JP2000123872A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000123872A
JP2000123872A JP10295566A JP29556698A JP2000123872A JP 2000123872 A JP2000123872 A JP 2000123872A JP 10295566 A JP10295566 A JP 10295566A JP 29556698 A JP29556698 A JP 29556698A JP 2000123872 A JP2000123872 A JP 2000123872A
Authority
JP
Japan
Prior art keywords
electrolyte
amount
negative electrode
separator
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10295566A
Other languages
Japanese (ja)
Inventor
Naruaki Okuda
匠昭 奥田
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10295566A priority Critical patent/JP2000123872A/en
Publication of JP2000123872A publication Critical patent/JP2000123872A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the amount of an electrolyte of a lithium secondary battery without decreasing the performance of the battery. SOLUTION: In a lithium secondary battery, a belt-shaped positive electrode and a belt-shaped negative electrode are wound through a separator, then an electrolyte is impregnated into them, and the amount of the electrolyte is made less than the void of each of the positive electrode, the negative electrode, and the separator. Battery performance is not decreased even if the amount of the electrolyte is limited to about 80% of each void.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に関する。
[0001] The present invention relates to a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池は、高エネルギー密度
であることから携帯機器の電源としてのみならず、E
V、HEVの電源としての利用が有望視されている。し
かし、現在のところ、リチウム二次電池はコストが高い
ため、特に大量の電池を搭載するEV、HEVの電源と
して使用するには製造コストの低減が重要課題となって
いる。
2. Description of the Related Art Due to its high energy density, lithium secondary batteries are not only used as power sources for portable equipment, but also as E-powers.
The use of V and HEV as a power source is promising. However, at present, since the cost of lithium secondary batteries is high, it is an important issue to reduce the manufacturing cost especially for use as a power source for EVs and HEVs equipped with a large number of batteries.

【0003】従来、帯状の正極電極および負極電極をセ
パレータを介して巻回して形成されるリチウム二次電池
においては、電解液が、正極電極、負極電極およびセパ
レータ部の空隙を充填するに十分な量ないしはそれ以上
の量が含浸されている。このリチウム二次電池のコスト
を低減するには、電池価額に占める各構成材料の価額が
特に高い、セパレータおよび電解液についての使用量を
低減することが効果的である。しかし、セパレータを薄
膜化するなどの手段でセパレータの使用量を低減させる
とショートが発生しやすくなるために実用的でない。こ
れに対して、電解液の使用量低減は、電池性能に悪影響
を与えなければ、コストの低減に対して効果があるのみ
ならず、軽量化や安全性の向上にも効果的である。
Conventionally, in a lithium secondary battery formed by winding a strip-shaped positive electrode and a negative electrode with a separator interposed therebetween, an electrolyte is sufficient to fill gaps between the positive electrode, the negative electrode and the separator. An amount or more is impregnated. In order to reduce the cost of the lithium secondary battery, it is effective to reduce the amount of use of the separator and the electrolyte, in which the value of each component material is particularly high in the battery price. However, if the amount of the separator used is reduced by, for example, thinning the separator, it is not practical because a short circuit is likely to occur. On the other hand, if the use of the electrolytic solution is not adversely affected on the battery performance, it is effective not only for cost reduction but also for weight reduction and safety improvement.

【0004】しかし、一般的には、電解液が不足した場
合の電池は、イオン電導度が低下することに起因して、
電池の内部抵抗が大きくなり、放電容量が低下するとい
われており、電池内に含浸する電解液の量を抑制する技
術は見あたらない。
[0004] However, in general, a battery in a case where the electrolyte solution is insufficient runs down due to a decrease in ionic conductivity.
It is said that the internal resistance of the battery increases and the discharge capacity decreases, and no technique has been found to suppress the amount of electrolyte impregnated in the battery.

【0005】[0005]

【発明が解決しようとする課題】本願発明は、上記の事
情に鑑みてなされたもので、正極電極、負極電極および
セパレータ部の空隙を充填する電解液の使用量を電池の
性能を低下させることなく低減することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to reduce the performance of a battery by reducing the amount of electrolyte used to fill the voids of a positive electrode, a negative electrode and a separator. It is an object to reduce it without any problem.

【0006】[0006]

【課題を解決するための手段】本発明のリチウム二次電
池は、帯状の正極電極および負極電極をセパレータを介
して巻回して形成され、該正極電極、該負極電極および
該セパレータに電解液を含浸させてなるリチウム二次電
池であって、前記正極電極、前記負極電極および前記セ
パレータに含浸させる電解液量は、該正極電極、該負極
電極、該セパレータの各空隙量の総量よりも少ない量と
したことを特徴とする。
The lithium secondary battery of the present invention is formed by winding a strip-shaped positive electrode and a negative electrode with a separator interposed therebetween, and applying an electrolytic solution to the positive electrode, the negative electrode and the separator. In the lithium secondary battery obtained by impregnation, the amount of the electrolytic solution impregnated in the positive electrode, the negative electrode, and the separator is smaller than the total amount of the voids in the positive electrode, the negative electrode, and the separator. It is characterized by having.

【0007】前記電解液量は、該正極電極、該負極電
極、該セパレータの各空隙量の100%未満で80%以
上とするのが好ましい。
[0007] The amount of the electrolyte is preferably less than 100% and more than 80% of the void amount of each of the positive electrode, the negative electrode and the separator.

【0008】[0008]

【発明の実施の形態】本発明のリチウム二次電池は、帯
状の正極電極および負極電極をセパレータを介して巻回
して形成され、該正極電極、該負極電極および該セパレ
ータに電解液を含浸させてなるリチウム二次電池であっ
て、該電解液量を該正極電極、該負極電極、該セパレー
タの各空隙量の総量よりも少ない量含浸して構成され
る。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium secondary battery of the present invention is formed by winding a strip-shaped positive electrode and a negative electrode through a separator, and impregnating the positive electrode, the negative electrode and the separator with an electrolytic solution. A lithium secondary battery comprising the electrolyte solution impregnated in an amount smaller than the total amount of the voids in the positive electrode, the negative electrode, and the separator.

【0009】帯状の正極電極は、粉粒状の正極活物質と
粉粒状の導電材および結着材との混合材を集電箔に塗工
して形成される。そして得られる電極には、電解液が含
浸できる空隙部を有する。この正極電極の空隙量は、以
下のようにして算出できる。(正極電極の体積)−(活
物質の体積+結着材の体積+導電材の体積)として算出
される。たとえば、活物質の体積=(正極電極の重量)
×(正極電極中での活物質の重量割合/活物質の真密
度)として算出でき、結着材、導電材の場合も同様にし
て算出できる。
The strip-shaped positive electrode is formed by applying a mixed material of a powdered positive electrode active material, a powdered conductive material and a binder to a current collector foil. The obtained electrode has a void portion that can be impregnated with the electrolytic solution. The void amount of the positive electrode can be calculated as follows. It is calculated as (volume of positive electrode)-(volume of active material + volume of binder + volume of conductive material). For example, volume of active material = (weight of positive electrode)
X (weight ratio of active material in positive electrode / true density of active material), and similarly in the case of binder and conductive material.

【0010】帯状の負極電極は、カーボン粉末および結
着材とを混合して集電箔に塗工して形成され、電解液が
含浸できる空隙部を有する。この負極電極の空隙量は、
(負極電極の体積)−(カーボンの体積+結着材の体
積)として算出でき、カーボンの体積=(負極電極の重
量)×(カーボン重量/カーボンの真密度)として算出
でき、結着材も同様にして算出できる。
[0010] The strip-shaped negative electrode is formed by mixing a carbon powder and a binder and applying the mixture to a current collector foil, and has a void portion that can be impregnated with an electrolytic solution. The void amount of this negative electrode is
(Volume of negative electrode) − (volume of carbon + volume of binder), and volume of carbon = (weight of negative electrode) × (weight of carbon / true density of carbon). It can be calculated similarly.

【0011】セパレータは、多孔質のシート状の部材で
前記正極電極と前記負極電極との間に挟装されて量電極
と共に巻回されでいる。このセパレータの空隙量は、
(シート材の空隙率)×(セパレータの体積)で算出し
た。上記の正極電極、負極電極、セパレータの空隙量の
総量は、(正極電極の空隙量+負極電極の空隙量+セパ
レータの空隙量)として算出される。そして電解液が上
記の全空隙を満たす重量は、(全空隙量)×(電解液の
真密度)として算出できる。
The separator is sandwiched between the positive electrode and the negative electrode by a porous sheet-like member and wound together with the quantity electrode. The void amount of this separator is
It was calculated by (porosity of sheet material) × (volume of separator). The total amount of the voids of the positive electrode, the negative electrode, and the separator is calculated as (the void of the positive electrode + the void of the negative electrode + the void of the separator). The weight of the electrolyte filling the above-mentioned all voids can be calculated as (total void amount) × (true density of the electrolyte).

【0012】上記で算出された電解液の重量を100%
の基準値として、本願発明では電解液を空隙100%を
満たす量より少ない量使用することで、従来の基準量含
浸させたものと同等ないしはそれ以上の充放電特性を示
す電池が形成できる。すなわち、電解液量が空隙量の1
00%量含浸させた場合の充放電サイクルはは、初期か
ら放電容量と充電容量はほぼ等しく、サイクル数の増加
に伴う放電容量の低下は少ない。
The weight of the electrolyte solution calculated above is set to 100%
In the present invention, a battery having charge / discharge characteristics equal to or higher than that of the conventional battery impregnated with the reference amount can be formed by using the electrolyte solution in an amount smaller than the amount filling the voids of 100%. That is, the amount of the electrolyte is 1
In the charge / discharge cycle in the case of the impregnation by the amount of 00%, the discharge capacity and the charge capacity are almost equal from the beginning, and the decrease in the discharge capacity with the increase in the number of cycles is small.

【0013】電解液量を空隙量の85%まで減少させて
含浸した場合の60℃の充放電サイクルは、初期から放
電容量と充電容量はほぼ等しく、放電容量およびサイク
ル数の増加に伴う放電容量の低下は、図1に示すように
ほぼ同一曲線上にあり、電解液量が100%の基準量の
場合と同等であった。なお、20℃においても放電容量
の確認を行ったが、電解液量を85%まで減少させた場
合でも放電容量が減少することはなかった。したがっ
て、サイクル特性は、電解液を空隙部に対して余剰に注
入した場合は実施例で示すように悪化するが、電解液量
が空隙部の85%程度の少ない量でも電池特性は悪化す
ることはないことを示している。
In the charge / discharge cycle at 60 ° C. when the electrolyte is impregnated with the amount of the electrolyte reduced to 85% of the void volume, the discharge capacity and the charge capacity are almost equal from the beginning, and the discharge capacity and the discharge capacity with the increase in the number of cycles 1 was substantially on the same curve as shown in FIG. 1, and was equivalent to the case where the amount of the electrolyte was a reference amount of 100%. Although the discharge capacity was confirmed at 20 ° C., the discharge capacity did not decrease even when the amount of the electrolytic solution was reduced to 85%. Therefore, the cycle characteristics deteriorate as shown in the examples when the electrolyte is excessively injected into the voids, but the battery characteristics deteriorate even when the amount of the electrolyte is as small as about 85% of the voids. Indicates that there is no.

【0014】[0014]

【実施例】以下、実施例により具体的に説明する。 (実施例)本実施例は、正極活物質にLiMn24(本
荘ケミカル製、平均粒径25μm品、真密度4.28g
/cm3)、導電材に(東海カーボン製TB#550
0、真密度1.825g/cm3)、結着材にポリフッ
化ビニリデン(呉羽化学工業製KFポリマ、真密度1.
765g/cm3)をそれぞれ86.54:6.73:
6.73重量%で混合し厚さ20μmのアルミニウム箔
の両面に塗工乾燥させ、ロールプレスしたものを帯状の
正極電極として用いた。帯状の正極電極の形状は54m
m×450mmで正極電極のアルミニウム箔の片側面の
膜厚は45μm、正極電極の重量は4.857gであ
る。
The present invention will be specifically described below with reference to examples. (Example) In this example, LiMn 2 O 4 (manufactured by Honjo Chemical Co., Ltd., having an average particle size of 25 μm, true density of 4.28 g)
/ Cm 3 ) and conductive material (TB # 550 made by Tokai Carbon)
0, true density 1.825 g / cm 3 ), polyvinylidene fluoride (KF polymer manufactured by Kureha Chemical Industry, true density 1.
765 g / cm 3 ) at 86.54: 6.73 respectively.
A mixture of 6.73% by weight was coated and dried on both sides of a 20 μm-thick aluminum foil, and roll-pressed to use as a strip-shaped positive electrode. The shape of the strip-shaped positive electrode is 54 m
mx 450 mm, the thickness of one side of the aluminum foil of the positive electrode is 45 µm, and the weight of the positive electrode is 4.857 g.

【0015】したがって、正極電極部の体積=5.4×
45×45×2/10000=2.187cm3とな
る。上記電極部中のLiMn24の体積=4.857×
0.8654/4.28=0.982cm3 上記電極部中の導電材の体積=4.857×0.067
3/1.825=0.185cm3 上記電極部中の結着材の体積=4.875×0.067
3/1.765=0.185cm3 であり、上記正極電
極部の空隙=2.187−(0.982+0.179+
0.185)=0.841cm3 となる。
Therefore, the volume of the positive electrode portion = 5.4 ×
A 45 × 45 × 2/10000 = 2.187cm 3. Volume of LiMn 2 O 4 in the above electrode portion = 4.857 ×
0.8654 / 4.28 = 0.982 cm 3 Volume of the conductive material in the above electrode portion = 4.857 × 0.067
3 / 1.825 = 0.185 cm 3 Volume of the binder in the above electrode portion = 4.875 × 0.067
3 / 1.765 = 0.185 cm 3 , and the gap in the positive electrode portion = 2.187− (0.982 + 0.179 +
0.185) = a 0.841cm 3.

【0016】また、負極電極は、負極活物質に人造黒鉛
(大阪ガスケミカル製 MCMB25−28、平均粒径
25μm、真密度2.22g/cm3)、結着材にポリ
フッ化ビニリデン(呉羽化学工業製 KFポリマ、真密
度2.22g/cm3)を、それぞれ95:5重量%で
混合し厚さ10μmの銅箔の両面に塗工乾燥させ、ロー
ルプレスしたものを負極電極として用いた。
The negative electrode is made of artificial graphite (MCMB25-28 manufactured by Osaka Gas Chemicals, average particle size 25 μm, true density 2.22 g / cm 3 ) as a negative electrode active material, and polyvinylidene fluoride (Kureha Chemical Industry) as a binder. KF polymer, true density 2.22 g / cm 3 ) were mixed at a ratio of 95: 5% by weight, coated and dried on both sides of a 10 μm-thick copper foil, and roll-pressed to obtain a negative electrode.

【0017】上記負極電極は56×500mmで負極電
極の銅箔の片側面の膜厚が45μm、負極電極の重量は
3.054gである。したがって、 負極電極部の体積=5.6×50×2/10000=
2.52cm3 負極電極部中の人造黒鉛の体積=3.054×0.95
/2.22=1.307cm3 負極電極部の結着材の体積=3.05×0.05/1.
765=0.087cm3 負極電極部の空隙=2.52−(1.307+0.08
7)=1.026cm 3 となる。
The negative electrode is 56 × 500 mm and has a negative electrode.
The thickness of one side of the copper foil is 45 μm, and the weight of the negative electrode is
3.054 g. Therefore, the volume of the negative electrode part = 5.6 × 50 × 2/10000 =
2.52cmThree Volume of artificial graphite in negative electrode part = 3.054 × 0.95
/2.22=1.307cmThree Volume of binder in negative electrode portion = 3.05 × 0.05 / 1.
765 = 0.087cmThree Void of negative electrode part = 2.52- (1.307 + 0.08)
7) = 1.026 cm ThreeBecomes

【0018】電池の製作は、上記の帯状の正・負極電極
をセパレータ(東燃タルピス製、PE製25μm厚、幅
58mm品、長さ1.5m、空隙率40%)を介してロ
ール上に捲き回し、18650電池缶に挿入し、電解液
(富山薬品工業製、1MLiPF6 EC+DEC(溶
媒:1/1容量比)、真密度1.23g/cm3)を注
入した後に、トップキャップをかしめて密閉した。
The battery is manufactured by winding the above-mentioned band-shaped positive and negative electrodes on a roll via a separator (manufactured by Tonen Talpis, PE, 25 μm thick, 58 mm wide, 1.5 m long, 40% void ratio). Turn, insert into 18650 battery can, inject electrolyte (1M LiPF 6 EC + DEC (solvent: 1/1 volume ratio), true density: 1.23 g / cm 3 , manufactured by Toyama Pharmaceutical Co., Ltd.), then close the top cap and seal did.

【0019】したがって、セパレータ部の空隙=5.8
×150×0.0025×0.4=0.87cm3とな
り、正極電極部、負極電極部、セパレータ部の全空隙=
0.841+1.126+0.87=2.837cm3
となる。全空隙を満たす電解液重量=2.837×1.
23=3.490g となる。
Therefore, the space in the separator portion = 5.8
× 150 × 0.0025 × 0.4 = 0.87 cm 3 , and the total gap of the positive electrode part, the negative electrode part, and the separator part =
0.841 + 1.126 + 0.87 = 2.837 cm 3
Becomes Weight of electrolyte filling all voids = 2.837 × 1.
23 = 3.490 g.

【0020】本実施例では、注入する電解液量を、全空
隙を満たす電解液重量の85%(注入電解液重量2.9
7g)、100%(注入電解液重量3.49g)、15
0%(注入電解液重量5.24g)、および200%
(注入電解液重量)と変化させた各電池を試作し、サイ
クル特性とレート特性を調べた。なお、電解液の注入
は、100%以上注入する場合は、電解液を過剰に供給
しながら減圧(−630mmHg)と加圧(2kg/c
2)を30秒間づつ交互に5回繰り返してロール状電
極に電解液を十分に含浸させた後、電池缶の開口部を下
向きにして余剰電解液を排出し、その後不足分の電解液
を更に注入した。なお、電解液を十分含浸させた後に余
剰の電解液を排出した場合には、上記で算出した100
%に相当する電解液が含浸されていたことから、上記の
算出結果は妥当なものであるといえる。
In this embodiment, the amount of the electrolyte to be injected is set to 85% of the weight of the electrolyte filling all the voids (the weight of the injected electrolyte is 2.9).
7 g), 100% (injection electrolyte weight 3.49 g), 15
0% (injection electrolyte weight 5.24 g) and 200%
(Injection electrolyte weight) and various batteries were prototyped, and cycle characteristics and rate characteristics were examined. When the electrolyte is injected at 100% or more, the pressure is reduced (−630 mmHg) and the pressure is increased (2 kg / c) while the electrolyte is supplied in excess.
m 2 ) was alternately repeated 5 times for 30 seconds each time, so that the roll-shaped electrode was sufficiently impregnated with the electrolytic solution, the excess electrolytic solution was discharged with the opening of the battery can facing downward, and then the insufficient electrolytic solution was removed. Further injections were made. When excess electrolyte was discharged after the electrolyte was sufficiently impregnated, 100% calculated above was used.
%, The above calculation result is appropriate.

【0021】また、85%の場合は、2.97gの電解
液を注入した後、減圧(−630mmHg)と加圧(2
kg/cm2)を30秒間づつ交互に5回繰り返し、ト
ップキャップをかしめて密閉した。いずれの電池も、電
解液を注入した後、室温で一週間放置した後に、60℃
の雰囲気でサイクル特性を評価した。サイクル特性評価
時の充放電条件は、定電流充電(4.2V、1mA/c
2)/定電流放電(3.0V、1mA/cm2)とし
た。また、電解液を注入した後室温で一週間放置した後
に、20℃の雰囲気でレート特性を評価した。レート特
性評価時の充放電条件は、定電流定電圧充電(4.2
V、1mA/cm2、3hr)/定電流放電(3.0
V、0.5〜8mA/cm2)とした。
In the case of 85%, after 2.97 g of electrolyte was injected, the pressure was reduced (-630 mmHg) and the pressure was increased (2
kg / cm 2 ) were alternately repeated 5 times for 30 seconds, and the top cap was caulked and sealed. Each battery was left at room temperature for one week after injecting the electrolyte,
The cycle characteristics were evaluated under the following atmosphere. The charge and discharge conditions at the time of the cycle characteristic evaluation were constant current charging (4.2 V, 1 mA / c).
m 2 ) / constant current discharge (3.0 V, 1 mA / cm 2 ). After injecting the electrolytic solution and leaving it at room temperature for one week, the rate characteristics were evaluated in a 20 ° C. atmosphere. The charge / discharge conditions at the time of rate characteristic evaluation are constant current and constant voltage charge (4.2
V, 1 mA / cm 2 , 3 hr) / constant current discharge (3.0
V, 0.5 to 8 mA / cm 2 ).

【0022】図1に、注入した電解液量の異なる電池の
60℃におけるサイクル特性を横軸にサイクル数(回)
を縦軸に放電容量としたグラフを示した。電解液量が1
00%と85%はほぼ同一曲線上にあり、サイクル特性
が同じであることを示している。電解液量が200%の
場合は、20サイクルで放充電が不可能になった。この
原因は、評価初期から放電容量よりも充電容量が明らか
に多いことから、電解液が多いことに起因してマイクロ
ショートが発生した可能性が高いと考えられる。この現
象は、再現性よく得られるものであった。
FIG. 1 shows the cycle characteristics at 60 ° C. of the batteries having different amounts of injected electrolyte on the horizontal axis.
The vertical axis represents the discharge capacity. 1 electrolyte
00% and 85% are almost on the same curve, indicating that the cycle characteristics are the same. When the amount of the electrolyte was 200%, discharging and discharging became impossible in 20 cycles. The reason for this is that the charge capacity is clearly larger than the discharge capacity from the beginning of the evaluation, and it is considered that there is a high possibility that a micro short circuit has occurred due to the large amount of the electrolytic solution. This phenomenon was obtained with good reproducibility.

【0023】電解液が150%の過剰の場合も評価初期
から放電容量よりも充電容量が若干多いが、充放電が不
可能になることはなく、サイクル数の増加に伴う放電容
量の低下も電解液量が200%の場合よりも抑制され
た。電解液量が100%の場合は、評価初期から放電容
量と充電容量はほぼ等しく、サイクル数の増加に伴う放
電容量の低下は電解液量が150%の場合よりさらに抑
制された。
In the case where the amount of the electrolyte is 150%, the charge capacity is slightly larger than the discharge capacity from the initial stage of the evaluation. However, the charge / discharge does not become impossible, and the decrease in the discharge capacity with the increase in the number of cycles does not occur. The liquid volume was suppressed more than the case of 200%. When the amount of the electrolyte was 100%, the discharge capacity and the charge capacity were almost equal from the initial stage of the evaluation, and the decrease in the discharge capacity with the increase in the number of cycles was further suppressed as compared with the case where the amount of the electrolyte was 150%.

【0024】さらに電解液量を85%まで減少させる
と、評価初期から放電容量と充電容量はほぼ等しく、放
電容量およびサイクル数の増加に伴う放電容量の低下は
電解液量が100%の場合と同等であった。なお、20
℃においても放電容量の確認を行ったが、電解液量を8
5%まで減少させた場合でも放電容量が減少することは
なかった。したがって、サイクル特性は、電解液を空隙
部に対して余剰に注入した場合は悪化し、空隙部にたい
して100%だけ注入することによって向上するが、空
隙部の85%程度の少ない量でも悪化することはないと
いえる。
When the amount of the electrolyte is further reduced to 85%, the discharge capacity and the charge capacity are almost equal from the initial stage of the evaluation, and the decrease in the discharge capacity with the increase in the discharge capacity and the number of cycles is smaller than that in the case of the 100% electrolyte. It was equivalent. In addition, 20
The discharge capacity was also checked at 0 ° C.
Even when the discharge capacity was reduced to 5%, the discharge capacity did not decrease. Therefore, the cycle characteristics are deteriorated when the electrolyte is excessively injected into the voids, and are improved by injecting only 100% into the voids, but deteriorate even with a small amount of about 85% of the voids. There is no.

【0025】図2に、注入した電解液量のみが異なる電
池の20℃におけるレート特性を横軸に放電電流密度
を、縦軸に放電容量としたグラフを示す。電解液量を8
5%まで減少させた電池の放電容量は、放電電流密度が
4mA/cm2以下の低放電電流では電解液量が100
〜150%の場合と同等であるが、放電電流密度が6m
A/cm2以上の高放電電流密度では○印に示すように
電解液量が100〜150%のばあいよりも多くなっ
た。したがって、レート特性は電解液を空隙部の85%
程度まで減少させた場合の方が若干向上することが判明
した。
FIG. 2 is a graph showing the rate characteristics at 20 ° C. of the batteries differing only in the amount of the injected electrolyte, in which the horizontal axis represents the discharge current density and the vertical axis represents the discharge capacity. 8 electrolytes
The discharge capacity of the battery reduced to 5% is such that when the discharge current density is low at 4 mA / cm 2 or less, the amount of the electrolyte is 100%.
~ 150%, but the discharge current density is 6 m
At a high discharge current density of A / cm 2 or more, the amount of the electrolytic solution was larger than that when the amount of the electrolyte was 100 to 150% as shown by the mark ○. Therefore, the rate characteristic is that the electrolyte is 85% of the gap.
It was found that when the amount was reduced to the extent, the value was slightly improved.

【0026】一般的には、電解液が不足した場合は、イ
オン電導度が低下することに起因して、電池の内部抵抗
が大きくなり、放電容量が低下するといわれているが、
空隙部の85%程度であれば、電池性能を損なうことな
く、電解液量を少なくすることができる。
It is generally said that, when the electrolyte is insufficient, the ionic conductivity is reduced, so that the internal resistance of the battery is increased and the discharge capacity is reduced.
If the gap is about 85%, the amount of the electrolyte can be reduced without impairing the battery performance.

【0027】[0027]

【発明の効果】本発明のリチウム二次電池は、電解液量
を正極電極、負極電極およびセパレータの各空隙量の総
量よりも少ない量含浸させている。リチウム二次電池に
使用する電解液は非水性で高コスト、かつ可燃性である
ので、従来の空隙総量を充填した場合に比べ電解液量が
低減でき、リチウム二次電池の低価額化および電池の安
全性向上に有効である。
The lithium secondary battery of the present invention is impregnated with the electrolyte in an amount smaller than the total amount of the voids in the positive electrode, the negative electrode and the separator. Since the electrolyte used for lithium secondary batteries is non-aqueous, expensive and flammable, the amount of electrolyte can be reduced as compared to the conventional case where the total amount of voids is filled, and the price of lithium secondary batteries is reduced and the This is effective for improving the safety of the vehicle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例での60℃サイクル特性におよぼす電解
液量の影響を示したグラフである。
FIG. 1 is a graph showing the effect of the amount of electrolyte on the 60 ° C. cycle characteristics in Examples.

【図2】実施例でのレート特性におよぼす電解液量の影
響を示すグラフである。
FIG. 2 is a graph showing the effect of the amount of electrolyte on rate characteristics in Examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】帯状の正極電極および負極電極をセパレー
タを介して巻回して形成され、該正極電極、該負極電極
および該セパレータに電解液を含浸させてなるリチウム
二次電池であって、 前記正極電極、前記負極電極および前記セパレータに含
浸させる電解液量は、該正極電極、該負極電極、該セパ
レータの各空隙量の総量よりも少ない量としたことを特
徴とするリチウム二次電池。
1. A lithium secondary battery formed by winding a strip-shaped positive electrode and a negative electrode with a separator interposed therebetween, wherein the positive electrode, the negative electrode, and the separator are impregnated with an electrolytic solution. A lithium secondary battery characterized in that the amount of electrolyte impregnated in the positive electrode, the negative electrode, and the separator is smaller than the total amount of voids in the positive electrode, the negative electrode, and the separator.
JP10295566A 1998-10-16 1998-10-16 Lithium secondary battery Pending JP2000123872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10295566A JP2000123872A (en) 1998-10-16 1998-10-16 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10295566A JP2000123872A (en) 1998-10-16 1998-10-16 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000123872A true JP2000123872A (en) 2000-04-28

Family

ID=17822308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10295566A Pending JP2000123872A (en) 1998-10-16 1998-10-16 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000123872A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115517A (en) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011171177A (en) * 2010-02-19 2011-09-01 Toyota Central R&D Labs Inc Lithium ion secondary battery
WO2012176272A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Production method for secondary battery
KR101497351B1 (en) * 2012-04-17 2015-03-03 주식회사 엘지화학 Lithium Secondary Battery Including Excess Amount of Electrolyte
EP2932542A1 (en) 2012-12-13 2015-10-21 24M Technologies, Inc. Semi-solid electrodes having high rate capability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115517A (en) * 2005-10-20 2007-05-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011171177A (en) * 2010-02-19 2011-09-01 Toyota Central R&D Labs Inc Lithium ion secondary battery
WO2012176272A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Production method for secondary battery
CN103636055A (en) * 2011-06-20 2014-03-12 丰田自动车株式会社 Production method for secondary battery
JPWO2012176272A1 (en) * 2011-06-20 2015-02-23 トヨタ自動車株式会社 Manufacturing method of secondary battery
US9269988B2 (en) 2011-06-20 2016-02-23 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
KR101497351B1 (en) * 2012-04-17 2015-03-03 주식회사 엘지화학 Lithium Secondary Battery Including Excess Amount of Electrolyte
EP2932542A1 (en) 2012-12-13 2015-10-21 24M Technologies, Inc. Semi-solid electrodes having high rate capability

Similar Documents

Publication Publication Date Title
US7378185B2 (en) Prismatic lithium secondary battery having a porous heat resistant layer
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP4519796B2 (en) Square lithium secondary battery
US6632256B1 (en) Method for manufacturing a non-aqueous-gel-electrolyte battery
US7419743B2 (en) Cylindrical lithium battery resistant to breakage of the porous heat resistant layer
JP5073144B2 (en) Lithium ion secondary battery
EP0954042A1 (en) Lithium ion secondary battery and manufacture thereof
JPH09213338A (en) Battery and lithium ion secondary battery
US20010041290A1 (en) Lithium polymer secondary battery
JPH11307081A (en) Lithium ion secondary battery and its manufacture
JPH11307131A (en) Sheet-type lithium ion secondary battery
JP5187729B2 (en) Sealed battery
JP4839117B2 (en) Cylindrical lithium secondary battery
JP2000123872A (en) Lithium secondary battery
US20060040184A1 (en) Non-aqueous electrolyte battery
JP2000133316A (en) Lithium secondary battery and fabricating method for electrode plate
JPH06188030A (en) Nonaqueous electrolyte battery
JP2021182478A (en) Non-aqueous electrolyte secondary battery
JP2000306607A (en) Nonaqueous electrolyte battery
JP3643693B2 (en) Manufacturing method of sealed battery
JP2000251875A (en) Rolled type battery
JP7329014B2 (en) Method for manufacturing laminated secondary battery
JPWO2017098715A1 (en) Electricity storage element
JPH10172607A (en) Sheet-like lithium secondary battery
JPH01272049A (en) Lithium secondary battery