘度平均分子量
が100万以上の超高分子量ポリエチレンのペレット
(サイズφ4mm×2.3mm)に常温(20℃)、ガス圧
10.0MPaで炭酸ガスを含浸させたところ、飽和含
浸量に達するまでの時間(以下、「飽和含浸時間」と記
す)は、1960分であった。従って、この1960分
間は、射出成形機への樹脂の供給を一旦停止しなければ
ならなかった。
As a raw material resin, pellets of ultrahigh molecular weight polyethylene (size φ4 mm × 2.3 mm) having a viscosity average molecular weight of 1,000,000 or more were impregnated with carbon dioxide gas at normal temperature (20 ° C.) and a gas pressure of 10.0 MPa. However, the time required to reach the saturated impregnation amount (hereinafter referred to as “saturated impregnation time”) was 1960 minutes. Therefore, during the 1960 minutes, the supply of the resin to the injection molding machine had to be temporarily stopped.

【0017】本発明は、このような事情に鑑みて、難成
形樹脂であっても、効率よく成形品を製造することがで
きる熱可塑性樹脂成形品の製造方法およびこの製造方法
に用いる熱可塑性樹脂成形品の製造装置を提供すること
を目的としている。
In view of such circumstances, the present invention provides a method for producing a thermoplastic resin molded article which can efficiently produce a molded article even if the resin is difficult to mold, and a thermoplastic resin used for the production method. It is an object of the present invention to provide an apparatus for manufacturing a molded article.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1にかかる熱可塑性樹脂成形品の製
造方法(以下、「請求項1の製造方法」と記す)は、常
温・常圧で気体状態のガスを、気密容器に充填し気密容
器内で原料熱可塑性樹脂に含浸させて所定のガス含浸量
のガス含浸樹脂を得るガス含浸工程と、ガス含浸工程で
得られたガス含浸樹脂を供給路を介して気密容器に接続
された可塑化装置へ供給する樹脂供給工程と、供給され
たガス含浸樹脂を可塑化装置内で可塑化したのち、得ら
れた可塑化樹脂を金型へ供給して金型形状の成形品を得
る成形工程とを備える熱可塑性樹脂成形品の製造方法に
おいて、複数の気密容器を供給路に並列に可塑化装置に
接続し、1つの気密容器からガス含浸樹脂を可塑化装置
へ供給すると同時に、他の気密容器でガス含浸工程を実
施し、1つの気密容器からのガス含浸樹脂の供給が規定
量に達すると、ガス含浸工程が終了した他の気密容器か
らのガス含浸樹脂の供給に切り替えるとともに、供給の
終わった気密容器に順次新しい原料熱可塑性樹脂を充填
してガス含浸工程を実施するようにした。
In order to achieve the above object, a method for producing a thermoplastic resin molded product according to claim 1 of the present invention (hereinafter referred to as "the production method of claim 1") is carried out at room temperature. A gas in a gaseous state at normal pressure is filled in an airtight container, and the raw material thermoplastic resin is impregnated in the airtight container to obtain a gas impregnated resin having a predetermined gas impregnation amount. A resin supply step of supplying the gas-impregnated resin to the plasticizing device connected to the airtight container via the supply path, and after the supplied gas-impregnated resin is plasticized in the plasticizing device, the obtained plasticized resin is A plurality of hermetically sealed containers connected to a plasticizing device in parallel with a supply path, wherein the one hermetic container is provided with a molding step of supplying the mold to a mold to obtain a mold-shaped molded product. Supply of gas-impregnated resin to plasticizer from When the gas impregnation process is performed in another airtight container and the supply of the gas impregnated resin from one airtight container reaches a specified amount, the supply of the gas impregnated resin is switched to the supply of the gas impregnated resin from another airtight container after the gas impregnation process is completed. At the same time, the gas-impregnating step was performed by sequentially filling the raw material thermoplastic resin into the airtight container after the supply.

【0019】本発明の請求項2にかかる熱可塑性樹脂成
形品の製造方法(以下、「請求項2の製造方法」と記
す)は、常温・常圧で気体状態のガスを、気密容器に充
填し気密容器内で原料熱可塑性樹脂に含浸させて所定の
ガス含浸量のガス含浸樹脂を得るガス含浸工程と、ガス
含浸工程で得られたガス含浸樹脂を供給路を介して気密
容器に接続された可塑化装置へ供給する樹脂供給工程
と、供給されたガス含浸樹脂を可塑化装置内で可塑化し
たのち、得られた可塑化樹脂を金型へ供給して金型形状
の成形品を得る成形工程とを備える熱可塑性樹脂成形品
の製造方法において、複数の気密容器を直列に接続する
とともに、供給路を介して最も下手の気密容器を可塑化
装置に接続し、最も下手の気密容器中のガス含浸樹脂が
可塑化装置に供給されている間に、上手側の他の気密容
器によってガス含浸工程を実施し、最も下手の気密容器
中のガス含浸樹脂が規定量供給されると、前記供給路を
遮断し、上手側の気密容器で予めガス含浸されたガス含
浸樹脂を順次下手側の気密容器に移し替えたのち、再び
最も下手の気密容器中のガス含浸樹脂を可塑化装置に供
給を開始するようにした。
According to a second aspect of the present invention, there is provided a method for producing a thermoplastic resin molded article (hereinafter referred to as “a second aspect of the present invention”). A gas impregnation step of impregnating the raw material thermoplastic resin in the airtight container to obtain a gas impregnated resin having a predetermined gas impregnation amount, and connecting the gas impregnated resin obtained in the gas impregnation step to the airtight container via a supply path. A resin supply step of supplying the plasticized resin to the plasticizing device, and after the supplied gas-impregnated resin is plasticized in the plasticizing device, the obtained plasticized resin is supplied to a mold to obtain a molded product in a mold shape. In the method for manufacturing a thermoplastic resin molded article comprising a molding step, a plurality of hermetic containers are connected in series, the lowest airtight container is connected to the plasticizing device via a supply path, and Gas impregnated resin is supplied to the plasticizer In the meantime, the gas impregnating step is performed by another good airtight container, and when the gas impregnated resin in the lowest airtight container is supplied in a specified amount, the supply path is shut off and the good airtight container is closed. After sequentially transferring the gas-impregnated resin impregnated with gas in advance to the lower hermetic container, supply of the gas-impregnated resin in the lowest hermetic container to the plasticizer was started again.

【0020】本発明の請求項3にかかる熱可塑性樹脂成
形品の製造方法(以下、「請求項3の製造方法」と記
す)は、常温・常圧で気体状態のガスを、気密容器に充
填し気密容器内で原料熱可塑性樹脂に含浸させて所定の
ガス含浸量のガス含浸樹脂を得るガス含浸工程と、ガス
含浸工程で得られたガス含浸樹脂を供給路を介して気密
容器に接続された可塑化装置へ供給する樹脂供給工程
と、供給されたガス含浸樹脂を可塑化装置内で可塑化し
たのち、得られた可塑化樹脂を金型へ供給して金型形状
の成形品を得る成形工程とを備える熱可塑性樹脂成形品
の製造方法において、ガス含浸工程時に気密容器中の原
料熱可塑性樹脂を、室温を越え、原料熱可塑性樹脂の溶
融温度未満の温度に加熱するようにした。
According to a third aspect of the present invention, there is provided a method for producing a thermoplastic resin molded article (hereinafter referred to as “a third aspect of the production method”). A gas impregnation step of impregnating the raw material thermoplastic resin in the airtight container to obtain a gas impregnated resin having a predetermined gas impregnation amount, and connecting the gas impregnated resin obtained in the gas impregnation step to the airtight container via a supply path. A resin supply step of supplying the plasticized resin to the plasticizing device, and after the supplied gas-impregnated resin is plasticized in the plasticizing device, the obtained plasticized resin is supplied to a mold to obtain a molded product in a mold shape. In the method for producing a thermoplastic resin molded article having a molding step, the raw material thermoplastic resin in the airtight container is heated to a temperature exceeding room temperature and lower than the melting temperature of the raw material thermoplastic resin during the gas impregnation step.

【0021】本発明の請求項4にかかる熱可塑性樹脂成
形品の製造方法(以下、「請求項4の製造方法」と記
す)は、請求項1ないし請求項3のいずれかの製造方法
の構成に加えて、ガス含浸工程時に、ガスを気密容器内
で高圧状態にしておくようにした。
According to a fourth aspect of the present invention, there is provided a method for producing a thermoplastic resin molded article (hereinafter referred to as a “method of the fourth aspect”) comprising the structure of any one of the first to third aspects. In addition, during the gas impregnation step, the gas is kept in a high pressure state in the airtight container.

【0022】本発明の請求項5にかかる熱可塑性樹脂成
形品の製造方法(以下、「請求項5の製造方法」と記
す)は、請求項1ないし請求項4のいずれか製造方法の
構成に加えて、可塑化装置が射出成形機であって、射出
成形機の計量完了時に供給路を閉じるようにした。
The method for producing a thermoplastic resin molded product according to claim 5 of the present invention (hereinafter referred to as “the production method of claim 5”) has the structure of any one of claims 1 to 4. In addition, the plasticizing device is an injection molding machine, and the supply path is closed when the measurement of the injection molding machine is completed.

【0023】本発明の請求項6にかかる熱可塑性樹脂成
形品の製造方法(以下、「請求項6の製造方法」と記
す)は、請求項1、請求項4、および請求項5のいずれ
かの製造方法の構成に加えて、可塑化装置が射出成形機
であって、L≧Lm /(N−1)×t1 /t2 〔但し、
Lは気密容器からのガス含浸樹脂の1回の供給量、Lm
は成形品の容量、Nは気密容器の数、t1 は気密容器で
のガスの飽和含浸に要する時間、t2 は1回の成形に要
する時間である。〕の式を満足する同容量のN個の気密
容器を用いるようにした。
The method for producing a thermoplastic resin molded product according to claim 6 of the present invention (hereinafter referred to as “the production method of claim 6”) is any one of claims 1, 4, and 5. In addition to the configuration of the manufacturing method, the plasticizing device is an injection molding machine, and L ≧ L m / (N−1) × t 1 / t 2 [where,
L is the amount of gas-impregnated resin supplied from an airtight container at one time, L m
Is the capacity of the molded product, N is the number of hermetic containers, t 1 is the time required for saturated impregnation of gas in the hermetic container, and t 2 is the time required for one molding. ] N airtight containers having the same capacity and satisfying the following equation are used.

【0024】本発明の請求項7にかかる熱可塑性樹脂成
形品の製造方法(以下、「請求項7の製造方法」と記
す)は、請求項1または請求項4の製造方法の構成に加
えて、成形装置が押出成形機であって、L≧M/(N−
1)×t1 /3600〔但し、Lは気密容器からのガス
含浸樹脂の1回の供給量、Nは気密容器の数、t1 は気
密容器でのガスの飽和含浸に要する時間、Mは押出成形
機の単位時間あたりの押出量である。〕の式を満足する
同容量のN個の気密容器を用いるようにした。
The method for manufacturing a thermoplastic resin molded product according to claim 7 of the present invention (hereinafter referred to as “the manufacturing method of claim 7”) is not limited to the structure of the manufacturing method of claim 1 or claim 4. The molding apparatus is an extrusion molding machine, and L ≧ M / (N−
1) × t 1/3600 [where, L is a single supply of the gas impregnation resins from the airtight container, N is the number of the airtight container, t 1 is the time required for saturation impregnation of the gas in the airtight container, M is It is the amount of extrusion per unit time of the extruder. ] N airtight containers having the same capacity and satisfying the following equation are used.

【0025】本発明の請求項8にかかる熱可塑性樹脂成
形品の製造方法(以下、「請求項8の製造方法」と記
す)は、請求項1,請求項2,請求項4、請求項5、請
求項6および請求項7のいずれかの製造方法の構成に加
えて、ガス含浸工程時に気密容器中の原料熱可塑性樹脂
を室温を越え、原料熱可塑性樹脂の溶融温度未満の温度
まで加熱するようにした。
The method for producing a thermoplastic resin molded article according to claim 8 of the present invention (hereinafter referred to as “the production method of claim 8”) is described in claims 1, 2, 4, and 5. In addition to the constitution of the production method according to any one of claims 6 and 7, the raw thermoplastic resin in the airtight container is heated to a temperature exceeding room temperature and lower than the melting temperature of the raw thermoplastic resin in the gas impregnation step. I did it.

【0026】本発明の請求項9にかかる熱可塑性樹脂成
形品の製造方法(以下、「請求項9の製造方法」と記
す)は、請求項3または請求項8の製造方法の構成に加
えて、気密容器にジャケットを設け、このジャケット内
に加熱媒体を供給して気密容器中の原料熱可塑性樹脂を
加熱するようにした。
The method of manufacturing a thermoplastic resin molded product according to the ninth aspect of the present invention (hereinafter referred to as “the manufacturing method of the ninth aspect”) is the same as that of the third or eighth aspect. A jacket was provided in the airtight container, and a heating medium was supplied into the jacket to heat the raw material thermoplastic resin in the airtight container.

【0027】本発明の請求項10にかかる熱可塑性樹脂
成形品の製造方法(以下、「請求項10の製造方法」と
記す)は、請求項3または請求項8の製造方法の構成に
加えて、気密容器にヒータを設け、このヒータによって
気密容器中の原料熱可塑性樹脂を加熱するようにした。
The method of manufacturing a thermoplastic resin article according to claim 10 of the present invention (hereinafter referred to as “the manufacturing method of claim 10”) is not limited to the structure of the manufacturing method of claim 3 or claim 8, A heater is provided in the airtight container, and the raw material thermoplastic resin in the airtight container is heated by the heater.

【0028】本発明の請求項11にかかる熱可塑性樹脂
成形品の製造方法(以下、「請求項11の製造方法」と
記す)は、請求項1なしい請求項6および請求項8〜請
求項10のいずれかの製造方法の構成に加えて、可塑化
装置が射出成形機であって、計量完了時から射出完了ま
での間、気密容器から射出成形機へのガス含浸樹脂の供
給路を閉鎖し、射出完了時から計量完了までの間、気密
容器から射出成形機へのガス含浸樹脂の供給路を開放状
態にするようにした。
The method for producing a thermoplastic resin molded product according to claim 11 of the present invention (hereinafter referred to as “the production method of claim 11”) is not claimed in claim 1 and claim 6 and claim 8 to claim 8. 10. In addition to the configuration of any one of the manufacturing methods of 10, the plasticizing device is an injection molding machine, and the supply path of the gas-impregnated resin from the airtight container to the injection molding machine is closed from the time when the measurement is completed to the time when the injection is completed. The supply path of the gas-impregnated resin from the airtight container to the injection molding machine was kept open from the time when the injection was completed to the time when the measurement was completed.

【0029】一方、本発明の請求項12にかかる熱可塑
性樹脂成形品の製造装置(以下、「請求項12の製造装
置」と記す)は、原料熱可塑性樹脂と常温常圧でガス状
態のガスとを一旦貯留し、ガスを原料熱可塑性樹脂に含
浸可能な気密容器と、この気密容器に供給路を介して接
続されて気密容器から供給された樹脂を可塑化する可塑
化装置と、この可塑化装置から供給される可塑化装置で
可塑化された可塑化樹脂を所望の形状に賦形する金型と
を備える熱可塑性樹脂成形品の製造装置において、前記
気密容器を複数個有し、これらの気密容器が、前記供給
路に並列に接続されているとともに、供給路との連通状
態を個々に遮断可能なバルブを備えている構成とした。
On the other hand, the apparatus for producing a thermoplastic resin molded product according to claim 12 of the present invention (hereinafter referred to as “production apparatus of claim 12”) is a method for producing a thermoplastic resin raw material and a gas in a gaseous state at normal temperature and pressure. And an airtight container that can temporarily store the gas and impregnate the raw material thermoplastic resin with the gas, a plasticizer connected to the airtight container via a supply path, and plasticizing the resin supplied from the airtight container, And a mold for shaping the plasticized resin plasticized by the plasticizing device supplied from the plasticizing device into a desired shape. The airtight container is connected to the supply path in parallel, and is provided with a valve that can individually shut off the communication with the supply path.

【0030】本発明の請求項13にかかる熱可塑性樹脂
成形品の製造装置(以下、「請求項13の製造装置」と
記す)は、請求項12の製造装置の構成に加えて、ガス
含浸済みのガス含浸樹脂が1つの気密容器から可塑化装
置へ規定量送られると、バルブを閉じてこの気密容器と
供給路との間を遮断するとともに、所定量のガスが含浸
されたガス含浸樹脂入りの他の気密容器または最もガス
含浸時間の長いガス含浸樹脂が入った気密容器のバルブ
を開放するとともに、供給の終わった気密容器に順次新
しい原料熱可塑性樹脂を充填してガス含浸を行うように
制御する制御手段を備えている構成とした。
An apparatus for manufacturing a thermoplastic resin article according to claim 13 of the present invention (hereinafter referred to as a "production apparatus of claim 13") has the same structure as that of the production apparatus of claim 12, but also has a gas impregnated state. When a specified amount of the gas-impregnated resin is sent from one airtight container to the plasticizing device, the valve is closed to shut off the space between the airtight container and the supply path, and the gas-impregnated resin impregnated with the predetermined amount of gas is filled. Open the valve of the other airtight container or the airtight container containing the gas impregnated resin with the longest gas impregnation time, and fill the airtight container that has been supplied with new raw material thermoplastic resin sequentially to perform gas impregnation. The configuration is such that a control means for controlling is provided.

【0031】本発明の請求項14にかかる熱可塑性樹脂
成形品の製造装置(以下、「請求項14の製造装置」と
記す)は、請求項12または請求項13の構成に加え
て、可塑化装置が射出成形機であって、全ての気密容器
が以下の式(1)を満足する同一容量L´に形成されて
いる構成とした。
According to a fourteenth aspect of the present invention, an apparatus for manufacturing a thermoplastic resin molded product (hereinafter referred to as a “fourth aspect of the invention”) is a plasticizing product. The apparatus was an injection molding machine, and all hermetic containers were formed to have the same capacity L ′ satisfying the following equation (1).

【0032】 L´≧Lm /(N−1)×t1 /t2 ・・・(1) 〔但し、Lm は成形品の容量、Nは気密容器の数、t1
は気密容器でのガスの飽和含浸に要する時間、t2 は1
回の成形に要する時間である。〕 本発明の請求項15にかかる熱可塑性樹脂成形品の製造
装置(以下、「請求項15の製造装置」と記す)は、請
求項12または請求項13の構成に加えて、可塑化装置
が押出成形機であって、全ての気密容器が以下の式
(2)を満足する同一容量L´に形成されている構成と
した。
L ′ ≧ L m / (N−1) × t 1 / t 2 (1) [where L m is the capacity of the molded product, N is the number of hermetic containers, t 1
Is the time required for the saturated impregnation of the gas in the hermetic container, and t 2 is 1
This is the time required for each molding. The manufacturing apparatus for a thermoplastic resin molded product according to claim 15 of the present invention (hereinafter referred to as “the manufacturing apparatus of claim 15”) has a plasticizing apparatus in addition to the structure of claim 12 or claim 13. This is an extruder and has a configuration in which all hermetic containers are formed to have the same capacity L ′ satisfying the following equation (2).

【0033】 L´≧M/(N−1)×t1 /3600・・・(2) 〔但し、Nは気密容器の数、t1 は気密容器でのガスの
飽和含浸に要する時間、Mは押出成形機の単位時間あた
りの押出量である。〕 本発明の請求項16にかかる熱可塑性樹脂成形品の製造
装置(以下、「請求項16の製造装置」と記す)は、原
料熱可塑性樹脂と常温常圧でガス状態のガスとを一旦貯
留可能な気密容器と、この気密容器に樹脂供給路を介し
て接続されて気密容器から供給された樹脂を可塑化する
可塑化装置と、この可塑化装置から供給される可塑化装
置で可塑化された可塑化樹脂を所望の形状に賦形する金
型とを備える熱可塑性樹脂成形品の製造装置において、
前記気密容器が、内部に充填された原料熱可塑性樹脂の
加熱手段を備えている構成とした。
[0033] L'≧ M / (N-1 ) × t 1/3600 ··· (2) [where, N is the number of the airtight container, t 1 is the time required for saturation impregnation of the gas in the airtight container, M Is the extrusion rate per unit time of the extruder. An apparatus for producing a thermoplastic resin molded product according to claim 16 of the present invention (hereinafter referred to as “production apparatus of claim 16”) temporarily stores a raw material thermoplastic resin and a gas in a gas state at normal temperature and normal pressure. A possible airtight container, a plasticizing device connected to the airtight container via a resin supply path and plasticizing the resin supplied from the airtight container, and a plasticizing device supplied from the plasticizing device are plasticized. In a manufacturing apparatus of a thermoplastic resin molded article comprising a mold for shaping the plasticized resin into a desired shape,
The airtight container is provided with a heating means for the raw material thermoplastic resin filled therein.

【0034】本発明の請求項17にかかる熱可塑性樹脂
成形品の製造装置(以下、「請求項17の製造装置」と
記す)は、請求項12〜請求項16のいずれかの製造装
置の構成に加えて、気密容器が内部に充填された原料熱
可塑性樹脂の加熱手段を備えている構成とした。
An apparatus for producing a thermoplastic resin article according to claim 17 of the present invention (hereinafter referred to as “production apparatus according to claim 17”) has the structure of the production apparatus according to any one of claims 12 to 16. In addition to the above, the airtight container is provided with a heating means for the raw material thermoplastic resin filled therein.

【0035】本発明の請求項18にかかる熱可塑性樹脂
成形品の製造装置(以下、「請求項18の製造装置」と
記す)は、請求項16または請求項17の製造装置の構
成に加えて、加熱媒体の供給により気密容器内を加熱す
るジャケットが、加熱手段として気密容器の周囲に設ら
れている構成とした。
An apparatus for manufacturing a thermoplastic resin article according to the eighteenth aspect of the present invention (hereinafter referred to as “the manufacturing apparatus of the eighteenth aspect”) is in addition to the configuration of the manufacturing apparatus of the sixteenth or seventeenth aspect. A jacket for heating the inside of the airtight container by supplying a heating medium is provided around the airtight container as heating means.

【0036】本発明の請求項19にかかる熱可塑性樹脂
成形品の製造装置(以下、「請求項19の製造装置」と
記す)は、請求項18の製造装置において、加熱媒体と
して温水を用いるようにした。
The manufacturing apparatus for a thermoplastic resin article according to the nineteenth aspect of the present invention (hereinafter referred to as “the manufacturing apparatus of the nineteenth aspect”) uses hot water as a heating medium in the manufacturing apparatus of the eighteenth aspect. I made it.

【0037】本発明の請求項20にかかる熱可塑性樹脂
成形品の製造装置(以下、「請求項20の製造装置」と
記す)は、請求項16または請求項17の製造装置にの
いて、加熱手段としてヒータが設けられている構成とし
た。
The apparatus for manufacturing a thermoplastic resin molded product according to claim 20 of the present invention (hereinafter referred to as “the manufacturing apparatus of claim 20”) is the same as the manufacturing apparatus of claim 16 or 17 except that A heater is provided as a means.

【0038】本発明において、熱可塑性樹脂とは、熱を
加えると軟化して可塑性を示し、冷却すると固化するプ
ラスチックの総称をいい、この中には、溶融粘度が高く
て溶融成形が困難な樹脂や、熱分解しやすい樹脂、低沸
点の添加剤もしくは熱分解しやすい添加剤を含有する樹
脂などの難成形樹脂も含む。
In the present invention, the term "thermoplastic resin" refers to a general term for plastics that soften when heated and exhibit plasticity and solidify when cooled, and include resins that have a high melt viscosity and are difficult to melt-mold. It also includes difficult-to-mold resins such as resins that are easily thermally decomposed, resins containing low-boiling additives or additives that are easily thermally decomposed.

【0039】溶融粘度が高い溶融成形が困難な樹脂とし
ては、たとえば、超高分子量ポリエチレン、高塩素化度
ポリ塩化ビニル、超高重合度ポリ塩化ビニル、ポリテト
ラフルオロエチレン、ポリイミドなどが挙げられる。
Examples of the resin having a high melt viscosity which is difficult to melt-mold include ultra-high molecular weight polyethylene, high chlorinated polyvinyl chloride, ultra-high polymerization degree polyvinyl chloride, polytetrafluoroethylene, polyimide and the like.

【0040】一方、熱分解しやすい樹脂としては、ポリ
乳酸,ポリヒドロキシブチレート等の生分解性樹脂、高
塩素化度ポリ塩化ビニル、ポリアクリロニトリルなどが
挙げられる。
On the other hand, examples of resins that are easily thermally decomposed include biodegradable resins such as polylactic acid and polyhydroxybutyrate, polyvinyl chloride having a high degree of chlorination, and polyacrylonitrile.

【0041】また、本発明における可塑化装置として
は、ガス含浸樹脂を可塑化して金型に供給することがで
きれば、特に限定されないが、たとえば、射出成形機や
押出成形機が挙げられる。
The plasticizer in the present invention is not particularly limited as long as the gas-impregnated resin can be plasticized and supplied to the mold, and examples thereof include an injection molding machine and an extrusion molding machine.

【0042】成形方法は、樹脂材料を熱や可塑剤などで
流動化状態にし、金型内に充填して成形し、金型内で冷
却固化する方法であれば、特に限定されないが、射出成
形、押出成形、プレス成形、ブロー成形などが挙げられ
る。
The molding method is not particularly limited as long as the resin material is fluidized with heat or a plasticizer, filled in a mold, molded, and cooled and solidified in the mold. , Extrusion molding, press molding, blow molding and the like.

【0043】本発明において、含浸とは、ガスが溶解し
た状態または収着した状態を意味する。また、本発明に
おいて、可塑化とは、流動性を備えておれば、特に限定
されないが、通常、溶融状態を意味する。
In the present invention, impregnation means a state in which gas is dissolved or sorbed. In the present invention, plasticization is not particularly limited as long as it has fluidity, but usually means a molten state.

【0044】本発明において使用されるガスとしては、
常温・常圧で気体状態で、含浸によって原料樹脂を劣化
させることがなく、易可塑化できれば、特に限定されな
いが、たとえば、無機ガスや、フロンガス,低分子量の
炭化水素などの有機ガス等が挙げられるが、ガスの回収
が不要という点で無機ガスが好ましい。
The gas used in the present invention includes:
It is not particularly limited as long as it can be easily plasticized without impairing the raw material resin by impregnation in a gaseous state at normal temperature and normal pressure, and examples thereof include, but are not limited to, inorganic gas, organic gas such as chlorofluorocarbon, and low molecular weight hydrocarbon. However, inorganic gas is preferable in that gas recovery is unnecessary.

【0045】上記無機ガスとしては、特に限定されれな
いが、たとえば、炭酸ガス、窒素、アルゴン、ネオン、
ヘリウム、酸素などが挙げられ、これらを単独で用いた
り、2種以上併用することができる。
The inorganic gas is not particularly restricted but includes, for example, carbon dioxide, nitrogen, argon, neon,
Helium, oxygen and the like can be mentioned, and these can be used alone or in combination of two or more.

【0046】なお、上記した無機ガスのうち、炭酸ガス
が、樹脂に対する溶解度が高く、樹脂の溶融粘度の低下
が大きいため最も好ましい。
Of the above-mentioned inorganic gases, carbon dioxide is most preferred because of its high solubility in the resin and a large decrease in the melt viscosity of the resin.

【0047】所定のガス含浸量とは、目標の粘度低下率
を達成するのに必要なガス量もしくは目標の発泡倍率を
達成するために必要なガス量であり、目的の成形品およ
びガスの種類、樹脂の種類によってそれぞれ任意に決定
される値であるが、通常、予め設定された一定圧力およ
び一定温度での樹脂に含浸できる最大ガス量(以下、
「飽和含浸量」と記す)とすることが好ましい。
The predetermined gas impregnation amount is a gas amount required to achieve a target viscosity reduction rate or a gas amount required to achieve a target expansion ratio, and is a target molded product and a type of gas. , Is a value arbitrarily determined according to the type of resin, but usually, the maximum gas amount that can be impregnated into the resin at a predetermined constant pressure and temperature (hereinafter, referred to as
(Referred to as "saturation impregnation amount").

【0048】すなわち、ガスは、前述のように、一定圧
力下で、時間の経過とともに、図10に示すような曲線
を描きながら、樹脂に含浸されていき飽和含浸量に達す
るようになっている。
That is, as described above, the gas is impregnated into the resin and draws a curve as shown in FIG. 10 over time at a constant pressure and reaches a saturated impregnation amount. .

【0049】したがって、ガスの含浸量Sを安定させる
ためには、所定含浸量を以下の式で決定される飽和含浸
量とすることが好ましい。
Therefore, in order to stabilize the gas impregnation amount S, the predetermined impregnation amount is preferably a saturated impregnation amount determined by the following equation.

【0050】なお、飽和含浸量Sは、以下の式(イ)お
よび式(ロ)から求めることができる。
The saturated impregnation amount S can be obtained from the following equations (a) and (b).

【0051】[0051]

【数1】 また、熱可塑性樹脂にガスを溶融させるのに要する時間
は、以下の〜のいずれかの方法により予め決定する
ことができる。
(Equation 1) The time required for melting the gas in the thermoplastic resin can be determined in advance by any one of the following methods.

【0052】 図10に示したように、予め実験によ
りガス含浸量と時間の関係を測定する。
As shown in FIG. 10, the relationship between the gas impregnation amount and time is measured in advance by an experiment.

【0053】 熱可塑性樹脂とガスにより決定される
含浸係数を基に、以下の式(ハ)〜式(ホ)によって必
要含浸量到達時間を算出する。
Based on the impregnation coefficient determined by the thermoplastic resin and the gas, the required impregnation amount arrival time is calculated by the following equations (c) to (e).

【0054】[0054]

【数2】 浸透度(拡散係数とも呼ばれ、ガスと樹脂の種類に
よって決まる定数)に微少時間dt、熱可塑性樹脂の見
掛け表面積(ペレット等の表面積であって、多孔質部分
等の内表面積は含まない)A、微少厚みdtp 、微少厚
みの圧力差ΔPを掛け、微少時間後のガス浸透量を算出
する。これを積算し、目的のガス含浸量に到達した時間
を所定のガス含浸時間とする。
(Equation 2) The permeability (also referred to as the diffusion coefficient, a constant determined by the type of gas and resin) is the minimum time dt, and the apparent surface area of the thermoplastic resin (the surface area of the pellets, etc., but not the internal surface area of the porous portion, etc.) , small thickness dt p, multiplied by the pressure difference ΔP of small thickness, to calculate the gas permeation amount after short time. This is integrated, and the time when the target gas impregnation amount is reached is defined as a predetermined gas impregnation time.

【0055】気密容器としては、ガスの圧力に耐えるこ
とができるとともに、ガスを均一に含浸させることがで
きれば、特に限定されないが、内部に樹脂ペレット等の
原料樹脂を攪拌する攪拌手段を備えたものが好ましい。
The airtight container is not particularly limited as long as it can withstand the pressure of the gas and can uniformly impregnate the gas, but is provided with a stirring means for stirring the raw material resin such as resin pellets inside. Is preferred.

【0056】また、気密容器は、計量手段が設けられ、
この計量手段によって所定量の原料樹脂が気密容器内に
供給されたことが検知されると、原料樹脂の供給路が遮
断されるような構造とし、気密容器内に原料樹脂を定量
供給することができるようにしておくことが好ましい。
Further, the airtight container is provided with a measuring means,
When it is detected by the measuring means that a predetermined amount of the raw material resin has been supplied into the airtight container, the supply path of the raw material resin is shut off so that the raw material resin can be supplied quantitatively into the airtight container. It is preferable to be able to do so.

【0057】計量手段としては、特に限定されないが、
たとえば、タイマーを用いて成形時間を検出し樹脂使用
量を算出する方法、重量測定法、光反射法などが挙げら
れる。
The measuring means is not particularly limited.
For example, a method of detecting the molding time using a timer to calculate the amount of resin used, a gravimetric method, a light reflection method, and the like can be used.

【0058】気密容器へのガスの供給は、ガスボンベか
ら直接行っても良いし、プランジャーポンプ等の送気手
段を用いて加圧供給してもよい。
The gas may be supplied to the airtight container directly from a gas cylinder, or may be supplied under pressure using an air supply means such as a plunger pump.

【0059】また、気密容器の原料樹脂供給口、ガス含
浸樹脂排出口およびガス供給口には、通常開閉バルブが
設けられるが、開閉バルブとしては、たとえば、高圧に
耐えられるY字型弁を回転モーターにより開閉させる手
段が挙げられる。
An opening / closing valve is usually provided at the raw resin supply port, the gas impregnated resin discharge port and the gas supply port of the hermetic container. As the open / close valve, for example, a Y-shaped valve capable of withstanding high pressure is rotated. Means for opening and closing by a motor may be mentioned.

【0060】請求項1の製造方法において、気密容器が
3つ以上並列に設けられている場合、1つの気密容器か
らのガス含浸樹脂の供給が完了した後、他の気密容器の
うち、ガスの含浸時間の長いもの、あるいは、所定のガ
ス含浸時間以上のものを選択し、切り替えて他の気密容
器への切り替えるようにする。
In the manufacturing method according to the first aspect, when three or more airtight containers are provided in parallel, after the supply of the gas impregnated resin from one airtight container is completed, the gas of the other airtight containers is removed. A long impregnation time or a gas impregnation time longer than a predetermined gas impregnation time is selected and switched to another airtight container.

【0061】請求項1および請求項2の製造方法におい
て、規定量とは、気密容器内に少し残っている場合も含
むが、気密容器の数を最小にすると言うことを考慮する
と、完全に空の状態を規定量とすることが好ましい。
In the manufacturing method of claim 1 and claim 2, the prescribed amount includes a case where a small amount remains in the hermetic container, but it is completely empty in consideration of minimizing the number of hermetic containers. It is preferable that the above condition be a specified amount.

【0062】請求項3および請求項8の製造方法におい
て、加熱温度は、室温を越え、原料熱可塑性樹脂の溶融
温度未満の温度に限定されるが、できるだけ溶融温度に
近い方が好ましい。
In the production method according to claims 3 and 8, the heating temperature is limited to a temperature exceeding room temperature and lower than the melting temperature of the raw material thermoplastic resin, but is preferably as close as possible to the melting temperature.

【0063】請求項4の製造方法において、高圧とは、
樹脂の種類によっても異なるが、1MPa以上の圧力状
態を示しており、特に超臨界状態(炭酸ガスの場合、
7.2MPa以上かつ31℃以上)であることが好まし
い。
In the manufacturing method according to the fourth aspect, the high pressure is
Although it depends on the type of resin, it shows a pressure state of 1 MPa or more, especially in a supercritical state (in the case of carbon dioxide gas,
7.2 MPa or more and 31 ° C. or more).

【0064】請求項6の製造方法において、計算式の算
出根拠は、以下のとおりである。すなわち、1つの気密
容器中のガス含浸樹脂の消費時間をtc (秒)、1つの
気密容器のガス含浸樹脂終了からつぎのガス含浸樹脂開
始までの時間をts (秒)、気密容器からのガス含浸樹
脂の1回の供給量をL、成形品の容量をLm 、気密容器
の数をN、気密容器でのガスの飽和含浸に要する時間を
1 (秒)、1回の成形に要する時間をt2 (秒)とし
たとき、 tc =L/Lm ×t2s =tc ×(N−1)=L/Lm ×t2 ×(N−1)
となる。ここで、連続成形を行うための必要条件は以下
となる。 ts ≧t1 、すなわち、L/Lm ×t2 ×(N−1)≧
1 となる。この式を変形すると、L≧Lm /(N−
1)×t1 /t2 となる。
In the manufacturing method according to the sixth aspect, the basis for calculating the calculation formula is as follows. That is, one time spent gas impregnation resin in the airtight container t c (seconds), one time from the gas impregnating resin ends of the airtight container until the next gas impregnating resin starting t s (seconds), the airtight container The supply amount of the gas-impregnated resin at one time is L, the capacity of the molded product is L m , the number of hermetic containers is N, and the time required for the saturated impregnation of the gas in the hermetic container is t 1 (second), and the molding is performed once. the time required for t 2 when a (sec), t c = L / L m × t 2 t s = t c × (N-1) = L / L m × t 2 × (N-1)
Becomes Here, the necessary conditions for performing the continuous molding are as follows. t s ≧ t 1 , that is, L / L m × t 2 × (N−1) ≧
t 1 . By transforming this equation, L ≧ L m / (N−
1) × t 1 / t 2

【0065】また、請求項14の製造装置のように、気
密容器の容量L´=Lとすることが好ましい。
It is preferable that the capacity L 'of the airtight container is L' = L.

【0066】可塑化装置として射出成形機を用いた場合
の気密容器の容量L´は、その上限がないが、射出成形
機の最大樹脂消費量をLi によって決定されるLi
(N−1)×t1 /t2 の大きさがあれば十分で、経済
的理由を考慮すると、L´≦L i /(N−1)×t1
2 を満足することがより好ましい。
When an injection molding machine is used as a plasticizing device
Although there is no upper limit for the capacity L ′ of the hermetic container of
The maximum resin consumption of the machine is LiL determined byi/
(N-1) × t1/ TTwoThe size is enough, the economy
L '≦ L i/ (N-1) × t1/
tTwoIs more preferably satisfied.

【0067】請求項7の製造方法は、連続的に成形品を
得ることができる押出成形機にガス含浸樹脂を連続的に
供給するための気密容器の容量を規定したものであり、
その計算の算出根拠は、以下のとおりである。
According to a seventh aspect of the present invention, the capacity of the airtight container for continuously supplying the gas impregnated resin to an extruder capable of continuously obtaining a molded product is defined,
The basis for the calculation is as follows.

【0068】すなわち、1つの気密容器中のガス含浸樹
脂の消費時間をtc (秒)、1つの気密容器のガス含浸
樹脂終了からつぎのガス含浸樹脂開始までの時間をts
(秒)、気密容器からのガス含浸樹脂の1回の供給量を
L、気密容器の数をN、気密容器でのガスの飽和含浸に
要する時間をt1 (秒)、押出成形機の単位時間あたり
の押出量をM(kg/時間)としたとき、 tc =L/(M/3600) ts =tc ×(N−1)=L/(M/3600)×(N
−1)となる。ここで、連続成形を行うための必要条件
は以下となる。 ts ≧t1 、すなわち、L/(M/3600)×(N−
1)≧t1 となる。この式を変形すると、L≧M/(N
−1)×t1 /3600となる。
That is, the consumption time of the gas impregnated resin in one hermetic container is t c (second), and the time from the end of the gas impregnated resin in one hermetic container to the start of the next gas impregnated resin is t s.
(Second), the amount of gas-impregnated resin supplied from the hermetic container at one time is L, the number of hermetic containers is N, the time required for saturated impregnation of gas in the hermetic container is t 1 (second), the unit of the extruder. Assuming that the extrusion rate per hour is M (kg / hour), t c = L / (M / 3600) t s = t c × (N−1) = L / (M / 3600) × (N
-1). Here, the necessary conditions for performing the continuous molding are as follows. t s ≧ t 1, i.e., L / (M / 3600) × (N-
1) ≧ t 1 By transforming this equation, L ≧ M / (N
-1) a × t 1/3600.

【0069】また、請求項15の製造装置のように、気
密容器の容量L´=Lとすることが好ましい。
It is preferable that the capacity L 'of the airtight container is L' = L.

【0070】可塑化装置として押出成形機を用いた場
合、気密容器の容量L´は、その上限がないが、押出成
形機の最大押出量M’により決定される、M’/(N−
1)×t1 /3600の大きさがあれば十分で、経済的
理由を考慮すると、L´≦M’/(N−1)×t1 /3
600を満足することがより好ましい。
When an extruder is used as the plasticizing device, the capacity L 'of the airtight container has no upper limit, but is determined by the maximum extruded amount M' of the extruder, M '/ (N-
1) a sufficient magnitude of × t 1/3600, considering the economic reasons, L'≦ M '/ (N -1) × t 1/3
It is more preferable to satisfy 600.

【0071】請求項9の製造方法において、ジャケット
内に供給する加熱媒体としては、特に限定されないが、
たとえば、水や、油などの液体、空気などの気体、さら
には、ゲル状物など半流動物などが挙げられる。
In the manufacturing method according to the ninth aspect, the heating medium supplied into the jacket is not particularly limited.
For example, a liquid such as water or oil, a gas such as air, and a semi-liquid such as a gel-like material can be used.

【0072】また、加熱媒体の供給方法としては、特に
限定されないが、たとえば、射出成形の金型温度を調整
するための温調機より温水を供給する方法などが挙げら
れる。
The method of supplying the heating medium is not particularly limited, and includes, for example, a method of supplying hot water from a temperature controller for adjusting the temperature of a mold for injection molding.

【0073】請求項10の製造方法および請求項20の
製造装置において、ヒータとしては、特に限定されない
が、たとえば、マントルヒータ、シーズヒータ、鋳込ヒ
ータ、温風ヒータ、赤外線ヒータ、カートリッジヒー
タ、バンドヒータ、セラミックヒータ、高周波加熱器な
どが挙げられる。
In the manufacturing method of the tenth aspect and the manufacturing apparatus of the twentieth aspect, the heater is not particularly limited. For example, a mantle heater, a sheathed heater, a cast heater, a hot air heater, an infrared heater, a cartridge heater, a band heater, Examples include a heater, a ceramic heater, and a high-frequency heater.

【0074】[0074]

【発明の実施の形態】以下に、本発明の実施の形態を、
図面を参照しつつ詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described in detail with reference to the drawings.

【0075】図1は、本発明にかかる請求項1の製造方
法および請求項12の製造装置の1つの実施の形態をあ
らわしている。
FIG. 1 shows an embodiment of the manufacturing method according to claim 1 and the manufacturing apparatus according to claim 12 of the present invention.

【0076】この製造方法は、まず、図1に示すような
製造装置Aを用意する。すなわち、この製造装置Aは、
1つのホッパー2と、気密容器としての二つの耐圧チャ
ンバ3a、3bと、ガスボンベ4a、4bと、供給路と
なるストレージタンク5と、可塑化装置としての射出成
形機6と、金型7とを備えている。
In this manufacturing method, first, a manufacturing apparatus A as shown in FIG. 1 is prepared. That is, this manufacturing apparatus A
One hopper 2, two pressure-resistant chambers 3a and 3b as airtight containers, gas cylinders 4a and 4b, a storage tank 5 as a supply path, an injection molding machine 6 as a plasticizing device, and a mold 7 Have.

【0077】ホッパー2は、原料熱可塑性樹脂(以下、
「原料樹脂」と記す)が貯留されるようになっていると
ともに、下端が2つのバルブ22a,22bを備えた開
閉自在な排出口21a,21bに分かれている。
The hopper 2 is made of a raw material thermoplastic resin (hereinafter, referred to as a thermoplastic resin).
(Hereinafter referred to as "raw resin"), and the lower end is divided into openable and closable outlets 21a and 21b having two valves 22a and 22b.

【0078】各排出口21a,21bは、容量L´の耐
圧チャンバ3a,3bにそれぞれ接続されている。すな
わち、耐圧チャンバ3a,3bは、バルブ22a,22
bの開閉によって排出口21a,21bを介してホッパ
ー2内の原料樹脂が供給されるようになっている。
The outlets 21a and 21b are connected to the pressure-resistant chambers 3a and 3b having the capacity L ', respectively. That is, the pressure-resistant chambers 3a and 3b are connected to the valves 22a and 22b.
By opening and closing b, the raw resin in the hopper 2 is supplied through the discharge ports 21a and 21b.

【0079】また、耐圧チャンバ3a(3b)は、その
容量L´が、射出成形機6の1回の成形に要する時間を
2 、成形品の容量をLm とした時、L´≧Lm /(2
−1)×t1 /t2 の式を満足するように設定されてい
る。
[0079] Also, when the breakdown voltage chamber 3a (3b), the capacity L'is, the time required for one molding of the injection molding machine 6 t 2, the capacity of the molded article was L m, L'≧ L m / (2
-1) × t 1 / t 2 .

【0080】さらに、耐圧チャンバ3a,3bは、バル
ブ31a,31bを備えた供給口32a,32bを介し
て後述するストレージタンク5に並列に接続されている
とともに、それぞれガスボンベ4a,4bからガスバル
ブ41a(41b)および減圧弁42a(42b)が設
けられたガス供給管43a(43b)を介して減圧され
て送られてくる炭酸ガスが供給されるようになってい
る。
Further, the pressure-resistant chambers 3a and 3b are connected in parallel to a storage tank 5 to be described later via supply ports 32a and 32b provided with valves 31a and 31b, respectively. 41b) and a carbon dioxide gas sent under reduced pressure through a gas supply pipe 43a (43b) provided with a pressure reducing valve 42a (42b).

【0081】すなわち、ホッパー32から供給された原
料樹脂を炭酸ガス雰囲気中に所定時間曝すことによって
飽和含浸状態のガス含浸樹脂を得ることができるように
なっている。そして、1回のガス含浸工程で得られたガ
ス含浸樹脂が完全に耐圧チャンバ3a(3b)からスト
レージタンク5に供給されるようになっている。つま
り、耐圧チャンバ3a(3b)からのガス含浸樹脂の1
回の供給量L=L´となっている。
That is, a gas impregnated resin in a saturated impregnation state can be obtained by exposing the raw material resin supplied from the hopper 32 to a carbon dioxide gas atmosphere for a predetermined time. Then, the gas-impregnated resin obtained in one gas impregnation step is completely supplied to the storage tank 5 from the pressure-resistant chamber 3a (3b). That is, 1 of the gas impregnated resin from the pressure-resistant chamber 3a (3b)
The supply amount L per time is L '.

【0082】また、耐圧チャンバ3a,3b内で原料樹
脂が飽和含浸状態のガス含浸樹脂になるまでの時間t1
は、耐圧チャンバ3a,3b内のガス含浸樹脂が、すべ
て消費される、すなわち、後述するようにストレージタ
ンク5に全て供給される時間より短くなるように設定さ
れている。
The time t 1 until the raw material resin becomes a gas-impregnated resin in a saturated impregnation state in the pressure-resistant chambers 3a and 3b.
Is set so that the gas-impregnated resin in the pressure-resistant chambers 3a and 3b is completely consumed, that is, shorter than the time when all the gas-impregnated resin is supplied to the storage tank 5 as described later.

【0083】さらに、耐圧チャンバ3a,3bは、耐圧
チャンバ3a,3b中のガスを排気するバルブ付きの排
気口33a,33bと、計量手段(図示せず)を備えて
いる。
Further, the pressure-resistant chambers 3a, 3b are provided with exhaust ports 33a, 33b with valves for exhausting the gas in the pressure-resistant chambers 3a, 3b, and measuring means (not shown).

【0084】計量手段は、耐圧チャンバ3a,3b内に
所定量の原料樹脂がホッパー2から供給されたことを検
知すると、制御手段がバルブ22a,22bおよび排気
口33a,33bを自動的に閉じるようになっている。
When the measuring means detects that a predetermined amount of the raw material resin has been supplied from the hopper 2 into the pressure-resistant chambers 3a, 3b, the control means automatically closes the valves 22a, 22b and the exhaust ports 33a, 33b. It has become.

【0085】ストレージタンク5は、耐圧チャンバ3a
(3b)から供給されたガス含浸樹脂を一旦貯留するこ
とができるようになっているとともに、射出成形機6と
の間に開閉バルブ51を備え、開閉バルブ51を開放す
ることによって貯留されたガス含浸樹脂を射出成形機6
に供給できるようになっている。
The storage tank 5 includes a pressure-resistant chamber 3a.
The gas-impregnated resin supplied from (3b) can be temporarily stored, and an opening / closing valve 51 is provided between the resin and the injection molding machine 6, and the gas stored by opening the opening / closing valve 51 is stored. Injection molding machine for impregnated resin 6
Can be supplied.

【0086】射出成形機6は、ストレージタンク5を介
して供給されたガス含浸樹脂を加熱混練して、可塑化状
態、すなわち、溶融状態の樹脂としたのち、金型7に射
出して、成形品を得ることができるようになっている。
The injection molding machine 6 heats and kneads the gas impregnated resin supplied through the storage tank 5 to make the resin in a plasticized state, that is, a molten state. Goods can be obtained.

【0087】開閉バルブ51は、射出成形機6からの信
号を受けて、計量完了時から射出完了まで閉じた状態に
なり、射出完了時から計量完了時まで開放した状態にな
るようになっている。
Upon receiving a signal from the injection molding machine 6, the opening / closing valve 51 is closed from the completion of the metering to the completion of the injection, and is opened from the completion of the injection to the completion of the metering. .

【0088】そして、この製造装置Aの動作を説明する
と、以下の通りになる。
The operation of the manufacturing apparatus A will be described below.

【0089】 排気口33a(33b)を開放すると
ともに、バルブ31a(31b)およびガスバルブ41
a(41b)を閉鎖した状態で、バルブ22a(22
b)を開放し、排出口21a(21b)から原料樹脂を
耐圧チャンバ3a(3b)に充填する。
The exhaust port 33a (33b) is opened, and the valve 31a (31b) and the gas valve 41 are opened.
a (41b) is closed and the valve 22a (22
b) is opened, and the raw material resin is filled into the pressure-resistant chamber 3a (3b) through the discharge port 21a (21b).

【0090】 所定量の原料樹脂が耐圧チャンバ3a
(3b)に充填されたことが計量手段によって検知され
ると、制御手段が信号をバルブ22a(22b)、排気
口33a(33b)およびガスバルブ41a(41b)
に送り、バルブ22a(22b)および排気口33a
(33b)を閉させるとともに、ガスバルブ41a(4
1b)を開放し、耐圧チャンバ3a(3b)内に炭酸ガ
スを供給する。
A predetermined amount of the raw material resin is supplied to the pressure-resistant chamber 3 a
When the filling means (3b) is detected by the measuring means, the control means sends a signal to the valve 22a (22b), the exhaust port 33a (33b) and the gas valve 41a (41b).
To the valve 22a (22b) and the exhaust port 33a.
(33b) is closed and the gas valve 41a (4
1b) is opened, and carbon dioxide gas is supplied into the pressure-resistant chamber 3a (3b).

【0091】 予め求められた飽和含浸時間が経過し
て飽和量のガスが含浸したガス含浸樹脂を得られたの
ち、制御手段がガスバルブ41a(41b)およびバル
ブ31a(31b)へ信号を送り、ガスバルブ41a
(41b)を閉じさせるとともに、バルブ31a(31
b)を開放し、供給口32a(32b)を介してガス含
浸樹脂をストレージタンク5に供給するとともに、バル
ブ51を開放し、射出成形機6にストレージタンク5内
のガス含浸樹脂を供給し、射出成形機6内でガス含浸樹
脂を加熱混練して可塑化状態である溶融樹脂としたの
ち、この溶融樹脂を金型7内に射出して成形品を得る。
After a predetermined impregnation time has elapsed and a gas impregnated resin impregnated with a saturated amount of gas has been obtained, the control means sends a signal to the gas valve 41a (41b) and the valve 31a (31b), 41a
(41b) is closed, and the valve 31a (31
b) is opened, the gas impregnated resin is supplied to the storage tank 5 through the supply port 32a (32b), the valve 51 is opened, and the gas impregnated resin in the storage tank 5 is supplied to the injection molding machine 6, After the gas-impregnated resin is heated and kneaded in the injection molding machine 6 to obtain a plasticized molten resin, the molten resin is injected into the mold 7 to obtain a molded product.

【0092】 耐圧チャンバ3a(3b)内のガス含
浸樹脂がすべてストレージタンク5に供給されると、制
御手段がバルブ31a(31b)へ信号を送りバルブ3
1a(31b)を閉じさせて再び〜の工程を行うと
ともに、他方の耐圧チャンバ3b(3a)のバルブ31
b(31a)を開放し、他方の耐圧チャンバ3b(3
a)中のガス含浸樹脂を同様にしてストレージタンク5
へのガス含浸樹脂の供給を開始する。
When all the gas-impregnated resin in the pressure-resistant chamber 3a (3b) is supplied to the storage tank 5, the control means sends a signal to the valve 31a (31b) to send a signal to the valve 31a.
1a (31b) is closed and the steps (1) to (3) are performed again, and the valve 31 of the other pressure-resistant chamber 3b (3a) is
b (31a) is opened and the other pressure-resistant chamber 3b (3
a) The gas impregnated resin in the storage tank 5
Of the gas-impregnated resin to be started.

【0093】この製造方法によれば、以上のように、耐
圧チャンバ3a,3bを並列に設け、耐圧チャンバ3a
(3b)が、L´=L≧Lm /(N−1)×t1 /t2
の式を満足する容量L´に形成され、一方の耐圧チャン
バ3a(3b)からガス含浸樹脂を供給している間に、
他方の耐圧チャンバ3b(3a)内で新しい原料樹脂へ
の炭酸ガスの含浸を完了するようにしたので、ストレー
ジタンク5内には、常に、所定量の炭酸ガスが含浸さ
れ、易可塑化状態になったガス含浸樹脂が貯留されてい
ることになる。
According to this manufacturing method, as described above, the pressure-resistant chambers 3a and 3b are provided in parallel,
(3b) is L ′ = L ≧ L m / (N−1) × t 1 / t 2
While the gas impregnated resin is supplied from one of the pressure-resistant chambers 3a (3b).
Since the impregnation of the new raw material resin with carbon dioxide gas is completed in the other pressure-resistant chamber 3b (3a), a predetermined amount of carbon dioxide gas is always impregnated in the storage tank 5, and the storage tank 5 is easily plasticized. This means that the gas-impregnated resin is stored.

【0094】したがって、ガス含浸待ちがなくなり、連
続的に成形を行うことができるようになり、生産性が向
上する。
Therefore, there is no need to wait for gas impregnation, so that molding can be performed continuously, and productivity is improved.

【0095】また、含浸速度を上げるために、ガス圧を
上げる必要がなくなり、小さい耐圧性の気密容器で済
み、装置の製造コストも低減できる。
Further, in order to increase the impregnation speed, it is not necessary to increase the gas pressure, so that a small pressure-resistant airtight container can be used, and the manufacturing cost of the apparatus can be reduced.

【0096】さらに、射出成形機6において、射出樹脂
の計量完了時から射出完了までの間、開閉バルブ51を
閉鎖し、射出完了時から計量完了までの間、開閉バルブ
51を開放するようにしたので、耐圧チャンバ3a(3
b)内の密閉状態が確保され、耐圧チャンバ3a(3
b)内の圧力変動が抑えられる。
Further, in the injection molding machine 6, the opening and closing valve 51 is closed from the time when the injection resin is completely measured to the time when the injection is completed, and the opening and closing valve 51 is opened from the time when the injection is completed until the time when the measurement is completed. Therefore, the pressure-resistant chamber 3a (3
b) is sealed, and the pressure-resistant chamber 3a (3
The pressure fluctuation in b) is suppressed.

【0097】したがって、耐圧チャンバ3a(3b)内
のガス含浸樹脂中に含浸されたガス量が安定し、品質の
よい成形品がより安定して得られる。
Therefore, the amount of gas impregnated in the gas impregnated resin in the pressure-resistant chamber 3a (3b) is stabilized, and a high-quality molded product can be obtained more stably.

【0098】図2は本発明にかかる請求項2の製造方法
の1つの実施の形態をあらわしている。
FIG. 2 shows an embodiment of the manufacturing method according to claim 2 of the present invention.

【0099】この製造方法は、まず、図2に示すような
製造装置Bを用意する。すなわち、この製造装置Bは、
下手側の耐圧チャンバ(以下、「下部チャンバ」と記
す)3cと上手側の耐圧チャンバ(以下、「上部チャン
バ」と記す)3dの2つの耐圧チャンバを気密容器とし
て備え、この下部チャンバ3cと上部チャンバ3dとが
バルブ31dを介して直列に接続されている。また、上
部チャンバ3dにホッパ2bのバルブ22c付きの排出
口21cから原料樹脂が供給されるようになっていると
ともに、下部チャンバ3cと射出成形機6とがバルブ3
1cを介して接続され、下部圧チャンバ3cからガス含
浸樹脂を射出成形機6に供給するようにした以外は、製
造装置Aと同様の構造になっている。
In this manufacturing method, first, a manufacturing apparatus B as shown in FIG. 2 is prepared. That is, this manufacturing apparatus B
Two pressure-resistant chambers, a lower pressure-resistant chamber (hereinafter referred to as "lower chamber") 3c and an upper pressure-resistant chamber (hereinafter referred to as "upper chamber") 3d, are provided as airtight containers. The chamber 3d is connected in series via a valve 31d. Also, the raw material resin is supplied to the upper chamber 3d from a discharge port 21c with a valve 22c of the hopper 2b, and the lower chamber 3c and the injection molding machine 6 are connected to the valve 3c.
The structure is the same as that of the manufacturing apparatus A except that the gas impregnated resin is supplied to the injection molding machine 6 from the lower pressure chamber 3c by being connected via the lower pressure chamber 3c.

【0100】図2中、33c,33dは排気口、4c,
4dはガスボンベ、41c,41dはガスバルブ、42
c,42dは減圧弁、43c,43dはガス供給管であ
る。
In FIG. 2, 33c and 33d are exhaust ports, 4c and
4d is a gas cylinder, 41c and 41d are gas valves, 42
c and 42d are pressure reducing valves, and 43c and 43d are gas supply pipes.

【0101】この製造装置Bを用いた熱可塑性樹脂成形
品の製造方法は、下部チャンバ3c内のガス含浸樹脂
が、射出成形機6に供給されている間に上手側の上部チ
ャンバ3dにホッパ2bから原料樹脂を供給したのち、
バルブ22cおよびバルブ31dを閉鎖した状態で、ガ
スバルブ41dを開放しガスボンベ4dの炭酸ガスを上
部チャンバ3d内に充填し、原料樹脂に炭酸ガスを含浸
させるガス含浸工程を実施する。
The method of manufacturing a thermoplastic resin molded article using the manufacturing apparatus B is such that the gas impregnated resin in the lower chamber 3c is supplied to the injection molding machine 6 while the hopper 2b is After supplying raw material resin from
With the valve 22c and the valve 31d closed, the gas valve 41d is opened to fill the upper chamber 3d with carbon dioxide gas of the gas cylinder 4d, and a gas impregnation step of impregnating the raw resin with carbon dioxide gas is performed.

【0102】そして、下部チャンバ3c内のガス含浸樹
脂が、空に近づくと、バルブ22cを開放し、上部チャ
ンバ3d内で予めガスが含浸されたガス含浸樹脂を射出
成形機6での樹脂消費速度より速い速度で下部チャンバ
3cに供給するとともに、ガスバルブ41cを開放しガ
スボンベ4cの炭酸ガスを上部チャンバ3c内に充填
し、下部チャッバ3c内のガス含浸樹脂の飽和含浸状態
を確保する。
When the gas impregnated resin in the lower chamber 3c approaches empty, the valve 22c is opened, and the gas impregnated resin impregnated with gas in the upper chamber 3d is consumed by the injection molding machine 6 at the resin consumption rate. The gas is supplied to the lower chamber 3c at a higher speed, and the gas valve 41c is opened to fill the upper chamber 3c with the carbon dioxide gas of the gas cylinder 4c, thereby ensuring the saturated state of the gas-impregnated resin in the lower chamber 3c.

【0103】上部チャンバ3d内のガス含浸樹脂がすべ
て下部チャンバ3cに供給し終わった時、バルブ31
d,バルブ41cを閉じ、再び上部チャンバ3dでガス
含浸工程を実施する。
When all the gas impregnated resin in the upper chamber 3d has been supplied to the lower chamber 3c, the valve 31
d, The valve 41c is closed, and the gas impregnation step is performed again in the upper chamber 3d.

【0104】この製造方法によれば、下部チャンバ3c
内のガス含浸樹脂が空になる前に、予め上部チャンバ3
dでガス含浸樹脂を得、このガス含浸樹脂を下部チャン
バ3dに供給するようにしたので、ガス含浸待ちがなく
なり、連続的に成形を行うことができるようになり、生
産性が向上する。
According to this manufacturing method, lower chamber 3c
Before the gas-impregnated resin in the chamber becomes empty,
Since the gas-impregnated resin is obtained at d, and the gas-impregnated resin is supplied to the lower chamber 3d, there is no need to wait for gas impregnation, and molding can be performed continuously, thereby improving productivity.

【0105】また、含浸速度を上げるために、ガス圧を
上げる必要がなくなり、小さい耐圧性の気密容器で済
み、装置の製造コストも低減できる。
Further, it is not necessary to increase the gas pressure in order to increase the impregnation speed, so that a small pressure-resistant airtight container is sufficient and the production cost of the apparatus can be reduced.

【0106】さらに、下部チャンバ3cでもガス含浸可
能としたので、より安定したガス含浸状態のガス含浸樹
脂を射出成形機6に供給することができる。
Further, since the gas can be impregnated also in the lower chamber 3c, the gas impregnated resin in a more stable gas impregnated state can be supplied to the injection molding machine 6.

【0107】図3は本発明にかかる請求項3の製造方法
の1つの実施の形態をあらわしている。
FIG. 3 shows an embodiment of the manufacturing method according to claim 3 of the present invention.

【0108】この製造方法は、まず、図3に示すような
製造装置Cを用意する。すなわち、この製造装置Cは、
気密容器としての耐圧チャンバ3eが直接射出成形機6
に1つだけ接続され、ホッパ(図示せず)から供給され
た原料樹脂に耐圧チャンバ3e内でガスを含浸させるよ
うになっているとともに、耐圧チャンバ3eが、チャン
バ本体35と、このチャンバ本体35の周壁を覆うジャ
ケット36とを備え、ジャケット36に加熱媒体として
温水を通すことによってチャンバ本体35を加熱するこ
とができるようになっている。
In this manufacturing method, first, a manufacturing apparatus C as shown in FIG. 3 is prepared. That is, this manufacturing apparatus C
The pressure-resistant chamber 3e as an airtight container is directly connected to the injection molding machine 6
And a raw material resin supplied from a hopper (not shown) is impregnated with gas in the pressure-resistant chamber 3e, and the pressure-resistant chamber 3e includes a chamber body 35 and a chamber body 35. And a jacket 36 that covers the peripheral wall of the chamber main body 35. By passing warm water through the jacket 36 as a heating medium, the chamber body 35 can be heated.

【0109】すなわち、温水は、温調機38で温度調整
されて温水供給ホース38aからジャケット36に送ら
れ、ジャケット36内に蛇管状に配管された温水流路3
9、温水排水ホース38bを通り、温調機38へ戻ると
言う経路で循環するようになっている。
That is, the temperature of the hot water is adjusted by the temperature controller 38 and sent to the jacket 36 from the hot water supply hose 38a.
9. It circulates in a route that returns to the temperature controller 38 through the hot water drainage hose 38b.

【0110】ガスは、ガスボンベ34eからガス供給管
43eの途中に設けられた加圧ポンプ42eを介して加
圧されて、耐圧チャンバ3eに送られるようになってい
る。
The gas is pressurized from the gas cylinder 34e via a pressurizing pump 42e provided in the middle of the gas supply pipe 43e, and is sent to the pressure-resistant chamber 3e.

【0111】また、耐圧チャンバ3eは、接点付きの圧
力計37が設けられていて、この圧力計37によって耐
圧チャンバ3e内のガス圧を測定されるようになってい
るとともに、圧力計37によって測定されたガス圧に応
じてガス供給管43eのバイパス45eに設けられた電
磁弁44eを開閉して耐圧チャンバ3e内のガス圧を一
定に調整できるようになっている。
The pressure-resistant chamber 3e is provided with a pressure gauge 37 with a contact. The pressure gauge 37 measures the gas pressure in the pressure-resistant chamber 3e. The solenoid valve 44e provided in the bypass 45e of the gas supply pipe 43e is opened and closed in accordance with the gas pressure, so that the gas pressure in the pressure-resistant chamber 3e can be adjusted to be constant.

【0112】なお、図3中、21eは排出口、22eは
バルブ、31eはバルブ、32eは供給口、33eは安
全弁、41eはガスバルブである。
In FIG. 3, 21e is a discharge port, 22e is a valve, 31e is a valve, 32e is a supply port, 33e is a safety valve, and 41e is a gas valve.

【0113】そして、この製造装置Cを用いた熱可塑性
樹脂成形品の製造方法は、まず、ジャケット36に温水
を通し、チャンバ本体35を、常温を越える原料樹脂の
溶融温度より少し低い温度まで加熱するとともに、バル
ブ31eおよびガスバルブ41eを閉じた状態で、バル
ブ22eを開放し排出口21eからホッパ2e内の原料
樹脂をチャンバ本体35に供給する。
The method of manufacturing a thermoplastic resin molded article using the manufacturing apparatus C is as follows. First, warm water is passed through the jacket 36 to heat the chamber main body 35 to a temperature slightly lower than the melting temperature of the raw material resin exceeding normal temperature. At the same time, with the valve 31e and the gas valve 41e closed, the valve 22e is opened and the raw resin in the hopper 2e is supplied to the chamber main body 35 from the discharge port 21e.

【0114】つぎに、バルブ22eを閉じ、ガスバルブ
41eを開放して炭酸ガスをチャンバ本体35内に充填
し、原料樹脂に炭酸ガスを含浸させるガス含浸工程を実
施する。
Next, the valve 22e is closed and the gas valve 41e is opened to fill the chamber body 35 with carbon dioxide gas, and a gas impregnation step of impregnating the raw material resin with carbon dioxide gas is performed.

【0115】ガス含浸工程が終了すると、バルブ31e
を開放し、チャンバ本体35内のガス含浸樹脂1を射出
成形機6に供給し、射出成形を行う。
When the gas impregnation step is completed, the valve 31e
Is released, and the gas impregnated resin 1 in the chamber body 35 is supplied to the injection molding machine 6 to perform injection molding.

【0116】そして、チャンバ本体35内のガス含浸樹
脂が空になると、再び同様の工程を繰り返すようになっ
ている。
When the gas-impregnated resin in the chamber main body 35 becomes empty, the same process is repeated again.

【0117】この製造方法によれば、チャンバ本体35
が加熱されていて、ガス含浸工程において、原料樹脂が
常温を越える原料樹脂の溶融温度より少し低い温度まで
加熱されるので、従来の常温によるガス含浸に比べ含浸
速度が速く、ガス含浸待ちの時間が短縮できる。
According to this manufacturing method, the chamber body 35
Is heated, and in the gas impregnation step, the raw resin is heated to a temperature slightly lower than the melting temperature of the raw resin that exceeds normal temperature, so that the impregnation rate is faster than the conventional gas impregnation at normal temperature, and the time of waiting for gas impregnation. Can be shortened.

【0118】被含浸物(ここでは高密度ポリエチレン)
へガスが拡散していく速度は、拡散係数が大きい程被含
浸物内にガスが速く拡散し、含浸時間が短くなる。因み
に、図4に示す、高密度ポリエチレンに対する炭酸ガス
の拡散係数と、温度との関係を見ると、高密度ポリエチ
レンの場合、室温に対し、含浸温度つまり耐圧チャンバ
の温度を80℃にすると、拡散係数を10.3倍にする
ことができることがわかる。
Impregnated material (here, high density polyethylene)
As for the rate at which the gas diffuses, the larger the diffusion coefficient, the faster the gas diffuses into the material to be impregnated, and the shorter the impregnation time. Incidentally, the relationship between the diffusion coefficient of carbon dioxide gas for high-density polyethylene and the temperature shown in FIG. 4 indicates that, in the case of high-density polyethylene, when the impregnation temperature, that is, the temperature of the pressure-resistant chamber is set to 80 ° C. with respect to room temperature, the diffusion It can be seen that the coefficient can be increased 10.3 times.

【0119】したがって、上記のように、含浸に要する
時間を短縮でき、生産効率を向上させることができる。
Therefore, as described above, the time required for impregnation can be reduced, and the production efficiency can be improved.

【0120】しかも、チャンバ本体35内にガスを充填
すると同時に原料樹脂が溶融状態になるまでチャンバ本
体35内を高温高圧状態にすれば、確かに、時間的には
ガス含浸に要する時間が短縮されるのであるが、耐圧チ
ャンバ35と射出成形機6との接続部などで、溶融した
樹脂同士が融着するブロッキング現象を示し、射出成形
機6への樹脂の供給が困難となる恐れがあるが、この製
造方法によれば、樹脂の溶融温度未満の加熱温度である
ため、ブロッキング等の問題もなく効率よく製造するこ
とができる。
Furthermore, if the chamber body 35 is filled with gas and the interior of the chamber body 35 is kept at a high temperature and a high pressure until the raw material resin is melted, the time required for gas impregnation can be shortened. However, at the connection between the pressure-resistant chamber 35 and the injection molding machine 6, a blocking phenomenon occurs in which the molten resins are fused to each other, which may make it difficult to supply the resin to the injection molding machine 6. According to this manufacturing method, since the heating temperature is lower than the melting temperature of the resin, it can be efficiently manufactured without problems such as blocking.

【0121】本発明にかかる熱可塑性樹脂成形品の製造
方法は、上記の実施の形態に限定されない。
The method for producing a thermoplastic resin molded product according to the present invention is not limited to the above embodiment.

【0122】たとえば、製造装置Aおよび製造装置Bの
場合も、製造装置Cと同様に耐圧チャンバにジャケット
等の加熱手段を設け、原料樹脂を加熱できるようにして
も構わない。
For example, in the case of the manufacturing apparatus A and the manufacturing apparatus B, similarly to the manufacturing apparatus C, a heating means such as a jacket may be provided in the pressure-resistant chamber so that the raw material resin can be heated.

【0123】また、製造装置Bの場合、上部チャンバの
容量と下部チャンバの容量とを異ならせても構わない。
In the case of the manufacturing apparatus B, the capacity of the upper chamber and the capacity of the lower chamber may be different.

【0124】上記の製造装置A〜Cでは、耐圧チャンバ
にホッパーから原料樹脂を供給するようにしていたが、
耐圧チャンバの上部開口部に蓋を設け、この蓋をボルド
止めなどの方法で開閉式として、ボルトを弛めて蓋を取
り除き、開放された上部開口部から耐圧チャンバに原料
樹脂を供給するようにしても構わない。
In the above manufacturing apparatuses A to C, the raw material resin is supplied from the hopper to the pressure-resistant chamber.
A lid is provided at the upper opening of the pressure-resistant chamber, and the lid is opened and closed by a method such as bolding.The bolt is loosened to remove the lid, and the raw resin is supplied to the pressure-resistant chamber from the opened upper opening. It does not matter.

【0125】上記の製造装置A〜Cでは、ガス供給管の
途中に減圧弁を設け、ガスボンベのガスを減圧状態で耐
圧チャンバに供給するようになっていたが、耐圧チャン
バ内の圧力値は、必要ガス含浸量により決定される。し
たがって、減圧弁はなくても構わない。また、加圧ポン
プ等を設けて高圧化しても構わない。
In the above manufacturing apparatuses A to C, a pressure reducing valve is provided in the middle of the gas supply pipe so that the gas in the gas cylinder is supplied to the pressure-resistant chamber in a reduced pressure state. It is determined by the required gas impregnation amount. Therefore, the pressure reducing valve may not be provided. Further, the pressure may be increased by providing a pressure pump or the like.

【0126】製造装置Aでは、複数個の耐圧チャンバと
成形機の接続部に各耐圧チャンバと接続したストレージ
タンク5を設け、成形機への樹脂供給口を1点とするよ
うにしているが、2か所以上から成形機に供給できるよ
うにしても構わない。
In the manufacturing apparatus A, a storage tank 5 connected to each of the pressure-resistant chambers is provided at a connection portion between the plurality of pressure-resistant chambers and the molding machine, and a single resin supply port to the molding machine is provided. The supply to the molding machine may be made from two or more places.

【0127】製造装置Cでは、蛇管状に配管された循環
配管に温水を通してチャンバ本体を加熱するようにして
いたが、ジャケットをタンク状にしてこのタンク下端か
ら温水を入れ、上端から排出させるようにしても構わな
い。
In the manufacturing apparatus C, the chamber body is heated by passing hot water through a circulating pipe arranged in a serpentine tube. However, the jacket is formed in a tank shape, hot water is introduced from the lower end of the tank, and discharged from the upper end. It does not matter.

【0128】また、製造装置Cでは、ジャケットがチャ
ンバ本体の側周面を覆うのみであったが、チャンバ本体
の全周面を囲むようにしても構わない。
In the manufacturing apparatus C, the jacket only covers the side peripheral surface of the chamber main body. However, the jacket may surround the entire peripheral surface of the chamber main body.

【0129】[0129]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0130】(実施例1)図1に示した製造装置Aを用
い、以下のようにして射出成形品の製造を行った。
Example 1 Using the manufacturing apparatus A shown in FIG. 1, an injection molded product was manufactured as follows.

【0131】〔製造条件〕 耐圧チャンバ3a,3bの容量:10600cm3 原料樹脂:ポリプロピレン(jpo社製、MK411
B) 供給ガス:炭酸ガス 供給ガス圧:1.0MPa 含浸時間:2時間 成形品容量:30cm3 開閉バルブ22a、22bを開き二つの耐圧チャンバ3
a、3bにホッパー2より原料樹脂を投入後、開閉バル
ブ22a、22bを閉じ、耐圧チャンバ3a,3bを密
閉状態とした。
[Manufacturing conditions] Capacity of pressure-resistant chambers 3a, 3b: 10600 cm 3 Raw material resin: polypropylene (MK411, manufactured by jpo)
B) Supply gas: Carbon dioxide gas Supply gas pressure: 1.0 MPa Impregnation time: 2 hours Molded product volume: 30 cm 3 Open / close valves 22 a and 22 b and open two pressure-resistant chambers 3
After the raw material resin was charged into the hopper 2 from the hopper 2, the open / close valves 22a and 22b were closed, and the pressure-resistant chambers 3a and 3b were closed.

【0132】その後、ガスボンベ4a、4bから減圧弁
32a、32bにて1.0MPaに減圧した炭酸ガス
を、ガスバルブ41a、41bを経て供給した。
Thereafter, carbon dioxide gas reduced to 1.0 MPa by the pressure reducing valves 32a and 32b was supplied from the gas cylinders 4a and 4b via the gas valves 41a and 41b.

【0133】ガスバルブ41a、41bを閉じ、耐圧チ
ャンバ3a、3b内を1.0MPaに保持した状態で飽
和含浸時間である2時間放置し、炭酸ガスを樹脂に含浸
させた。
The gas valves 41a and 41b were closed, and the inside of the pressure-resistant chambers 3a and 3b was kept at 1.0 MPa and left for 2 hours, which is the saturation impregnation time, to impregnate the resin with carbon dioxide gas.

【0134】つぎに、バルブ31aおよびバルブ51を
開き、耐圧チャンバ3aからストレージタンク5を経て
射出成形機6にガス含浸樹脂を供給し、射出成形機6内
で可塑化を行い、成形品容量30cm3 の金型7に射出
して金型7形状の成形品を成形サイクル30秒で連続的
に成形した。
Next, the valve 31a and the valve 51 are opened, the gas impregnated resin is supplied from the pressure-resistant chamber 3a to the injection molding machine 6 via the storage tank 5, and plasticization is performed in the injection molding machine 6, and the molded product capacity is 30 cm. Injection was carried out into the mold 7 of No. 3 to form a molded article having the shape of the mold 7 continuously in a molding cycle of 30 seconds.

【0135】また、成形開始から160分後に耐圧チャ
ンバ3a内の樹脂が空となったので、バルブ41aおよ
びバルブ31aを閉じバルブ31bを開き、耐圧チャン
バ3b内のガス含浸樹脂を同様にして射出成形機6に供
給し、成形を続けるとともに、耐圧チャンバ3aに新た
に原料樹脂を供給し、バルブ41aを開き、減圧弁を介
して1.0MPaの炭酸ガスを耐圧チャンバ3aに充填
し、耐圧チャンバ3a内を1.0MPaに保持した状態
で放置した。
Since the resin in the pressure-resistant chamber 3a became empty 160 minutes after the start of molding, the valves 41a and 31a were closed and the valve 31b was opened, and the resin impregnated in the pressure-resistant chamber 3b was similarly injection-molded. While supplying the raw material resin to the pressure-resistant chamber 3a, opening the valve 41a, and filling the pressure-resistant chamber 3a with 1.0 MPa of carbon dioxide gas through the pressure reducing valve. The inside was kept at 1.0 MPa.

【0136】すなわち、耐圧チャンバ3a,3bで交互
にガス含浸工程を行い、射出成形機6にガス含浸樹脂を
途切れることなく供給するようにした。
That is, the gas impregnation process is performed alternately in the pressure chambers 3a and 3b, so that the gas impregnated resin is supplied to the injection molding machine 6 without interruption.

【0137】上記操作を繰り返すことにより24時間連
続的に成形不良を発生せず成形を行うことが可能であっ
た。
By repeating the above operation, it was possible to carry out molding without generating molding defects continuously for 24 hours.

【0138】また、各成形毎の射出時の最高圧力を圧力
センサーで調べ、その結果を、ガスを含浸させなかった
原料樹脂のみを直接射出成形機6に供給した場合の結果
とを合わせて図5に示した。
Further, the maximum pressure at the time of injection for each molding is checked with a pressure sensor, and the result is combined with the result obtained when only the raw resin not impregnated with gas is directly supplied to the injection molding machine 6. 5 is shown.

【0139】図5に示すように、実施例1の製造方法に
よれば、成形初期より24時間後の2880ショットま
で、炭酸ガスを含浸していない樹脂に対し、圧力を約3
0%低減した状態で、安定的に成形することが可能であ
ることがわかる。
As shown in FIG. 5, according to the manufacturing method of Example 1, the pressure of the resin not impregnated with carbon dioxide gas was increased by about 3 to 24,880 shots 24 hours after the initial molding.
It can be seen that it is possible to stably mold in a state of 0% reduction.

【0140】(比較例1)1つの耐圧チャンバ(容量:
10600cm3 )のみが射出成形機にバルブを介して直
接接続された以外は、実施例1と同様の製造装置を用意
し、まず、バルブを開放して耐圧チャンバのガス含浸樹
脂を射出成形機に供給し、実施例1と同様にして成形品
を連続的に成形した。
(Comparative Example 1) One pressure-resistant chamber (capacity:
The same manufacturing apparatus as in Example 1 was prepared except that only 10600 cm 3 ) was directly connected to the injection molding machine via a valve. First, the valve was opened and the gas impregnated resin in the pressure-resistant chamber was injected into the injection molding machine. The molded product was supplied and continuously molded in the same manner as in Example 1.

【0141】約160分後に耐圧チャンバ内のガス含浸
樹脂が空になると、一旦バルブを閉じて耐圧チャンバに
原料樹脂を供給し、実施例1と同様にしてガス含浸工程
を実施するとともに、25分後にバルブを開放し、耐圧
チャンバ内のガス含浸樹脂を射出成形機に再び供給を開
始した。すなわち、25分間は、原料樹脂および炭酸ガ
スのの供給作業時間が必要なため成形を停止した。
When the gas-impregnated resin in the pressure-resistant chamber became empty after about 160 minutes, the raw material resin was supplied to the pressure-resistant chamber by closing the valve. Thereafter, the valve was opened, and the supply of the gas impregnated resin in the pressure-resistant chamber to the injection molding machine was started again. That is, the molding was stopped for 25 minutes because the supply time of the raw material resin and the carbon dioxide gas was required.

【0142】そして、耐圧チャンバが空になる毎に上記
工程を繰り返し、24時間成形を続けた。なお、上述の
ように、160分毎に25分の成形停止時間が必要なた
め、2530ショットと実施例1の約87.8%の成形
品しか成形することができなかった。
Each time the pressure-resistant chamber was emptied, the above steps were repeated, and molding was continued for 24 hours. As described above, since a molding stop time of 25 minutes was required every 160 minutes, only 2530 shots and about 87.8% of the molded product of Example 1 could be molded.

【0143】さらに、各成形毎の射出時の最高圧力を圧
力センサーで調べ、その結果を、ガスを含浸させなかっ
た原料樹脂のみを直接射出成形機6に供給した場合の結
果とを合わせて図6に示した。
Further, the maximum pressure at the time of injection for each molding was examined by a pressure sensor, and the result was combined with the result obtained when only the raw resin not impregnated with gas was directly supplied to the injection molding machine 6. 6 is shown.

【0144】図6に示すように、比較例1の場合、成形
初期から320ショットまでは、酸ガスの含浸時間を充
分に確保したため、本発明と同様に炭酸ガスを含浸して
いない樹脂に対して約30%の圧力低減効果が得られて
いる。しかし、耐圧チャンバに新しい原料樹脂を供給し
た後(321ショット以降)の成形では、成形開始当初
に、ほとんど圧力低下効果が得られていない。その後、
除々に樹脂への炭酸ガスの含浸量が増大するために圧力
も徐々に低下し、最終的に本発明と同レベルまでの圧力
が見られる。
As shown in FIG. 6, in the case of Comparative Example 1, since the impregnation time of the acid gas was sufficiently secured from the initial stage of molding to 320 shots, the resin not impregnated with the carbon dioxide gas as in the present invention was used. Thus, a pressure reduction effect of about 30% is obtained. However, in the molding after supplying a new raw material resin to the pressure-resistant chamber (after 321 shots), almost no pressure reduction effect is obtained at the beginning of molding. afterwards,
Since the amount of carbon dioxide gas impregnating the resin gradually increases, the pressure gradually decreases, and finally, the pressure reaches the same level as in the present invention.

【0145】また、実施例1および比較例1で得られた
各ショット毎の成形品の重量変化を合わせて調べたとこ
ろ、図6に示すように、本発明の製造方法である実施例
1の方法を用いた場合、成形品の重量もバラツキがなく
良好であったのに対し、従来の製造方法である比較例1
の方法を用いた場合、一つの耐圧チャンバだけではガス
の含浸量が一定ではないため、成形ショット毎の圧力変
動が大きく、ショートショット不良で極端に重量の低い
ものも見られ、成形品の寸法・重量の安定が得られない
ことがよく分かる。
When the change in weight of the molded product for each shot obtained in Example 1 and Comparative Example 1 was also examined, as shown in FIG. In the case where the method was used, the weight of the molded article was good without any variation, whereas the comparative example 1 which is the conventional manufacturing method was used.
In the case of using the above method, since the gas impregnation amount is not constant in only one pressure-resistant chamber, the pressure fluctuation for each molding shot is large, and a short shot is defective and extremely low in weight is observed.・ It is clear that weight stability cannot be obtained.

【0146】(実施例2)図3に示す製造装置Cの容量
が10600cm3 のチャンバ本体35に原料樹脂として
ポリプロピレン(jpo社製、MK411B)を供給
し、ジャケット36の温水流路39に90℃の温水を循
環させながら、加圧ポンプ42eによって10MPaに
加圧された炭酸ガスをチャンバ本体35内に充填し、こ
の状態を保ちながら、一定時間毎にバルブ31eをわず
かに開き、少量のガス含浸樹脂を抽出し、その重量を測
定し、以下の式(ヘ)を用いて一定時間毎の炭酸ガス含
浸率を算出した。
Example 2 Polypropylene (MK411B, manufactured by jpo) was supplied as a raw material resin to a chamber body 35 having a capacity of 10600 cm 3 of a manufacturing apparatus C shown in FIG. While circulating warm water, carbon dioxide gas pressurized to 10 MPa by the pressurizing pump 42e is charged into the chamber main body 35, and while maintaining this state, the valve 31e is slightly opened at regular intervals to impregnate a small amount of gas. The resin was extracted, its weight was measured, and the carbon dioxide gas impregnation rate at regular time intervals was calculated using the following equation (f).

【0147】[0147]

【数3】 (比較例2)ジャケット36に温水を循環させず、チャ
ンバ本体35内を20℃に保った以外は、実施例2と同
様にして一定時間毎の炭酸ガス含浸率を算出した。
(Equation 3) (Comparative Example 2) The carbon dioxide impregnation rate was calculated at regular intervals in the same manner as in Example 2 except that the interior of the chamber body 35 was kept at 20 ° C without circulating warm water through the jacket 36.

【0148】上記実施例2および比較例2で算出した一
定時間毎の炭酸ガス含浸率の時間に対する炭酸ガス含浸
率をプロットしたところ、図8のような増加曲線をそれ
ぞれ示した。
When the carbon dioxide gas impregnation rate with respect to the time of the carbon dioxide gas impregnation rate for each fixed time calculated in Example 2 and Comparative Example 2 was plotted, an increase curve as shown in FIG. 8 was shown.

【0149】図8から、実施例2のように90℃に加熱
すれば、136分でガスが飽和状態まで含浸され、比較
例2のように20℃では1960分かかることがわか
る。
From FIG. 8, it can be seen that when heated to 90 ° C. as in Example 2, the gas is impregnated to a saturated state in 136 minutes, and it takes 1960 minutes at 20 ° C. as in Comparative Example 2.

【0150】すなわち、ガスの含浸に要する時間が1/
14になり、生産効率が向上することがよくわかる。
That is, the time required for gas impregnation is 1 /
It is well understood that the production efficiency is improved.

【0151】[0151]

【発明の効果】本発明にかかる熱可塑性樹脂成形品の製
造方法および製造装置は、以上のように構成されている
ので、汎用熱可塑性樹脂は勿論のこと、難成形樹脂であ
っても、効率よく成形品を製造することができる。特に
汎用熱可塑性樹脂に関しては大幅に成形圧力を低減で
き、金型の小型化、成形時に発生する製品内の圧力分布
の低減が図れ寸法精度向上が図れる。
The method and apparatus for manufacturing a thermoplastic resin molded article according to the present invention are constructed as described above, so that not only general-purpose thermoplastic resin but also difficult-to-mold resin can be used efficiently. A molded article can be manufactured well. Particularly for general-purpose thermoplastic resins, the molding pressure can be greatly reduced, the size of the mold can be reduced, the pressure distribution in the product generated during molding can be reduced, and the dimensional accuracy can be improved.

【0152】特に請求項6および請求項14のようにす
れば、ガス含浸待ち時間がなくなり、射出成形を連続的
に行えるとともに、安定した品質の成形品を得ることが
できる。
In particular, according to the sixth and fourteenth aspects, the waiting time for gas impregnation is eliminated, the injection molding can be performed continuously, and a molded product of stable quality can be obtained.

【0153】また、請求項7および請求項15のように
すれば、ガス含浸待ち時間がなくなり、難成形樹脂であ
ってもスムーズに安定した品質で押出成形を行うことが
できる。
Further, according to the seventh and fifteenth aspects, the waiting time for gas impregnation is eliminated, and even a difficult-to-mold resin can be extruded smoothly and with stable quality.

【0154】また、請求項11のようにすれば、気密容
器中のガス含浸樹脂中に含浸されたガス量の変動が少な
く、より品質の安定した成形品を得ることができる。
According to the eleventh aspect, the amount of gas impregnated in the gas impregnated resin in the hermetic container is small, and a molded product with more stable quality can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の製造方法の1つの実施の形態を説明
する製造装置の模式図である。
FIG. 1 is a schematic view of a manufacturing apparatus for explaining one embodiment of a manufacturing method according to claim 1;

【図2】請求項2の製造方法の1つの実施の形態を説明
する製造装置の模式図である。
FIG. 2 is a schematic view of a manufacturing apparatus for explaining one embodiment of a manufacturing method according to a second embodiment.

【図3】請求項3の製造方法の1つの実施の形態を説明
する製造装置の模式図である。
FIG. 3 is a schematic view of a manufacturing apparatus for explaining one embodiment of a manufacturing method according to a third embodiment.

【図4】樹脂含浸時の温度とガス拡散係数の関係をあら
わすグラフである。
FIG. 4 is a graph showing a relationship between a temperature during resin impregnation and a gas diffusion coefficient.

【図5】実施例1の製造方法を24時間実施した時の、
1回の射出成形毎の射出圧の測定結果の変化を、従来の
製造方法の場合と比較したグラフである。
FIG. 5 is a graph showing the results when the production method of Example 1 was performed for 24 hours.
6 is a graph comparing the change in the measurement result of the injection pressure for each injection molding with the case of the conventional manufacturing method.

【図6】比較例1の製造方法を24時間実施した時の、
1回の射出成形毎の射出圧の測定結果の変化を、従来の
製造方法の場合と比較したグラフである。
FIG. 6 shows the results when the production method of Comparative Example 1 was performed for 24 hours.
6 is a graph comparing the change in the measurement result of the injection pressure for each injection molding with the case of the conventional manufacturing method.

【図7】実施例1および比較例1の1回の射出成形毎に
得られた成形品の製品重量の変化を比較したグラフであ
る。
FIG. 7 is a graph comparing the changes in the product weight of the molded products obtained in each injection molding in Example 1 and Comparative Example 1.

【図8】実施例2と比較例2のガス含浸率の時間経過を
比較したグラフである。
FIG. 8 is a graph comparing the gas impregnation rates of Example 2 and Comparative Example 2 over time.

【図9】ガス圧力と飽和ガス含浸量との関係をあらわす
グラフである。
FIG. 9 is a graph showing a relationship between a gas pressure and a saturated gas impregnation amount.

【図10】一定ガス圧下のガス含浸量の時間経過をあら
わすグラフである。
FIG. 10 is a graph showing a time course of a gas impregnation amount under a constant gas pressure.

【符号の説明】[Explanation of symbols]

3a〜3e 耐圧チャンバ(気密容器) 5 ストレージタンク(供給路) 6 射出成形機(可塑化装置) 7 金型 8 原料樹脂 36 ジャケット 3a to 3e Pressure-resistant chamber (airtight container) 5 Storage tank (supply path) 6 Injection molding machine (plasticizer) 7 Mold 8 Raw material resin 36 Jacket

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:04 Fターム(参考) 4F074 AA17 AA35 AA39 AA40 AA49 AA65 AA68 AA74 AA97 AB01 BA32 BA33 CA22 CA26 CC23X CC64 4F206 AA11 AB16 AK09 AL02 AL03 AL20 JA04 JA07 JE06 JE16 JF01 JF11 JF12 JF23 JL02 JM01 4F212 AA11 AB02 AB16 AG20 AL02 AL03 AL20 AM20 UA09 UB01 UF06 UF23 UG07 UN11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B29K 105: 04 F term (Reference) 4F074 AA17 AA35 AA39 AA40 AA49 AA65 AA68 AA74 AA97 AB01 BA32 BA33 CA22 CA26 CC23X CC64 4F206 AA11 AB16 AK09 AL02 AL03 AL20 JA04 JA07 JE06 JE16 JF01 JF11 JF12 JF23 JL02 JM01 4F212 AA11 AB02 AB16 AG20 AL02 AL03 AL20 AM20 UA09 UB01 UF06 UF23 UG07 UN11

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】常温・常圧で気体状態のガスを、気密容器
に充填し気密容器内で原料熱可塑性樹脂に含浸させて所
定のガス含浸量のガス含浸樹脂を得るガス含浸工程と、
ガス含浸工程で得られたガス含浸樹脂を供給路を介して
気密容器に接続された可塑化装置へ供給する樹脂供給工
程と、供給されたガス含浸樹脂を可塑化装置内で可塑化
したのち、得られた可塑化樹脂を金型へ供給して金型形
状の成形品を得る成形工程とを備える熱可塑性樹脂成形
品の製造方法において、複数の気密容器を前記供給路に
並列に接続し、1つの気密容器からガス含浸樹脂を可塑
化装置へ供給すると同時に、他の気密容器でガス含浸工
程を実施し、1つの気密容器からのガス含浸樹脂の供給
が規定量に達すると、ガス含浸工程が終了した他の気密
容器からのガス含浸樹脂の供給に切り替えるとともに、
供給の終わった気密容器に順次新しい原料熱可塑性樹脂
を充填してガス含浸工程を実施することを特徴とする熱
可塑性樹脂成形品の製造方法。
A gas impregnating step of filling a gas in a gaseous state at normal temperature and normal pressure into an airtight container and impregnating a raw material thermoplastic resin in the airtight container to obtain a gas impregnated resin having a predetermined gas impregnation amount;
A resin supply step of supplying the gas-impregnated resin obtained in the gas-impregnation step to a plasticizer connected to the hermetic container via a supply path, and after the supplied gas-impregnated resin is plasticized in the plasticizer, In the method for producing a thermoplastic resin molded product comprising a molding step of supplying the obtained plasticized resin to a mold to obtain a molded product in a mold shape, a plurality of hermetic containers are connected in parallel to the supply path, At the same time as supplying the gas-impregnated resin from one hermetic container to the plasticizing device, the gas-impregnating process is performed in another hermetic container. When the supply of the gas-impregnated resin from one hermetic container reaches a specified amount, the gas impregnating process is performed. While switching to the supply of gas-impregnated resin from other hermetic containers where
A method for producing a molded article of thermoplastic resin, characterized in that a gas-impregnating step is carried out by sequentially filling a new raw material thermoplastic resin into an airtight container after the supply.
【請求項2】常温・常圧で気体状態のガスを、気密容器
に充填し気密容器内で原料熱可塑性樹脂に含浸させて所
定のガス含浸量のガス含浸樹脂を得るガス含浸工程と、
ガス含浸工程で得られたガス含浸樹脂を供給路を介して
気密容器に接続された可塑化装置へ供給する樹脂供給工
程と、供給されたガス含浸樹脂を可塑化装置内で可塑化
したのち、得られた可塑化樹脂を金型へ供給して金型形
状の成形品を得る成形工程とを備える熱可塑性樹脂成形
品の製造方法において、複数の気密容器を直列に接続す
るとともに、供給路を介して最も下手の気密容器を可塑
化装置に接続し、最も下手の気密容器中のガス含浸樹脂
が可塑化装置に供給されている間に、上手側の他の気密
容器によってガス含浸工程を実施し、最も下手の気密容
器中のガス含浸樹脂が規定量供給されると、前記供給路
を遮断し、上手側の気密容器で予めガス含浸されたガス
含浸樹脂を順次下手側の気密容器に移し替えたのち、再
び最も下手の気密容器中のガス含浸樹脂を可塑化装置に
供給を開始することを特徴とする熱可塑性樹脂成形品の
製造方法。
2. A gas impregnating step of filling a gas in a gaseous state at normal temperature and normal pressure into an airtight container and impregnating a raw material thermoplastic resin in the airtight container to obtain a gas impregnated resin having a predetermined gas impregnation amount;
A resin supply step of supplying the gas-impregnated resin obtained in the gas-impregnation step to a plasticizer connected to the hermetic container via a supply path, and after the supplied gas-impregnated resin is plasticized in the plasticizer, And a molding step of supplying the obtained plasticized resin to a mold to obtain a mold-shaped molded product.In the method for producing a thermoplastic resin molded product, a plurality of airtight containers are connected in series, and a supply path is formed. The lowermost hermetic container is connected to the plasticizer through a gas-impregnating process while the gas-impregnated resin in the lowermost hermetic container is supplied to the plasticizer. When the gas impregnated resin in the lowermost hermetic container is supplied in a specified amount, the supply path is shut off, and the gas impregnated resin previously impregnated in the upper hermetic container is sequentially transferred to the lower hermetic container. After changing, the least airtight again Method for producing a thermoplastic resin molded article, characterized in that to start supplying the gas impregnation resin in vessel plasticizing device.
【請求項3】常温・常圧で気体状態のガスを、気密容器
に充填し気密容器内で原料熱可塑性樹脂に含浸させて所
定のガス含浸量のガス含浸樹脂を得るガス含浸工程と、
ガス含浸工程で得られたガス含浸樹脂を供給路を介して
気密容器に接続された可塑化装置へ供給する樹脂供給工
程と、供給されたガス含浸樹脂を可塑化装置内で可塑化
したのち、得られた可塑化樹脂を金型へ供給して金型形
状の成形品を得る成形工程とを備える熱可塑性樹脂成形
品の製造方法において、ガス含浸工程時に気密容器中の
原料熱可塑性樹脂を、室温を越え、原料熱可塑性樹脂の
溶融温度未満の温度に加熱することを特徴とする熱可塑
性樹脂成形品の製造方法。
3. A gas impregnation step of filling a gas in a gaseous state at normal temperature and pressure into an airtight container and impregnating the raw material thermoplastic resin in the airtight container to obtain a gas impregnated resin having a predetermined gas impregnation amount;
A resin supply step of supplying the gas-impregnated resin obtained in the gas-impregnation step to a plasticizer connected to the hermetic container via a supply path, and after the supplied gas-impregnated resin is plasticized in the plasticizer, In the method for producing a thermoplastic resin molded article comprising a molding step of supplying the obtained plasticized resin to a mold to obtain a molded article in a mold shape, the raw thermoplastic resin in an airtight container during the gas impregnation step, A method for producing a thermoplastic resin molded article, comprising heating to a temperature higher than room temperature and lower than the melting temperature of the raw material thermoplastic resin.
【請求項4】ガス含浸工程時に、ガスを気密容器内で高
圧状態にしておく請求項1〜請求項3のいずれかに記載
の熱可塑性樹脂成形品の製造方法。
4. The method for producing a thermoplastic resin article according to claim 1, wherein the gas is kept in a high pressure state in the airtight container during the gas impregnation step.
【請求項5】可塑化装置が射出成形機であって、射出成
形機の計量完了時に供給路を閉じる請求項1〜請求項4
のいずれかに記載の熱可塑性樹脂成形品の製造方法。
5. The plasticizer according to claim 1, wherein the plasticizing device is an injection molding machine, and the supply path is closed when the injection molding machine has finished measuring.
The method for producing a thermoplastic resin molded product according to any one of the above.
【請求項6】可塑化装置が射出成形機であって、L≧L
m /(N−1)×t1 /t2 〔但し、Lは気密容器から
のガス含浸樹脂の1回の供給量、Lm は成形品の容量、
Nは気密容器の数、t1 は気密容器でのガスの飽和含浸
に要する時間、t2 は1回の成形に要する時間であ
る。〕の式を満足する同容量のN個の気密容器を用いる
請求項1、請求項4、および、請求項5のいずれかに記
載の熱可塑性樹脂成形品の製造方法。
6. The plasticizer is an injection molding machine, wherein L ≧ L
m / (N−1) × t 1 / t 2 [where L is the amount of gas-impregnated resin supplied from the airtight container at one time, L m is the volume of the molded product,
N is the number of the airtight container, t 1 is the time required for saturation impregnation of the gas in the airtight container, t 2 is the time required for forming a single. The method for producing a thermoplastic resin molded product according to any one of claims 1, 4 and 5, wherein N airtight containers having the same capacity and satisfying the following expression are used.
【請求項7】可塑化装置が押出成形機であって、L≧M
/(N−1)×t1 /3600〔但し、Lは気密容器か
らのガス含浸樹脂の1回の供給量、Nは気密容器の数、
1は気密容器でのガスの飽和含浸に要する時間、Mは
押出成形機の単位時間あたりの押出量である。〕の式を
満足する同容量のN個の気密容器を用いる請求項1また
は請求項4に記載の熱可塑性樹脂成形品の製造方法。
7. The plasticizer is an extruder, wherein L ≧ M.
/ (N-1) × t 1/3600 [where, L is a single supply of the gas impregnation resins from the airtight container, N is the number of the airtight container,
t 1 is the time required for the saturated impregnation of the gas in the airtight container, and M is the amount of extrusion per unit time of the extruder. The method for producing a thermoplastic resin molded product according to claim 1 or 4, wherein N airtight containers having the same capacity and satisfying the following formula are used.
【請求項8】ガス含浸工程時に気密容器中の原料熱可塑
性樹脂を室温を越え、原料熱可塑性樹脂の溶融温度未満
の温度に加熱する請求項1,請求項2,請求項4、請求
項5、請求項6および請求項7のいずれかに記載の熱可
塑性樹脂成形品の製造方法。
8. The method according to claim 1, wherein the raw material thermoplastic resin in the airtight container is heated to a temperature higher than room temperature and lower than the melting temperature of the raw material thermoplastic resin in the gas impregnation step. A method for producing a thermoplastic resin article according to any one of claims 6 and 7.
【請求項9】気密容器にジャケットを設け、このジャケ
ット内に加熱媒体を供給して気密容器中の原料熱可塑性
樹脂を加熱する請求項3または請求項8に記載の熱可塑
性樹脂成形品の製造方法。
9. A thermoplastic resin molded article according to claim 3, wherein a jacket is provided in the hermetic container, and a heating medium is supplied into the jacket to heat the raw thermoplastic resin in the hermetic container. Method.
【請求項10】気密容器にヒータを設け、このヒータに
よって気密容器中の原料熱可塑性樹脂を加熱する請求項
3、請求項8および請求項9のいずれかに記載の熱可塑
性樹脂成形品の製造方法。
10. A thermoplastic resin molded product according to claim 3, wherein a heater is provided in the airtight container, and the raw material thermoplastic resin in the airtight container is heated by the heater. Method.
【請求項11】可塑化装置が射出成形機であって、計量
完了時から射出完了までの間、気密容器から射出成形機
へのガス含浸樹脂の供給路を閉鎖し、射出完了時から計
量完了までの間、気密容器から射出成形機へのガス含浸
樹脂の供給路を開放状態にする請求項1、請求項2、請
求項3、請求項4、請求項5、請求項6、請求項8,請
求項9および請求項10のいずれかに記載の熱可塑性樹
脂成形品の製造方法。
11. A plasticizing device is an injection molding machine, wherein a supply path of a gas impregnated resin from an airtight container to an injection molding machine is closed from a time when the measurement is completed to a time when the injection is completed, and the measurement is completed when the injection is completed. 1, 2, 3, 4, 5, 6, and 8, the supply path of the gas impregnated resin from the airtight container to the injection molding machine is kept open until A method for producing a thermoplastic resin article according to any one of claims 9 and 10.
【請求項12】原料熱可塑性樹脂と常温常圧でガス状態
のガスとを一旦貯留し、ガスを原料熱可塑性樹脂に含浸
可能な気密容器と、この気密容器に供給路を介して接続
されて気密容器から供給された樹脂を可塑化する可塑化
装置と、この可塑化装置から供給される可塑化装置で可
塑化された可塑化樹脂を所望の形状に賦形する金型とを
備える熱可塑性樹脂成形品の製造装置において、前記気
密容器を複数個有し、これらの気密容器が、前記供給路
に並列に接続されているとともに、供給路との連通状態
を個々に遮断可能なバルブを備えていることを特徴とす
る熱可塑性樹脂成形品の製造装置。
12. A hermetic container capable of temporarily storing a raw material thermoplastic resin and a gas in a gaseous state at normal temperature and normal pressure and impregnating the raw material thermoplastic resin with the gas, and connected to the hermetic container via a supply path. Thermoplasticity comprising a plasticizing device for plasticizing the resin supplied from the airtight container, and a mold for shaping the plasticized resin plasticized by the plasticizing device supplied from the plasticizing device into a desired shape. In the apparatus for manufacturing a resin molded product, the airtight container has a plurality of the airtight containers, and the airtight containers are connected to the supply path in parallel, and include a valve that can individually shut off a communication state with the supply path. An apparatus for producing a thermoplastic resin molded product.
【請求項13】ガス含浸済みのガス含浸樹脂が1つの気
密容器から可塑化装置へ規定量送られると、バルブを閉
じてこの気密容器と供給路との間を遮断するとともに、
所定量のガスが含浸されたガス含浸樹脂入りの他の気密
容器または最もガス含浸時間の長いガス含浸樹脂が入っ
た気密容器のバルブを開放するとともに、供給の終わっ
た気密容器に順次新しい原料熱可塑性樹脂を充填してガ
ス含浸を行うように制御する制御手段を備えている請求
項12に記載の熱可塑性樹脂成形品の製造装置。
13. When the gas-impregnated resin impregnated with the gas is sent from one airtight container to the plasticizing device in a predetermined amount, the valve is closed to shut off the space between the airtight container and the supply path.
Open the valve of the other gas-tight container filled with the gas-impregnated resin impregnated with a predetermined amount of gas or the gas-impregnated resin filled with the gas-impregnated resin with the longest gas impregnation time. The apparatus for producing a thermoplastic resin molded product according to claim 12, further comprising a control unit configured to control so as to perform gas impregnation by filling the thermoplastic resin.
【請求項14】可塑化装置が射出成形機であって、全て
の気密容器が以下の式(1)を満足する同一容量L´に
形成されている請求項12または請求項13に記載の熱
可塑性樹脂成形品の製造装置。 L´≧Lm /(N−1)×t1 /t2 ・・・(1) 〔但し、Lm は成形品の容量、Nは気密容器の数、t1
は気密容器でのガスの飽和含浸に要する時間、t2 は1
回の成形に要する時間である。〕
14. The heat according to claim 12, wherein the plasticizing device is an injection molding machine, and all the hermetic containers are formed to have the same capacity L ′ satisfying the following formula (1). Manufacturing equipment for plastic molded products. L ′ ≧ L m / (N−1) × t 1 / t 2 (1) [where L m is the capacity of the molded product, N is the number of hermetic containers, t 1
Is the time required for the saturated impregnation of the gas in the hermetic container, and t 2 is 1
This is the time required for each molding. ]
【請求項15】可塑化装置が押出成形機であって、全て
の気密容器が以下の式(2)を満足する同一容量L´に
形成されている請求項12または請求項13に記載の熱
可塑性樹脂成形品の製造装置。 L´≧M/(N−1)×t1 /3600・・・(2) 〔但し、Nは気密容器の数、t1 は気密容器でのガスの
飽和含浸に要する時間、Mは押出成形機の単位時間あた
りの押出量である。〕
15. The heat according to claim 12, wherein the plasticizing device is an extruder, and all the hermetic containers are formed to have the same volume L ′ satisfying the following equation (2). Manufacturing equipment for plastic molded products. L'≧ M / (N-1 ) × t 1/3600 ··· (2) [where, N is the number of the airtight container, t 1 is the time required for saturation impregnation of the gas in the airtight container, M is extruded It is the amount of extrusion per unit time of the machine. ]
【請求項16】原料熱可塑性樹脂と常温常圧でガス状態
のガスとを一旦貯留可能な気密容器と、この気密容器に
樹脂供給路を介して接続されて気密容器から供給された
樹脂を可塑化する可塑化装置と、この可塑化装置から供
給される可塑化装置で可塑化された可塑化樹脂を所望の
形状に賦形する金型とを備える熱可塑性樹脂成形品の製
造装置において、前記気密容器が、内部に充填された原
料熱可塑性樹脂の加熱手段を備えていることを特徴とす
る熱可塑性樹脂成形品の製造装置。
16. An airtight container capable of temporarily storing a raw material thermoplastic resin and a gas in a gaseous state at normal temperature and normal pressure, and connected to the airtight container via a resin supply path to plasticize the resin supplied from the airtight container. Plasticizing device, and a thermoplastic resin molded product manufacturing device comprising a mold for shaping the plasticized resin plasticized by the plasticizing device supplied from the plasticizing device into a desired shape, An apparatus for producing a thermoplastic resin molded product, wherein the hermetic container is provided with a heating means for the raw material thermoplastic resin filled therein.
【請求項17】気密容器が内部に充填された原料熱可塑
性樹脂の加熱手段を備えている請求項12〜請求項16
のいずれかに記載の熱可塑性樹脂成形品の製造装置。
17. An airtight container provided with heating means for a raw material thermoplastic resin filled therein.
The apparatus for producing a thermoplastic resin molded product according to any one of the above.
【請求項18】加熱手段が気密容器の周囲に設けられ、
加熱媒体の供給により気密容器内を加熱するジャケット
である請求項16または請求項17に記載の熱可塑性樹
脂成形品の製造装置。
18. A heating means is provided around the airtight container,
18. The thermoplastic resin molded article manufacturing apparatus according to claim 16, wherein the jacket is a jacket for heating the inside of the airtight container by supplying a heating medium.
【請求項19】加熱媒体が温水である請求項18に記載
の熱可塑性樹脂成形品の製造装置。
19. The apparatus for producing a thermoplastic resin article according to claim 18, wherein the heating medium is hot water.
【請求項20】加熱手段がヒータである請求項16また
は請求項17に記載の熱可塑性樹脂成形品の製造装置。
20. The apparatus for manufacturing a thermoplastic resin article according to claim 16, wherein the heating means is a heater.
JP30412198A 1998-10-26 1998-10-26 Method for producing thermoplastic resin molded article and apparatus for producing thermoplastic resin molded article used in this production method Expired - Fee Related JP3285830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30412198A JP3285830B2 (en) 1998-10-26 1998-10-26 Method for producing thermoplastic resin molded article and apparatus for producing thermoplastic resin molded article used in this production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30412198A JP3285830B2 (en) 1998-10-26 1998-10-26 Method for producing thermoplastic resin molded article and apparatus for producing thermoplastic resin molded article used in this production method

Publications (2)

Publication Number Publication Date
JP2000127194A true JP2000127194A (en) 2000-05-09
JP3285830B2 JP3285830B2 (en) 2002-05-27

Family

ID=17929296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30412198A Expired - Fee Related JP3285830B2 (en) 1998-10-26 1998-10-26 Method for producing thermoplastic resin molded article and apparatus for producing thermoplastic resin molded article used in this production method

Country Status (1)

Country Link
JP (1) JP3285830B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092675A1 (en) * 2001-05-16 2002-11-21 Asahi Kasei Kabushiki Kaisha Process for producing porous polyolefin film
JP2003011161A (en) * 2001-07-02 2003-01-15 Canon Inc Method for supplying resin material to injection molding machine, apparatus therefor, and foamed molded article
WO2007122957A1 (en) * 2006-03-24 2007-11-01 Japan Science And Technology Agency Injection molding system
CN103174376A (en) * 2006-02-21 2013-06-26 威那公司 Fiberglass reinforced plastic products having increased weatherability, system and method
JP2013214021A (en) * 2012-04-04 2013-10-17 Sekisui Chem Co Ltd Extrusion raw material supply device and method for producing optical transmission body using the same
EP3616877A1 (en) * 2018-08-28 2020-03-04 Otrajet Inc. Valve
WO2021172568A1 (en) * 2020-02-28 2021-09-02 住友重機械工業株式会社 Preheating device and injection device
JP7445209B2 (en) 2020-10-21 2024-03-07 ▲華▼▲東▼理工大学 Method and apparatus for producing polymeric foam materials

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400558A1 (en) * 2001-05-16 2004-03-24 Asahi Kasei Kabushiki Kaisha Process for producing porous polyolefin film
EP1400558A4 (en) * 2001-05-16 2004-08-11 Asahi Chemical Ind Process for producing porous polyolefin film
WO2002092675A1 (en) * 2001-05-16 2002-11-21 Asahi Kasei Kabushiki Kaisha Process for producing porous polyolefin film
JP4721385B2 (en) * 2001-07-02 2011-07-13 キヤノン株式会社 Method and apparatus for supplying resin material to injection molding machine
JP2003011161A (en) * 2001-07-02 2003-01-15 Canon Inc Method for supplying resin material to injection molding machine, apparatus therefor, and foamed molded article
CN103174376A (en) * 2006-02-21 2013-06-26 威那公司 Fiberglass reinforced plastic products having increased weatherability, system and method
CN103206168A (en) * 2006-02-21 2013-07-17 威那公司 Fiberglass reinforced plastic products having increased weatherability, system and method
CN103174376B (en) * 2006-02-21 2016-06-01 威那公司 There is fiberglass reinforced plastic products, the system and method for the weatherability of increase
CN103206168B (en) * 2006-02-21 2016-06-01 威那公司 There is fiberglass reinforced plastic products, the system and method for the weatherability of increase
WO2007122957A1 (en) * 2006-03-24 2007-11-01 Japan Science And Technology Agency Injection molding system
JP2013214021A (en) * 2012-04-04 2013-10-17 Sekisui Chem Co Ltd Extrusion raw material supply device and method for producing optical transmission body using the same
EP3616877A1 (en) * 2018-08-28 2020-03-04 Otrajet Inc. Valve
WO2021172568A1 (en) * 2020-02-28 2021-09-02 住友重機械工業株式会社 Preheating device and injection device
JP7445209B2 (en) 2020-10-21 2024-03-07 ▲華▼▲東▼理工大学 Method and apparatus for producing polymeric foam materials

Also Published As

Publication number Publication date
JP3285830B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
JP6728440B2 (en) Method for producing foamed molded article
KR100339311B1 (en) Addition method of supercritical carbon dioxide, and production process of expanded thermoplastic resin product by making use of the addition method
EP1341663B1 (en) Material processing
US5997781A (en) Injection-expansion molded, thermoplastic resin product and production process thereof
US4272469A (en) Method and apparatus for forming expanded foam articles
CN107000272B (en) Method for controlling process steps carried out automatically using a machine and method for producing a particle foam component
JP3285830B2 (en) Method for producing thermoplastic resin molded article and apparatus for producing thermoplastic resin molded article used in this production method
US7083403B2 (en) Apparatus for supplying a resin material to an injection molding machine
JPS6216166B2 (en)
US8168114B2 (en) Methods for blow molding solid-state cellular thermoplastic articles
PT78572B (en) Process and apparatus for injection moulding and mouldings produced thereby
JPH06504739A (en) Temperature control method for molding tools
CN105829049A (en) Apparatus And Method For The Production Of Expanded Foam Embryos
JPS62151326A (en) In-mold molding method for polypropylene series resin foamed particle
Ramos‐De Valle Principles of polymer processing
JP2003261707A (en) Method for producing resin foam
JP2004017285A (en) Method for molding thin wall foamed molding, thin wall foamed molding and apparatus for molding foamed molding
EP1407868A2 (en) Method of storing material into which gas saturates
Zhang et al. The solidification of large sections in ceramic injection molding: Part I. Conventional molding
JP3146004B2 (en) Method for producing olefin-based synthetic resin foam molded article
CN114316432B (en) Uniform foaming molding process in polymer melt cavity
JP3851439B2 (en) Manufacturing method of difficult-to-mold resin molded products
Djoumaliisky et al. Structure of PP structural foam moldings made by the gas-counterpressure process
JP4907126B2 (en) Method for applying internal pressure to polyolefin resin pre-expanded particles
JP2023094897A (en) Manufacturing method of foam molded body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees