JP2000124435A - Solid image pickup element and manufacture thereof - Google Patents

Solid image pickup element and manufacture thereof

Info

Publication number
JP2000124435A
JP2000124435A JP10297003A JP29700398A JP2000124435A JP 2000124435 A JP2000124435 A JP 2000124435A JP 10297003 A JP10297003 A JP 10297003A JP 29700398 A JP29700398 A JP 29700398A JP 2000124435 A JP2000124435 A JP 2000124435A
Authority
JP
Japan
Prior art keywords
region
light
semiconductor substrate
receiving pixels
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10297003A
Other languages
Japanese (ja)
Other versions
JP2000124435A5 (en
Inventor
Minoru Hamada
稔 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10297003A priority Critical patent/JP2000124435A/en
Publication of JP2000124435A publication Critical patent/JP2000124435A/en
Publication of JP2000124435A5 publication Critical patent/JP2000124435A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve light receiving efficiency of a highly integrated CCD solid image pickup element. SOLUTION: A protective film 10 is formed on the N-type silicon substrate 1 where an isolated region 3 and an N-type diffusion layer 4, which becomes a channel region, are formed. The protective film 10 is extended along the isolated region 3, it contains the first region 11 having the cross section of the width widened on the side of the silicon substrate 1, the second region 12 which flatly forms the surface by covering the first region 11, and the second region having the refractive index larger than the first region, is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、受光効率を改善し
た固体撮像素子及びその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a solid-state imaging device having improved light receiving efficiency and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図4は、フレーム転送方式の固体撮像素
子の構成を示す概略図である。
2. Description of the Related Art FIG. 4 is a schematic diagram showing a configuration of a frame transfer type solid-state imaging device.

【0003】フレーム転送方式のCCD固体撮像素子
は、撮像部i、蓄積部s、水平転送部h及び出力部dを
有する。撮像部iは、垂直方向に延在し、互いに平行に
配列された複数のシフトレジスタからなり、各シフトレ
ジスタの各ビットが受光画素を構成する。蓄積部sは、
撮像部iのシフトレジスタに連続する遮光された複数の
シフトレジスタからなり、各シフトレジスタの各ビット
が蓄積画素を構成する。水平転送部hは、水平方向に延
在する単一のシフトレジスタからなり、各ビットに蓄積
部sのシフトレジスタの出力が接続される。出力部d
は、水平転送部hから転送出力される電荷を一時的に蓄
積する容量及びその容量に蓄積された電荷を排出するリ
セットトランジスタを含む。これにより、撮像部iの各
受光画素に蓄積される情報電荷は、各画素毎に独立して
蓄積部sの蓄積画素へ転送された後、1行ずつ蓄積部s
から水平転送部hへ転送され、さらに、1画素単位で水
平転送部hから出力部dへ転送される。そして、出力部
dで1画素毎の電荷量が電圧値に変換され、その電圧値
の変化がCCD出力として外部回路へ供給される。
The frame transfer type CCD solid-state image pickup device has an image pickup section i, a storage section s, a horizontal transfer section h, and an output section d. The imaging unit i includes a plurality of shift registers extending in the vertical direction and arranged in parallel with each other, and each bit of each shift register forms a light receiving pixel. The accumulation unit s
It consists of a plurality of light-shielded shift registers that are continuous with the shift register of the imaging unit i, and each bit of each shift register constitutes a storage pixel. The horizontal transfer unit h is composed of a single shift register extending in the horizontal direction, and the output of the shift register of the storage unit s is connected to each bit. Output section d
Includes a capacitor that temporarily stores the charge transferred and output from the horizontal transfer unit h and a reset transistor that discharges the charge stored in the capacitor. As a result, the information charges accumulated in each light receiving pixel of the imaging unit i are independently transferred to the accumulation pixels of the accumulation unit s for each pixel, and thereafter, stored in the accumulation unit s row by row.
From the horizontal transfer unit h to the output unit d in pixel units. The output unit d converts the amount of charge for each pixel into a voltage value, and the change in the voltage value is supplied to an external circuit as a CCD output.

【0004】図5は、撮像部iの構造を示す平面図であ
り、図6は、図5のX−X線の断面図である。これらの
図においては、転送電極が単層で、3相駆動される場合
を示している。
FIG. 5 is a plan view showing the structure of the image pickup section i, and FIG. 6 is a sectional view taken along line XX of FIG. These figures show the case where the transfer electrode is a single layer and is driven in three phases.

【0005】N型のシリコン基板1の一主面に、素子領
域となるP型の拡散層2が形成される。このP型拡散層
2の表面領域に、P型の不純物が高濃度に注入された分
離領域3が垂直方向に延在して互いに平行に配置され
る。これらの分離領域3の間には、N型の拡散層4が形
成され、情報電荷の転送経路となるチャネル領域が形成
される。N型拡散層4上には、薄い酸化シリコン膜から
なるゲート絶縁膜5を介して、多結晶シリコンからなる
複数の転送電極6が、それぞれ一定の距離を隔てて平行
に配置される。これらの転送電極6には、例えば、3相
の転送クロックφ1〜φ3が印加され、チャネル領域のポ
テンシャルの状態が制御される。そして、転送電極6上
には、ゲート絶縁膜5と同一の層間絶縁膜7が積層され
る。
On one main surface of an N-type silicon substrate 1, a P-type diffusion layer 2 serving as an element region is formed. In the surface region of this P-type diffusion layer 2, isolation regions 3 into which P-type impurities are implanted at a high concentration extend in the vertical direction and are arranged in parallel with each other. An N-type diffusion layer 4 is formed between these isolation regions 3 to form a channel region serving as a transfer path for information charges. A plurality of transfer electrodes 6 made of polycrystalline silicon are arranged in parallel on the N-type diffusion layer 4 with a certain distance therebetween via a gate insulating film 5 made of a thin silicon oxide film. For example, three-phase transfer clocks φ1 to φ3 are applied to these transfer electrodes 6, and the potential state of the channel region is controlled. Then, on the transfer electrode 6, the same interlayer insulating film 7 as the gate insulating film 5 is laminated.

【0006】層間絶縁膜7上には、断面がドーム形状を
成す半円筒形のマイクロレンズ8がチャネル領域に沿っ
て配置される。このマイクロレンズ8は、例えば、BP
SG(Boro-Phospho Silicate Glass)等で形成され、分
離領域3上やチャネル領域の端部に入射する光をチャネ
ル領域の中央部側へ集光する。
On the interlayer insulating film 7, a semi-cylindrical microlens 8 having a dome-shaped cross section is arranged along the channel region. The micro lens 8 is, for example, a BP
It is formed of SG (Boro-Phospho Silicate Glass) or the like, and condenses light incident on the separation region 3 or the end of the channel region toward the center of the channel region.

【0007】マイクロレンズ8が形成された固体撮像素
子においては、受光面に照射される光が受光感度の高い
領域に集められて光電変換が行われるため、受光感度を
向上できる。
In the solid-state image pickup device having the microlenses 8, the light irradiated on the light receiving surface is collected in a region having high light receiving sensitivity and photoelectric conversion is performed, so that the light receiving sensitivity can be improved.

【0008】[0008]

【発明が解決しようとする課題】上述の固体撮像素子の
場合、高解像度化によって受光画素の配列ピッチが狭く
なると、複数のマイクロレンズ8を独立して形成しにく
くなる。即ち、分離領域3の幅が狭くなると、チャネル
領域に沿って半円筒形に形成されるマイクロレンズ8が
隣どうし融合し、所望の形状を得ることができなくなる
おそれがある。分離領域3上でマイクロレンズ8を分離
できなくなると、分離領域3上に照射される光をチャネ
ル領域へ正しく導くことができなくなる。マイクロレン
ズ8を十分な間隔を置いて形成するようにすれば、マイ
クロレンズ8の融合自体は防止できるが、分離領域3上
にマイクロレンズ8を配置できなくなるため、分離領域
3上に照射される光は、チャネル領域へ導かれることな
く、そのまま分離領域3へ入射することになる。このよ
うな問題は、受光画素の間に垂直転送レジスタが配置さ
れるインターライン方式やフレームインターライン方式
においても、高解像度化が進めば、起こり得る。
In the case of the solid-state imaging device described above, if the arrangement pitch of the light receiving pixels is narrowed due to the high resolution, it is difficult to form a plurality of micro lenses 8 independently. That is, when the width of the separation region 3 becomes narrow, the microlenses 8 formed in a semi-cylindrical shape along the channel region may fuse together next to each other, making it impossible to obtain a desired shape. If the microlenses 8 cannot be separated on the separation region 3, the light irradiated on the separation region 3 cannot be correctly guided to the channel region. If the microlenses 8 are formed at a sufficient interval, the fusion of the microlenses 8 itself can be prevented. However, since the microlenses 8 cannot be arranged on the separation region 3, irradiation is performed on the separation region 3. The light enters the separation region 3 without being guided to the channel region. Such a problem can occur in an interline system or a frame interline system in which a vertical transfer register is arranged between light receiving pixels as the resolution increases.

【0009】そこで本発明は、受光画素の配列ピッチが
狭くなったときでも、分離領域上に照射される光を有効
に利用できるようにすることを目的とする。
Accordingly, it is an object of the present invention to make it possible to effectively use the light irradiated on the separation region even when the arrangement pitch of the light receiving pixels becomes narrow.

【0010】[0010]

【課題を解決するための手段】本発明の固体撮像素子
は、半導体基板と、上記半導体基板の一主面に互いに一
定の間隙を隔てて配置される複数の受光画素と、上記複
数の受光画素を覆って上記半導体基板の一主面上に積層
される透光性の保護膜と、を備え、上記保護膜は、少な
くとも上記複数の受光画素の間隙部分を覆って上記複数
の受光画素の配列に沿って延在し、上記半導体基板側で
幅が広くなる断面形状を有する第1の領域と、上記第1
の領域を覆って表面を平坦に形成し、上記第1の領域に
比べて大きい屈折率を有する第2の領域と、を含むこと
を特徴としている。
According to the present invention, there is provided a solid-state imaging device comprising: a semiconductor substrate; a plurality of light receiving pixels arranged on a principal surface of the semiconductor substrate with a predetermined gap therebetween; A light-transmitting protective film that is stacked on one main surface of the semiconductor substrate so as to cover the semiconductor substrate, wherein the protective film covers at least a gap between the plurality of light-receiving pixels and the arrangement of the plurality of light-receiving pixels. A first region extending along the first region and having a cross-sectional shape that is wider on the semiconductor substrate side;
And a second region having a higher refractive index than that of the first region.

【0011】そして、本発明の製造方法は、半導体基板
の一主面に複数の受光画素を互いに一定の間隙を隔てて
配列形成する工程と、上記半導体基板上に、第1の透光
性材料を所定の膜厚に積層する工程と、所定の膜厚に積
層された上記第1の透光性材料上に上記複数の受光画素
の間隙部分を覆って上記複数の受光画素の配列に沿って
延在するマスクパターンを形成する工程と、上記第1の
透光性材料を上記マスクパターンに従って等方的にエッ
チングし、上記半導体基板側で幅が広くなる断面形状に
形成する工程と、上記半導体基板上に残された上記第1
の透光性材料を覆い、上記第1の透光性材料よりも屈折
率の高い第2の透光性樹脂を積層する工程と、を有する
ことを特徴としている。
The manufacturing method according to the present invention includes a step of forming a plurality of light receiving pixels on one main surface of the semiconductor substrate with a predetermined gap therebetween, and a step of forming a first light-transmitting material on the semiconductor substrate. Laminating a plurality of light-receiving pixels on the first light-transmitting material laminated on the predetermined film thickness along the arrangement of the plurality of light-receiving pixels. A step of forming an extending mask pattern, a step of isotropically etching the first translucent material in accordance with the mask pattern, and forming a cross-sectional shape having a wider width on the semiconductor substrate side; The above-mentioned first type remaining on the substrate
And laminating a second light-transmitting resin having a higher refractive index than the first light-transmitting material.

【0012】本発明によれば、複数の受光画素の間隙に
形成される第1の領域がプリズムと同等の働きをし、こ
の間隙部分に入射される光が両側のチャネル領域へ分散
されるため、チャネル領域に入射する光の量が増加す
る。このとき、受光画素の幅が受光画素の間隙部分の幅
よりも広く形成されるため、間隙部分を覆って形成する
レンズは、受光画素の配列ピッチが狭くなった場合でも
隣どうしが融合しにくい。
According to the present invention, the first region formed in the gap between the plurality of light receiving pixels has the same function as the prism, and the light incident on the gap is dispersed to the channel regions on both sides. As a result, the amount of light incident on the channel region increases. At this time, since the width of the light receiving pixel is formed to be wider than the width of the gap between the light receiving pixels, a lens formed to cover the gap is less likely to be adjacent to each other even when the arrangement pitch of the light receiving pixels is narrow. .

【0013】[0013]

【発明の実施の形態】図1は、本発明の固体撮像素子の
第1の実施形態を示す断面図であり、図6と同一部分を
示している。
FIG. 1 is a sectional view showing a first embodiment of a solid-state imaging device according to the present invention, and shows the same portions as FIG.

【0014】N型のシリコン基板1、P型拡散層2、分
離領域3、N型拡散層4、ゲート絶縁膜5、転送電極6
及び層間絶縁膜7は、図6に示す固体撮像素子と同一の
ものである。本発明の特徴とするところは、層間絶縁膜
7上にマイクロレンズと同等に機能する第1の領域11
及び第2の領域12を含む透光性の保護膜10を積層す
ることにある。
N-type silicon substrate 1, P-type diffusion layer 2, isolation region 3, N-type diffusion layer 4, gate insulating film 5, transfer electrode 6
The interlayer insulating film 7 is the same as the solid-state imaging device shown in FIG. The feature of the present invention resides in that the first region 11 functioning equivalently to the micro lens is formed on the interlayer insulating film 7.
And a translucent protective film 10 including the second region 12.

【0015】保護膜10内の第1の領域11は、シリコ
ン基板1側で幅が広くなる断面形状を有し、分離領域3
上で隣り合うチャネル領域の間に跨るようにして配置さ
れ、かつ、分離領域3に沿って延在される。この第1の
領域11は、例えば、SOG(Spin On Glass)により形
成される。そして、保護膜10の第2の領域12は、第
1の領域11の全体を覆い、表面を平坦にして形成され
る。この第2の領域12は、例えば、可視光に対して透
明なアクリル樹脂により形成される。通常、SOGの屈
折率は、1.4〜1.5程度であるのに対して、アクリ
ル樹脂の屈折率は、1.6以上であるため、第1の領域
11は、保護膜10内でプリズムとして機能する。
The first region 11 in the protective film 10 has a cross-sectional shape that becomes wider on the silicon substrate 1 side, and
It is arranged so as to straddle between the channel regions adjacent to each other, and extends along the isolation region 3. The first region 11 is formed by, for example, SOG (Spin On Glass). Then, the second region 12 of the protective film 10 covers the entire first region 11 and is formed with a flat surface. The second region 12 is formed of, for example, an acrylic resin transparent to visible light. Usually, the refractive index of SOG is about 1.4 to 1.5, while the refractive index of acrylic resin is 1.6 or more. Functions as a prism.

【0016】また、第1の領域11については、第2の
領域12との界面が、シリコン基板11側に凹んだ曲面
を成しており、分離領域3の中央部分に入射される光を
より大きく屈折させるように構成される。即ち、図2に
示すように、第1の領域11の表面(第2の領域12と
の界面)とシリコン基板11の表面とのなす角度が、分
離領域3の中央部に近づくほど大きくなるように形成さ
れており、シリコン基板11に対して垂直に入射される
光は、分離領域3の中央部ほど大きく屈折される。従っ
て、分離領域3上に入射される光は、図1に示すよう
に、第1の領域11と第2の領域12との界面でチャネ
ル領域側へ効率よく屈折され、受光画素として働くN型
拡散層4内へ導かれる。
In the first region 11, the interface with the second region 12 forms a curved surface that is concave toward the silicon substrate 11, so that light incident on the central portion of the separation region 3 can be reduced. It is configured to greatly refract. That is, as shown in FIG. 2, the angle formed between the surface of the first region 11 (the interface with the second region 12) and the surface of the silicon substrate 11 becomes larger as approaching the center of the separation region 3. The light vertically incident on the silicon substrate 11 is refracted more toward the center of the separation region 3. Therefore, the light incident on the separation region 3 is efficiently refracted toward the channel region at the interface between the first region 11 and the second region 12 as shown in FIG. It is guided into the diffusion layer 4.

【0017】このような固体撮像素子は、保護膜10の
表面が平坦に形成されるため、如何なる種類の透光性樹
脂を用いてパッケージを形成するようにしても、パッケ
ージと保護膜10との界面で光が不所望の方向に屈折さ
れることはなくなる。また、保護膜10内で第2の領域
12に覆われた第1の領域11がプリズムとして機能す
るため、レンズの機能がパッケージの材質に影響される
ことはない。
In such a solid-state imaging device, the surface of the protective film 10 is formed flat, so that the package and the protective film 10 can be formed using any kind of translucent resin. Light is no longer refracted at the interface in unwanted directions. Further, since the first region 11 covered by the second region 12 in the protective film 10 functions as a prism, the function of the lens is not affected by the material of the package.

【0018】図3(a)〜(d)は、本発明の固体撮像
素子の製造方法を説明する工程別の断面図である。この
図においては、図1と同一部分を示す。 (a):第1工程 N型のシリコン基板1の表面領域に、ボロン等のP型の
不純物を拡散し、素子領域となるP型拡散層2を形成す
る。このP型拡散層2内に、さらにP型の不純物を選択
的に注入して複数の分離領域3を形成し、これら分離領
域3の間に、リン等のN型の不純物を注入してチャネル
領域となるP型拡散層4を形成する。続いて、P型拡散
層4が形成されたシリコン基板11の表面を熱酸化し、
酸化シリコンからなるゲート絶縁膜5を形成する。そし
て、ゲート絶縁膜5上に、多結晶シリコンからなる複数
の転送電極6を形成し、これら転送電極6を覆って層間
絶縁膜7を形成する。
FIGS. 3A to 3D are cross-sectional views for explaining steps of a method for manufacturing a solid-state imaging device according to the present invention. In this figure, the same parts as those in FIG. 1 are shown. (A): First Step A P-type impurity such as boron is diffused in a surface region of an N-type silicon substrate 1 to form a P-type diffusion layer 2 serving as an element region. A plurality of isolation regions 3 are formed by selectively implanting a P-type impurity into the P-type diffusion layer 2. An N-type impurity such as phosphorus is implanted between the isolation regions 3 to form a channel. A P-type diffusion layer 4 serving as a region is formed. Subsequently, the surface of the silicon substrate 11 on which the P-type diffusion layer 4 is formed is thermally oxidized,
A gate insulating film 5 made of silicon oxide is formed. Then, a plurality of transfer electrodes 6 made of polycrystalline silicon are formed on the gate insulating film 5, and an interlayer insulating film 7 is formed to cover the transfer electrodes 6.

【0019】この第1工程は、図6に示す従来の固体撮
像素子を製造する周知の製造工程と同一である。
This first process is the same as the well-known manufacturing process for manufacturing the conventional solid-state imaging device shown in FIG.

【0020】(b):第2工程 層間絶縁膜7上に、SOGを塗布し、そのSOGを熱処
理して、第1の透光性材料層15を形成する。この透光
性材料層15は、後に第1の領域11となるものであ
り、形成すべき第1の領域11の最大膜厚よりも厚く形
成する。
(B): Second Step On the interlayer insulating film 7, SOG is applied, and the SOG is heat-treated to form a first light-transmitting material layer 15. This translucent material layer 15 is to be the first region 11 later, and is formed to be thicker than the maximum thickness of the first region 11 to be formed.

【0021】(c):第3工程 透光性材料層15上に、レジスト層16を形成し、この
レジスト層16を分離領域3に沿ってパターニングする
ことで、分離領域3に沿って延在するマスクパターン1
7を形成する。そして、マスクパターン17をマスクと
して、透光性材料層15に等方性エッチングを施し、マ
スクパターン17の間隙部分で層間絶縁膜7の表面を露
出させる。この等方性エッチングにより、分離領域3上
には、分離領域3に沿って層間絶縁膜7上に延在し、シ
リコン基板11側で幅が広くなる断面形状を有し、か
つ、表面がシリコン基板11側に凹んだ曲面を成す第1
の領域11を形成できる。
(C): Third Step A resist layer 16 is formed on the translucent material layer 15, and the resist layer 16 is patterned along the separation region 3 to extend along the separation region 3. Mask pattern 1
7 is formed. Then, using the mask pattern 17 as a mask, the translucent material layer 15 is subjected to isotropic etching to expose the surface of the interlayer insulating film 7 in the gap between the mask patterns 17. Due to this isotropic etching, the isolation region 3 has a cross-sectional shape that extends on the interlayer insulating film 7 along the isolation region 3 and becomes wider on the silicon substrate 11 side, and the surface is First curved surface concave toward the substrate 11 side
Region 11 can be formed.

【0022】(d):第4工程 第1の領域11を形成したシリコン基板1上に、アクリ
ル樹脂を塗布し、第1の領域11を完全に覆って第2の
領域12を形成する。これにより、シリコン基板11の
表面を保護し、表面を平坦にする保護膜10が形成され
る。
(D): Fourth step An acrylic resin is applied on the silicon substrate 1 on which the first region 11 has been formed, and a second region 12 is formed to completely cover the first region 11. Thus, a protective film 10 that protects the surface of the silicon substrate 11 and flattens the surface is formed.

【0023】以上の製造方法によれば、図1に示す保護
膜10を有する固体撮像素子を得ることができる。
According to the above-described manufacturing method, a solid-state imaging device having the protective film 10 shown in FIG. 1 can be obtained.

【0024】尚、本実施形態においては、フレーム転送
方式の固体撮像素子への適用を例示したが、受光画素の
間に垂直転送レジスタが配置されるインターライン転送
方式あるいはフレームインターライン転送方式の固体撮
像素子への適用、さらには、MOS型固体撮像素子への
適用も可能である。これらの固体撮像素子の場合、分離
領域が垂直及び水平の両方向に延在しており、保護膜1
0の第1の領域11は、その分離領域に沿って網目状に
形成され、それぞれ、プリズムと同等に機能するように
構成される。また、分離領域に沿って垂直転送レジスタ
等が形成される場合、保護膜10の第1の領域11は、
分離領域と共にその垂直転送レジスタを覆うようにして
形成される。
In this embodiment, the application of the frame transfer method to the solid-state imaging device has been exemplified. However, the solid-state image pickup device of the interline transfer method or the frame interline transfer method in which a vertical transfer register is arranged between light receiving pixels. Application to an imaging device, and further application to a MOS type solid-state imaging device are also possible. In the case of these solid-state imaging devices, the separation region extends in both the vertical and horizontal directions,
The first regions 11 of 0 are formed in a mesh along the separation region, and are each configured to function similarly to a prism. When a vertical transfer register or the like is formed along the isolation region, the first region 11 of the protection film 10
It is formed so as to cover the vertical transfer register together with the isolation region.

【0025】[0025]

【発明の効果】本発明によれば、分離領域(光電変換が
行われない領域)に照射される光が、隣接する光電変換
領域側へ向かうように保護膜内で屈折されるため、素子
の受光面に入射される光のほとんどが光電変換に利用さ
れるようになる。特に、分離領域の中心部分で光が大き
く屈折されるため、分離領域に照射される光は、効率よ
く光電変換領域側へ導かれる。
According to the present invention, the light irradiated to the separation region (the region where photoelectric conversion is not performed) is refracted in the protective film so as to go to the adjacent photoelectric conversion region side. Most of the light incident on the light receiving surface is used for photoelectric conversion. In particular, since the light is largely refracted at the center of the separation region, the light applied to the separation region is efficiently guided to the photoelectric conversion region side.

【0026】また、保護膜の表面が平坦に形成されるた
め、その保護膜に接するようにして透光性樹脂のパッケ
ージを形成しても、保護膜と透光性樹脂との界面で不要
な屈折が生じることがなくなる。同時に、レンズとして
機能する保護膜の第1の領域については、第2の領域で
常に覆われているため、保護膜上に如何なる材料が積層
されたとしも、その機能を失うことはない。
Further, since the surface of the protective film is formed flat, even if a package made of a translucent resin is formed so as to be in contact with the protective film, unnecessary portions are formed at the interface between the protective film and the translucent resin. Refraction does not occur. At the same time, the first region of the protective film functioning as a lens is always covered by the second region, so that no matter what material is laminated on the protective film, the function is not lost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体撮像素子の構造を示す断面図であ
る。
FIG. 1 is a cross-sectional view illustrating a structure of a solid-state imaging device of the present invention.

【図2】本発明の固体撮像素子内の光の屈折の様子を示
す断面図である。
FIG. 2 is a cross-sectional view showing a state of refraction of light in the solid-state imaging device of the present invention.

【図3】本発明の固体撮像素子の製造方法を説明する工
程別の断面図である。
FIG. 3 is a cross-sectional view for explaining a method of manufacturing a solid-state imaging device according to the present invention in each step.

【図4】フレーム転送方式の固体撮像素子の構成を示す
概略図である。
FIG. 4 is a schematic diagram illustrating a configuration of a frame transfer type solid-state imaging device.

【図5】従来の固体撮像素子の撮像部の構造を示す平面
図である。
FIG. 5 is a plan view illustrating a structure of an imaging unit of a conventional solid-state imaging device.

【図6】図5のX−X線の断面構造を示す断面図であ
る。
FIG. 6 is a sectional view showing a sectional structure taken along line XX of FIG. 5;

【符号の説明】[Explanation of symbols]

i 撮像部 s 蓄積部 h 水平転送部 d 出力部 1 シリコン基板 2 P型拡散層 3 分離領域 4 N型拡散層 5 ゲート絶縁膜 6 転送電極 7 層間絶縁膜 10 保護膜 11 第1の領域 12 第2の領域 15 透光性材料層 16 レジスト層 17 マスクパターン i Imaging unit s Storage unit h Horizontal transfer unit d Output unit 1 Silicon substrate 2 P-type diffusion layer 3 Isolation region 4 N-type diffusion layer 5 Gate insulating film 6 Transfer electrode 7 Interlayer insulating film 10 Protective film 11 First region 12 First 2 region 15 translucent material layer 16 resist layer 17 mask pattern

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板と、上記半導体基板の一主面
に互いに一定の間隙を隔てて配置される複数の受光画素
と、上記複数の受光画素を覆って上記半導体基板の一主
面上に積層される透光性の保護膜と、を備え、上記保護
膜は、少なくとも上記複数の受光画素の間隙部分を覆っ
て上記複数の受光画素の配列に沿って延在し、上記半導
体基板側で幅が広くなる断面形状を有する第1の領域
と、上記第1の領域を覆って表面を平坦に形成し、上記
第1の領域に比べて大きい屈折率を有する第2の領域
と、を含むことを特徴とする固体撮像素子。
A semiconductor substrate; a plurality of light receiving pixels arranged on the one main surface of the semiconductor substrate with a constant gap therebetween; and a plurality of light receiving pixels on the one main surface of the semiconductor substrate covering the plurality of light receiving pixels. A light-transmitting protective film to be laminated, wherein the protective film extends along the arrangement of the plurality of light-receiving pixels, covering at least a gap between the plurality of light-receiving pixels, and is provided on the semiconductor substrate side. A first region having a cross-sectional shape having a larger width; and a second region having a larger refractive index than the first region, the second region having a flat surface covering the first region. A solid-state imaging device characterized by the above-mentioned.
【請求項2】 上記保護膜の第1の領域と第2の領域と
の界面が、上記半導体基板側に凹んで湾曲した曲面を成
すことを特徴とする請求項1に記載の固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein an interface between the first region and the second region of the protective film forms a curved surface that is concave toward the semiconductor substrate.
【請求項3】 半導体基板の一主面に複数の受光画素を
互いに一定の間隙を隔てて配列形成する工程と、上記半
導体基板上に、第1の透光性材料を所定の膜厚に積層す
る工程と、所定の膜厚に積層された上記第1の透光性材
料上に上記複数の受光画素の間隙部分を覆って上記複数
の受光画素の配列に沿って延在するマスクパターンを形
成する工程と、上記第1の透光性材料を上記マスクパタ
ーンに従って等方的にエッチングし、上記半導体基板側
で幅が広くなる断面形状に形成する工程と、上記半導体
基板上に残された上記第1の透光性材料を覆い、上記第
1の透光性材料よりも屈折率の高い第2の透光性樹脂を
積層する工程と、を有することを特徴とする固体撮像素
子の製造方法。
3. A step of arranging and forming a plurality of light receiving pixels on one main surface of a semiconductor substrate with a predetermined gap therebetween, and laminating a first light-transmitting material to a predetermined thickness on the semiconductor substrate. Forming a mask pattern that extends along the arrangement of the plurality of light-receiving pixels over the first light-transmitting material laminated to a predetermined film thickness so as to cover a gap between the plurality of light-receiving pixels. And a step of isotropically etching the first light-transmissive material in accordance with the mask pattern to form a cross-sectional shape that is wider on the semiconductor substrate side; and Covering the first light-transmitting material, and laminating a second light-transmitting resin having a higher refractive index than the first light-transmitting material. .
JP10297003A 1998-10-19 1998-10-19 Solid image pickup element and manufacture thereof Pending JP2000124435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10297003A JP2000124435A (en) 1998-10-19 1998-10-19 Solid image pickup element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10297003A JP2000124435A (en) 1998-10-19 1998-10-19 Solid image pickup element and manufacture thereof

Publications (2)

Publication Number Publication Date
JP2000124435A true JP2000124435A (en) 2000-04-28
JP2000124435A5 JP2000124435A5 (en) 2005-09-22

Family

ID=17840999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10297003A Pending JP2000124435A (en) 1998-10-19 1998-10-19 Solid image pickup element and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000124435A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264284A (en) * 2002-03-08 2003-09-19 Sanyo Electric Co Ltd Solid state imaging element and its manufacturing method
KR100781495B1 (en) * 2001-11-06 2007-11-30 매그나칩 반도체 유한회사 Image sensor and method of manufacturing the same
CN100433342C (en) * 2003-08-20 2008-11-12 索尼株式会社 Photo-electric converting device and its driving method, and its manufacturing method, solid-state image pickup device and its driving method and its manufacturing method
JP2010206009A (en) * 2009-03-04 2010-09-16 Toshiba Corp Imaging device and method of manufacturing the same, and imaging method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781495B1 (en) * 2001-11-06 2007-11-30 매그나칩 반도체 유한회사 Image sensor and method of manufacturing the same
JP2003264284A (en) * 2002-03-08 2003-09-19 Sanyo Electric Co Ltd Solid state imaging element and its manufacturing method
US6936873B2 (en) 2002-03-08 2005-08-30 Sanyo Electric Co., Ltd. Solid state imaging device and method for manufacturing solid state imaging device
CN100433342C (en) * 2003-08-20 2008-11-12 索尼株式会社 Photo-electric converting device and its driving method, and its manufacturing method, solid-state image pickup device and its driving method and its manufacturing method
JP2010206009A (en) * 2009-03-04 2010-09-16 Toshiba Corp Imaging device and method of manufacturing the same, and imaging method

Similar Documents

Publication Publication Date Title
US8829579B2 (en) Solid-state imaging device, electronic apparatus, and method for manufacturing the same
US8835981B2 (en) Solid-state image sensor
US5306906A (en) Solid-state imaging device having a plurality of charge transfer electrodes formed in a serpentine pattern
JPH02164072A (en) Solid-state image sensing device, charge transfer device therefor, and manufacture thereof
US6001668A (en) Method of fabricating a image sensor having ITO electrodes with overlapping color filters for increased sensitivity
KR20060054147A (en) Imaging device
CN101436605A (en) Image sensor and method for manufacturing thereof
US5804845A (en) Image sensor having ITO electrodes with an ONO layer
JP2866328B2 (en) Solid-state imaging device
JP2007305683A (en) Solid state image sensing element and method for manufacturing the same
WO1991006124A1 (en) Solid-state image sensor
JP2000124435A (en) Solid image pickup element and manufacture thereof
JP4419264B2 (en) Solid-state imaging device
JP2000091548A (en) Solid image pickup element and manufacture thereof
JP2000106425A (en) Solid-state image pickup device and manufacture thereof
JP3381127B2 (en) Solid-state imaging device
JP2919697B2 (en) Method for manufacturing solid-state imaging device
JPH10242447A (en) Solid state image pick-up device
JP2007012677A (en) Solid state image sensor and its fabrication process
KR20050105586A (en) Image sensor and fabricating method thereof
JP2006344656A (en) Solid state imaging element and its manufacturing method
JP4867309B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
JP2002094038A (en) Solid-stage image pickup device and its manufacturing method
JP2007012676A (en) Process for fabricating solid state image sensor and solid state image sensor
JP2008135636A (en) Solid-state imaging element, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808