JP2000126681A - Manufacture of nanoparticle thin film - Google Patents

Manufacture of nanoparticle thin film

Info

Publication number
JP2000126681A
JP2000126681A JP29937298A JP29937298A JP2000126681A JP 2000126681 A JP2000126681 A JP 2000126681A JP 29937298 A JP29937298 A JP 29937298A JP 29937298 A JP29937298 A JP 29937298A JP 2000126681 A JP2000126681 A JP 2000126681A
Authority
JP
Japan
Prior art keywords
thin film
nanoparticles
nanoparticle thin
producing
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29937298A
Other languages
Japanese (ja)
Inventor
Soichiro Saida
壮一郎 齊田
Shinya Maenozono
信也 前之園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP29937298A priority Critical patent/JP2000126681A/en
Publication of JP2000126681A publication Critical patent/JP2000126681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture a nanoparticle thin film without wasting nanoparticles by coating the top of a solid substrate by ink jet coating with a dispersion prepared by dispersing nanoparticles in an emulsion having an aqueous phase as a continuous phase and an oil phase as a dispersed phase. SOLUTION: Nanoparticles such as semiconductor crystals of a group I-VII compound semiconductor such as CuCl, a group II-VI compound semiconductor such as CdS or CdSe, a group III-V compound semiconductor such as InAs or a group IV semiconductor are dispersed in an emulsion having an aqueous phase prepared by adding a water-soluble organic solvent such as ethylene glycol, propylene glycol or butylene glycol to water as a continuous phase and an oil phase as a dispersed phase. The top of a solid substrate is coated with the resultant dispersion by ink jet coating to manufacture the objective nanoparticle thin film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はナノ粒子薄膜の作製
方法に関する。詳しくは、励起光を照射するとフォトル
ミネッセンス強度が増加する現象と、光照射せずに暗所
にて長時間保存した後再び光照射すると保存前のフォト
ルミネッセンス強度を示す、つまり記憶しているという
機能(併せて以下「TDLM」(Time Dependent Lumin
escence and Memory)と称する)を有するナノ粒子薄膜
の作製方法に関する。
[0001] The present invention relates to a method for producing a nanoparticle thin film. Specifically, the photoluminescence intensity increases when irradiated with excitation light, and the photoluminescence intensity before storage is indicated by storing light for a long time in a dark place without light irradiation and then re-irradiating light, that is, it is stored. Functions (also referred to as “TDLM” (Time Dependent Lumin
(hereinafter referred to as luminescence and memory).

【0002】[0002]

【従来の技術】近年、ナノメートルサイズの超微粒子を
用いた発光素子/媒体および光プロセシング素子/媒体
等の各種素子が研究されている。このような超微粒子の
素子への応用のためには、固体基板上への超微粒子の膜
もしくは層の堆積によって得られる高密度集積が重要で
ある。この超微粒子が高密度に集積した薄膜は、具体的
には発光素子(LED )(Alivisatos et al. )、光電変
換素子(Greenham, N. C., et al., Phys. Rev. B, 54,
17628 (1996) )、超高速ディテクター(Bhargava)、
エレクトロルミネッセンス・ディスプレイおよびパネル
(Bhargava, Alivisatos et al. )、ナノ構造メモリ素
子(Chen et al. )、ナノ粒子配列からなる多色デバイ
ス(Dushkin et al.)等への応用が報告されている。
2. Description of the Related Art In recent years, various devices such as light-emitting devices / mediums and optical processing devices / mediums using nanometer-sized ultrafine particles have been studied. For application of such ultrafine particles to devices, high-density integration obtained by depositing a film or layer of ultrafine particles on a solid substrate is important. The thin film in which the ultrafine particles are integrated at a high density is, specifically, a light emitting device (LED) (Alivisatos et al.) And a photoelectric conversion device (Greenham, NC, et al., Phys. Rev. B, 54,
17628 (1996)), ultrafast detector (Bhargava),
Applications to electroluminescent displays and panels (Bhargava, Alivisatos et al.), Nanostructured memory elements (Chen et al.), Multicolor devices composed of nanoparticle arrays (Dushkin et al.) Have been reported.

【0003】一方、配向性の優れた無機化合物薄膜の形
成方法として、分子線エピタキシー法(MBE)、クラ
スターイオンビーム法、イオンビーム照射真空蒸着法、
化学気相成長法(CVD)、物理気相成長法(PV
D)、液相エピタキシー法(LPE)等が知られてい
る。また有機化合物薄膜の形成方法として、ラングミュ
ア・ブロジェット法(LB法)等が知られている。一般
に量子ドットと呼ばれるものは、前記したMBE法など
の真空装置を用いて高真空中で昇華させた原料物質が固
体基板上で自己組織的にドットを形成する過程を利用し
て作製することができる。
On the other hand, as a method of forming an inorganic compound thin film having excellent orientation, molecular beam epitaxy (MBE), cluster ion beam method, ion beam irradiation vacuum deposition method,
Chemical vapor deposition (CVD), physical vapor deposition (PV
D), liquid phase epitaxy (LPE) and the like are known. As a method for forming an organic compound thin film, a Langmuir-Blodgett method (LB method) and the like are known. What is generally called a quantum dot can be manufactured by utilizing a process in which a raw material sublimated in a high vacuum using a vacuum apparatus such as the MBE method described above forms dots in a self-organizing manner on a solid substrate. it can.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うな方法ではドット間の距離の制御やサイズ分布の制御
は困難であり、所望の構造に制御するためには多大なコ
ストがかかるという問題がある。本発明は、上記実情に
鑑みてなされたものであり、ナノメートルサイズの超微
粒子(以下「ナノ粒子」と称する)をコロイド化学的な
手法によって合成し、合成されたナノ粒子を含有するエ
マルションを固体基板上にインクジェットコーティング
することによって、真空を必要とせずにサイズ分布制御
および粒子ドメインサイズを容易に制御することができ
(例えばエマルション中の界面活性剤の濃度を変える等
の方法がある)、かつ塗布する粒子を無駄にすることな
く効率的にナノ粒子薄膜を製造することのできる方法を
提供することを目的とするものである。
However, in the above-described method, it is difficult to control the distance between dots and the size distribution, and there is a problem that it takes a lot of cost to control the structure to a desired structure. . The present invention has been made in view of the above circumstances, and synthesizes nanometer-sized ultrafine particles (hereinafter, referred to as “nanoparticles”) by a colloid chemistry technique, and provides an emulsion containing the synthesized nanoparticles. By inkjet coating on a solid substrate, size distribution control and particle domain size can be easily controlled without the need for vacuum (for example, there are methods such as changing the concentration of surfactant in the emulsion), It is another object of the present invention to provide a method capable of efficiently producing a nanoparticle thin film without wasting particles to be applied.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の目
的を達成すべく鋭意検討を重ねた結果、ナノ粒子を含有
するエマルションを特定の方法により固体基板上にコー
ティングすることにより、ナノ粒子薄膜の構造を容易に
制御することのできる、さらには上記TDLM機能を発
現することのできるナノ粒子薄膜を作製可能となること
を見出し本発明に到達した。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, by coating an emulsion containing nanoparticles on a solid substrate by a specific method, The present inventors have found that a nanoparticle thin film capable of easily controlling the structure of the particle thin film and exhibiting the TDLM function can be manufactured, and arrived at the present invention.

【0006】即ち本発明の要旨は、フォトルミネッセン
ス強度(以下「発光強度」と称する)を励起光の照射時
間もしくは照射量の関数として増加あるいは増加及び記
憶させることができる機能を有する超微粒子(以下「ナ
ノ粒子」と称する)の集合体からなる薄膜を固体基板上
に形成する方法において、ナノ粒子を連続相が水相であ
り分散相が油相であるエマルションに分散させた分散液
を固体基板上にインクジェットコーティングすることを
特徴とするナノ粒子薄膜の作製方法、に存する。
That is, the gist of the present invention is to provide an ultrafine particle (hereinafter, referred to as an ultrafine particle) having a function of increasing or increasing and memorizing photoluminescence intensity (hereinafter referred to as “emission intensity”) as a function of irradiation time or irradiation amount of excitation light. A method of forming a thin film comprising an aggregate of “nanoparticles” on a solid substrate, comprising: dispersing a nanoparticle in an emulsion in which a continuous phase is an aqueous phase and a dispersed phase is an oil phase. A method for producing a nanoparticle thin film, which is characterized by performing inkjet coating thereon.

【0007】[0007]

【発明の実施の形態】以下、本発明につき更に詳細に説
明する。本発明における上記TDLM機能は、ナノ粒子
の集合体を有する薄膜を用いた場合、該薄膜が室温かつ
空気に触れた状態で、ナノ粒子の薄膜上の励起光が照射
された領域からのフォトルミネッセンス(蛍光)強度が
照射時間(照射量)の関数として初期の強度に対して数
倍まで増加するというものである。このことによりナノ
粒子薄膜上の励起光照射領域と非照射領域のフォトルミ
ネッセンス強度の相違(コントラスト)から任意のイメ
ージ(像)を該ナノ粒子薄膜上に形成できる。このよう
な光メモリ効果は、様々な塗布方法によって固体基板上
に作製されたナノ粒子薄膜中で相互にナノ粒子が近接し
た多粒子系の本質的物性である。ナノ粒子薄膜の厚さ、
固体基板の材料物質、励起光強度や照射方式(連続的ま
たは断続的)などを変えることによってナノ粒子薄膜か
らのフォトルミネッセンス(蛍光)強度を制御すること
が可能である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The TDLM function of the present invention is characterized in that, when a thin film having an aggregate of nanoparticles is used, photoluminescence from a region of the nanoparticle thin film irradiated with excitation light is exposed at room temperature and in contact with air. The (fluorescence) intensity increases several times over the initial intensity as a function of the irradiation time (irradiation dose). Thus, an arbitrary image (image) can be formed on the nanoparticle thin film from the difference (contrast) in the photoluminescence intensity between the excitation light irradiation region and the non-irradiation region on the nanoparticle thin film. Such an optical memory effect is an essential physical property of a multi-particle system in which nanoparticles are close to each other in a nano-particle thin film formed on a solid substrate by various coating methods. The thickness of the nanoparticle thin film,
The photoluminescence (fluorescence) intensity from the nanoparticle thin film can be controlled by changing the material of the solid substrate, the excitation light intensity, the irradiation method (continuous or intermittent), and the like.

【0008】本発明において発光強度を増加させる時間
は、通常3時間以下、好ましくは、1×10-12 秒〜1
時間程度であり、発光強度の増加率は初期の発光強度に
対し、通常、1.1倍以上、好ましくは2〜100倍程
度である。また、発光強度の記憶時間は77K以上の温
度において1秒以上、好ましくは1時間以上である。
In the present invention, the time for increasing the emission intensity is usually 3 hours or less, preferably 1 × 10 −12 seconds to 1 hour.
It is about time, and the rate of increase of the emission intensity is usually 1.1 times or more, preferably about 2 to 100 times the initial emission intensity. The storage time of the light emission intensity is 1 second or more, preferably 1 hour or more at a temperature of 77 K or more.

【0009】本発明において対象となる用いるナノ粒子
としては、通常、粒径が0.5〜100nm、好ましく
は0.5〜50nm、さらに好ましくは1〜10nmの
微粒子が挙げられる。この粒径が大き過ぎるとバルクの
性質となってしまい、小さ過ぎると原子または分子その
ものとなってしまう。ナノ粒子の種類としては、特に限
定されず所定サイズの微粒子であればよいが、例えば、
CuCl等のI−VII 族化合物半導体、CdS、CdS
e等のII−VI族化合物半導体、InAs等のIII −V族
化合物半導体、及びIV族半導体のような半導体結晶、T
iO2 、SiO、SiO2 等の金属酸化物、蛍光体、フ
ラーレン、デンドリマー等の無機化合物、フタロシアニ
ン、アゾ化合物等の有機化合物からなるもの、またはそ
れらの複合材料等が挙げられる。
The nanoparticles to be used in the present invention include fine particles having a particle size of usually 0.5 to 100 nm, preferably 0.5 to 50 nm, and more preferably 1 to 10 nm. If the particle size is too large, it becomes bulky, and if it is too small, it becomes atoms or molecules themselves. The type of the nanoparticles is not particularly limited, and may be fine particles of a predetermined size.
Group I-VII compound semiconductors such as CuCl, CdS, CdS
semiconductor crystals such as II-VI compound semiconductors such as e, III-V compound semiconductors such as InAs, and group IV semiconductors;
Examples include metal oxides such as iO 2 , SiO, and SiO 2 , phosphors, inorganic compounds such as fullerenes and dendrimers, organic compounds such as phthalocyanines and azo compounds, and composite materials thereof.

【0010】なお、本発明の目的を損なわない範囲で、
これらナノ粒子の表面を化学的あるいは物理的に修飾し
ても良く、また界面活性剤や分散安定剤や酸化防止剤な
どの添加剤を加えても良い。このようなナノ粒子はコロ
イド化学的な手法、例えば逆ミセル法(Lianos, P.et a
l., Chem. Phys. Lett., 125, 299 (1986))やホットソ
ープ法(Peng, X. et al., J. Am. Chem. Soc., 119, 7
019 (1997))によって合成することができる。
It should be noted that, within a range not to impair the object of the present invention,
The surface of these nanoparticles may be chemically or physically modified, and additives such as a surfactant, a dispersion stabilizer and an antioxidant may be added. Such nanoparticles can be obtained by colloidal chemistry, such as the reverse micelle method (Lianos, P. et a).
l., Chem. Phys. Lett., 125, 299 (1986)) and the hot soap method (Peng, X. et al., J. Am. Chem. Soc., 119, 7).
019 (1997)).

【0011】本発明は上記ナノ粒子を連続相が水相であ
り分散相が油相であるエマルション(O/Wエマルショ
ン)に分散させた分散液を固体基板上にインクジェット
コーティングすることによりナノ粒子薄膜を作製する。
この方法により、分散液中のナノ粒子の濃度や界面活性
剤の濃度を変化させることによってナノ粒子薄膜の膜厚
を制御することができる。
According to the present invention, a nanoparticle thin film is prepared by inkjet-coating a dispersion of the above-mentioned nanoparticles in an emulsion (O / W emulsion) in which the continuous phase is an aqueous phase and the dispersed phase is an oil phase on a solid substrate. Is prepared.
By this method, the thickness of the nanoparticle thin film can be controlled by changing the concentration of the nanoparticles and the concentration of the surfactant in the dispersion.

【0012】上記水相は水を主体とするが、水に水溶性
有機溶剤を添加して用いてもよい。水溶性有機溶剤とし
てはエチレングリコール、プロピレングリコール、ブチ
レングリコール、ジエチレングリコール、トリエチレン
グリコール、ポリエチレングリコール(#200、#4
00)、グリセリン、前記グリコール類のアルキルエー
テル類、N−メチルピロリドン、1,3−ジメチルイミ
ダゾリノン、チオジグリコール、2−ピロリドン、スル
ホラン、ジメチルスルホキシド、ジエタノールアミン、
トリエタノールアミン、エタノール、イソプロパノール
等が挙げられる。水性分散媒体中の水溶性有機溶剤の使
用量は、通常30重量%以下が好ましく、さらには20
重量%とするのがより好ましい。
The aqueous phase is mainly composed of water, but may be used by adding a water-soluble organic solvent to water. Examples of the water-soluble organic solvent include ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol (# 200, # 4).
00), glycerin, alkyl ethers of the above glycols, N-methylpyrrolidone, 1,3-dimethylimidazolinone, thiodiglycol, 2-pyrrolidone, sulfolane, dimethylsulfoxide, diethanolamine,
Triethanolamine, ethanol, isopropanol and the like. The amount of the water-soluble organic solvent used in the aqueous dispersion medium is usually preferably 30% by weight or less, and more preferably 20% by weight or less.
More preferably, it is set to be% by weight.

【0013】分散液中のナノ粒子の含有量は、所望の膜
(層)構造または粒子配列構造及び膜(層)厚により異
なるが分散液の全重量に対し、通常0.01〜10重量
%の範囲で用いられるが、0.05〜1重量%の範囲と
するのがより好ましい。ナノ粒子の含有量が少な過ぎる
と上記TDLM機能を充分に発現することが出来なくな
る可能性があり、逆に多過ぎるとインクジェットコーテ
ィングの際の吐出安定性が損なわれる。
The content of the nanoparticles in the dispersion varies depending on the desired film (layer) structure or particle arrangement structure and the film (layer) thickness, but is usually 0.01 to 10% by weight based on the total weight of the dispersion. , But more preferably in the range of 0.05 to 1% by weight. If the content of the nanoparticles is too small, the TDLM function may not be able to be sufficiently exhibited, and if too large, the ejection stability during inkjet coating is impaired.

【0014】また本発明方法においてはインクジェット
コーティングに用いる分散液中に、界面活性剤、及びナ
ノ粒子の分散用溶媒を共存させるのが好ましい。前記界
面活性剤としては、公知の界面活性剤、例えばアニオン
系界面活性剤(ドデシルスルホン酸ナトリウム、ドデシ
ルベンゼンスルホン酸ナトリウム、ラウリル酸ナトリウ
ム、ポリオキシエチレンアルキルエーテルサルフェート
のアンモニウム塩など)、ノニオン系界面活性剤(ポリ
オキシエチレンアルキルエーテル、ポリオキシエチレン
アルキルエステル、ポリオキシエチレンソルビタン脂肪
酸エステル、ポリオキシエチレンアルキルフェニルエー
テル、ポリオキシエチレンアルキルアミン、ポリオキシ
エチレンアルキルアミドなど)が挙げられ、これらを単
独または二種以上混合して用いることができる。界面活
性剤の量はインクの全重量に対し、通常、0.1〜30
重量%の範囲で用いられるが、5〜20重量%の範囲と
するのがより好ましい。界面活性剤がこの範囲よりも少
な過ぎると水性分散体中で油水分離が生じ、均一なコー
ティングが出来ない場合がある。逆にこの範囲より多過
ぎると水性分散媒体の粘度が高くなりすぎる傾向があ
る。
In the method of the present invention, it is preferable that a surfactant and a solvent for dispersing the nanoparticles coexist in the dispersion used for ink-jet coating. Examples of the surfactant include known surfactants such as anionic surfactants (sodium dodecyl sulfonate, sodium dodecyl benzene sulfonate, sodium laurate, ammonium salts of polyoxyethylene alkyl ether sulfate, etc.), nonionic surfactants Activators (polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene alkylamine, polyoxyethylene alkylamide, etc.), and these may be used alone or Two or more kinds can be used as a mixture. The amount of the surfactant is usually 0.1 to 30 with respect to the total weight of the ink.
Although it is used in the range of 5% by weight, it is more preferably in the range of 5 to 20% by weight. When the amount of the surfactant is less than this range, oil-water separation occurs in the aqueous dispersion, and a uniform coating may not be obtained. Conversely, if it is more than this range, the viscosity of the aqueous dispersion medium tends to be too high.

【0015】前記ナノ粒子の分散用溶媒としては、通常
トルエン、ヘキサン、ピリジン、クロロホルムなどの液
体であり、揮発性であることが望ましい。分散用溶媒の
量は通常、0.1〜20重量%程度の範囲で用いられる
が、1〜10重量%の範囲がより好ましい。分散用溶媒
がこの範囲よりも少な過ぎると水性媒体中に含有させる
ことのできる超微粒子の量が少なくなる。逆にこの範囲
より多過ぎると水性分散媒体中で油水分離が生じる場合
がある。
The solvent for dispersing the nanoparticles is usually a liquid such as toluene, hexane, pyridine or chloroform, and is preferably volatile. The amount of the dispersing solvent is usually used in the range of about 0.1 to 20% by weight, but is more preferably in the range of 1 to 10% by weight. If the amount of the dispersing solvent is less than this range, the amount of ultrafine particles that can be contained in the aqueous medium becomes small. Conversely, if it is more than this range, oil-water separation may occur in the aqueous dispersion medium.

【0016】さらに、分散液中に有機化合物を溶解させ
ておくこともできる。このような有機化合物としては、
トリオクチルホスフィンオキシド(TOPO)、チオフ
ェノール、フォトクロミック化合物(スピロピラン、フ
ルギド等)、電荷移動型錯体、電子受容性化合物等が挙
げられ、常温で固体であるものが好ましい。この場合、
分散液中の前記有機化合物の量は、ナノ粒子の重量に対
し、1/10000以上、好ましくは1/1000〜1
0倍程度である。
Further, an organic compound can be dissolved in the dispersion. Such organic compounds include:
Trioctyl phosphine oxide (TOPO), thiophenol, photochromic compounds (such as spiropyran and fulgide), charge-transfer complexes, electron-accepting compounds, and the like are preferable, and those that are solid at room temperature are preferable. in this case,
The amount of the organic compound in the dispersion is 1/10000 or more, preferably 1/1000 to 1%, based on the weight of the nanoparticles.
It is about 0 times.

【0017】なお本発明の目的を損なわない範囲で、前
記懸濁液に界面活性剤や分散安定剤や酸化防止剤などの
添加剤、またはポリマー、塗布・乾燥過程でゲル化する
材料などのバインダーを加えても良い。本発明中におい
て用いられる固体基板としては、通常、ポリマー、紙な
どの有機、またはガラス、金属、金属酸化物、シリコ
ン、化合物半導体などの無機の固体物質である。TDL
M機能を有するナノ粒子薄膜の本来の発光を保持する目
的のためには、ナノ粒子の発光波長帯域にまたはその付
近に顕著な発光を示さない材料物質であることが好まし
い。なお本発明の目的を損なわない範囲で、該固体基板
表面を疎水性や親水性に表面改質することもできる。
As long as the object of the present invention is not impaired, additives such as a surfactant, a dispersion stabilizer and an antioxidant, or a polymer or a binder such as a material which gels in a coating and drying process are added to the suspension. May be added. The solid substrate used in the present invention is usually an organic solid such as a polymer or paper, or an inorganic solid material such as a glass, a metal, a metal oxide, silicon, or a compound semiconductor. TDL
For the purpose of maintaining the intrinsic luminescence of the nanoparticle thin film having the M function, it is preferable that the material be a material that does not exhibit significant emission in or near the emission wavelength band of the nanoparticles. Note that the surface of the solid substrate can be modified to be hydrophobic or hydrophilic as long as the object of the present invention is not impaired.

【0018】インクジェットコーティング終了後は、通
常、常法により乾燥を行う。本発明においては、例え
ば、先ず大気圧中において、−20〜200℃、好まし
くは0〜100℃程度で1時間以上、好ましくは3時間
以上風乾し、その後必要に応じて減圧乾燥を行っても良
い。この際の減圧度は1×105 Pa以下であればよい
が、好ましくは1×104Pa以下程度であり、温度は
通常−20〜200℃、好ましくは0〜100℃であ
る。また、減圧時間は1〜24時間程度である。
After completion of the ink-jet coating, drying is usually performed by a conventional method. In the present invention, for example, first, at atmospheric pressure, air drying at -20 to 200 ° C., preferably at about 0 to 100 ° C. for 1 hour or more, preferably 3 hours or more, and then drying under reduced pressure if necessary. good. The degree of pressure reduction at this time may be 1 × 10 5 Pa or less, but is preferably about 1 × 10 4 Pa or less, and the temperature is usually −20 to 200 ° C., preferably 0 to 100 ° C. The decompression time is about 1 to 24 hours.

【0019】上記の方法により得られるナノ粒子薄膜の
厚さは特に限定されるものではないが、通常、ナノ粒子
の直径〜1mm、好ましくはナノ粒子の直径〜100μ
m程度である。また、ナノ粒子薄膜内において、ナノ粒
子はある程度以上の密度で存在するのが好ましい。その
意味からナノ粒子の集合体における個々のナノ粒子間の
平均粒子間距離は、通常粒子直径の10倍以内の範囲で
あり、さらには粒子直径の2倍以内の範囲であることが
好ましい。この平均粒子間距離が大き過ぎるとナノ粒子
は集団的機能を示さなくなる。
Although the thickness of the nanoparticle thin film obtained by the above method is not particularly limited, it is usually from the diameter of the nanoparticle to 1 mm, preferably from the diameter of the nanoparticle to 100 μm.
m. Further, it is preferable that the nanoparticles exist at a certain density or higher in the nanoparticle thin film. In that sense, the average interparticle distance between the individual nanoparticles in the aggregate of nanoparticles is usually within the range of 10 times the particle diameter, and more preferably within the range of 2 times the particle diameter. If this average interparticle distance is too large, the nanoparticles will not exhibit collective function.

【0020】本願発明においては固体基板上にあらかじ
めパターニング(例えば親水性・疎水性表面によるパタ
ーン)を施しておくことによって上述したようなナノ粒
子薄膜の幾何学形状を任意に制御することも可能であ
る。本願発明の作製方法により得られるパターニングさ
れた、もしくはされていない(一様な)ナノ粒子薄膜は
前述のような著しいTDLM効果を示す。適当な波長の
光によってナノ粒子薄膜を(連続的または断続的に)励
起することによって、膜からのフォトルミネッセンス強
度は励起光照射時間の関数として増加していく。特別な
処理を施すことなく膜上の励起光照射領域の増加したフ
ォトルミネッセンス強度は室温で少なくとも数時間保持
される。光や熱的、電気的、化学的、磁気的、機械的な
どの外場を与えることによって増加したフォトルミネッ
センス強度を減少させる(消去する)ことも可能であ
る。さらには膜厚、固体基板の材料物質、励起光強度や
照射方式(連続的または断続的)などを変えることによ
ってナノ粒子膜からのフォトルミネッセンス強度を制御
することが可能である。このようなナノ粒子薄膜は、各
種素子、具体的には、情報記録媒体、ディスプレイ、撮
像素子、画像処理素子、メモリ性複写、積分型光セン
サ、マルチチャネルプロセッサなどに応用することがで
きる。
In the present invention, it is possible to arbitrarily control the geometrical shape of the above-mentioned nanoparticle thin film by patterning (for example, a pattern with a hydrophilic / hydrophobic surface) on the solid substrate in advance. is there. The patterned or non-uniform (uniform) nanoparticle thin film obtained by the manufacturing method of the present invention exhibits a remarkable TDLM effect as described above. By exciting the nanoparticle thin film (continuously or intermittently) with light of a suitable wavelength, the photoluminescence intensity from the film increases as a function of the excitation light irradiation time. The increased photoluminescence intensity of the excitation light irradiation area on the film without any special treatment is maintained at room temperature for at least several hours. It is also possible to reduce (eliminate) the increased photoluminescence intensity by applying light, thermal, electrical, chemical, magnetic or mechanical external fields. Further, the photoluminescence intensity from the nanoparticle film can be controlled by changing the film thickness, the material of the solid substrate, the intensity of the excitation light, the irradiation method (continuous or intermittent), and the like. Such a nanoparticle thin film can be applied to various devices, specifically, an information recording medium, a display, an imaging device, an image processing device, a memory-based copy, an integrating optical sensor, a multi-channel processor, and the like.

【0021】[0021]

【実施例】以下に実施例により本発明の具体的態様を更
に詳細に説明するが、本発明はその要旨を超えない限
り、これらの実施例によって限定されるものではない。
EXAMPLES Specific examples of the present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the present invention.

【0022】実施例1 (記録液の調製)平均粒径3.4nmのCdSeナノ粒
子11.1mgを0.5130gのクロロホルムに分散
させた。この液に1502.5mgのドデシルスルホン
酸ナトリウム及び9530mgのイオン交換水を加え約
5分間振騰し、ナノ粒子含有エマルションを調製した。
Example 1 (Preparation of recording liquid) 11.1 mg of CdSe nanoparticles having an average particle diameter of 3.4 nm were dispersed in 0.5130 g of chloroform. To this solution, 1502.5 mg of sodium dodecyl sulfonate and 9530 mg of ion-exchanged water were added and shaken for about 5 minutes to prepare an emulsion containing nanoparticles.

【0023】[0023]

【表1】 ナノ粒子含有エマルションの組成 使用量(重量部) 平均粒径34ÅのCdSeナノ粒子 0.1 ドデシルスルホン酸ナトリウム 13.0 クロロホルム 4.4 イオン交換水 82.5 合 計 100.0[Table 1] Composition of the nanoparticle-containing emulsion Used amount (parts by weight) CdSe nanoparticles having an average particle diameter of 34 ° 0.1 Sodium dodecylsulfonate 13.0 Chloroform 4.4 Deionized water 82.5 Total 100.0

【0024】(インクジェット法による薄膜の作製)上
記実施例に記された方法で得られたナノ粒子含有エマル
ションを用いて、インクジェットプリンター(ヒューレ
ット・パッカード社製品、商品名DeskWriter
660C)でで三菱化学(株)製インクジェットプリン
ター用OHPフィルム Model Number M
C701に12.6cm×6.1cmのベタ印字でイン
クジェットコーティングを行った。
(Preparation of Thin Film by Inkjet Method) Using an emulsion containing nanoparticles obtained by the method described in the above example, an inkjet printer (a product of Hewlett-Packard Company, trade name DeskWriter)
660C) OHP film for inkjet printer Model Number M manufactured by Mitsubishi Chemical Corporation
Inkjet coating was performed on C701 by solid printing of 12.6 cm × 6.1 cm.

【0025】(フォトルミネッセンスの測定)上記の方
法で作製されたOHPシート上のナノ粒子薄膜を室温、
暗所にて24時間保存し、乾燥させた。発光を強調する
ためにベタ印字されている部分を3cm×3cmに4枚
切り取り、重ね合わせフォトルミネッセンス(以下PL
と略記する)を測定した。重ね合わせたのは、PLピー
クを強調するためである。このPLのプロファイルを図
1に示す。波長555nm付近にCdSe超微粒子によ
る発光が確認され、良好な印字が出来ていることが判
る。波長535nm及び波長600nmのピークは、C
dSeをコロイド化学的手法で合成する際用いられたキ
ャッピング剤であるトリオクチルホスフィンオキサイド
の分子性振動によるものである。
(Measurement of Photoluminescence) The nanoparticle thin film on the OHP sheet prepared by the above method was placed at room temperature,
Stored in the dark for 24 hours and dried. To enhance light emission, four solid printed portions are cut into 3 cm x 3 cm sections, and superimposed photoluminescence (hereinafter referred to as PL)
Abbreviation). The superposition is performed to emphasize the PL peak. FIG. 1 shows the profile of this PL. Light emission by the CdSe ultrafine particles was confirmed at a wavelength around 555 nm, and it was found that good printing was performed. The peaks at the wavelengths of 535 nm and 600 nm are C
This is due to the molecular vibration of trioctylphosphine oxide, which is a capping agent used when synthesizing dSe by a colloid chemical technique.

【0026】(TDLM現象の確認)上記CdSeナノ
粒子を含有した薄膜に波長400nmの励起光を1時間
連続照射した後、再びPLスペクトルを測定したとこ
ろ、PL強度が増加し、TDLM現象が確認された。こ
れを図2に示す。
(Confirmation of TDLM Phenomenon) After continuously irradiating the thin film containing CdSe nanoparticles with excitation light having a wavelength of 400 nm for one hour, the PL spectrum was measured again. As a result, the PL intensity was increased, and the TDLM phenomenon was confirmed. Was. This is shown in FIG.

【0027】[0027]

【発明の効果】本発明の方法によれば、MBE法のよう
な真空を必要とすることなく、粒子ドメインサイズ等が
容易に制御されたナノ粒子薄膜を作製することができ
る。
According to the method of the present invention, a nanoparticle thin film whose particle domain size and the like can be easily controlled can be produced without requiring a vacuum unlike the MBE method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】インクジェット法によりOHPフィルムの上に
形成された半導体ナノ粒子薄膜の発光スペクトル。
FIG. 1 is an emission spectrum of a semiconductor nanoparticle thin film formed on an OHP film by an inkjet method.

【図2】インクジェット法によりOHPフィルム上に形
成された半導体ナノ粒子薄膜にさらに波長400nmの
励起光を1時間照射した後の発光スペクトル。
FIG. 2 is an emission spectrum of a semiconductor nanoparticle thin film formed on an OHP film by an inkjet method, which is further irradiated with excitation light having a wavelength of 400 nm for one hour.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 フォトルミネッセンス強度(以下「発光
強度」と称する)を励起光の照射時間もしくは照射量の
関数として増加あるいは増加及び記憶させることができ
る機能を有する超微粒子(以下「ナノ粒子」と称する)
の集合体からなる薄膜を固体基板上に形成する方法にお
いて、ナノ粒子を連続相が水相であり分散相が油相であ
るエマルションに分散させた分散液を固体基板上にイン
クジェットコーティングすることを特徴とするナノ粒子
薄膜の作製方法。
1. Ultrafine particles (hereinafter, referred to as "nanoparticles") having a function of increasing or increasing and memorizing photoluminescence intensity (hereinafter referred to as "emission intensity") as a function of irradiation time or irradiation amount of excitation light. Name)
In a method of forming a thin film composed of an aggregate of the above on a solid substrate, it is preferable to inkjet-coat a dispersion liquid in which nanoparticles are dispersed in an emulsion in which a continuous phase is an aqueous phase and a dispersed phase is an oil phase. Characteristic method of producing nanoparticle thin film.
【請求項2】 エマルション中のナノ粒子の含有量が
0.01〜10重量%である請求項1に記載のナノ粒子
薄膜の作製方法。
2. The method according to claim 1, wherein the content of the nanoparticles in the emulsion is 0.01 to 10% by weight.
【請求項3】 エマルションが、水、界面活性剤、有機
化合物及びナノ粒子の分散用溶媒を含有するものである
請求項1又は2に記載のナノ粒子薄膜の作製方法。
3. The method for producing a nanoparticle thin film according to claim 1, wherein the emulsion contains water, a surfactant, an organic compound, and a solvent for dispersing the nanoparticles.
【請求項4】 エマルション中の有機化合物の量がナノ
粒子の重量に対し1/10000以上である請求項3に
記載のナノ粒子薄膜の作製方法。
4. The method for producing a nanoparticle thin film according to claim 3, wherein the amount of the organic compound in the emulsion is 1 / 10,000 or more based on the weight of the nanoparticles.
【請求項5】 有機化合物が常温で固体である請求項3
又は4に記載のナノ粒子薄膜の作製方法。
5. The organic compound as a solid at room temperature.
Or the method for producing a nanoparticle thin film according to 4.
【請求項6】 インクジェットコーティングした後、大
気圧中、−20〜200℃の温度で30分以上風乾する
請求項1〜5のいずれかに記載のナノ粒子薄膜の作製方
法。
6. The method for producing a nanoparticle thin film according to claim 1, wherein the ink-jet coating is followed by air drying at a temperature of −20 to 200 ° C. for 30 minutes or more at atmospheric pressure.
【請求項7】 発光強度を増加させる時間が1×10
-12 秒以上である請求項1〜6のいずれかに記載のナノ
粒子薄膜の作製方法。
7. The time for increasing the emission intensity is 1 × 10
The method for producing a nanoparticle thin film according to any one of claims 1 to 6, wherein the time is at least -12 seconds.
【請求項8】 77K以上の温度における発光強度の記
憶時間が1秒以上である請求項1〜7のいずれかに記載
のナノ粒子薄膜の作製方法。
8. The method for producing a nanoparticle thin film according to claim 1, wherein the storage time of the emission intensity at a temperature of 77 K or more is 1 second or more.
【請求項9】 発光強度の増加率が初期の発光強度に対
して1.1倍以上である請求項1〜8のいずれかに記載
のナノ粒子薄膜の作製方法。
9. The method for producing a nanoparticle thin film according to claim 1, wherein the rate of increase in luminescence intensity is 1.1 times or more the initial luminescence intensity.
【請求項10】 ナノ粒子が0.5〜100nmの粒径
を有するものである請求項1〜9のいずれかに記載のナ
ノ粒子薄膜の作製方法。
10. The method for producing a nanoparticle thin film according to claim 1, wherein the nanoparticles have a particle size of 0.5 to 100 nm.
【請求項11】 ナノ粒子が無機化合物である請求項1
〜10のいずれかに記載のナノ粒子薄膜の作製方法。
11. The method according to claim 1, wherein the nanoparticles are inorganic compounds.
11. The method for producing a nanoparticle thin film according to any one of items 10 to 10.
【請求項12】 ナノ粒子が有機化合物である請求項1
〜10のいずれかに記載のナノ粒子薄膜の作製方法。
12. The method according to claim 1, wherein the nanoparticles are organic compounds.
11. The method for producing a nanoparticle thin film according to any one of items 10 to 10.
【請求項13】 ナノ粒子が金属酸化物である請求項1
〜10のいずれかに記載のナノ粒子薄膜の作製方法。
13. The method of claim 1, wherein the nanoparticles are metal oxides.
11. The method for producing a nanoparticle thin film according to any one of items 10 to 10.
【請求項14】 ナノ粒子が半導体である請求項1〜1
0のいずれかに記載のナノ粒子薄膜の作製方法。
14. The method according to claim 1, wherein the nanoparticles are semiconductors.
0. The method for producing a nanoparticle thin film according to any one of the above items.
【請求項15】 請求項1〜14のいずれかに記載の作
製方法により得られる薄膜の膜厚がナノ粒子直径〜1m
mであるナノ粒子薄膜。
15. The thickness of a thin film obtained by the production method according to claim 1 is a nanoparticle diameter of 1 to 1 m.
m is a nanoparticle thin film.
JP29937298A 1998-10-21 1998-10-21 Manufacture of nanoparticle thin film Pending JP2000126681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29937298A JP2000126681A (en) 1998-10-21 1998-10-21 Manufacture of nanoparticle thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29937298A JP2000126681A (en) 1998-10-21 1998-10-21 Manufacture of nanoparticle thin film

Publications (1)

Publication Number Publication Date
JP2000126681A true JP2000126681A (en) 2000-05-09

Family

ID=17871722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29937298A Pending JP2000126681A (en) 1998-10-21 1998-10-21 Manufacture of nanoparticle thin film

Country Status (1)

Country Link
JP (1) JP2000126681A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741484A1 (en) * 2005-07-05 2007-01-10 Samsung Electronics Co., Ltd. Nanoparticle thin film, method for dispersing nanoparticles and method for producing nanoparticle thin film using the same
WO2008029633A1 (en) * 2006-09-07 2008-03-13 Idemitsu Kosan Co., Ltd. Color conversion substrate and method for producing the same
US7380690B2 (en) 2003-01-17 2008-06-03 Ricoh Company, Ltd. Solution jet type fabrication apparatus, method, solution containing fine particles, wiring pattern substrate, device substrate
US7738261B2 (en) 2006-11-21 2010-06-15 Ricoh Company, Ltd. Functional device fabrication apparatus and functional device fabricated with the same
WO2016024828A1 (en) * 2014-08-14 2016-02-18 주식회사 엘지화학 Light-emitting film
KR20160020909A (en) * 2014-08-14 2016-02-24 주식회사 엘지화학 Light-emitting film
KR20160021052A (en) * 2014-08-14 2016-02-24 주식회사 엘지화학 Light-emitting film
KR20160021051A (en) * 2014-08-14 2016-02-24 주식회사 엘지화학 Light-emitting film
KR20160064012A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Barrier film
KR20170035688A (en) * 2015-09-23 2017-03-31 주식회사 엘지화학 A wavelength conversion particle complex and Optical film comprising it
KR20170075477A (en) * 2015-12-23 2017-07-03 주식회사 엘지화학 Light emitting film
KR20170075478A (en) * 2015-12-23 2017-07-03 주식회사 엘지화학 A wavelength conversion particle complex and Optical film comprising it

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380690B2 (en) 2003-01-17 2008-06-03 Ricoh Company, Ltd. Solution jet type fabrication apparatus, method, solution containing fine particles, wiring pattern substrate, device substrate
EP1741484A1 (en) * 2005-07-05 2007-01-10 Samsung Electronics Co., Ltd. Nanoparticle thin film, method for dispersing nanoparticles and method for producing nanoparticle thin film using the same
WO2008029633A1 (en) * 2006-09-07 2008-03-13 Idemitsu Kosan Co., Ltd. Color conversion substrate and method for producing the same
US7738261B2 (en) 2006-11-21 2010-06-15 Ricoh Company, Ltd. Functional device fabrication apparatus and functional device fabricated with the same
KR101959487B1 (en) * 2014-08-14 2019-03-18 주식회사 엘지화학 Light-emitting film
WO2016024828A1 (en) * 2014-08-14 2016-02-18 주식회사 엘지화학 Light-emitting film
KR20160021052A (en) * 2014-08-14 2016-02-24 주식회사 엘지화학 Light-emitting film
KR20160021051A (en) * 2014-08-14 2016-02-24 주식회사 엘지화학 Light-emitting film
KR101719033B1 (en) 2014-08-14 2017-03-22 주식회사 엘지화학 Light-emitting film
US10359175B2 (en) 2014-08-14 2019-07-23 Lg Chem, Ltd. Light-emitting film
CN106663726A (en) * 2014-08-14 2017-05-10 株式会社Lg化学 Light-emitting film
KR20160020909A (en) * 2014-08-14 2016-02-24 주식회사 엘지화학 Light-emitting film
KR101959486B1 (en) * 2014-08-14 2019-03-18 주식회사 엘지화학 Light-emitting film
KR20160064012A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Barrier film
KR101874292B1 (en) * 2014-11-27 2018-08-02 주식회사 엘지화학 Barrier film
KR101999979B1 (en) 2015-09-23 2019-07-15 주식회사 엘지화학 A wavelength conversion particle complex and Optical film comprising it
KR20170035688A (en) * 2015-09-23 2017-03-31 주식회사 엘지화학 A wavelength conversion particle complex and Optical film comprising it
KR20170075478A (en) * 2015-12-23 2017-07-03 주식회사 엘지화학 A wavelength conversion particle complex and Optical film comprising it
KR20170075477A (en) * 2015-12-23 2017-07-03 주식회사 엘지화학 Light emitting film
KR102034463B1 (en) 2015-12-23 2019-10-21 주식회사 엘지화학 A wavelength conversion particle complex and Optical film comprising it
KR102078399B1 (en) * 2015-12-23 2020-02-17 주식회사 엘지화학 Light emitting film

Similar Documents

Publication Publication Date Title
US10297713B2 (en) Light-emitting devices and displays with improved performance
Eychmüller et al. Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals
JP4931348B2 (en) Semiconductor nanocrystal heterostructure
Green Solution routes to III–V semiconductor quantum dots
US6426513B1 (en) Water-soluble thiol-capped nanocrystals
JP3847677B2 (en) Semiconductor nanoparticle, method for producing the same, and semiconductor nanoparticle fluorescent reagent
US20080248307A1 (en) Stably passivated group iv semiconductor nanoparticles and methods and compositions thereof
US20090208753A1 (en) Methods and articles including nanomaterial
JP2000126681A (en) Manufacture of nanoparticle thin film
US20150287877A1 (en) Semiconductor nanocrystals and compositions and devices including same
KR20190022689A (en) Methods for buffered coating of nanostructures
US20110278536A1 (en) Light emitting material
JP2005503666A (en) Semiconductor nanocrystal composite
WO2009014590A2 (en) Compositions and methods including depositing nanomaterial
Kovtyukhova et al. Ultrathin nanoparticle ZnS and ZnS: Mn films: surface sol–gel synthesis, morphology, photophysical properties
JP2017531199A (en) Fluorescent seed nanorod pattern
Hagura et al. Highly luminescent silica-coated ZnO nanoparticles dispersed in an aqueous medium
KR100858765B1 (en) A multi-color tuning method of semiconductor quantum-dots from single source semiconductors by oxidation in the solution
Sun et al. Optical properties of ZnS: Cu colloid prepared with sulfurous ligands
Yuan et al. Time-resolved photoluminescence spectroscopy evaluation of CdTe and CdTe/CdS quantum dots
Wang et al. Luminescent CdSe and CdSe/CdS core-shell nanocrystals synthesized via a combination of solvothermal and two-phase thermal routes
EP2708492B1 (en) Mesoporous layer comprising J-aggregates and production method
CN114599746A (en) Nanostructured ink compositions for ink jet printing
Wageh et al. Effect of aging on CdSe nanocrystals
Yang et al. Highly luminescent SiO2 beads with multiple QDs: Preparation conditions and size distributions