JP2000122731A - Current power unit - Google Patents

Current power unit

Info

Publication number
JP2000122731A
JP2000122731A JP10293175A JP29317598A JP2000122731A JP 2000122731 A JP2000122731 A JP 2000122731A JP 10293175 A JP10293175 A JP 10293175A JP 29317598 A JP29317598 A JP 29317598A JP 2000122731 A JP2000122731 A JP 2000122731A
Authority
JP
Japan
Prior art keywords
voltage
power supply
current
power source
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10293175A
Other languages
Japanese (ja)
Inventor
Hideki Hayashi
秀喜 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP10293175A priority Critical patent/JP2000122731A/en
Publication of JP2000122731A publication Critical patent/JP2000122731A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a current power unit which is fast and inexpensive by connecting a current power source, a voltage power source, and a load device in series. SOLUTION: The current power source 1, voltage power source 2, and load device 3 are connected in series. The voltage power source 2 need not operate fast and may operate slow and the voltage value need not be variable and may be fixed under certain conditions. The total of the voltage value of a variable voltage power source in the current power source 1 and the voltage value of a voltage power source 2 is the value of the voltage to the load device 3. Therefore, the voltage value of the voltage power source in the current power source 1 can be lowered by the voltage value of the voltage power source 2 and the power capacity of the current power source 1 which is fast and expensive can be decreased by the quantity, so that an inexpensive device is obtained. Thus, the current power unit which is fast and inexpensive can be obtained by combining the small-capacity fast current power source 1 and slow inexpensive voltage power source 2 together.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘導性負荷装置の電
流を高速に制御でき、且つ安価な電流電源装置を提供す
るものであり、具体的には磁気軸受け装置、磁気浮上装
置などのコイル駆動に用いて効果がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an inexpensive current power supply device capable of controlling the current of an inductive load device at high speed, and more specifically, a coil drive for a magnetic bearing device, a magnetic levitation device and the like. It is effective when used.

【0002】[0002]

【従来の技術】図3は従来の電流電源より誘導性負荷を
駆動する回路例であり、図3において、1は直流の電流
電源、3は誘導性負荷装置であり、誘導性負荷装置3は
リアクタンス成分31と抵抗成分32により構成されて
いる。以下では磁気軸受け装置を例として説明するが、
他の装置に適用するものであっても勿論差し支えない。
電流電源1は、図示せぬ軸受けのギャップ検出器やギャ
ップ一定制御装置などによりその電流値を制御され、軸
受け駆動コイルである負荷装置3を駆動して軸受けのギ
ャップを一定に保つ。軸受けのギャップは、軸の振動や
衝撃により高速に変化するのが通常であり、従って負荷
装置3の電流も誘導性負荷ではあるものの、ギャップ検
出器出力などにより高速に制御する必用がある。
2. Description of the Related Art FIG. 3 shows an example of a circuit for driving an inductive load from a conventional current power supply. In FIG. 3, reference numeral 1 denotes a DC current power supply, 3 denotes an inductive load device, and It comprises a reactance component 31 and a resistance component 32. In the following, a magnetic bearing device will be described as an example,
Of course, the present invention can be applied to other devices.
The current value of the current power supply 1 is controlled by a bearing gap detector and a gap constant control device (not shown), and the current power supply 1 drives the load device 3 which is a bearing drive coil to keep the bearing gap constant. Usually, the gap of the bearing changes at a high speed due to vibration or impact of the shaft. Therefore, although the current of the load device 3 is also an inductive load, it is necessary to control the current at a high speed by the output of the gap detector or the like.

【0003】一般に直流電源として用意できるものは、
バッテリーや家庭、事業所に配電されている単相、三相
の交流電源を整流して作成される電圧源である。電流電
源1を実現するには、電圧電源に直列に比較的高インダ
クタンスのリアクトルを接続する方法があるが、これは
高速に電流を変化させることができず、前述のように高
速の電流制御をする必要がある用途には使用できない。
Generally, what can be prepared as a DC power supply is
It is a voltage source created by rectifying a single-phase or three-phase AC power supply that is distributed to batteries, homes, and businesses. To realize the current power supply 1, there is a method of connecting a relatively high-inductance reactor in series with the voltage power supply. However, this cannot change the current at a high speed. It cannot be used for applications that need to be performed.

【0004】図4は高速電流電源1を実現するための従
来回路の一例であり、図3と同一番号のものは同一のも
のを示す。図4において、11は電流設定信号、12は
負荷電流の電流検出器16の電流検出信号、13はこれ
らの差(電流設定信号11ー電流検出信号12)を出力
する減算器、14は減算器13の出力を増幅して可変の
電圧電源15の電圧値を調整する電圧制御器である。こ
れらの装置により、電流検出器16の、すなわち負荷装
置3の電流は電流設定信号11に一致するように制御さ
れる。電流設定信号11は、詳細は図示せぬ電流電源1
の内部設定ダイアルにより作成されたり、外部からの電
流設定信号であったりする。11〜16による電流電源
1の回路は、その出力電流が電流設定信号11と一致す
る電流電源として動作する。図4の構成を有する機能を
持った電源装置は、電圧電源としても動作させることが
できる定電圧・定電流直流電源装置として各社より各種
のものが市販されているごく一般的なものである。
FIG. 4 shows an example of a conventional circuit for realizing the high-speed current power supply 1, and those having the same numbers as those in FIG. In FIG. 4, 11 is a current setting signal, 12 is a current detection signal of the load current detector 16, 13 is a subtractor that outputs a difference between them (current setting signal 11 −current detection signal 12), and 14 is a subtractor 13 is a voltage controller that amplifies the output of the power supply 13 and adjusts the voltage value of the variable voltage power supply 15. By these devices, the current of the current detector 16, that is, the current of the load device 3 is controlled so as to match the current setting signal 11. The current setting signal 11 is a current power supply 1 (not shown in detail).
Or an external current setting signal. The circuit of the current power supply 1 according to 11 to 16 operates as a current power supply whose output current matches the current setting signal 11. A power supply device having a function having the configuration shown in FIG. 4 is a general type of various types of constant voltage / constant current DC power supply devices that can be operated as a voltage power supply and are commercially available from various companies.

【0005】いま、図3における電流電源1の電流値を
i、負荷装置3内リアクタンス成分31のインダクタン
スをL、抵抗成分32の抵抗値をRとすると、負荷装置
3の両端の電圧vLは vL=L・di/dt+R・i (1) となる。従って、図4に示す可変の電圧電源15の電圧
値としては、(1)式右辺第二項以上のものが必要であ
る。右辺第一項で電流変化速度が規制され、高速電流制
御を行うためにはできるだけ大きいことが望ましい。
Assuming that the current value of the current power supply 1 in FIG. 3 is i, the inductance of the reactance component 31 in the load device 3 is L, and the resistance value of the resistance component 32 is R, the voltage vL across the load device 3 is vL = Ldi / dt + Ri (1) Therefore, the voltage value of the variable voltage power supply 15 shown in FIG. The current change rate is regulated by the first term on the right side, and is desirably as large as possible in order to perform high-speed current control.

【0006】[0006]

【発明が解決しようとする課題】いま、具体的にi=2
0A、R=1.6Ωとすると、可変電圧電源15の電圧
値として定常的に(1)式第二項の1.6Ω×20A=
32Vが必要であり、過渡的にはさらに第一項を加算し
たものが必要となる。第一項の値が大きいほど高速電流
制御動作が可能となる。電流電源1としては、市販され
ている装置の一例として、(株)高砂製作所より発売さ
れている高速の0〜60V、0〜20A定電圧・定電流
直流電源IPS060ー20を電流モードに設定して使
用する事ができるが、1.2kWの電源装置としては非
常に高価なものである。(参考文献 同社の「’97/
直流・交流/電源カタログ」)。ちなみに高速仕様でな
い同定格のGP060ー20Rは高速のものよりかなり
安価であり、高速の電源が非常に高価なものになってい
る。本発明は上述した点に鑑みて創案されたもので、そ
の目的とするところは、高速で安価な電流電源装置を提
供することにある。
Now, specifically, i = 2
Assuming that 0A and R = 1.6Ω, the voltage value of the variable voltage power supply 15 is constantly 1.6Ω × 20A =
32V is required, and transiently a value obtained by adding the first term is required. The higher the value of the first term, the faster the current control operation becomes possible. As the current power supply 1, as an example of a commercially available device, a high-speed 0-60V, 0-20A constant voltage / constant current DC power supply IPS060-20, which is sold by Takasago Machinery Works, Ltd., is set to a current mode. However, it is very expensive as a 1.2 kW power supply device. (References "'97 /
DC / AC / Power Catalog ”). By the way, GP060-20R of the same rating which is not high-speed specification is considerably cheaper than high-speed one, and high-speed power supply is very expensive. The present invention has been made in view of the above points, and an object of the present invention is to provide a high-speed and inexpensive current power supply device.

【0007】[0007]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、 1.請求項1において、電流電源と電圧電源と負荷装置
とを直列接続した事を特徴とする電流電源装置である。
[Means for Solving the Problems] That is, means for achieving the object are as follows: A current power supply device according to claim 1, wherein a current power supply, a voltage power supply, and a load device are connected in series.

【0008】2.請求項2において、第一の電圧電源と
第二の電圧電源と負荷装置を直列に接続し、負荷装置の
電流を検出する電流検出器と、第一の電圧電源の電圧を
検出する電圧検出器とを設け、前記電流検出器の出力に
より第一の電圧電源の電圧を制御し、前記電圧検出器の
出力により第二の電圧電源の電圧を制御することを特徴
とする電流電源装置である。以下、本発明の一実施例を
図面に基づいて詳述する。
[0008] 2. The voltage detector according to claim 2, wherein the first voltage power supply, the second voltage power supply, and the load device are connected in series, and a current detector for detecting a current of the load device and a voltage detector for detecting a voltage of the first voltage power supply. Wherein the voltage of the first voltage power supply is controlled by the output of the current detector, and the voltage of the second voltage power supply is controlled by the output of the voltage detector. Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

【0009】[0009]

【発明の実施の形態】図1は本発明の請求項1記載によ
る高速電流電源装置の一実施例を示すもので、図3と同
一番号のものは同一のものを示し、また図1において、
2は電圧電源で高速動作である必要はなく低速のごく一
般的なものでよく、電圧値も一定条件のもとでは可変と
する必要はなく固定でよい。電流電源1の内部は、図3
と同様に図4の如く構成されているものとすると、図4
に示す可変の電圧電源15の電圧値と図1の電圧電源2
の電圧値の合計が(1)式の電圧vLとなればよく、従
って、図3の装置と比べて電流電源1内部の電圧電源1
5の電圧値を、図1の電圧源2の電圧値だけ下げること
ができ、この分だけ高速高価な電流電源1の電力容量を
下げることができ安価な装置とすることができる。
FIG. 1 shows an embodiment of a high-speed current power supply according to claim 1 of the present invention, wherein the same reference numerals as those in FIG. 3 denote the same parts, and FIG.
Reference numeral 2 denotes a voltage power supply, which does not need to operate at high speed but may be a very low-speed general one. The voltage value does not need to be variable under certain conditions and may be fixed. FIG.
As shown in FIG. 4, as shown in FIG.
The voltage value of the variable voltage power supply 15 shown in FIG.
It is sufficient that the sum of the voltage values is equal to the voltage vL of the expression (1).
5 can be reduced by the voltage value of the voltage source 2 in FIG. 1, and the power capacity of the high-speed and expensive current power supply 1 can be reduced by that amount, and an inexpensive device can be obtained.

【0010】前記具体例と同様に負荷装置3に20Aを
流すことを考え、負荷変動がほとんど無いものとする
と、電流電源1として前記例と同じく、(株)高砂製作
所製の前記IPS060−20より安価な、16V20
A、高速定電圧・定電流直流電源装置IPS016ー2
0が、低速動作でよい電圧電源2として前述の60V2
0A定格GP060ー20Rが使用できる。ここに、両
者の合計価格を合わせても、一台の高速電流電源IPS
060ー20を使用するよりも遥かに安価なものとする
こたができる。IPS060ー20の電源電圧能力は6
0Vであるが、高速電流電源であるIPS016ー20
と低速電圧電源であるGP060ー20Rの合計電源電
圧能力は16+60=76Vであり、この点でも十分余
裕がある。また、低速電圧電源GP060ー20Rは電
圧値可変であるが、適当な固定電圧値のものがあれば
(60ー16=44V以上)それでもよく、より安価な
ものとなる。
Assuming that 20 A flows through the load device 3 in the same manner as in the above-described specific example, and assuming that there is almost no load fluctuation, the current power supply 1 is, as in the above-described example, based on the IPS060-20 manufactured by Takasago Seisakusho Co., Ltd. Inexpensive, 16V20
A, High-speed constant voltage / constant current DC power supply IPS016-2
0 is the above-mentioned 60 V2
0A rated GP060-20R can be used. Here, even if the total price of both is combined, one high-speed current power supply IPS
It can be much cheaper than using 060-20. The power supply voltage capability of IPS060-20 is 6
0V, but IPS016-20 which is a high-speed current power supply
And the total power supply voltage capability of the low-speed voltage supply GP060-20R is 16 + 60 = 76V, and there is ample room in this respect as well. Further, the low-speed voltage power supply GP060-20R has a variable voltage value, but if it has an appropriate fixed voltage value (60-16 = 44 V or more), this may be used, and the cost is lower.

【0011】その作用は、電流電源ではあっても本質的
には電圧電源を基として作成しているため、この電圧能
力として(1)式から明らかなように、右辺第二項の負
荷装置に所定の電流を流したときに発生する電圧と、第
一項の高速電流制御を実現するために負荷装置のインダ
クタンス成分に印加する電圧とが必要であり、図1の装
置によれば、容易にこの電圧能力を確保する機能を有し
ている。
Since the operation is essentially based on the voltage power supply even if it is a current power supply, as apparent from the equation (1), this voltage capability is applied to the load device of the second term on the right side. A voltage generated when a predetermined current flows and a voltage to be applied to an inductance component of a load device for realizing the high-speed current control of the first term are required. According to the device of FIG. It has a function to secure this voltage capability.

【0012】前述の図1に示す回路では、負荷変動や設
定電流値の変動がほとんど無いものとしたが、これらの
変動がある場合は電圧電源2の電圧値を可変としたり、
電流電源1の電圧能力などに留意する必要が生じる。仮
に電流電源1の内部電圧電源15の電圧範囲が0〜16
V、電圧電源2の電圧値が44V固定とすると、合計電
圧は44〜60Vとなり、負荷装置3の抵抗成分32抵
抗値を1.6Ωとすると、設定できる電流範囲は27.5
〜37.5Aとなる。電流値が大きくなれば(1)式右
辺第2項の値が大きくなって第一項に当てることができ
る値が小さくなり、過渡応答は遅くなる。
In the circuit shown in FIG. 1, it is assumed that there is almost no change in the load or the set current value, but when there is such a change, the voltage value of the voltage power supply 2 can be changed.
It is necessary to pay attention to the voltage capability of the current power supply 1 and the like. If the voltage range of the internal voltage power supply 15 of the current power supply 1 is 0 to 16
V, the voltage value of the voltage power supply 2 is fixed at 44 V, the total voltage is 44 to 60 V, and the resistance component 32 of the load device 3 is 1.6 Ω, and the settable current range is 27.5.
~ 37.5A. When the current value increases, the value of the second term on the right side of Equation (1) increases, the value that can be applied to the first term decreases, and the transient response slows down.

【0013】電流設定値i=20Aとし、合計電圧範囲
44〜60Vとすると、許容できる負荷装置3の抵抗成
分32の抵抗値Rは2.2〜3Ωとなり、やはり抵抗値
が大きくなると過渡応答は遅くなる。このように図1の
電源電圧2電圧値が固定の回路では、設定する電流値や
負荷装置の抵抗値によっては動作範囲の制約が生じた
り、動作速度が上げられないなどの問題が生じる。
Assuming that the current set value i is 20 A and the total voltage range is 44 to 60 V, the allowable resistance R of the resistance component 32 of the load device 3 is 2.2 to 3 Ω. Become slow. As described above, in the circuit of FIG. 1 in which the power supply voltage 2 voltage value is fixed, problems such as restriction of the operation range and inability to increase the operation speed occur depending on the set current value and the resistance value of the load device.

【0014】図2はこのような問題を解決するためにな
された本発明の請求項2記載の実施例であり、図2にお
いて、3は図1、図3および図4と同一の負荷装置であ
る。21は可変の電流電源、電流設定信号211と電流
検出器216の出力である電流検出信号212との差
(電流設定信号211ー電流検出信号212)を減算器
213で減算され、電圧制御器214を通して高速可変
の電圧電源(第一の電圧電源)215の電圧値を調整
し、電流検出器216で検出した電流が電流設定信号2
11と一致するよう動作する。
FIG. 2 shows an embodiment according to claim 2 of the present invention which has been made to solve such a problem. In FIG. 2, reference numeral 3 denotes the same load device as in FIGS. 1, 3 and 4. is there. Reference numeral 21 denotes a variable current power supply, a subtractor 213 subtracts a difference between a current setting signal 211 and a current detection signal 212 output from the current detector 216 (current setting signal 211-current detection signal 212), and a voltage controller 214 To adjust the voltage value of the high-speed variable voltage power supply (first voltage power supply) 215 through the current setting signal 2
Operate to match 11.

【0015】22は可変の電圧電源で、電圧設定信号2
21と電圧検出器23の出力である電圧検出信号231
との差(電圧検出信号231ー電圧設定信号221)を
減算器222で減算され、電圧制御器223を通して低
速可変の電圧電源(第二の電圧電源)224の電圧値を
調整し、可変電圧電源215の電圧が電圧設定信号22
1と一致するよう動作する。この場合、電圧設定信号2
21が下降または電圧検出信号231が上昇すれば、可
変電圧電源224の電圧値は上昇する極性となる。可変
電圧電源224の電圧値が上昇すると負荷装置3の、す
なわち電流検出器216の電流が上昇するため、可変電
圧電源215の電圧は下降して電圧設定信号221と一
致するようになる。
Reference numeral 22 denotes a variable voltage power supply.
21 and a voltage detection signal 231 which is an output of the voltage detector 23
(The voltage detection signal 231 -the voltage setting signal 221) is subtracted by the subtractor 222, the voltage value of the low-speed variable voltage power supply (second voltage power supply) 224 is adjusted through the voltage controller 223, and the variable voltage power supply is adjusted. 215 is the voltage setting signal 22
Operate to match 1. In this case, the voltage setting signal 2
When the voltage of the variable voltage power supply 224 increases, the voltage value of the variable voltage power supply 224 has a rising polarity. When the voltage value of the variable voltage power supply 224 rises, the current of the load device 3, that is, the current of the current detector 216 rises, so that the voltage of the variable voltage power supply 215 falls to match the voltage setting signal 221.

【0016】前述の具体例と同様に、高速可変の電圧電
源215の電圧範囲を0〜16V、低速可変の電圧電源
224の電圧範囲を0〜60Vとする。負荷装置3の抵
抗成分32の抵抗値Rを1.6Ωとすると、電圧電源2
15と224の合計電圧範囲は0〜76Vであるから、
電流範囲は前例が27.5〜37.5Aであったのに対し
て0〜47.5Aが可能となる。
As in the above-described specific example, the voltage range of the high-speed variable voltage power supply 215 is 0 to 16 V, and the voltage range of the low-speed variable voltage power supply 224 is 0 to 60 V. Assuming that the resistance value R of the resistance component 32 of the load device 3 is 1.6Ω, the voltage power supply 2
Since the total voltage range of 15 and 224 is 0-76V,
The current range is 0 to 47.5 A, while the current range is 27.5 to 37.5 A in the previous example.

【0017】また、電流設定値を20A、可変電圧電源
の初期値を10Vとすると、可変電圧電源の電圧値は2
0Aを流そうとして最高値16Vまで上昇するが、合計
電圧は16+10=26Vであるから、負荷装置電流は
16.25Aまでしか流れない。ここで、電圧電源22
の電圧設定信号221を電流電源21の必要最低限の
値、例えば1Vとしておけば、電圧検出信号231は設
定値よりも高いので可変の電圧電源224の電圧値を上
昇させ、最終的に電圧電源215の電圧値1V,電圧電
源224の電圧値31Vとなり、負荷装置3に設定値で
ある20Aを流すことができるようになる。このような
電圧分担とすることは、高価である高速電流電源21の
電力容量を減らし、その分安価な低速電圧電源22に負
担させ、装置全体のローコスト化に貢献する。負荷装置
3の抵抗成分が変動した場合にも、同様の動作により負
荷装置電流は設定信号に追随することができる。
If the current set value is 20 A and the initial value of the variable voltage power supply is 10 V, the voltage value of the variable voltage power supply is 2
The current rises to a maximum value of 16 V in an attempt to flow 0 A, but since the total voltage is 16 + 10 = 26 V, the load device current flows only up to 16.25 A. Here, the voltage power supply 22
If the voltage setting signal 221 is set to the minimum required value of the current power supply 21, for example, 1 V, the voltage value of the variable voltage power supply 224 is increased because the voltage detection signal 231 is higher than the set value, and finally the voltage The voltage value of the voltage 215 is 1 V and the voltage value of the voltage power supply 224 is 31 V, so that the load device 3 can flow the set value of 20 A. Such voltage sharing reduces the power capacity of the expensive high-speed current power supply 21 and causes the low-cost low-voltage power supply 22 to bear the burden, thereby contributing to lower cost of the entire apparatus. Even when the resistance component of the load device 3 fluctuates, the load device current can follow the setting signal by the same operation.

【0018】[0018]

【発明の効果】以上詳述した如く本発明によれば、小容
量で高速な電流電源と、低速で安価な電圧電源を組み合
わせることにより高速で安価な電流電源装置を実現する
ことができ、産業上の利用価値は大きい。
As described in detail above, according to the present invention, a high-speed and low-cost current power supply can be realized by combining a small-capacity and high-speed current power supply with a low-speed and low-cost voltage power supply. The above utility value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項1記載の電流電源装置の構成を
示す図である。
FIG. 1 is a diagram showing a configuration of a current power supply device according to claim 1 of the present invention.

【図2】本発明の請求項2記載の電流電源装置の構成を
示す図である。
FIG. 2 is a diagram showing a configuration of a current power supply device according to claim 2 of the present invention.

【図3】従来の電流電源装置の構成の一例を示す図であ
る。
FIG. 3 is a diagram showing an example of a configuration of a conventional current power supply device.

【図4】従来の電流電源内部構成を示す図である。FIG. 4 is a diagram showing the internal configuration of a conventional current power supply.

【符号の説明】[Explanation of symbols]

1、21 電流電源 2、15、22、215、224 電圧電源 3 負荷装置 11、211 電流設定信号 12、212 電流検出信号 13、213、222 減算器 14、223 電圧制御器 16、216 電流検出器 23 電圧検出器 31 インダクタンス
成分 32 抵抗成分 221 電圧設定信号
1, 21 Current power supply 2, 15, 22, 215, 224 Voltage power supply 3 Load device 11, 211 Current setting signal 12, 212 Current detection signal 13, 213, 222 Subtractor 14, 223 Voltage controller 16, 216 Current detector 23 voltage detector 31 inductance component 32 resistance component 221 voltage setting signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電流電源と電圧電源と負荷装置とを直列
接続した事を特徴とする電流電源装置。
1. A current power supply device wherein a current power supply, a voltage power supply and a load device are connected in series.
【請求項2】 第一の電圧電源と第二の電圧電源と負荷
装置を直列に接続し、負荷装置の電流を検出する電流検
出器と、第一の電圧電源の電圧を検出する電圧検出器と
を設け、前記電流検出器の出力により第一の電圧電源の
電圧を制御し、前記電圧検出器の出力により第二の電圧
電源の電圧を制御することを特徴とする電流電源装置。
2. A current detector for connecting a first voltage power supply, a second voltage power supply and a load device in series, and detecting a current of the load device, and a voltage detector for detecting a voltage of the first voltage power supply. Wherein the voltage of the first voltage power supply is controlled by the output of the current detector, and the voltage of the second voltage power supply is controlled by the output of the voltage detector.
JP10293175A 1998-10-15 1998-10-15 Current power unit Pending JP2000122731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10293175A JP2000122731A (en) 1998-10-15 1998-10-15 Current power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293175A JP2000122731A (en) 1998-10-15 1998-10-15 Current power unit

Publications (1)

Publication Number Publication Date
JP2000122731A true JP2000122731A (en) 2000-04-28

Family

ID=17791391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293175A Pending JP2000122731A (en) 1998-10-15 1998-10-15 Current power unit

Country Status (1)

Country Link
JP (1) JP2000122731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063192B2 (en) 2000-11-27 2006-06-20 Canon Kabushiki Kaisha Active vibration suppression apparatus, control method therefor, and exposure apparatus having active vibration suppression apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063192B2 (en) 2000-11-27 2006-06-20 Canon Kabushiki Kaisha Active vibration suppression apparatus, control method therefor, and exposure apparatus having active vibration suppression apparatus
US7275627B1 (en) 2000-11-27 2007-10-02 Canon Kabushiki Kaisha Active vibration suppression apparatus, control method therefor, and exposure apparatus having active vibration suppression apparatus

Similar Documents

Publication Publication Date Title
CN101345511B (en) Systems and methods for operating Z-source inverter inductors in a continuous current mode
Habbi et al. Speed control of induction motor using PI and V/F scalar vector controllers
Lee et al. Efficiency-optimized direct torque control of synchronous reluctance motor using feedback linearization
WO2006060537A1 (en) Method and apparatus for field weakening control in an ac motor drive system
Seibel et al. Field-oriented control of an induction machine in the field-weakening region with DC-link and load disturbance rejection
US4550281A (en) Synchronous motor control
JP2002204596A (en) Inverter-control type generator
JP2000122731A (en) Current power unit
Singh et al. An Improved Power Quality Based Sheppard–Taylor Converter Fed BLDC Motor Drive
Miles et al. Transfer functions of the slip-controlled induction machine
Kaboli et al. Online optimal flux controller for DTC based induction motor drives
JP3302854B2 (en) Induction motor control device
JP3192498B2 (en) Inverter device
Jarc et al. A graphical approach to AC drive classification
JP3863805B2 (en) Overcurrent protection device for inverter circuit
JP2010119248A (en) Power generating system
Tunyasrirut et al. Fuzzy logic controlled inverter-chopper for high performance of slip energy recovery system
Vegunta et al. Modelling of V–Hz and vector controlled ASDs in PSCAD/EMTDC for voltage sag studies
JP3287628B2 (en) Reactive power compensator
JPH05333953A (en) Static reactive power compensating device
Wu et al. Eigenvalue sensitivity analysis of GTO-CSI induction machine drives
Hosseinzadeh Soreshjani et al. A new arrangement of Z‐source AC–AC converter and its closed‐loop control system
Kreveld Driving to Succeed
JPS6343591A (en) Controller for inverter system
Melkebeek et al. Modelling of Inverter Supplied Rotating Field Machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219