JP2000121562A - Device for quantitatively determining coloring substance and storage medium for quantitatively determining coloring substance - Google Patents
Device for quantitatively determining coloring substance and storage medium for quantitatively determining coloring substanceInfo
- Publication number
- JP2000121562A JP2000121562A JP10294275A JP29427598A JP2000121562A JP 2000121562 A JP2000121562 A JP 2000121562A JP 10294275 A JP10294275 A JP 10294275A JP 29427598 A JP29427598 A JP 29427598A JP 2000121562 A JP2000121562 A JP 2000121562A
- Authority
- JP
- Japan
- Prior art keywords
- light
- transmitted light
- color
- quantified
- solid support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、試料中の特定成分
を呈色反応を用いて検出および定量するための呈色物定
量装置、およびそのような呈色物定量に用いるプログラ
ムを格納した呈色物用記憶媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for quantifying a colored substance for detecting and quantifying a specific component in a sample by using a color reaction, and a display storing a program used for quantifying such a colored substance. The present invention relates to a color medium storage medium.
【0002】[0002]
【従来の技術】従来、試料中に含まれる特定成分、例え
ば血液中に含まれるグルコース、コレステロールまたは
尿酸、あるいは尿中に含まれるグルコース、尿酸または
たんぱく質のような生物試料中の成分等の検出および定
量に際して、定量すべき特定成分と反応して呈色する試
薬を平板状の固相支持体上に保持した試験具、例えば全
体または一部に試薬を含浸した試験紙が広く利用されて
いる。2. Description of the Related Art Conventionally, detection and detection of specific components contained in a sample, for example, glucose, cholesterol or uric acid contained in blood, or components in a biological sample such as glucose, uric acid or protein contained in urine, and the like. At the time of quantification, a test device in which a reagent which reacts with a specific component to be quantified and develops a color on a flat solid support, for example, a test paper which is entirely or partially impregnated with the reagent is widely used.
【0003】このような試験具において、検出・定量す
べき成分と試薬との呈色反応により形成される呈色物の
呈色程度(発色強度)は、試料中に含まれる特定成分の
量に応じたものとなるので、この呈色程度を測定するこ
とによって試料中に含まれる特定成分の検出および定量
が可能である。呈色程度の測定方法には、目視による比
色法、あるいは分析装置を用いて呈色程度を光学的に測
定する光学的測定方法があるが、近年、測定精度、測定
速度および省力化等の点で優れた光学的測定方法が広く
用いられている。In such a test device, the degree of coloration (coloring intensity) of a color product formed by a color reaction between a component to be detected / quantified and a reagent depends on the amount of a specific component contained in a sample. As a result, the specific component contained in the sample can be detected and quantified by measuring the degree of coloration. As a method of measuring the degree of coloration, there is a colorimetric method by visual observation, or an optical measurement method of optically measuring the degree of coloration using an analyzer, but in recent years, measurement accuracy, measurement speed, labor saving, etc. Optical measurement methods that are superior in this respect are widely used.
【0004】光学的測定方法の一般的な手順は、まず、
定量すべき成分を含む試料を試験紙の試薬保持部位であ
る固相支持体に含浸させて呈色物を形成させた後、固相
支持体中の呈色物に光を照射して得られる反射光または
透過光に含まれ、呈色物を含有する固相支持体の色調に
対応する1種類の極大波長(呈色物の特異吸収波長)の
光(単色光)の強度を測定し、次いで、測定された強度
を、既知濃度の検出すべき成分を含むサンプルを用いて
予め作成した検量線と比較して試料中の特定成分を定量
化(ランク分け)するというものである。The general procedure of the optical measurement method is as follows.
A sample containing a component to be quantified is obtained by impregnating a solid support, which is a reagent holding portion of a test paper, with a solid support to form a color product, and then irradiating the color product in the solid support with light. Measuring the intensity of light (monochromatic light) of one type of maximum wavelength (specific absorption wavelength of the colored substance) corresponding to the color tone of the solid support containing the colored substance, which is included in the reflected light or transmitted light; Next, the measured intensity is compared with a calibration curve prepared in advance using a sample containing a known concentration of the component to be detected, and the specific component in the sample is quantified (ranked).
【0005】従って、光学的測定方法は、その測定に用
いる光の種類により、反射光を用いる測定方法である反
射法と、透過光を用いた測定方法である透過法との2種
類に大別される。Accordingly, optical measurement methods are roughly classified into two types, a reflection method, which is a measurement method using reflected light, and a transmission method, a measurement method using transmitted light, depending on the type of light used for the measurement. Is done.
【0006】前記反射法とは、固相支持体中の呈色物
に、呈色物の特異吸収波長の光を照射してその反射光量
を測定して得られる反射率または反射率に相当するパラ
メータに基づき呈色物を定量する方法である。現在、一
般的には呈色物の特異吸収波長の光の反射率を直接測定
する手法による呈色物の定量が行われているが、この手
法では試料中の夾雑物や固相支持体の表面状態等の影響
を受け易いことが指摘されている。[0006] The reflection method corresponds to a reflectance or a reflectance obtained by irradiating a colored substance in a solid support with light having a specific absorption wavelength of the colored substance and measuring the amount of reflected light. This is a method of quantifying a colored substance based on parameters. Currently, in general, the quantification of a colored substance is performed by a method of directly measuring the reflectance of light having a specific absorption wavelength of the colored substance, but in this method, contamination of a sample or solid support is measured. It has been pointed out that it is easily affected by surface conditions and the like.
【0007】即ち、反射光から直接的に呈色物を定量す
る反射法で測定される反射光量は、鏡面反射光量、(分
光分布が照射光と同一な拡散反射光量である)白色拡散
反射光量、および(その他の)拡散反射光量の3種類の
光量の総和であり、これらの光量の内、拡散反射光量は
呈色物の含有量に比例するものの、鏡面反射光量は固相
支持体の表面状態、特に乾湿の度合いにより変動し、白
色拡散反射光量も固相支持体の材質の粗密により変動す
ることが知られている。従って、そのような反射法で
は、測定用固相支持体と実質的に同じ状態の参照用固相
支持体についても測定を行い、反射光量に対する鏡面反
射光量および白色拡散光量変動の影響を除去する必要が
あるので、固相支持体の製造に均一な材質を用い、且つ
測定時の状態が均一となるように固相支持体の製造およ
び保存を制御して、固相支持体の表面状態による影響を
最小限に抑えなければならない。That is, the amount of reflected light measured by the reflection method for directly quantifying a color object from reflected light is the amount of specular reflected light, the amount of white diffuse reflected light (the spectral distribution of which is the same as the amount of diffusely reflected light). , And (other) the sum of the three types of diffuse reflected light, of which the diffuse reflected light is proportional to the content of the coloring matter, but the specular reflected light is the surface of the solid support. It is known that the amount of white diffuse reflection light varies depending on the state, particularly the degree of dryness and humidity, and the amount of white diffuse reflected light also varies depending on the density of the material of the solid support. Therefore, in such a reflection method, the measurement is also performed on the reference solid support in substantially the same state as the solid support for measurement, and the effects of the specular reflected light quantity and the white diffused light quantity fluctuation on the reflected light quantity are removed. Since it is necessary to use a uniform material for the manufacture of the solid support, and control the manufacture and storage of the solid support so that the state at the time of measurement is uniform, The impact must be minimized.
【0008】そのため近年になって、固相支持体の表面
状態による影響を抑え、参照用固相支持体の使用を省く
目的で、反射率に相当するパラメータを算出して呈色物
を定量する反射法が提案されている。それらの提案にお
いては、反射率に相当するパラメータとして反射光を分
光して得られる分光強度を採用し、測定反射光および参
照反射光の種々の分光強度の和、差または比等を用いる
ことにより固相支持体の表面状態による影響の抑止を図
っているものが多く、そのような例としては、呈色程度
の測定用の光として呈色程度による反射率の光学特性変
化量の多い波長またはその近傍の波長の光を選択し、そ
して参照用の光として呈色程度による光学特性変化量の
極めて小さい波長の光を選択して、それらの光から得ら
れる信号の差または比を求める等の演算処理を行う提案
(特公昭59−779号公報、特公昭61−12814
号公報参照)、反射光に含まれる赤色光、緑色光および
青色光のそれぞれの分光強度を測定する提案(特開平3
−220445号公報参照)あるいは反射光を国際照明
委員会(CIE)のXYZ表色系の三刺激値をもって表
す提案(特開平7−35744号公報参照)等を挙げる
ことができる。しかしながら、このように反射光の分光
強度を用いたとしても、それぞれの分光について測定さ
れる分光強度は、必然的に上記した3種類の反射光量を
全て含んでおり、その測定結果に固相支持体の表面状態
による影響がある程度含まれることを甘受しなければな
らない。[0008] Therefore, in recent years, a parameter corresponding to the reflectance is calculated to quantify the color product for the purpose of suppressing the influence of the surface state of the solid support and eliminating the use of the reference solid support. The reflection method has been proposed. In those proposals, the spectral intensity obtained by spectrally reflecting the reflected light is adopted as a parameter corresponding to the reflectance, and the sum, difference or ratio of various spectral intensities of the measured reflected light and the reference reflected light is used. In many cases, the effect of the surface state of the solid support is suppressed, such as a wavelength at which the amount of change in the optical characteristics of the reflectance due to the degree of coloration is large as light for measuring the degree of coloration. Select light of a wavelength in the vicinity, and select light of a wavelength with a very small change in optical characteristics due to the degree of coloration as reference light, and determine the difference or ratio of signals obtained from those lights. Proposal for performing arithmetic processing (JP-B-59-779, JP-B-61-12814)
And Japanese Patent Application Laid-Open No. Hei 3 (1994), which measures the spectral intensities of red light, green light and blue light contained in reflected light.
Japanese Patent Application Laid-Open No. 22035/220) or a proposal to represent reflected light by tristimulus values in the XYZ color system of the International Commission on Illumination (CIE) (see Japanese Patent Application Laid-Open No. 7-35744). However, even if the spectral intensity of the reflected light is used in this way, the spectral intensity measured for each spectrum necessarily includes all of the three types of reflected light amounts described above, and the solid-phase support is included in the measurement results. We must accept that the effects of body surface conditions are included to some extent.
【0009】これに対し、もう一つの光学的測定方法で
ある透過法は、固相支持体中の呈色物に呈色物の特異吸
収波長の光または特異吸収波長の単色光を含む光を照射
し、その透過光量を測定して得られる透過率または透過
率に相当するパラメータに基づいて呈色物を定量する方
法である。On the other hand, in the transmission method, which is another optical measurement method, light having a specific absorption wavelength or light having a specific absorption wavelength of a specific absorption wavelength of a colorant is applied to a colorant in a solid support. This is a method of irradiating and quantifying the color product based on the transmittance obtained by measuring the amount of transmitted light or a parameter corresponding to the transmittance.
【0010】そして、透過法では、反射光の代わりに透
過光を用いることにより、固相支持体の表面状態に影響
される変動、例えば反射法における鏡面反射光量や白色
拡散光量に応じた変動を除去し得ることが知られている
(例えば特開昭61−41947号公報参照)。In the transmission method, by using transmitted light instead of reflected light, fluctuations that are affected by the surface state of the solid support, such as fluctuations in accordance with the amount of specular reflection or the amount of white diffused light in the reflection method, are eliminated. It is known that it can be removed (see, for example, JP-A-61-41947).
【0011】さらに、透過光を分光して分光強度を測定
し、この分光強度を透過率に相当するパラメータとし
て、複数組の分光強度比に基づき呈色物を定量すること
により、反射光または透過光から直接的に呈色物を定量
する方法に比べて高精度に呈色物を分析し得ること、即
ち、反射光または透過光から直接的に呈色物を定量する
方法では呈色程度を単一波長(域)の反射光または透過
光の強度として1次元的に対応づけているが、異なる波
長(域)の反射光または透過光の強度から所定の組合せ
の複数の分光強度比を求め、これらのデータを2次元以
上の分布パターンと対応づけることにより、データ相互
の分析能を高めて測定精度の向上を図ることが可能であ
り、例えばたんぱく質、ビリルビンまたはウロビリノー
ゲンのような、濃度変化に対する呈色程度の変化率が小
さい成分の分析において特に分析結果の信頼性が向上す
ることも知られている(例えば特開平5−209836
号公報参照)。Further, the transmitted light is spectrally measured to measure the spectral intensity, and the spectral intensity is used as a parameter corresponding to the transmittance to quantify the color product based on a plurality of sets of spectral intensity ratios. It is possible to analyze a color object with higher precision than a method of directly quantifying a color object from light, that is, in a method of directly quantifying a color object from reflected light or transmitted light, the degree of coloration is reduced. Although one-dimensionally correlated as the intensity of reflected light or transmitted light of a single wavelength (region), a plurality of spectral intensity ratios of a predetermined combination are obtained from the intensity of reflected light or transmitted light of different wavelengths (region). By associating these data with a distribution pattern of two or more dimensions, it is possible to enhance the mutual analysis ability of the data and improve the measurement accuracy. For example, protein, bilirubin or urobilinogen, In particular the reliability of the analysis results are also known to improve (e.g., JP-A in the analysis of components of the rate of change is less about the color former with respect to reduction 5-209836
Reference).
【0012】[0012]
【発明が解決しようとする課題】しかしながら、いづれ
の透過法においても、照射した光が固相支持体を透過す
るに際して、照射光の一部は呈色物および/または固相
支持体によって散乱させられて拡散透過光となり、残り
は固相支持体内で何物にも接触せずに透過する平行透過
光となるので、透過光量の測定にあたっては、拡散透過
光量と(照射光と同じ分光分布を有する透過光分光量で
ある)平行透過光量とを分別して測定精度の向上を図る
ことが望ましいが、従来の方法ではこの点が考慮されて
いない。また、上記拡散透過光量を決定する透過光の散
乱の度合いは固相支持体の材質の相違により大きく変動
するので、ランバート・ベールの法則を適用するために
透過光の光路長を決定することが困難である。However, in any of the transmission methods, when the irradiated light is transmitted through the solid support, a part of the irradiated light is scattered by the colorant and / or the solid support. The transmitted light is diffused and transmitted, and the rest is parallel transmitted light that passes through the solid support without contacting anything. Therefore, when measuring the amount of transmitted light, the amount of diffuse transmitted light and (the same spectral distribution as the irradiation light) It is desirable to improve the measurement accuracy by separating the parallel transmitted light amount (which is the transmitted light spectral amount), but this point is not considered in the conventional method. In addition, since the degree of scattering of transmitted light that determines the amount of diffuse transmitted light greatly varies depending on the material of the solid support, it is necessary to determine the optical path length of the transmitted light in order to apply Lambert-Beer's law. Have difficulty.
【0013】即ち、一般的に、光量の対数の逆数が濃度
に比例する(ベールの法則)ことが知られているので、
測定波長(域)において光学的に透明で光路長一定の媒
体中に呈色物が存在すると見なせる場合には、透過光量
(R)と濃度(C)との関係は式:α(R)=10−C
で表され、濃度を対数目盛、透過光量を等間隔目盛とし
たグラフ上に濃度と透過光量をプロットすれば直線が得
られるはずであるが、従来の方法では、呈色物を含む固
相支持体を透過した全ての透過光の透過光量を採用して
いたために、種々の反射吸収を受けた光路長不定の複数
の透過光成分が含まれることとなり、透過光量と呈色物
濃度との関係に一定の法則を見出だすことが困難であ
り、そのために精度の向上に限界が生じていた。That is, it is generally known that the reciprocal of the logarithm of the amount of light is proportional to the density (Beer's law).
When it can be considered that a color object exists in a medium that is optically transparent and has a constant optical path length at the measurement wavelength (region), the relationship between the transmitted light amount (R) and the density (C) is expressed by the following equation: α (R) = 10- C
It is supposed that a straight line should be obtained by plotting the density and the amount of transmitted light on a graph in which the concentration is expressed on a logarithmic scale and the amount of transmitted light is equally spaced, but in the conventional method, a solid phase support containing a colored substance should be obtained. Since the amount of transmitted light of all transmitted light that has passed through the body is used, a plurality of transmitted light components having an indeterminate optical path length that have undergone various reflections and absorptions are included, and the relationship between the transmitted light amount and the density of the coloring matter is included. However, it is difficult to find a certain law, which limits the improvement of accuracy.
【0014】上記問題点を解決し得る透過法の特異な変
法として、サンプル溶液を1つのネットを有するサンプ
ルキャリアと接触させ、ネットの網目にサンプル溶液の
液体フィルムを形成させ、液体フィルムを乾燥させて乾
燥フィルムとした後、光ビーム束を前記乾燥フィルムに
垂直に照射し透過した透過光を検出し、検出透過光を分
光分析すると共に、乾燥フィルムの有効容量を求め、サ
ンプル溶液中に含まれる1つまたは数個の被分析物の濃
度を計算する方法が提案されている(特開平8−271
452号公報参照)。As a unique modification of the permeation method which can solve the above problems, a sample solution is brought into contact with a sample carrier having one net, a liquid film of the sample solution is formed on the net of the net, and the liquid film is dried. After being dried, the dried film is irradiated with a light beam beam perpendicularly to the dried film to detect the transmitted light transmitted therethrough, and the detected transmitted light is spectrally analyzed, and the effective volume of the dried film is determined and included in the sample solution. A method for calculating the concentration of one or several analytes has been proposed (JP-A-8-271).
No. 452).
【0015】しかしながら、この提案方法では試薬を保
持する固相支持体を用いないので、分析時に試薬を調製
する等の手間が掛る等、簡便性および携帯性の点で不利
である。さらに、例えば試薬を含浸した試験紙のような
市販の試験具を使用できないことは非常に不利な点であ
る。However, this proposed method is disadvantageous in terms of simplicity and portability, because it does not use a solid support for holding the reagent, and requires time and effort to prepare the reagent during analysis. Furthermore, it is a great disadvantage that commercially available test devices such as test papers impregnated with reagents cannot be used.
【0016】また、一般的に、固相支持体は光学的に透
明なものでは無く、その透過光量が少ないために、比較
的強い照射光の照射および/または高感度の検出器の使
用等により検出透過光量を増加させるか、あるいは(光
量から独立したパラメータである)透過光の分光強度の
比を用いて透過光量の影響を除く等の対策を講じて測定
精度の向上を図ることが望ましいが、従来提案されてい
る透過法の多くはそのような対策を講じておらず不利で
ある。In general, since the solid support is not optically transparent and has a small amount of transmitted light, it is necessary to irradiate relatively strong irradiation light and / or use a highly sensitive detector. It is desirable to improve the measurement accuracy by increasing the amount of detected transmitted light or taking measures such as eliminating the influence of the transmitted light using the ratio of the spectral intensity of the transmitted light (a parameter independent of the light). However, many of the conventionally proposed transmission methods are disadvantageous because such measures are not taken.
【0017】固相支持体が光学的に半透明である場合に
は、固相支持体中に含まれる呈色物を透過光の測定によ
り定量する方法としてオパールグラス法(柴田和雄著、
スペクトル測定と分光光度計、第18頁、1984年)
が知られている。しかし、この方法は、未解決の問題点
を含むこと、実施に適した測定器の製作にコストがかさ
むこと、あるいは取り扱える固相支持体が限定されてい
ること等の理由から、研究目的以外の測定、特に実用的
な簡易測定法では殆ど利用されていないのが実情のよう
である。In the case where the solid support is optically translucent, the opal glass method (written by Kazuo Shibata,
Spectral Measurement and Spectrophotometer, p. 18, 1984)
It has been known. However, this method is not intended for research purposes, because it involves unresolved problems, increases the cost of producing suitable measuring instruments, or limits the solid support that can be handled. It seems that the measurement is hardly used, especially in practical simple measuring methods.
【0018】さらに、反射法であると透過法であるとに
拘らず、従来提案されている光学的測定方法において
は、定量すべき呈色物と同様の特異吸収波長を有する夾
雑物(共存呈色物)が試料中に共存している場合、例え
ば全血や血清を試料としたときに含まれるヘモグロビン
やビリルビン等の共存呈色物が存在している場合には、
それら共存呈色物の影響を排除する補正が必要である
が、従来の光学的測定方法では共存呈色物の影響を充分
に補正し得ているとは言い難い。Furthermore, regardless of whether the method is a reflection method or a transmission method, in the conventionally proposed optical measurement method, a contaminant having a specific absorption wavelength similar to that of the color substance to be quantified (coexistence) Color) coexists in the sample, for example, when there is a coexisting color product such as hemoglobin or bilirubin contained when whole blood or serum is used as a sample,
Correction for eliminating the effects of the coexisting color products is necessary, but it is hard to say that the conventional optical measurement method has sufficiently corrected the effects of the coexisting color products.
【0019】即ち、従来の固相支持体を用いた呈色物定
量法では、特に試料として生物材料を用いた場合に、検
出および定量すべき呈色物を簡便かつ高精度に定量する
ことははなはだ困難であった。That is, in the conventional method for quantifying a colored substance using a solid support, particularly when a biological material is used as a sample, it is not possible to simply and accurately quantify a colored substance to be detected and quantified. It was very difficult.
【0020】本発明は、上記課題に鑑みなされたもので
あり、固相支持体を用いて検出・定量すべき呈色物を簡
便かつ高精度に定量し得る呈色物定量法を実現し得る呈
色物定量装置、およびそのような呈色物定量のためのプ
ログラムを格納した呈色物定量用記憶媒体を提供するこ
とを目的とする。The present invention has been made in view of the above problems, and can realize a method for quantitatively determining a colored substance that can be simply and highly accurately determined using a solid-phase support. It is an object of the present invention to provide a color object quantifying device and a storage medium for color object quantification storing a program for such color object quantification.
【0021】[0021]
【課題を解決するための手段】上記課題を解決するため
に、本発明の呈色物定量装置は、試料と、前記試料中の
特定成分と呈色反応する試薬を保持する固相支持体を有
する試験具とを接触させて前記固相支持体中に形成され
る、定量すべき呈色物の呈色強度を光学的に測定するこ
とにより前記固相支持体中の定量すべき呈色物の濃度を
求める呈色物定量装置であって、前記固相支持体に光を
照射する光照射手段と、前記固相支持体からの透過光を
受光して光量を測定する透過光測定手段と、測定された
透過光光量および予め取得しておいた基準値を用いて前
記定量すべき呈色物の濃度を演算して求める濃度演算手
段とを備え、前記基準値が、種々の透過光をその性状に
より前記定量すべき呈色物からの散乱透過光成分および
その他の複数の成分に分別し、各透過光成分を予め設定
した特定の分光分布を有する複数の光に分光して得られ
る分光透過光光量から演算して求まる、各分光の相対強
度比であり、前記透過光測定手段において前記固相支持
体からの透過光を前記基準値と同じ複数の光に分光して
分光透過光光量を測定し、前記濃度演算手段において前
記透過光を前記基準値と同じ複数の成分に分別し、且つ
各透過光成分を分光した前記複数の光の相対強度比を算
定し、得られた相対強度比と前記基準値を用い、前記定
量すべき呈色物のみによる散乱透過光の光量または前記
光量に含まれる定量すべき呈色物の特異吸収波長を有す
る分光の光量を定量指標として、前記定量すべき呈色物
の濃度を演算して求めることを特徴とする。本発明の呈
色物定量装置は、このような構成により、検出・定量す
べき呈色物を簡便かつ高精度に定量し得る。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a colorimetric substance quantification apparatus comprising: a sample; and a solid support for holding a reagent which causes a color reaction with a specific component in the sample. A color object to be quantified in the solid support by optically measuring the color intensity of the color object to be quantified, which is formed in the solid support by contact with a test device having A color quantification device for determining the concentration of light, light irradiation means for irradiating the solid support with light, transmitted light measurement means for receiving light transmitted from the solid support and measuring the amount of light A density calculating means for calculating the density of the color object to be quantified using the measured amount of transmitted light and a reference value acquired in advance, wherein the reference value is used to calculate various types of transmitted light. Depending on its properties, the scattered transmitted light component from the colored material to be quantified and other plural components Is a relative intensity ratio of each spectrum obtained by calculating from the amount of spectrally transmitted light obtained by spectrally separating each transmitted light component into a plurality of lights having a predetermined specific spectral distribution. In the means, the transmitted light from the solid support is separated into a plurality of lights equal to the reference value to measure the amount of spectrally transmitted light, and the density calculation means converts the transmitted light into a plurality of components equal to the reference value. The light intensity of the scattered transmitted light only by the color object to be quantified is calculated by using the obtained relative intensity ratio and the reference value to calculate the relative intensity ratio of the plurality of lights that have been separated and spectrally separated for each transmitted light component. Alternatively, the concentration of the color substance to be quantified is calculated and obtained using the light quantity of the spectrum having the specific absorption wavelength of the color substance to be quantified contained in the light quantity as a quantitative index. With such a configuration, the color product quantification apparatus of the present invention can easily and accurately quantify a color product to be detected and quantified.
【0022】さらに、上記課題を解決するために、本発
明の呈色物定量用記憶媒体は、試料と、前記試料中の特
定成分と呈色反応する試薬を保持する固相支持体を有す
る試験具とを接触させて前記固相支持体中に形成され
る、定量すべき呈色物の呈色強度を光学的に測定するこ
とにより前記固相支持体中の定量すべき呈色物の濃度を
求める呈色物定量法に用いるプログラムを格納した記憶
媒体であって、種々の透過光をその性状により前記定量
すべき呈色物からの散乱透過光成分およびその他の複数
の成分に分別し、各透過光成分を予め設定した特定の分
光分布を有する複数の光に分光して得られる分光透過光
光量から演算により各分光の相対強度比を求めて参照用
の基準値を取得する基準値取得ステップと、前記固相支
持体に光を照射して得られる透過光を、前記基準値取得
ステップと同じ複数の光に分光して分光透過光光量を測
定する透過光測定ステップと、前記透過光を前記基準値
取得ステップと同じ複数の成分に分別する分別ステップ
と、前記分光透過光光量および前記基準値に基づいて前
記定量すべき呈色物からの散乱透過光成分のみの光量を
算定する成分光量算定ステップと、前記定量すべき呈色
物からの散乱透過光成分のみの光量から前記定量すべき
呈色物の濃度を求める濃度算出ステップとを含むことを
特徴とする。このような構成により、本発明の呈色物定
量用記憶媒体は、このような構成により、検出・定量す
べき呈色物を簡便かつ高精度に定量し得る呈色物定量法
を提供し得る。Further, in order to solve the above-mentioned problems, a storage medium for quantitatively determining a colored substance according to the present invention is a test medium having a solid support which holds a sample and a reagent which undergoes a color reaction with a specific component in the sample. Concentration of the color substance to be quantified in the solid support by optically measuring the color intensity of the color substance to be quantified, which is formed in the solid support by contacting with a tool. Is a storage medium storing a program used for the colorant quantitative method for determining, the transmitted light is separated into the scattered transmitted light component from the colorant to be quantified and other plural components by its properties, A reference value acquisition for obtaining a reference value for reference by obtaining a relative intensity ratio of each spectrum by calculation from the amount of spectral transmission light obtained by spectrally separating each transmitted light component into a plurality of lights having a predetermined specific spectral distribution. Irradiating the solid support with light A transmitted light measuring step of measuring the amount of spectrally transmitted light by separating the transmitted light into a plurality of lights same as the reference value obtaining step, and a separating step of separating the transmitted light into a plurality of components same as the reference value obtaining step Calculating a light amount of only the scattered transmitted light component from the color object to be quantified based on the spectral transmitted light amount and the reference value; and scattering from the color object to be quantified. A density calculating step of obtaining the density of the color object to be quantified from the light amount of only the transmitted light component. With such a configuration, the storage medium for color object quantification of the present invention can provide a color object quantification method that can easily and accurately quantify a color object to be detected and quantified by such a configuration. .
【0023】さらに、上記課題を解決するために、本発
明の呈色物定量用記憶媒体は、試料と、前記試料中の特
定成分と呈色反応する試薬を保持する固相支持体を有
し、且つ光学的に読取可能な符号からなる試験具識別部
を備える試験具とを接触させて前記固相支持体中に形成
される、定量すべき呈色物の呈色強度を光学的に測定す
ることにより前記固相支持体中の定量すべき呈色物の濃
度を求める呈色物定量法に用いるプログラムを格納した
記憶媒体であって、予め前記試験具識別部の符号の解読
表を取得し、且つ種々の透過光をその性状により前記定
量すべき呈色物からの散乱透過光成分およびその他の複
数の成分に分別し、各透過光成分を予め設定した特定の
分光分布を有する複数の光に分光して得られる分光透過
光光量から演算により各分光の相対強度比を求めて参照
用の基準値を取得する基準値取得ステップと、前記固相
支持体に光を照射して得られる透過光を、前記基準値取
得ステップと同じ複数の光に分光して分光透過光光量を
測定する透過光測定ステップと、前記透過光を前記基準
値取得ステップと同じ複数の成分に分別する分別ステッ
プと、前記分光透過光光量から前記試験具識別部の符号
を分別し、前記試験具識別部の符号の解読表と照合して
前記符号を解読する符号解読ステップと、前記符号解読
ステップに基づき演算に用いる後段のステップの種類お
よび基準値を決定する決定ステップと、前記決定ステッ
プの決定に従い、前記分光透過光光量および前記基準値
を用いて、前記定量すべき呈色物の濃度を求める濃度算
出ステップとを含むことを特徴とする。このような構成
により、本発明の呈色物定量用記憶媒体は、検出・定量
すべき呈色物を簡便かつ高精度に定量し得る呈色物定量
法を提供し得る。Further, in order to solve the above-mentioned problems, a storage medium for quantitatively determining a colored substance according to the present invention has a sample and a solid support for holding a reagent that undergoes a color reaction with a specific component in the sample. And optically measuring the color intensity of the color object to be quantified, which is formed in the solid support by contacting with a test device having a test device identification portion composed of an optically readable code. A storage medium storing a program used for a colorant quantification method for determining the concentration of a colorant to be quantified in the solid support, and obtaining a decoding table of the code of the test device identification unit in advance. And, various transmitted light is separated into a scattered transmitted light component from the color object to be quantified and a plurality of other components by its properties, and each transmitted light component has a predetermined specific spectral distribution. Calculation based on the amount of spectrally transmitted light A reference value obtaining step of obtaining a reference value for reference by obtaining a relative intensity ratio of each spectrum, and transmitting light obtained by irradiating the solid support with light, a plurality of light beams identical to the reference value obtaining step. A transmitted light measuring step of measuring the amount of spectrally transmitted light by dispersing the light into a plurality of components; a separating step of separating the transmitted light into the same plurality of components as the reference value obtaining step; A code decoding step of classifying the code, collating the code with a code decoding table of the test tool identification unit, and decoding the code; and determining a type and a reference value of a subsequent step used for an operation based on the code decoding step. And a density calculating step of obtaining the density of the color object to be quantified using the spectral transmitted light amount and the reference value according to the determination in the determining step. With such a configuration, the storage medium for quantitatively determining a colored substance of the present invention can provide a method for quantitatively determining a colored substance that can easily and accurately quantify a colored substance to be detected and quantified.
【0024】さらに、上記課題を解決するために、本発
明の呈色物定量用記憶媒体は、試料と、前記試料中の特
定成分と呈色反応する試薬を保持する固相支持体を有す
る試験具とを接触させて前記固相支持体中に形成され
る、定量すべき呈色物の呈色強度を光学的に測定するこ
とにより前記固相支持体中の定量すべき呈色物の濃度を
求める呈色物定量法に用いるプログラムを格納した記憶
媒体であって、種々の透過光をその性状により前記定量
すべき呈色物からの散乱透過光成分およびその他の複数
の成分に分別し、各透過光成分を前記定量すべき呈色物
の特異吸収波長を有する光およびその他の予め設定した
特定の分光分布を有する複数の光に分光して得られる分
光透過光光量から演算により各分光の相対強度比を求め
て参照用の基準値を取得する基準値取得ステップと、前
記固相支持体に光を照射して得られる透過光を、前記基
準値取得ステップと同じ複数の光に分光して分光透過光
光量を測定する透過光測定ステップと、前記透過光を前
記基準値取得ステップと同じ複数の成分に分別する分別
ステップと、前記基準値を用いて前記分光透過光光量に
占める前記定量すべき呈色物からの散乱透過光成分のみ
の光量の割合を算定する成分光量割合算定ステップと、
前記成分光量割合算定ステップで求めた前記割合に基づ
き前記定量すべき呈色物からの散乱透過光成分に含まれ
る前記定量すべき呈色物の特異吸収波長を有する光の光
量を算定する成分分光光量算定ステップと、前記定量す
べき呈色物の特異吸収波長を有する光の光量から前記定
量すべき呈色物の濃度を求める濃度算出ステップとを含
むことを特徴とする。このような構成により、本発明の
呈色物定量用記憶媒体は、このような構成により、検出
・定量すべき呈色物を簡便かつ高精度に定量し得る呈色
物定量法を提供し得る。Further, in order to solve the above-mentioned problems, a storage medium for quantitatively determining a colored substance according to the present invention comprises a test medium having a sample and a solid support for holding a reagent that undergoes a color reaction with a specific component in the sample. Concentration of the color substance to be quantified in the solid support by optically measuring the color intensity of the color substance to be quantified, which is formed in the solid support by contacting with a tool. Is a storage medium storing a program used for the colorant quantitative method for determining, the transmitted light is separated into the scattered transmitted light component from the colorant to be quantified and other plural components by its properties, Each transmitted light component is calculated from the amount of spectrally transmitted light obtained by dispersing the transmitted light component into light having a specific absorption wavelength of the color product to be quantified and other light having a predetermined specific spectral distribution. Determine the relative intensity ratio and set a reference value for reference. A reference value obtaining step to obtain, and a transmitted light measuring step of measuring the amount of spectrally transmitted light by separating the transmitted light obtained by irradiating the solid support with light, into the same plurality of lights as the reference value obtaining step. Separating the transmitted light into the same plurality of components as the reference value obtaining step, and using only the scattered transmitted light component from the color object to be quantified in the spectral transmitted light amount using the reference value. A component light amount ratio calculating step of calculating a light amount ratio,
Component spectroscopy for calculating the light amount of light having a specific absorption wavelength of the color object to be quantified contained in the scattered transmitted light component from the color object to be quantified based on the ratio obtained in the component light amount ratio calculation step. It is characterized by including a light quantity calculating step and a density calculating step of obtaining the density of the color substance to be quantified from the light quantity of light having the specific absorption wavelength of the color substance to be quantified. With such a configuration, the storage medium for color object quantification of the present invention can provide a color object quantification method that can easily and accurately quantify a color object to be detected and quantified by such a configuration. .
【0025】また、好ましくは、請求項2〜4におい
て、前記濃度算出ステップにおいて、相対強度比図を用
いて前記定量すべき呈色物の濃度を算出することを特徴
とする。このような構成により、検出・定量すべき呈色
物をさらに簡便かつ高精度に定量する呈色物定量法を提
供し得る。Preferably, in the second to fourth aspects, in the density calculating step, the density of the color substance to be quantified is calculated using a relative intensity ratio diagram. With such a configuration, it is possible to provide a method for quantitatively determining a color product that more easily and accurately quantifies a color product to be detected and quantified.
【0026】また、好ましくは、請求項2〜5におい
て、前記試料が前記定量すべき呈色物以外に共存呈色物
を含む試料であり、そして前記固相支持体が測定に用い
る光の波長域において光学的に透明な固相支持体であ
り、且つ前記基準値として前記共存呈色物による散乱透
過光に対応する光の分光の相対強度比を必ず含むことを
特徴とする。このような構成により、特に生物試料にお
いて、検出・定量すべき呈色物を簡便に定量する呈色物
定量法を提供し得る。Preferably, the sample according to any one of claims 2 to 5, wherein the sample contains a coexisting color product in addition to the color product to be quantified, and the solid-phase support has a wavelength of light used for measurement. A solid support that is optically transparent in the region, and always includes, as the reference value, a relative intensity ratio of the spectrum of light corresponding to the scattered transmitted light by the coexisting color product. With such a configuration, it is possible to provide a method for quantitatively determining a colored substance that can easily determine the colored substance to be detected and quantified, particularly in a biological sample.
【0027】さらに、上記課題を解決するために、本発
明の呈色物定量用記憶媒体は、試料と、前記試料中の特
定成分と呈色反応する試薬を保持する固相支持体を有す
る試験具とを接触させて前記固相支持体中に形成され
る、定量すべき呈色物の呈色強度を光学的に測定するこ
とにより前記固相支持体中の定量すべき呈色物の濃度を
求める呈色物定量法に用いるプログラムを格納した記憶
媒体であって、種々の透過光をその性状により前記定量
すべき呈色物からの散乱透過光成分およびその他の複数
の成分に分別し、各透過光成分を予め設定した特定の分
光分布を有する複数の光に分光して得られる分光透過光
光量から演算により各分光の相対強度比を求めて参照用
の基準値を取得する基準値取得ステップと、前記固相支
持体に光を照射して得られる透過光を、前記基準値取得
ステップと同じ複数の光に分光して分光透過光光量を測
定する透過光測定ステップと、前記透過光を前記基準値
取得ステップと同じ複数の成分に分別する分別ステップ
と、前記分光透過光光量および前記基準値から相対強度
比図を作成する相対強度比図作成ステップと、前記相対
強度比図に基づいて前記定量すべき呈色物からの散乱透
過光成分のみの光量を算定する成分光量算定ステップ
と、前記定量すべき呈色物からの散乱透過光成分のみの
光量から前記定量すべき呈色物の濃度を求める濃度算出
ステップとを含むことを特徴とする。本発明の呈色物定
量用記憶媒体は、このような構成により、特に生物試料
において検出・定量すべき呈色物を簡便かつ高精度に定
量し得る呈色物定量法を提供し得る。Further, in order to solve the above-mentioned problems, a storage medium for quantitatively determining a colored substance of the present invention comprises a test medium having a sample and a solid-phase support for holding a reagent that undergoes a color reaction with a specific component in the sample. Concentration of the color substance to be quantified in the solid support by optically measuring the color intensity of the color substance to be quantified, which is formed in the solid support by contacting with a tool. Is a storage medium storing a program used for the colorant quantitative method for determining, the transmitted light is separated into the scattered transmitted light component from the colorant to be quantified and other plural components by its properties, A reference value acquisition for obtaining a reference value for reference by obtaining a relative intensity ratio of each spectrum by calculation from the amount of spectral transmission light obtained by spectrally separating each transmitted light component into a plurality of lights having a predetermined specific spectral distribution. Irradiating the solid support with light A transmitted light measuring step of measuring the amount of spectrally transmitted light by separating the transmitted light into a plurality of lights same as the reference value obtaining step, and a separating step of separating the transmitted light into a plurality of components same as the reference value obtaining step A relative intensity ratio diagram creating step of creating a relative intensity ratio diagram from the spectral transmitted light amount and the reference value, and only the scattered transmitted light component from the color object to be quantified based on the relative intensity ratio diagram And a density calculating step of calculating the density of the color object to be quantified from the light intensity of only the scattered transmitted light component from the color object to be quantified. . The color medium quantitative storage medium of the present invention having such a configuration can provide a color object quantitative method that can easily and accurately quantify a color object to be detected and quantified particularly in a biological sample.
【0028】さらに、上記課題を解決するために、本発
明の呈色物定量用記憶媒体は、試料と、前記試料中の特
定成分と呈色反応する試薬を保持する固相支持体を有す
る試験具とを接触させて前記固相支持体中に形成され
る、定量すべき呈色物の呈色強度を光学的に測定するこ
とにより前記固相支持体中の定量すべき呈色物の濃度を
求める呈色物定量法に用いるプログラムを格納した記憶
媒体であって、種々の透過光をその性状により前記定量
すべき呈色物からの散乱透過光成分およびその他の複数
の成分に分別し、各透過光成分を前記定量すべき呈色物
の特異吸収波長を有する光およびその他の予め設定した
特定の分光分布を有する複数の光に分光して得られる分
光透過光光量から演算により各分光の相対強度比を求め
て参照用の基準値を取得する基準値取得ステップと、前
記固相支持体に光を照射して得られる透過光を、前記基
準値取得ステップと同じ複数の光に分光して分光透過光
光量を測定する透過光測定ステップと、前記透過光を前
記基準値取得ステップと同じ複数の成分に分別する分別
ステップと、前記分光透過光光量および前記基準値から
相対強度比図を作成する相対強度比図作成ステップと、
前記相対強度比図に基づいて前記分光透過光量に占める
前記定量すべき呈色物からの散乱透過光成分のみの光量
の割合を算定する成分光量割合算定ステップと、前記成
分光量割合算定ステップで求めた前記割合に基づき前記
定量すべき呈色物からの散乱透過光成分に含まれる前記
定量すべき呈色物の特異吸収波長を有する光の光量を算
定する成分分光光量算定ステップと、前記定量すべき呈
色物の特異吸収波長を有する光の光量から前記定量すべ
き呈色物の濃度を求める濃度算出ステップとを含むこと
を特徴とする。このような構成により、検出・定量すべ
き呈色物をさらに簡便かつ高精度に定量する呈色物定量
法を提供し得る。Further, in order to solve the above-mentioned problems, a storage medium for quantitatively determining a colored substance according to the present invention comprises a test medium having a sample and a solid support for holding a reagent which undergoes a color reaction with a specific component in the sample. Concentration of the color substance to be quantified in the solid support by optically measuring the color intensity of the color substance to be quantified, which is formed in the solid support by contacting with a tool. Is a storage medium storing a program used for the colorant quantitative method for determining, the transmitted light is separated into the scattered transmitted light component from the colorant to be quantified and other plural components by its properties, Each transmitted light component is calculated from the amount of spectrally transmitted light obtained by dispersing the transmitted light component into light having a specific absorption wavelength of the color product to be quantified and other light having a predetermined specific spectral distribution. Determine the relative intensity ratio and set a reference value for reference. A reference value obtaining step to obtain, and a transmitted light measuring step of measuring the amount of spectrally transmitted light by separating the transmitted light obtained by irradiating the solid support with light, into the same plurality of lights as the reference value obtaining step. A sorting step of sorting the transmitted light into the same plurality of components as the reference value obtaining step, and a relative intensity ratio diagram creating step of creating a relative intensity ratio diagram from the spectral transmitted light amount and the reference value,
A component light amount ratio calculating step of calculating a ratio of a light amount of only the scattered transmitted light component from the color object to be quantified to the spectral transmitted light amount based on the relative intensity ratio diagram, and a component light amount ratio calculating step. A component spectral light amount calculating step of calculating an amount of light having a specific absorption wavelength of the color object to be quantified contained in the scattered transmitted light component from the color object to be quantified based on the ratio. A density calculating step of calculating the density of the color product to be quantified from the amount of light having a specific absorption wavelength of the color product to be quantified. With such a configuration, it is possible to provide a method for quantitatively determining a color product that more easily and accurately quantifies a color product to be detected and quantified.
【0029】さらに、上記課題を解決するために、本発
明の呈色物定量用記憶媒体は、試料と、前記試料中の特
定成分と呈色反応する試薬を保持する固相支持体を有す
る試験具とを接触させて前記固相支持体中に形成され
る、定量すべき呈色物の呈色強度を光学的に測定するこ
とにより前記固相支持体中の定量すべき呈色物の濃度を
求める呈色物定量法に用いるプログラムを格納した記憶
媒体であって、種々の透過光をその性状により前記定量
すべき呈色物からの散乱透過光成分およびその他の複数
の成分に分別し、各透過光成分を予め設定した特定の分
光分布を有する複数の光に分光して得られる分光透過光
光量から演算により各分光の相対強度比を求めて参照用
の基準値を取得する基準値取得ステップと、前記試料と
前記試験具との接触後に可能な限り速やかに、前記固相
支持体に光を照射して得られる透過光を、前記基準値取
得ステップと同じ複数の光に分光して分光透過光光量を
測定し始め、これを一定の時間間隔で前記分光透過光光
量の測定値が安定するまで複数回反復して実施する透過
光測定ステップと、前記透過光を前記基準値取得ステッ
プと同じ複数の成分に分別する分別ステップと、前記分
光透過光光量および前記基準値から相対強度比図を作成
する相対強度比図作成ステップと、前記相対強度比図に
基づいて前記接触時点における前記定量すべき呈色物形
成前の固相支持体からの透過光の分光透過光光量および
相対強度比を比定する比定ステップと、前記相対強度比
および前記比定工程で得られる比定値に基づき前記定量
すべき呈色物からの散乱透過光成分のみの光量を算定す
る成分光量算定ステップと、前記定量すべき呈色物から
の散乱透過光成分のみの光量から前記定量すべき呈色物
の濃度を求める濃度算出ステップとを含むことを特徴と
する。本発明の呈色物定量用記憶媒体は、このような構
成により、特に生物試料において、バックグラウンドに
よる影響を排除し、検出・定量すべき呈色物を高精度に
定量する呈色物定量法を提供し得る。Further, in order to solve the above-mentioned problems, a storage medium for quantitatively determining a colored substance according to the present invention comprises a test medium having a solid support which holds a sample and a reagent which undergoes a color reaction with a specific component in the sample. Concentration of the color substance to be quantified in the solid support by optically measuring the color intensity of the color substance to be quantified, which is formed in the solid support by contacting with a tool. Is a storage medium storing a program used for the colorant quantitative method for determining, the transmitted light is separated into the scattered transmitted light component from the colorant to be quantified and other plural components by its properties, A reference value acquisition for obtaining a reference value for reference by obtaining a relative intensity ratio of each spectrum by calculation from the amount of spectral transmission light obtained by spectrally separating each transmitted light component into a plurality of lights having a predetermined specific spectral distribution. And contacting the sample with the test device. As soon as possible, the transmitted light obtained by irradiating the solid support with light is separated into the same plurality of lights as in the reference value obtaining step, and the amount of spectrally transmitted light is measured. A transmitted light measurement step repeatedly performed a plurality of times until the measured value of the spectral transmitted light amount is stabilized at a time interval, and a separation step of separating the transmitted light into a plurality of components same as the reference value acquisition step, A relative intensity ratio diagram creating step of creating a relative intensity ratio diagram from the spectral transmitted light quantity and the reference value, and a solid phase support before the formation of the color object to be quantified at the contact time based on the relative intensity ratio diagram A determining step of determining a spectral transmitted light amount and a relative intensity ratio of transmitted light from the body; and a scattered transmission from the color object to be quantified based on the relative intensity ratio and the determined value obtained in the determining step. Light component And a density calculating step of calculating the density of the color object to be quantified from the light intensity of only the scattered transmitted light component from the color object to be quantified. . With such a configuration, the storage medium for quantitatively determining a colored substance of the present invention eliminates the influence of the background, particularly in a biological sample, and accurately measures the colored substance to be detected and quantified. Can be provided.
【0030】さらに、上記課題を解決するために、本発
明の呈色物定量用記憶媒体は、試料と、前記試料中の特
定成分と呈色反応する試薬を保持する固相支持体を有す
る試験具とを接触させて前記固相支持体中に形成され
る、定量すべき呈色物の呈色強度を光学的に測定するこ
とにより前記固相支持体中の定量すべき呈色物の濃度を
求める呈色物定量法に用いるプログラムを格納した記憶
媒体であって、種々の透過光をその性状により前記定量
すべき呈色物からの散乱透過光成分およびその他の複数
の成分に分別し、各透過光成分を前記定量すべき呈色物
の特異吸収波長を有する光およびその他の予め設定した
特定の分光分布を有する複数の光に分光して得られる分
光透過光光量から演算により各分光の相対強度比を求め
て参照用の基準値を取得する基準値取得ステップと、前
記試料と前記試験具との接触後に可能な限り速やかに、
前記固相支持体に光を照射して得られる透過光を、前記
基準値取得ステップと同じ複数の光に分光して分光透過
光光量を測定し始め、これを一定の時間間隔で前記分光
透過光光量の測定値が安定するまで複数回反復して実施
する透過光測定ステップと、前記透過光を前記基準値取
得ステップと同じ複数の成分に分別する分別ステップ
と、前記分光透過光光量および前記基準値から相対強度
比図を作成する相対強度比図作成ステップと、前記相対
強度比図に基づいて前記接触時点における前記定量すべ
き呈色物形成前の固相支持体からの透過光の分光透過光
量および相対強度比を比定する比定ステップと、前記相
対強度比および前記比定工程で得られる比定値に基づい
て前記分光透過光光量に占める前記定量すべき呈色物か
らの散乱透過光成分のみの光量の割合を算定する成分光
量割合算定ステップと、前記成分光量割合算定ステップ
で求めた前記割合に基づき前記定量すべき呈色物からの
散乱透過光成分に含まれる前記定量すべき呈色物の特異
吸収波長を有する光の光量を算定する成分分光光量算定
ステップと、前記定量すべき呈色物の特異吸収波長を有
する光の光量から前記定量すべき呈色物の濃度を求める
濃度算出ステップとを含むことを特徴とする。このよう
な構成により、特に生物試料において、バックグラウン
ドによる影響を排除し、検出・定量すべき呈色物をさら
に高精度に定量する呈色物定量法を提供し得る。Further, in order to solve the above-mentioned problems, a storage medium for the determination of a colored substance of the present invention comprises a sample and a solid support which holds a reagent which causes a color reaction with a specific component in the sample. Concentration of the color substance to be quantified in the solid support by optically measuring the color intensity of the color substance to be quantified, which is formed in the solid support by contacting with a tool. Is a storage medium storing a program used for the colorant quantitative method for determining, the transmitted light is separated into the scattered transmitted light component from the colorant to be quantified and other plural components by its properties, Each transmitted light component is calculated from the amount of spectrally transmitted light obtained by dispersing the transmitted light component into light having a specific absorption wavelength of the color product to be quantified and other light having a predetermined specific spectral distribution. Determine the relative intensity ratio and set a reference value for reference. A reference value acquisition step of Tokusuru quickly as possible after contact with the sample and the test device,
The transmitted light obtained by irradiating the solid-phase support with light is divided into a plurality of lights in the same manner as in the reference value obtaining step to start measuring the amount of spectrally transmitted light. A transmitted light measurement step that is repeatedly performed until the measured value of the light amount is stabilized, a separation step of separating the transmitted light into the same plurality of components as the reference value acquisition step, and the spectral transmitted light amount and the A relative intensity ratio diagram creating step of creating a relative intensity ratio diagram from a reference value, and spectroscopy of transmitted light from the solid support before forming the color substance to be quantified at the time of the contact based on the relative intensity ratio diagram A determining step of determining a transmitted light amount and a relative intensity ratio, and scattered transmission from the color object to be quantified in the spectral transmitted light amount based on the relative intensity ratio and the determined value obtained in the determining step. Light component A component light amount ratio calculating step of calculating the ratio of the only light amount, and the coloration to be quantified contained in the scattered transmitted light component from the colorant to be quantified based on the ratio obtained in the component light amount ratio calculating step A component spectral light amount calculating step of calculating the light amount of light having a specific absorption wavelength of the object, and a density calculation of calculating the concentration of the color object to be quantified from the light amount of the light having the specific absorption wavelength of the color object to be quantified And a step. With such a configuration, it is possible to provide a colorant quantification method for eliminating the influence of the background, particularly in a biological sample, and quantifying the colorant to be detected and quantified with higher accuracy.
【0031】また、好ましくは、請求項2〜10におい
て、前記基準値取得ステップにおいて、前記透過光を、
散乱のない平行透過光、固相支持体による散乱透過光、
定量すべき呈色物による散乱透過光、および存在する場
合には共存呈色物による散乱透過光の各透過光成分に分
別することを特徴とする。このような構成により、検出
・定量すべき呈色物を効率的かつ高精度に定量する呈色
物定量法を提供し得る。Preferably, in claim 2 to claim 10, in the reference value obtaining step, the transmitted light is:
Parallel transmitted light without scattering, scattered transmitted light by solid support,
It is characterized in that it is separated into the transmitted light components of the scattered and transmitted light by the color material to be quantified and the scattered and transmitted light by the coexisting color material when present. With such a configuration, it is possible to provide a color substance quantification method for efficiently and accurately quantifying a color substance to be detected and quantified.
【0032】また、好ましくは、請求項2〜11におい
て、前記基準値取得ステップで得られる前記複数の光
が、3種類の分光であることを特徴とする。このような
構成により、検出・定量すべき呈色物を少ない計算量で
効率的かつ高精度に定量する呈色物定量法を提供し得
る。[0032] Preferably, in claims 2 to 11, the plurality of lights obtained in the reference value obtaining step are three types of spectroscopy. With such a configuration, it is possible to provide a method for quantitatively determining a color product that efficiently and accurately quantifies a color product to be detected and quantified with a small amount of calculation.
【0033】また、好ましくは、請求項12において、
前記3種類の分光が国際照明委員会の定めたRGB表色
系(CIE表色系)の原刺激であることを特徴とする。
このような構成により、市販の装置を用いて検出・定量
すべき呈色物を簡便かつ高精度に定量し得る。Preferably, in claim 12,
The three types of spectroscopy are primary stimuli of the RGB color system (CIE color system) defined by the International Commission on Illumination.
With such a configuration, a color product to be detected and quantified can be simply and accurately determined using a commercially available device.
【0034】また、好ましくは、請求項12において、
前記3種類の分光が国際照明委員会の定めたXYZ表色
系(CIE1931標準表色系)の原刺激であることを
特徴とする。このような構成により、市販の装置を用い
て検出・定量すべき呈色物を簡便かつ高精度に定量し得
る。Preferably, in claim 12,
The three types of spectroscopy are the primary stimuli of the XYZ color system (CIE1931 standard color system) defined by the International Commission on Illumination. With such a configuration, a color product to be detected and quantified can be simply and accurately determined using a commercially available device.
【0035】また、好ましくは、請求項12において、
前記3種類の分光が国際照明委員会の定めたUCS表色
系の原刺激であることを特徴とする。このような構成に
より、市販の装置を用いて検出・定量すべき呈色物を簡
便かつ高精度に定量することができる。Preferably, in claim 12,
The three types of spectroscopy are primary stimuli of the UCS color system defined by the International Commission on Illumination. With such a configuration, a color product to be detected and quantified using a commercially available device can be easily and accurately quantified.
【0036】また、好ましくは、請求項2〜15におい
て、前記定量すべき呈色物の濃度を算出するために行う
演算過程において、グラスマンの加法混色の法則を用い
ることを特徴とする。このような構成により、検出・定
量すべき呈色物の定量に要する計算を簡略かつ高精度に
実行することができる。Preferably, in the second to fifteenth aspects, Grassmann's law of additive color mixture is used in the calculation process for calculating the concentration of the color substance to be quantified. With such a configuration, it is possible to simply and accurately execute the calculation required for quantifying the color product to be detected and quantified.
【0037】また、好ましくは、請求項2〜16におい
て、前記濃度算出ステップにおいて、前記定量すべき呈
色物の濃度を、下記の式: Log(C)=α(A)2+β(A)+γ (式中、Cは定量すべき呈色物の濃度、Aは定量すべき
呈色物からの散乱透過光の光量またはそれに含まれる定
量すべき呈色物の特異吸収波長を有する光の光量、そし
てα,βおよびγは定数をそれぞれ表す)を用いて求め
ることを特徴とする。このような構成により、検出・定
量すべき呈色物を必要且つ充分な精度で定量することが
できる。It is also preferable that, in the density calculation step, the density of the color substance to be quantified is calculated by the following formula: Log (C) = α (A) 2 + β (A) + Γ (where C is the concentration of the color substance to be quantified, A is the amount of scattered transmitted light from the color substance to be quantified or the amount of light having a specific absorption wavelength of the color substance to be quantified contained therein. , And α, β, and γ each represent a constant). With such a configuration, the color substance to be detected and quantified can be quantified with necessary and sufficient accuracy.
【0038】さらに、上記課題を解決するために、本発
明の呈色物定量装置は、試料と、前記試料中の特定成分
と呈色反応する試薬を保持する固相支持体を有する試験
具とを接触させて前記固相支持体中に形成される、定量
すべき呈色物の呈色強度を光学的に測定することにより
前記固相支持体中の定量すべき呈色物の濃度を求める呈
色物定量装置であって、前記固相支持体に光を照射する
光照射手段と、前記固相支持体からの透過光を受光して
光量を測定する透過光測定手段と、測定された透過光光
量および予め取得しておいた基準値を用いて前記定量す
べき呈色物の濃度を演算して求める濃度演算手段とを備
え、前記演算手段が前記請求項2〜17のいずれか1項
に記載の呈色物定量用記憶媒体を含むことを特徴とす
る。このような構成により、本発明の呈色物定量装置
は、検出・定量すべき呈色物を効率的かつ高精度に定量
し得る。Further, in order to solve the above-mentioned problems, the present invention provides a colorimetric substance quantifying apparatus, comprising: a test device having a sample; and a solid support for holding a reagent which performs a color reaction with a specific component in the sample. To determine the concentration of the color substance to be quantified in the solid support by optically measuring the color intensity of the color substance to be quantified formed in the solid support. A colorant quantitative device, a light irradiating means for irradiating the solid support with light, a transmitted light measuring means for receiving transmitted light from the solid support and measuring the amount of light, 18. Density calculating means for calculating the density of the color object to be quantified using the amount of transmitted light and a previously acquired reference value, wherein the calculating means is any one of claims 2 to 17. The present invention is characterized by including the storage medium for quantitatively determining a colored substance described in the section. With such a configuration, the color product quantification apparatus of the present invention can efficiently and accurately quantify the color product to be detected and quantified.
【0039】[0039]
【発明の実施の形態】以下に、本発明の呈色物定量装置
について図面を参照しながら説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a color substance quantifying apparatus according to the present invention.
【0040】図1は、本発明の呈色物定量装置の実施形
態の1例を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing an example of an embodiment of a coloring matter quantifying apparatus according to the present invention.
【0041】図1によれば、本発明の装置は、光照射手
段である光源部11、試験具支持台21、透過光測定手
段である相対強度比測定部13、濃度演算手段である情
報処理部14、入力部15、表示部16および印字部1
7から概略構成されている。そして、光源部11が光を
発生させ、試験具支持台21に載置され固相支持体を有
する試験具を照射し、試験具支持台21を挟んで光源部
11と相対して設けられた相対強度比測定部13が試験
具を透過した透過光を分光して受光した後に受光した光
量に応じた信号を発生し、情報処理部14が相対強度比
測定部13からの信号を受信して種々の演算を行うと共
に装置全体の動作を制御すると共に、必要に応じて、入
力部15において操作者からの命令を受け付け、表示部
16および印字部17において情報を出力する。According to FIG. 1, the apparatus of the present invention comprises a light source unit 11 as a light irradiating unit, a test tool support 21, a relative intensity ratio measuring unit 13 as a transmitted light measuring unit, and an information processing unit as a density calculating unit. Unit 14, input unit 15, display unit 16, and printing unit 1
7. Then, the light source unit 11 emits light, irradiates the test tool mounted on the test tool support 21 and having the solid support, and is provided to face the light source unit 11 with the test tool support 21 interposed therebetween. After the relative intensity ratio measuring unit 13 spectrally receives the transmitted light transmitted through the test device and receives the light, a signal corresponding to the received light amount is generated, and the information processing unit 14 receives the signal from the relative intensity ratio measuring unit 13 While performing various calculations and controlling the operation of the entire apparatus, the input unit 15 accepts instructions from the operator as necessary and outputs information to the display unit 16 and the printing unit 17.
【0042】光源部11は1つまたは複数の光源22か
らなっており、この光源22は、所定の分光分布を有す
る光を出力し得るものであれば特に制限されず、例えば
可視光による測定時にはハロゲンランプ、タングステン
ランプや複数のLED等、紫外光による測定時には重水
素放電管やキセノン放電管等、そして赤外光による測定
時にはネルンストランプ等のような当業界で一般的に使
用される光源であることができる。光源22から試験具
支持台21上の試験具までの光路は、例えば光ファイバ
ー、ミラーまたはレンズ等を用いて構成することも、直
接照射であることもできる。The light source unit 11 includes one or a plurality of light sources 22. The light source 22 is not particularly limited as long as it can output light having a predetermined spectral distribution. Light sources commonly used in the industry, such as halogen lamps, tungsten lamps, and multiple LEDs, such as deuterium discharge tubes and xenon discharge tubes when measuring with ultraviolet light, and Nernst lamps when measuring with infrared light. There can be. The optical path from the light source 22 to the test tool on the test tool support 21 can be configured by using, for example, an optical fiber, a mirror, a lens, or the like, or can be directly irradiated.
【0043】試験具支持台21は、測定時に試験具を載
置する支持台であり、試験具支持台21に載置した試験
具の全体またはその所定領域が光源22からの光により
均等に照射されるように配置されている。The test tool support 21 is a support on which the test tool is mounted at the time of measurement. The entire test tool or a predetermined area of the test tool mounted on the test tool support 21 is evenly irradiated with light from the light source 22. It is arranged to be.
【0044】相対強度比測定部13は、レンズ系23と
撮像部24から概略構成されている。レンズ系23は、
1つまたは複数の光学レンズからなり、光源22を発し
試験具を透過した透過光を屈折させて受光面上に結像す
るように光路長を調節する。撮像部24は、分光部13
a、光検出部13bおよび撮像制御回路42により構成
されている。分光部13aは、透過光を予め設定した特
定の波長(域)を有する複数の分光に分別する複数の分
光フィルタまたは分散素子等からなる。本実施形態で
は、図2に示すように、R,G,Bの3種類の分光フィ
ルタ群44からなっており、分光フィルタそれぞれは光
検出部13bの受光素子43の受光面直上に1つづつ、
3種類の分光フィルタの分布密度が均一になるように設
けられている。光検出部13bは、分光部13aにて分
光された光を受光する受光素子43を有するCCD固体
撮像素子41のような受光光量に応じた電気信号を出力
する光検出素子からなる。そして、撮像制御回路42
は、CCD固体撮像素子41等の光検出素子を制御する
と共に光検出素子からの信号を処理して後段の情報処理
部14および所望により表示部16に対して出力する。
表示部16に対して出力する場合の出力信号は、NTS
C信号や各種の制御信号である。即ち、レンズ系23と
撮像部24からなる相対強度比測定部13は、カラーカ
メラまたはカラービデオカメラの撮像部と同等の機能を
担っていると言える。従って、相対強度比測定部13に
おける透過光光量のサンプリングは、一定時間当たりの
受光光量、即ちフレーム数を単位として行われることが
できる。The relative intensity ratio measuring section 13 is roughly composed of a lens system 23 and an imaging section 24. The lens system 23 is
It comprises one or more optical lenses, and adjusts the optical path length so as to refract the transmitted light emitted from the light source 22 and transmitted through the test device to form an image on the light receiving surface. The imaging unit 24 includes the spectral unit 13
a, the photodetector 13b and the imaging control circuit 42. The spectral unit 13a includes a plurality of spectral filters or dispersive elements for separating transmitted light into a plurality of spectral components having a predetermined specific wavelength (band). In the present embodiment, as shown in FIG. 2, there are three types of spectral filter groups 44 of R, G, and B, and each of the spectral filters is provided immediately above the light receiving surface of the light receiving element 43 of the light detection unit 13b. ,
The three types of spectral filters are provided so that the distribution densities are uniform. The light detection unit 13b includes a light detection element that outputs an electric signal corresponding to the amount of received light, such as a CCD solid-state imaging device 41 that has a light reception element 43 that receives light separated by the light separation unit 13a. Then, the imaging control circuit 42
Controls the light detection elements such as the CCD solid-state imaging element 41, processes signals from the light detection elements, and outputs the processed signals to the information processing unit 14 and the display unit 16 as required.
The output signal when outputting to the display unit 16 is NTS
C signal and various control signals. That is, it can be said that the relative intensity ratio measurement unit 13 including the lens system 23 and the imaging unit 24 has the same function as the imaging unit of the color camera or the color video camera. Therefore, the sampling of the amount of transmitted light in the relative intensity ratio measurement unit 13 can be performed in units of the amount of received light per fixed time, that is, the number of frames.
【0045】ここまで説明してきた光源部11、試験具
支持台21および相対強度比測定部13は、全て同一の
ケース25内に格納配置することにより外部環境に由来
する迷光の影響を防ぐことが望ましい。その際、全ての
機器をケース内で固定して測定に用いる光路を一定長と
することも、位置関係を調節する手段、例えば調整用ネ
ジを設けて相対位置を変更し得る構造として、搬送や経
時による光路長のズレ等の調節または測定条件による光
路長の変更等を行い得るようにすることもできる。The light source unit 11, the test tool support 21 and the relative intensity ratio measuring unit 13 described above are all stored in the same case 25 to prevent the influence of stray light originating from the external environment. desirable. At this time, all the devices are fixed in the case and the optical path used for measurement is fixed length, and means for adjusting the positional relationship, for example, a structure that can be provided with an adjusting screw to change the relative position, is used for transportation and so on. It is also possible to adjust the deviation of the optical path length over time or change the optical path length depending on the measurement conditions.
【0046】情報処理部14は、記憶部14a、演算部
14bおよび入出力制御部14cがバス38に接続され
て概略構成されている。記憶部14aは、リード・オン
リ・メモリ(ROM)、ランダム・アクセス・メモリ
(RAM)、ハードディスク等の磁気記憶媒体やMOデ
ィスク等の光磁気記憶媒体からなり、データ信号を一時
的および長期的に格納する。本例では、予め本発明にな
る呈色物定量用プログラム等のプログラムを格納したR
OM33、画像データや制御信号等を一時的に格納する
RAM35、画像データ、参照用基準値を含む測定結果
や演算結果を長期的に格納する磁気記憶媒体34を用い
ている。演算部14bは、中央演算装置(CPU)37
からなり、記憶部14aに格納された各種プログラムに
従い装置各部からの情報(信号)を処理して装置全体を
制御する。入出力制御部14cは、A/D変換部31、
画像データ取得部32、入力制御部39a、表示制御部
39bおよび印字制御部39cにより構成されている。
A/D変換部31は、相対強度比測定部13から受信し
たアナログ信号をデジタル信号に変換して画像データ取
得部32に渡す。画像データ取得部32は、受信信号を
処理して得られた画像データと通信信号を演算部14b
に対して発信する。入力制御部39a、表示制御部39
bおよび印字制御部39cは、演算部14bと入力部1
5、表示部16および印字部17それぞれとの信号の授
受に介在して通信を可能にするインターフェースを提供
し、例えば表示制御部39bは表示部16に対してRG
B信号や各種の制御信号を出力する。入力部15は、1
つまたは複数のキーボード、マウス、タッチパネル、バ
ーコードリーダおよび/またはペンタブレット等の入力
手段からなり、操作者からの命令を受け付ける。表示部
16は、CRTや液晶等を用いた表示装置(ディスプレ
イ)であり、情報処理部14からのRGB信号および/
または相対強度比測定部13からのNTSC信号を受信
して、それぞれ単独に、または画面分割して同時に、測
定画像、測定結果や演算結果等を表示する。印字部17
は、ドットインパクト、インクジェットまたはレーザ等
任意の方式の印字装置(プリンタ)であり、操作者の命
令に応じて情報を印字する。The information processing section 14 has a schematic configuration in which a storage section 14a, an operation section 14b, and an input / output control section 14c are connected to a bus 38. The storage unit 14a includes a read only memory (ROM), a random access memory (RAM), a magnetic storage medium such as a hard disk, and a magneto-optical storage medium such as an MO disk. Store. In this example, an R program in which a program such as a coloring matter quantification program according to the present invention is stored in advance.
An OM 33, a RAM 35 for temporarily storing image data and control signals, and the like, and a magnetic storage medium 34 for storing image data and measurement results and calculation results including reference values for a long term are used. The calculation unit 14b includes a central processing unit (CPU) 37
In accordance with various programs stored in the storage section 14a, information (signal) from each section of the apparatus is processed to control the entire apparatus. The input / output control unit 14c includes an A / D conversion unit 31,
It comprises an image data acquisition unit 32, an input control unit 39a, a display control unit 39b, and a print control unit 39c.
The A / D conversion unit 31 converts the analog signal received from the relative intensity ratio measurement unit 13 into a digital signal and passes the digital signal to the image data acquisition unit 32. The image data obtaining unit 32 calculates the image data and the communication signal obtained by processing the received signal,
Send to. Input control unit 39a, display control unit 39
b and the print control unit 39c are composed of the calculation unit 14b and the input unit 1
5. Provide an interface that enables communication through transmission and reception of signals to and from the display unit 16 and the printing unit 17. For example, the display control unit 39 b
It outputs the B signal and various control signals. The input unit 15
It comprises one or more input means such as a keyboard, a mouse, a touch panel, a bar code reader and / or a pen tablet, and accepts instructions from the operator. The display unit 16 is a display device (display) using a CRT, liquid crystal, or the like.
Alternatively, it receives an NTSC signal from the relative intensity ratio measurement unit 13 and displays a measurement image, a measurement result, a calculation result, and the like individually or simultaneously on a divided screen. Printing unit 17
Is a printing device (printer) of any type such as dot impact, ink jet or laser, and prints information according to an operator's command.
【0047】以上のようにして構成される本発明の呈色
物定量装置は、試験具支持台21に適当な試験具を載置
し、その試験具からの透過光を測定することによって定
量すべき呈色物の濃度を求めて定量する。その際の本装
置の動作を説明する。In the color substance quantifying apparatus of the present invention configured as described above, an appropriate test tool is placed on the test tool support 21 and quantification is performed by measuring the transmitted light from the test tool. The concentration of the color product to be obtained is determined and quantified. The operation of the present apparatus at that time will be described.
【0048】光源22を発した光は、試験具支持台21
上に載置した試験具の所定領域を照射して透過する。試
験具を透過した透過光は、相対強度比測定部13のレン
ズ系23にて屈折させられ、分光フィルタ44により分
光された後にCCD固体撮像素子41の受光素子43の
受光面で結像する。受光素子43は受光した分光の光量
に応じた量の電荷を蓄積する。撮像制御回路42が適当
なタイミングでCCD固体撮像素子41に対して各受光
素子43の受光光量即ち電荷量情報を出力させる制御信
号を送信し、CCD固体撮像素子41から出力された情
報を受信する。そして、撮像制御回路42は、受信した
情報に各種のタイミング制御用信号を付加してNTSC
信号を生成し、情報処理部14および/または表示部1
6に生成したNTSC信号を送信する。表示部16は、
受信したNTSC信号から作成した画像を表示する。情
報処理部14では、入出力制御部14cのA/D変換部
31が撮像制御回路42からの信号を受信し、受信した
アナログ信号(NTSC信号)をデジタル信号(RGB
信号)に変換して画像データ取得部32に送信する。画
像データ取得部32は、演算部14bの中央演算装置3
7からの指示に基づいてA/D変換部31を制御しなが
らA/D変換部31からの信号を受信して処理する。即
ち、A/D変換器31が受信したNTSC信号を1フレ
ーム単位でRGB信号に変換させ、中央演算装置37に
指示されたフレーム数の信号を取得した後1フレーム当
たりの平均値を算出し、得られた平均値を試験具画像デ
ータとして記憶部14aのRAM35または磁気記憶媒
体34に格納する。中央演算装置37は、必要に応じ
て、試験具画像データをRAM35に一時的に格納し、
表示制御部39bを介して表示部16にRGB信号を送
信して画像を表示させる。また、中央演算装置37は取
得した試験具画像データと、予め磁気記憶媒体34に格
納しておいた基準値を用いて、ROM33に格納された
プログラムに従って演算を行って演算結果、即ち定量す
べき呈色物の濃度を得る。そして、演算結果を、磁気記
憶媒体34に格納し、試験具画像データと同様にして表
示部16に表示させると共に、入力制御部39aを介し
て入力部15から得る操作者の命令に応じて、印字制御
部39cを介して印字部17に指示を出して印字させ
る。The light emitted from the light source 22 is applied to the test fixture support table 21.
A predetermined region of the test device placed on the upper surface is irradiated and transmitted. The transmitted light that has passed through the test tool is refracted by the lens system 23 of the relative intensity ratio measurement unit 13, is separated by the spectral filter 44, and forms an image on the light receiving surface of the light receiving element 43 of the CCD solid-state imaging device 41. The light receiving element 43 accumulates an amount of electric charge according to the amount of received spectral light. The imaging control circuit 42 transmits a control signal for outputting the received light quantity of each light receiving element 43, that is, the charge amount information, to the CCD solid-state imaging element 41 at an appropriate timing, and receives the information output from the CCD solid-state imaging element 41. . The imaging control circuit 42 adds various timing control signals to the received information,
A signal is generated, and the information processing unit 14 and / or the display unit 1
6 and transmits the generated NTSC signal. The display unit 16
An image created from the received NTSC signal is displayed. In the information processing unit 14, the A / D conversion unit 31 of the input / output control unit 14c receives a signal from the imaging control circuit 42 and converts the received analog signal (NTSC signal) into a digital signal (RGB).
Signal), and transmits the signal to the image data acquisition unit 32. The image data acquisition unit 32 is a central processing unit 3 of the arithmetic unit 14b.
While controlling the A / D conversion unit 31 based on the instruction from 7, the signal from the A / D conversion unit 31 is received and processed. That is, the A / D converter 31 converts the received NTSC signal into RGB signals in units of one frame, obtains the signal of the number of frames instructed by the central processing unit 37, calculates an average value per frame, The obtained average value is stored in the RAM 35 or the magnetic storage medium 34 of the storage unit 14a as test tool image data. The central processing unit 37 temporarily stores the test tool image data in the RAM 35 as necessary,
An RGB signal is transmitted to the display unit 16 via the display control unit 39b to display an image. In addition, the central processing unit 37 performs an operation according to a program stored in the ROM 33 using the acquired test tool image data and a reference value stored in the magnetic storage medium 34 in advance, that is, the operation result, that is, the amount to be quantified. Obtain the density of the color product. Then, the calculation result is stored in the magnetic storage medium 34 and displayed on the display unit 16 in the same manner as the test tool image data, and according to the operator's command obtained from the input unit 15 via the input control unit 39a, An instruction is issued to the printing unit 17 via the printing control unit 39c to print.
【0049】次に、本発明の呈色物定量装置に用い得る
試験具について述べる。Next, a description will be given of a test tool which can be used in the color substance determination apparatus of the present invention.
【0050】本装置に用い得る試験具は、定量すべき呈
色物と呈色反応する試薬を保持する部位または領域であ
る固相支持体を有し、試料中の成分に対して不活性な材
料から構成され、通常20〜500μm程度の厚さの平
板形状をとる試料支持部材である。固相支持体は、試験
具の他の部位と同一の材料で一体化されて形成されるこ
とも、異なる材料で別体として形成されて試験具に取り
付けられることもできる。また、試験具は、固相支持体
に加えて、前記試薬を保持しない以外は固相支持体と同
一である参照用固相支持体を有していても良い。The test device which can be used in the present apparatus has a solid support which is a site or a region for holding a reagent which undergoes a color reaction with a color substance to be quantified, and which is inactive against components in the sample. The sample support member is made of a material and usually has a plate shape with a thickness of about 20 to 500 μm. The solid support may be integrally formed with the same material as the other parts of the test device, or may be formed as a separate member of a different material and attached to the test device. In addition, the test device may have, in addition to the solid support, a reference solid support that is the same as the solid support except that it does not hold the reagent.
【0051】固相支持体に保持される試薬の組成にも特
に制限はなく、当業界の常識に従い、定量しようとする
成分に合わせて適宜選択し得る。例えば試料中のブドウ
糖を定量する場合に用いる試薬組成として、グルコース
オキシダーゼ、ペルオキシダーゼおよびo−トリジンを
主成分とする試薬組成を例示することができる。The composition of the reagent held on the solid support is not particularly limited, and it can be appropriately selected according to the components to be quantified according to common knowledge in the art. For example, as a reagent composition used when quantifying glucose in a sample, a reagent composition containing glucose oxidase, peroxidase and o-tolidine as main components can be exemplified.
【0052】本発明に用い得る試験具としては、部分的
に試薬を含浸した試験紙や、試薬を含浸した濾紙または
多孔質ポリマーのような多孔質材からなる固相支持体、
および所望により参照用固相支持体を1種類または複数
種類貼着した試験紙、ガラスプレートまたは樹脂プレー
ト等を用いた、単項目試験具、多項目試験具、単項目レ
ートアッセイ試験具または多項目レートアッセイ試験具
等を例示できる。一度の測定で、試料中の1種の成分の
みを定量するときには単項目試験具を、そして複数の成
分を定量するときには多項目試験具を、そして所望であ
れば単項目または多項目のレートアッセイ試験具を用い
ることができる。本発明に用い得る試験具を図3〜6に
例示する。Examples of the test device usable in the present invention include a test paper partially impregnated with a reagent, a solid support made of a porous material such as a filter paper impregnated with the reagent or a porous polymer,
And a single-item test device, a multi-item test device, a single-item rate assay test device, or a multi-item test device using a test paper, a glass plate, a resin plate, or the like to which one or more types of reference solid supports are adhered as desired. A rate assay test device and the like can be exemplified. In a single measurement, use a single item test device when quantifying only one component in a sample, a multi-item test device when quantifying multiple components, and a single-item or multi-item rate assay if desired. A test device can be used. Test tools that can be used in the present invention are illustrated in FIGS.
【0053】図3に示した試験具は、濾紙片からなる固
相支持体(測定試験部)51および参照用固相支持体
(参照試験部)52を適当な間隔を開けて貼着した単項
目試験紙45である。このような単項目試験紙は種々市
販されており、それら市販品を用いることができる。ま
た、図3に示すように、所望に応じて、単項目試験紙4
5の固相支持体51貼着面上の適当な位置に、例えばバ
ーコードのような識別記号を直接印刷するかあるいは識
別記号を印刷したシールを貼着するなどして試験紙識別
部53を設けることにより、固相支持体51が保持する
試薬の種類、試験紙45の大きさ、あるいは固相支持体
51および参照用固相支持体52の大きさまたは貼着位
置のような試験紙の種類の識別の便宜を図ることもでき
る。図3の試験紙45、固相支持体51および参照用固
相支持体52の大きさは、それぞれ5mm×40mm、
3mm×3mmおよび3mm×3mm程度であることが
一般的であるが、本発明に用いる単項目試験紙の全体お
よび各部の大きさはこれに限定されるものではなく、種
々の市販の単項目試験紙を用いることができる。また、
参照用固相支持体52を有しない試験紙であってもよ
い。The test device shown in FIG. 3 has a solid support (measurement test section) 51 made of a piece of filter paper and a reference solid support (reference test section) 52 stuck at appropriate intervals. Item test paper 45. Various such single-item test papers are commercially available, and those commercially available products can be used. In addition, as shown in FIG.
The identification mark 53 such as a bar code is directly printed at an appropriate position on the surface where the solid support 51 is attached, or a sticker on which the identification code is printed is attached. By providing the test paper, the type of the reagent held by the solid support 51, the size of the test paper 45, or the size or the adhesion position of the test paper such as the size of the solid support 51 and the reference solid support 52. It is also possible to facilitate the identification of the type. The size of the test paper 45, the solid support 51, and the reference solid support 52 in FIG. 3 are 5 mm × 40 mm, respectively.
It is generally about 3 mm × 3 mm and about 3 mm × 3 mm, but the size of each single-item test paper used in the present invention and each part is not limited thereto, and various commercially available single-item test papers are used. Paper can be used. Also,
A test paper having no reference solid support 52 may be used.
【0054】図4に示した試験具は、濾紙片からなる固
相支持体(測定試験部)51a〜51cおよび参照用固
相支持体(参照試験部)52a〜52cを適当な間隔を
開けて貼着した多項目試験紙46である。このような多
項目試験紙46も、単項目試験紙45と同様に、各種の
市販品を用いることができ、また所望に応じて試験紙識
別部53を設けることができる。図4の試験紙46、固
相支持体51a〜51cおよび参照用固相支持体52a
〜52cの大きさは、それぞれ10mm×20mm、2
mm×2mmおよび2mm×2mm程度であることが一
般的であるが、本発明に用いる試験具の全体および各部
の大きさはこれに限定されるものではなく、種々の市販
の多項目試験紙を用いることができる。また、参照用固
相支持体52a〜52cを有しない試験紙であってもよ
い。In the test device shown in FIG. 4, a solid support (measurement test section) 51a to 51c composed of a piece of filter paper and a reference solid support (reference test section) 52a to 52c are provided at appropriate intervals. This is the multi-item test paper 46 stuck. As with the single item test paper 45, various types of commercially available products can be used as the multi-item test paper 46, and the test paper identification unit 53 can be provided as desired. The test paper 46, the solid supports 51a to 51c and the reference solid support 52a of FIG.
The size of ~ 52c is 10 mm x 20 mm, 2
It is generally about 2 mm x 2 mm and about 2 mm x 2 mm, but the overall size of the test device and each part used in the present invention is not limited thereto, and various commercially available multi-item test papers may be used. Can be used. Further, the test paper may not have the reference solid supports 52a to 52c.
【0055】図5に示した試験具は、濾紙片からなる固
相支持体(測定試験部)54を貼着した単項目レートア
ッセイ試験紙47である。この単項目レートアッセイ試
験紙47も、単項目試験紙45と同様に、各種の市販品
を用いることができ、また所望に応じて試験紙識別部5
3を設けることができる。図5の試験紙47、固相支持
体54の大きさは、それぞれ5mm×40mm、3mm
×3mm程度であることが一般的であるが、本発明に用
いる試験具の全体および各部の大きさはこれに限定され
るものではなく、種々の市販の単項目レートアッセイ試
験紙を用いることができる。The test device shown in FIG. 5 is a single item rate assay test paper 47 to which a solid support (measurement test section) 54 composed of a piece of filter paper is adhered. As the single item rate assay test paper 47, various commercial products can be used similarly to the single item test paper 45, and the test paper identification unit 5 can be used as required.
3 can be provided. The sizes of the test paper 47 and the solid support 54 in FIG. 5 are 5 mm × 40 mm and 3 mm, respectively.
It is generally about × 3 mm, but the size of the entire test device and each part used in the present invention is not limited thereto, and various commercially available single item rate assay test papers may be used. it can.
【0056】図6に示した試験具は、濾紙片からなる固
相支持体(測定試験部)54a〜54iを適当な間隔を
開けて貼着した多項目レートアッセイ試験紙48であ
る。このような多項目レートアッセイ試験紙48も、単
項目試験紙45と同様に、各種の市販品を用いることが
でき、また所望に応じて試験紙識別部53を設けること
ができる。図6の試験紙48、固相支持体54a〜54
iの大きさは、それぞれ10mm×20mm、2mm×
2mm程度であることが一般的であるが、本発明に用い
る試験具の全体および各部の大きさはこれに限定される
ものではなく、種々の市販の多項目レートアッセイ試験
紙を用いることができる。The test device shown in FIG. 6 is a multi-item rate assay test paper 48 on which solid supports (measurement test sections) 54a to 54i made of a piece of filter paper are attached at appropriate intervals. As the multi-item rate assay test paper 48, similarly to the single-item test paper 45, various commercially available products can be used, and a test paper identification unit 53 can be provided as desired. The test paper 48 in FIG. 6, the solid supports 54a to 54
The size of i is 10mm x 20mm, 2mm x
Although it is generally about 2 mm, the size of the entire test device and each part used in the present invention is not limited to this, and various commercially available multi-item rate assay test papers can be used. .
【0057】本発明の呈色物定量装置と上述の如き試験
具を用いた呈色物定量手順について、図7を参照しなが
ら以下に説明する。A procedure for quantifying a colored substance using the apparatus for quantifying a colored substance of the present invention and the above-described test device will be described below with reference to FIG.
【0058】本発明の装置に電源が投入されると、ステ
ップS101において各種情報の入力を求めるメッセー
ジ画面を表示部16に表示してその入力を要求し、ステ
ップS102へ進む。When the power of the apparatus of the present invention is turned on, a message screen for inputting various information is displayed on the display unit 16 in step S101 to request the input, and the process proceeds to step S102.
【0059】ステップS102において、前記ステップ
S101で要求された情報の入力手法を判断し、入力手
法に応じて情報の入力を確認する。ステップS102で
入力されるべき情報の内、非定型的な情報に関しては操
作者が入力部15のキーボードやマウスを用いて入力せ
ざるを得ないが、実際に使用する試験具および定量すべ
き成分に関する情報等の(使用試験具により自ずと定ま
る)定型的な情報については、勿論非定型的な情報と同
様にして入力してもよいが、本発明の装置にバーコード
読取手段のような光学的読取手段を入力部15の入力手
段の1つとして設け、上述の試験紙識別部53と同様に
してバーコード等の符号を用いて所定の情報を記録した
表または票等を予め作成し、その表または票から前記光
学的読取手段を用いて記録情報を読取ることにより入力
することもできる。あるいは、本発明に用いる試験具に
上述の如く試験紙識別部53を設け、測定時に試験具か
らの透過光を分析して試験紙識別部53に記録した情報
を読取ることにより装置が所定の情報を取得し得ること
とし、電源投入時点で定型的な情報を入力する手間を省
くこともできる(以下この手法を透過光認識法と称す
る)。しかしながら、透過光認識法を用いると測定が行
われるまで定型的な情報の入力が行われないこととな
る。In step S102, the input method of the information requested in step S101 is determined, and the input of the information is confirmed according to the input method. Of the information to be input in step S102, the operator has to input the atypical information using the keyboard or mouse of the input unit 15, but the test equipment and the components to be quantified that are actually used The standard information (determined by the test device used) such as the information about the data may be input in the same manner as the non-standard information. A reading unit is provided as one of the input units of the input unit 15, and a table or a vote or the like in which predetermined information is recorded using a code such as a barcode is created in advance in the same manner as the test paper identification unit 53 described above. The information can also be input by reading recorded information from a table or vote using the optical reading means. Alternatively, the test strip used in the present invention is provided with the test strip identification section 53 as described above, and at the time of measurement, the transmitted light from the test strip is analyzed and the information recorded in the test strip identification section 53 is read, so that the apparatus can obtain the predetermined information. Can be obtained, and the trouble of inputting standard information at the time of turning on the power can be omitted (this method is hereinafter referred to as a transmitted light recognition method). However, when the transmitted light recognition method is used, input of fixed information is not performed until measurement is performed.
【0060】従って、ステップS102においては、最
初に透過光認識法を用いるか否かを操作者からの情報に
基づいて判断し、次いで、透過光認識法を用いると判断
された場合には非定型的な情報が全て入力されたことを
確認してからステップS104に進み、用いないと判断
された場合には全ての情報が入力されたことを確認して
からステップS103に進む。Therefore, in step S102, it is first determined whether or not to use the transmitted light recognition method based on information from the operator. If it is determined that the transmitted light recognition method is to be used, an irregular pattern is used. After confirming that all relevant information has been input, the process proceeds to step S104. If it is determined that all information is not used, the process proceeds to step S103 after confirming that all information has been input.
【0061】ステップS103において、前記ステップ
S102で取得した情報と予め記憶部14aに格納した
情報に基づいて、使用試験具および定量すべき成分を認
識し、それに応じて各種の設定値を決定する。例えば、
試験具の種類および大きさの認識、使用される試薬と定
量すべき成分から形成される定量すべき呈色物の種類お
よびその呈色物形成反応(呈色反応)に要する時間の認
識、試験具および固相支持体の大きさに応じた受光光量
を計測すべき受光素子の決定、あるいは形成される定量
すべき呈色物の特異的吸収波長に最も近い波長を有する
分光を受光する受光素子の決定等を行う。そして、全て
の決定が終了した後、ステップS104に進む。In step S103, based on the information obtained in step S102 and the information stored in advance in the storage unit 14a, the test equipment to be used and the component to be quantified are recognized, and various set values are determined accordingly. For example,
Recognition of the type and size of the test device, recognition of the type of color product to be determined formed from the reagents used and the components to be determined, and the time required for the color product formation reaction (color reaction), test Of the light-receiving element to measure the amount of received light according to the size of the tool and the solid support, or the light-receiving element that receives the spectrum having the wavelength closest to the specific absorption wavelength of the formed color object to be quantified Is determined. Then, after all determinations have been completed, the process proceeds to step S104.
【0062】ステップS104において、測定開始命令
の入力を促すメッセージを表示部16に表示し、次のス
テップS105に進む。操作者は、試験具と試料を接触
させて固相支持体および場合により参照用固相支持体に
試料を含浸させた後、試験具支持台21に試験具を載置
して、測定開始命令を入力する。但し、実際の測定は、
測定開始命令入力してから一定時間経過後に開始される
ので、その点を勘案して操作を行う。これは、レートア
ッセイ法を用いる場合に特に重要である。In step S104, a message prompting input of a measurement start command is displayed on the display unit 16, and the flow advances to the next step S105. After the operator brings the sample into contact with the test device to impregnate the sample into the solid support and optionally the reference solid support, the operator places the test device on the test device support 21 and issues a measurement start instruction. Enter However, the actual measurement is
The operation is started after a lapse of a predetermined time from the input of the measurement start command. This is particularly important when using a rate assay.
【0063】ステップS105において、測定開始命令
が入力されたか否かを判断し、入力を確認した後、ステ
ップS106に進む。In step S105, it is determined whether or not a measurement start command has been input, and after confirming the input, the flow proceeds to step S106.
【0064】ステップS106において、時間計測を開
始し、ステップS107に進む。In step S106, time measurement is started, and the flow advances to step S107.
【0065】ステップS107において、前記ステップ
S102の認識に基づいて使用試験具が透過光認識法を
用いているか否かを判断し、透過光認識法を用いている
場合にはステップS108に進み、透過光認識法を用い
ていない場合にはステップS109に進む。In step S107, it is determined whether or not the test device to be used uses the transmitted light recognition method based on the recognition in step S102. If the optical recognition method is not used, the process proceeds to step S109.
【0066】ステップS108において、まず、通常の
試験具画像データ取得前に1回余分に試験具画像データ
取得動作を行い、試験具からの透過光を分析して試験紙
識別部53に記録した情報を読取って定型的な情報を取
得し、前記ステップS103と同様にして、取得情報お
よび基準値に基づいて使用試験具および定量すべき成分
を認識し、それに応じて各種の設定値を決定する。次い
で、得られた認識に基づいて使用試験具がレートアッセ
イ法を用いる試験具であるか否かを判断し、レートアッ
セイ法を用いると判断された場合にはステップS110
に進み、レートアッセイ法を用いないと判断された場合
にはステップS111に進む。In step S108, first, an extra test tool image data acquisition operation is performed once before the usual test tool image data acquisition, and the transmitted light from the test tool is analyzed to record the information recorded in the test paper identification section 53. Is read to obtain standard information, and in the same manner as in step S103, the used test tool and the component to be quantified are recognized based on the obtained information and the reference value, and various set values are determined accordingly. Next, it is determined whether or not the test device to be used is a test device using the rate assay method based on the obtained recognition. If it is determined that the rate test method is to be used, step S110 is performed.
If it is determined that the rate assay method is not used, the process proceeds to step S111.
【0067】ステップS109において、前記ステップ
S103の認識に基づいて使用試験具がレートアッセイ
法を用いる試験具であるか否かを判断し、レートアッセ
イ法を用いると判断された場合にはステップS110に
進み、レートアッセイ法を用いないと判断された場合に
はステップS111に進む。In step S109, based on the recognition in step S103, it is determined whether or not the test device to be used is a test device that uses the rate assay method. If it is determined that the rate assay method is used, the process proceeds to step S110. The process proceeds to step S111 when it is determined that the rate assay method is not used.
【0068】ステップS110において、レートアッセ
イ法に則して経時的に試験具画像データを取得し、前記
データに含まれる固相支持体の透過光の光量および各分
光の相対強度比を求め、それらの値を用いて基準値に基
づき定量すべき呈色物の濃度を演算により求めて定量
し、演算終了後にステップS112に進む。ステップS
110の詳細に関しては後述する。In step S110, image data of the test device is acquired with time according to the rate assay method, and the light intensity of transmitted light of the solid support and the relative intensity ratio of each spectrum included in the data are obtained. The density of the coloring matter to be quantified based on the reference value is determined by calculation using the value of (1), and the density is determined. Step S
Details of 110 will be described later.
【0069】ステップS111において、試験具画像デ
ータを取得し、前記データに含まれる固相支持体の透過
光の光量および各分光の相対強度比を求め、それらの値
を用いて基準値に基づき定量すべき呈色物の濃度を演算
により求めて定量し、演算の終了後にステップS112
に進む。ステップS111の詳細に関しては後述する。In step S111, the image data of the test tool is obtained, the light intensity of the transmitted light of the solid support and the relative intensity ratio of each spectrum included in the data are determined, and the values are quantified based on the reference value using these values. The density of the coloring matter to be obtained is calculated by operation and quantified.
Proceed to. Details of step S111 will be described later.
【0070】ステップS112において、定量結果を表
示部16に表示し、所望に応じて印字部17で印字した
後、ステップS113に進む。In step S112, the quantitative result is displayed on the display unit 16 and printed by the printing unit 17 as desired. Then, the process proceeds to step S113.
【0071】ステップS113において、測定操作を終
了するか続行するかを操作者に問い合わせ、問い合わせ
結果が続行であれば前記ステップS101に進み、終了
であれば終了処理を行った後に待機状態に入る。In step S113, the operator is inquired whether to end or continue the measurement operation. If the result of the inquiry is continued, the process proceeds to step S101.
【0072】次いで、ステップS110の詳細を図8を
参照しながら説明する。Next, the details of step S110 will be described with reference to FIG.
【0073】レートアッセイ試験具を用いる場合に実行
されるステップS110は、図8に示すように、サブス
テップS201〜S206からなる。As shown in FIG. 8, step S110 executed when using the rate assay test device includes substeps S201 to S206.
【0074】サブステップS201において、前記ステ
ップS106の時間計測開始から所定の時間が経過した
か否かを判断し、所定時間の経過を確認した後、サブス
テップS202に進む。In sub-step S201, it is determined whether or not a predetermined time has elapsed since the start of the time measurement in step S106, and after elapse of the predetermined time, the process proceeds to sub-step S202.
【0075】サブステップS202において、画像デー
タ取得部32に対して試験具画像データの取得を指示
し、試験具画像データの取得に用いるフレーム数を指定
する。次いで、サブステップS203に進む。In sub-step S202, the image data acquisition unit 32 is instructed to acquire the test tool image data, and specifies the number of frames to be used for acquiring the test tool image data. Next, the process proceeds to sub-step S203.
【0076】サブステップS203において、画像デー
タ取得部32から試験具画像データを受信した後、受信
データおよび予め磁気記憶媒体34に格納しておいた各
種のデータと基準値に基づいて、受信した試験具画像デ
ータに含まれる固相支持体からの透過光の光量、前記透
過光を性状によって成分分けして得られる透過光成分お
よびそれらの各分光の相対強度比を演算により求め、得
られた演算結果を磁気記憶媒体34および/またはRA
M35に格納した後、サブステップS204に進む。In sub-step S 203, after receiving the test tool image data from the image data acquisition section 32, the received test data is determined based on the received data, various data stored in the magnetic storage medium 34 in advance, and the reference value. The amount of transmitted light from the solid support included in the component image data, the transmitted light component obtained by dividing the transmitted light according to the properties, and the relative intensity ratio of each of these components are obtained by calculation, and the obtained calculation is performed. The result is stored in the magnetic storage medium 34 and / or RA
After storing in M35, the process proceeds to sub-step S204.
【0077】サブステップS204において、前記サブ
ステップS203で受信した試験具画像データが測定開
始後何番目に受信したものであるかを記録するカウンタ
に1を加算した後、カウント数と、前記ステップS10
3で設定した取得すべき試験具画像データ数とを比較し
て、カウント数が指定数に達していなければサブスッテ
プS205に進み、指定数に達していればサブステップ
S206に進む。In sub-step S204, 1 is added to a counter for recording the order of the test tool image data received in the sub-step S203 after the start of measurement, and the count number and the step S10
The number of pieces of test tool image data to be acquired set in step 3 is compared. If the counted number has not reached the specified number, the process proceeds to sub-step S205. If the counted number has reached the specified number, the process proceeds to sub-step S206.
【0078】サブステップS205において、前記サブ
ステップS203でデータを受信してからの経過時間
が、前記ステップS103で設定した試験具画像データ
取得の時間間隔でデータを取得するために次のデータ取
得指示を送信するに適した時間に達しているか否かを判
断し、データ受信からの経過時間が前記時間に達したこ
とを確認した後に前記サブステップS202に進む。In sub-step S205, the time elapsed since the data was received in sub-step S203 is changed to the next data acquisition instruction in order to acquire data at the test tool image data acquisition time interval set in step S103. Then, it is determined whether or not the time suitable for transmitting the data has been reached, and after confirming that the elapsed time from the data reception has reached the time, the process proceeds to the sub-step S202.
【0079】サブステップS206において、前記サブ
ステップS203で取得した全ての試験具画像データお
よびそれらから得た演算結果、ならびに予め磁気記憶媒
体34に格納しておいた基準値を用い、定量すべき呈色
物のみによる散乱透過光の光量または前記光量に含まれ
る定量すべき呈色物の特異吸収波長を有する分光の光量
を定量指標として、定量すべき呈色物の濃度を求めて定
量する。そして、ステップS110を終了して、ステッ
プS112に進む。In sub-step S206, all the test-piece image data obtained in sub-step S203 and the calculation results obtained therefrom, and the reference values stored in the magnetic storage medium 34 in advance, are used to determine the quantity to be determined. The concentration of the color object to be quantified is determined and quantified by using, as a quantitative index, the amount of scattered transmitted light due to only the color object or the amount of spectral light having the specific absorption wavelength of the color object to be quantified included in the light amount. Then, step S110 ends, and the process proceeds to step S112.
【0080】続いて、ステップS111の詳細を図9を
参照しながら説明する。Next, details of step S111 will be described with reference to FIG.
【0081】レートアッセイ試験具以外の試験具を用い
る場合に実行されるステップS111は、図9に示すよ
うに、サブステップS301〜S304からなる。Step S111 executed when using a test device other than the rate assay test device includes sub-steps S301 to S304 as shown in FIG.
【0082】サブステップS301において、前記ステ
ップS106の時間計測開始から所定の時間が経過した
か否かを判断し、所定時間の経過を確認した後、サブス
テップS302に進む。In sub-step S301, it is determined whether a predetermined time has elapsed since the start of the time measurement in step S106, and after elapse of the predetermined time, the process proceeds to sub-step S302.
【0083】サブステップS302において、画像デー
タ取得部32に対して試験具画像データの取得を指示
し、試験具画像データの取得に用いるフレーム数を指定
する。次いで、サブステップS303に進む。In sub-step S302, the image data acquisition unit 32 is instructed to acquire test tool image data, and the number of frames to be used for acquiring test tool image data is specified. Next, the process proceeds to sub-step S303.
【0084】サブステップS303において、画像デー
タ取得部32から試験具画像データを受信した後、受信
データおよび予め磁気記憶媒体34に格納しておいた各
種のデータと基準値に基づいて、受信した試験具画像デ
ータに含まれる固相支持体(および必要な場合には参照
用固相支持体)からの透過光の光量、前記透過光を性状
によって成分分けして得られる透過光成分およびそれら
の各分光の相対強度比を演算して求め、得られた演算結
果を磁気記憶媒体34および/またはRAM35に格納
した後、サブステップS304に進む。In sub-step S 303, after receiving the test tool image data from the image data acquisition unit 32, the received test is performed based on the received data and various data and reference values previously stored in the magnetic storage medium 34. The amount of transmitted light from the solid support (and, if necessary, the reference solid support) included in the component image data, the transmitted light component obtained by dividing the transmitted light into components according to properties, and each of them After calculating the relative intensity ratio of the spectrum and storing the obtained calculation result in the magnetic storage medium 34 and / or the RAM 35, the process proceeds to the sub-step S304.
【0085】サブステップS304において、前記サブ
ステップS303で取得した試験具画像データおよびそ
れらから得た演算結果、ならびに予め磁気記憶媒体34
に格納しておいた基準値を用い、定量すべき呈色物のみ
による散乱透過光の光量または前記光量に含まれる定量
すべき呈色物の特異吸収波長を有する分光の光量を定量
指標として、定量すべき呈色物の濃度を求めて定量す
る。そして、ステップS111を終了して、ステップS
112に進む。In the sub-step S304, the test tool image data obtained in the sub-step S303 and the calculation results obtained therefrom, and the magnetic storage medium 34
Using the reference value stored in the, as a quantitative index, the amount of scattered transmitted light only by the color product to be quantified or the amount of spectral light having the specific absorption wavelength of the color product to be quantified included in the light amount, The concentration of the coloring matter to be quantified is determined and quantified. Then, step S111 ends, and step S111 is executed.
Proceed to 112.
【0086】以下に、本発明の呈色物定量装置および/
または呈色物定量用記憶媒体により実現される呈色物定
量方法を説明する。[0086] The apparatus for quantitatively determining a color product of the present invention and / or
Alternatively, a method for quantifying a color substance realized by a storage medium for quantifying a color substance will be described.
【0087】この呈色物定量法の概略を述べれば、固相
支持体中の呈色物に光を照射し、その透過光量を測定し
て得られる透過率に相当するパラメータと予め取得して
おいた基準値に基づき呈色物を定量する透過法を採用し
て、このとき、透過光をその性状により複数の成分に分
けて扱い、且つそれぞれの透過光成分を予め設定した特
定の分光分布を有する複数の光に分光し、透過光成分毎
に各分光強度の総透過光成分強度(分光強度の総和)に
対する比をパラメータとする、固相支持体を用いた呈色
物定量法である。The outline of the color substance determination method is as follows. The color substance in the solid support is irradiated with light, and the amount of transmitted light is measured. A transmission method is used to quantify the color object based on the set reference value. At this time, the transmitted light is divided into a plurality of components according to its properties, and each transmitted light component is set to a predetermined specific spectral distribution. Is a method for quantifying a colored substance using a solid support, in which the ratio of each spectral intensity to the total transmitted light component intensity (total of the spectral intensity) is used as a parameter for each transmitted light component. .
【0088】ここで、本明細書において「固相支持体」
という術語は、試験紙等の試験具において定量すべき成
分と呈色反応する試薬を保持する試験部位または試験領
域を意味するが、必要に応じて、前記試薬を保持しない
以外は同一の構成をとる試験具の部位または領域を特に
「参照用固相支持体」と称することもある。Here, in the present specification, “solid support”
The term is used to mean a test site or test area that holds a reagent that undergoes a color reaction with a component to be quantified in a test device such as a test paper, but if necessary, has the same configuration except that it does not hold the reagent. The site or region of the test device to be taken may be particularly referred to as a “solid support for reference”.
【0089】また、「透過光を性状により複数の成分に
分ける」という表現は、透過光を、散乱のない平行透過
光、固相支持体による散乱透過光、(定量すべき)呈色
物による散乱透過光、および場合により(試料中に存在
する)共存呈色物による散乱透過光等のそれぞれの成分
に分けることを意味する。The expression “separate the transmitted light into a plurality of components depending on the nature” means that the transmitted light is a parallel transmitted light without scattering, a scattered transmitted light by a solid support, and a colorant (to be quantified). This means that the light is separated into respective components such as scattered transmitted light and, in some cases, scattered transmitted light by a coexisting colorant (present in the sample).
【0090】透過光を各種の成分に分別して得る成分の
数に制限は無いが、分別成分の種類を3種類程度として
呈色物を定量するための計算量を抑えることが好まし
く、従って、透過光を4種類以上の成分に別けて扱うこ
とが必要な場合には、測定対象や要求精度等の条件に応
じて2つの成分を選定してそれらを加法混色の法則に従
い1つの成分に換算する手順を反復することにより、透
過光を3種類の成分からなるものとして扱って呈色物の
定量を行うことが好ましい。The number of components obtained by separating transmitted light into various components is not limited. However, it is preferable to reduce the amount of calculation for quantifying a colored substance by setting the types of the separated components to about three types. When it is necessary to treat light as four or more different components, two components are selected according to the conditions such as the object to be measured and required accuracy, and are converted into one component according to the additive color mixing law. By repeating the procedure, it is preferable to treat the transmitted light as being composed of three types of components and determine the amount of the color product.
【0091】また、本明細書においては、上記「分光強
度の総透過光成分強度(分光強度の総和)に対する比」
であり、分光透過光量/総透過光成分光量で表され、光
量とは独立したパラメータを相対強度比と称する。この
とき、分光は、上述の通り、それぞれの透過光成分毎に
予め設定した特定の分光分布を有する複数の光に分光し
て得られるものであり、その種類(数)に制限は無い
が、分光の種類を3種類として呈色物を定量するための
計算量を抑えることが好ましい。そのような複数の分光
の内に、定量すべき呈色物の特異吸収波長(域)を有す
る分光を含めておけば、そのような分光の透過光量は定
量すべき呈色物の呈色程度に鋭敏に追従して変動するの
で有利である。また、可視光領域を用いて測定する場
合、分光の種類を3種類として、その3種類の分光の波
長を国際照明委員会(CIE)の定めたRGB(CI
E)表色系またはXYZ(CIE1931)表色系の原
刺激に相当する波長とし、その相対強度比が色度座標
(r,g,b)または(x,y,z)と一致するように
設定することができる。あるいは、3種類の分光の波長
を、CIEの定めたMacAdamsのUCS表色系の
原刺激の波長とすることもできる。CIEの定めた原刺
激を分光として選定すると、原刺激を用いて測定するよ
うに予め設定された市販の光学的測定装置用の部材、例
えばCCD固体撮像素子等の受光部構成部材を利用し得
るので有利である。In this specification, the above-mentioned “ratio of spectral intensity to total transmitted light component intensity (sum of spectral intensity)” is used.
And a parameter independent of the amount of light is expressed as a relative intensity ratio. At this time, as described above, the spectroscopy is obtained by spectroscopy into a plurality of lights having a specific spectral distribution set in advance for each transmitted light component, and the type (number) is not limited. It is preferable to reduce the amount of calculation for quantifying the color product by setting the types of the spectroscopy to three. If such a plurality of spectral components include a spectral component having a specific absorption wavelength (range) of the color object to be quantified, the amount of transmitted light of such a spectral component is approximately equal to the color of the color object to be quantified. This is advantageous because it fluctuates sharply and fluctuates. In the case of measurement using the visible light region, there are three types of spectroscopy, and the wavelengths of the three types of spectroscopy are RGB (CI) defined by the International Commission on Illumination (CIE).
E) A wavelength corresponding to the primary stimulus of the color system or the XYZ (CIE1931) color system, such that the relative intensity ratio matches the chromaticity coordinates (r, g, b) or (x, y, z). Can be set. Alternatively, the wavelengths of the three types of spectroscopy may be the wavelengths of the primary stimuli of the UCS color system of MacAdams defined by the CIE. When the primary stimulus determined by the CIE is selected as a spectrum, a member for a commercially available optical measuring device that is preset to be measured using the primary stimulus, for example, a light receiving unit component such as a CCD solid-state imaging device can be used. This is advantageous.
【0092】最初に、本法において用いる基準値を収集
する方法について説明する。First, a method of collecting reference values used in the present method will be described.
【0093】尚、以下の説明に際して、前記特定の分光
分布を有する複数の光(分光)が、それぞれU、V、W
の波長または波長域を有する3種類の光、U分光、V分
光およびW分光であると仮定し、各々の分光の透過光量
をU、VおよびW、ならびに各々の分光の相対強度比を
u、vおよびwと表す。従って、u=U/(U+V+
W)、v=V/(U+V+W)、w=W/(U+V+
W)、且つu+v+w=1である。また、複数の透過光
成分の内のどの透過光成分の分光であるのかを、添字を
用いて表す。例えば、透過光成分(Z光)の分光透過量
はUZ、VZおよびWZ、相対強度比はuZ、vZおよ
びwZと表す。In the following description, a plurality of light beams (spectroscopy) having the specific spectral distribution are U, V, and W, respectively.
Assuming three types of light having a wavelength or wavelength range of U, V, and W, the transmitted light amount of each of the spectra is U, V, and W, and the relative intensity ratio of each of the spectra is u, Expressed as v and w. Therefore, u = U / (U + V +
W), v = V / (U + V + W), w = W / (U + V +
W) and u + v + w = 1. Further, which transmitted light component of the plurality of transmitted light components is spectrally represented is indicated by a subscript. For example, the spectral transmittance of the transmitted light component (Z light) U Z, V Z and W Z, relative intensity ratios express a u Z, v Z and w Z.
【0094】本定量方法では、定量に用いる基準値とし
て、呈色物を含有する固相支持体に照射する照射光を用
いて、散乱のない平行透過光、固相支持体による散乱透
過光、(定量すべき)呈色物による散乱透過光、および
場合により(試料中に存在する)共存呈色物による散乱
透過光のそれぞれの成分に関するU、VおよびWの3種
類の分光の分光透過光量を測定して算出される相対強度
比を用いる。In the present quantification method, as a reference value used for quantification, parallel transmitted light without scattering, scattered transmitted light by the solid support, Spectral transmitted light of three types of spectroscopy of U, V and W for each component of the scattered transmitted light by the color object (to be quantified) and, optionally, the scattered transmitted light by the coexisting color object (present in the sample) Is used to calculate the relative intensity ratio.
【0095】散乱のない平行透過光(rfW光)の3種
類の分光であるUrfW光、Vrf W光およびWrfW
光それぞれの相対強度比urfW、vrfWおよびw
rfWは、照射光と同一の相対強度比であるので、照射
光の3種類の分光それぞれの分光透過量を測定して算出
することができる。[0095] U RFW light is three spectral scattered without parallel transmitted light (RFW light), V rf W light and W RFW
The relative intensity ratios of each light u rfW , v rfW and w
Since rfW has the same relative intensity ratio as that of the irradiation light, it can be calculated by measuring the spectral transmission amount of each of the three types of spectrum of the irradiation light.
【0096】固相支持体による散乱透過光(rfB光)
の3種類の分光であるUrfB光、VrfB光およびW
rfB光それぞれの相対強度比urfB、vrfBおよ
びwrfBは、試料未含有の固相支持体の透過光(rf
BW光)に関して3種類の分光それぞれの分光透過量を
測定してそれらの相対強度比を算出して求めることがで
きる。rfBW光は固相支持体による散乱透過光(rf
B光)と散乱のない平行透過光(rfW光)の2成分を
含む透過光である。そして、光を3種類の分光により表
して分光の相対強度比を求めると、3つの分光の相対強
度比の総和は常に1となり、2つの分光の相対強度比が
定まると残りの1つの分光の相対強度比が自ずと定まる
ので、2つの分光の相対強度比を座標軸にとった2次元
の図(相対強度比図、色度図)により元の光を表し得る
ことが知られているので、rfW光およびrfBW光を
プロットした相対強度比図(色度図)を作成し、グラス
マン(H.G.Grassmann)の加法混色の法則
に基づいてrfBW光に含まれるrfB光とrfW光の
光量の比を算出し、算出された比に従いrfBW光の3
種類の分光の分光透過量をそれぞれ分配して得られるr
fB光の3種類の分光透過量から相対強度比urfB、
vrfBおよびwrfBを求めることができる。Light scattered and transmitted by the solid support (rfB light)
U rfB light, V rfB light and W
The relative intensity ratios u rfB , v rfB and w rfB of the respective rfB lights are determined by the transmitted light (rf
BW light) can be obtained by measuring the spectral transmittance of each of the three types of spectral components and calculating their relative intensity ratios. The rfBW light is scattered transmitted light (rf
B light) and parallel transmitted light (rfW light) having no scattering. When the light is represented by three types of spectroscopy and the relative intensity ratio of the spectra is obtained, the sum of the relative intensity ratios of the three spectra is always 1 and when the relative intensity ratio of the two spectra is determined, the remaining one of the spectra is determined. Since the relative intensity ratio is naturally determined, it is known that the original light can be represented by a two-dimensional diagram (relative intensity ratio diagram, chromaticity diagram) in which the relative intensity ratio of the two spectral components is set on the coordinate axis. A relative intensity ratio diagram (chromaticity diagram) in which the light and the rfBW light are plotted is created, and the light amounts of the rfB light and the rfW light included in the rfBW light are calculated based on the additive color mixing law of HG Grassmann. The ratio is calculated, and 3 of the rfBW light is calculated according to the calculated ratio.
R obtained by distributing the amount of spectral transmission of each type of spectrum
From three types of spectral transmission amounts of fB light, the relative intensity ratio u rfB ,
v rfB and w rfB can be determined.
【0097】呈色物による散乱透過光(rfL光)の3
種類の分光であるUrfL光、Vr fL光およびW
rfL光それぞれの相対強度比urfL、vrfLおよ
びwrf Lは、一定濃度の呈色物のみを含む水溶液の透
過光または一定濃度の呈色物のみを含む固相支持体の透
過光に関して3種類の分光それぞれの分光透過量を測定
してそれらの相対強度比を算出することにより求めるこ
とができる。3 of the transmitted light (rfL light) scattered by the colored material
Is a type of spectral U RFL light, V r fL light and W
The relative intensity ratios u rfL , v rfL, and w rf L of the respective rfL lights are 3 with respect to the transmitted light of the aqueous solution containing only the color substance of a certain concentration or the transmitted light of the solid support containing only the color substance of a certain concentration. It can be obtained by measuring the spectral transmission amount of each type of spectrum and calculating their relative intensity ratio.
【0098】まず、一定濃度の呈色物のみを含む水溶液
の透過光(rfLW光)から相対強度比urfL、v
rfLおよびwrfLを求める場合について説明する。
最初に、慣用の吸光光度計を用い、水を対照として一定
濃度の呈色物のみを含む水溶液の吸収スペクトルを測定
し、次いで、U、VおよびWそれぞれの波長(または波
長域)における前記水溶液の透過光量UrfLW、V
rfLWおよびWrfLWを測定し、相対強度比u
rfLW、vrfLWおよびwrfLWを求める。この
とき、測定されたrfLW光は、水による吸光が補正さ
れており、呈色物による散乱透過光(rfL光)と散乱
のない平行透過光(rfW光)の2成分を含む透過光と
見なすことができるので、rfW光およびrfLW光を
プロットした相対強度比図(色度図)を作成して、加法
混色の原理に基づいてrfLW光に含まれるrfL光と
rfW光の光量の比を算出し、算出された比に従いrf
LW光の3種類の分光の分光透過量を分配して得られる
rfL光の3種類の分光透過量から相対強度比
urfL、vrfLおよびwrfLを求めることができ
る。First, from the transmitted light (rfLW light) of an aqueous solution containing only a color substance at a certain concentration, the relative intensity ratios u rfL and v
A case where rfL and w rfL are obtained will be described.
First, using a conventional absorptiometer, the absorption spectrum of an aqueous solution containing only a colorant at a certain concentration is measured using water as a control, and then the aqueous solution at each wavelength (or wavelength range) of U, V, and W is measured. Of transmitted light U rfLW , V
rfLW and W rfLW were measured and the relative intensity ratio u
Determine rfLW , v rfLW and w rfLW . At this time, the measured rfLW light has been corrected for absorption by water, and is regarded as transmitted light including two components of scattered transmitted light (rfL light) and parallel transmitted light (rfW light) without scattering by a colored material. Therefore, a relative intensity ratio diagram (chromaticity diagram) in which the rfW light and the rfLW light are plotted is created, and the ratio of the light amounts of the rfL light and the rfW light included in the rfLW light is calculated based on the principle of additive color mixture. Rf according to the calculated ratio
The relative intensity ratios u rfL , v rfL and w rfL can be determined from the three types of spectral transmission amounts of the rfL light obtained by distributing the three types of spectral transmission amounts of the LW light.
【0099】次に、一定濃度の呈色物のみを含む固相支
持体の透過光(rfLBW光)から相対強度比
urfL、vrfLおよびwrfLを求める場合につい
て説明する。まず、rfBLW光に関して3種類の分光
の分光透過量を測定し、それから相対強度比を算出して
求める。rfLBW光は、呈色物による散乱透過光(r
fL光)、固相支持体による散乱透過光(rfB光)お
よび散乱のない平行透過光(rfW光)の3成分を含む
透過光であるから、rfB光、rfW光およびrfBL
W光をプロットした相対強度比図(色度図)を作成し
て、加法混色の原理に基づいてrfBLW光に含まれる
rfB光、rfL光およびrfW光の光量の比を算出
し、算出された比に従いrfBLW光の3種類の分光の
分光透過量を分配して得られるrfL光の3種類の分光
透過量から相対強度比urfL、vrfLおよびw
rfLを求めることができる。このとき、使用する固相
支持体が、光学的にほぼ均一であり、且つ測定波長
(域)において光を吸収しない(即ち光学的に透明であ
る)と見なし得る場合には、rfLBW光は、上記rf
LW光と同様に、呈色物による散乱透過光(rfL光)
と散乱のない平行透過光(rfW光)の2成分を含む透
過光と見なすことができ、そのような場合には、rfL
W光ではなくrfLBW光を用いて基準値を取得して、
水溶液を調製したり、液体試料測定用の吸光光度計を使
用したりする等の手間を省くことができる。Next, the case where the relative intensity ratios u rfL , v rfL, and w rfL are determined from the transmitted light (rfLBW light) of the solid support containing only the color substance at a certain concentration will be described. First, three types of spectral transmission amounts of rfBLW light are measured, and then a relative intensity ratio is calculated and obtained. The rfLBW light is scattered and transmitted light (r
fL light), transmitted light including three components of scattered transmitted light (rfB light) by the solid support and parallel transmitted light (rfW light) without scattering, and thus rfB light, rfW light, and rfBL.
A relative intensity ratio diagram (chromaticity diagram) in which the W light is plotted is created, and the ratio of the light amounts of the rfB light, the rfL light, and the rfW light included in the rfBLW light is calculated based on the principle of additive color mixture. The relative intensity ratios u rfL , v rfL and w are obtained from the three types of spectral transmission amounts of rfL light obtained by distributing the three types of spectral transmission amounts of rfBLW light according to the ratio.
rfL can be determined. At this time, when the solid support to be used is optically substantially uniform and can be regarded as not absorbing light (that is, optically transparent) at a measurement wavelength (range), the rfLBW light is: Rf
Similar to the LW light, the scattered transmitted light (rfL light) due to the color object
And the transmitted light including two components of parallel transmitted light (rfW light) without scattering. In such a case, rfL
The reference value is obtained using rfLBW light instead of W light,
The labor of preparing an aqueous solution or using an absorptiometer for measuring a liquid sample can be saved.
【0100】所望により採用される基準値である、共存
呈色物による散乱透過光(rfCL光)の3種類の分光
であるUrfCL光、VrfCL光およびWrfCL光
それぞれの相対強度比urfCL、vrfCLおよびw
rfCLは、上記rfL光の分光の相対強度比
urfL、vrfLおよびwrfLと同様の手順により
求めることができる。Relative intensity ratios u rfCL of U rfCL light, V rfCL light and W rfCL light, which are three types of spectroscopy of scattered transmitted light (rfCL light) by coexisting color materials, which are reference values adopted as desired. , V rfCL and w
rfCL can be obtained by the same procedure as that for the relative intensity ratios u rfL , v rfL, and w rfL of the rfL light spectrum.
【0101】以上の如くして得られた基準値を用いて本
呈色物定量法を実施することにより、簡便且つ高精度に
呈色物を定量することができる。By performing the present color substance determination method using the reference values obtained as described above, it is possible to easily and accurately quantify the color substance.
【0102】以下に、本発明の装置および/または記憶
媒体により実現される呈色物定量法の第1〜6の形態に
ついて、順を追って詳細に説明する。第6の形態がレー
トアッセイ法を用いた形態である。Hereinafter, the first to sixth embodiments of the method for quantifying a colored substance realized by the apparatus and / or the storage medium of the present invention will be described in detail step by step. The sixth form is a form using a rate assay method.
【0103】A)第1の呈色物定量法 第1の形態の呈色物定量法は、試料中に含まれる性状既
知の1種類の成分から形成される呈色物を定量する方法
であり、後述する他の呈色物定量法の基礎となるもので
ある。尚、理解を容易にするために、試料中に共存呈色
物が存在しない場合について説明する。 A) First Colored Object Quantitative Method The first form of the colored object quantification method is a method for quantifying a colored substance formed from one type of component of known properties contained in a sample. , Which is the basis of another method for quantitatively determining a colored substance described later. Note that, in order to facilitate understanding, a case will be described in which no coexisting color product exists in the sample.
【0104】まず、予め上述の如くして参照用の基準値
を求めておく。但し、この場合は共存呈色物が存在しな
いと仮定しているので、共存呈色物による散乱透過光
(rfCL光)については基準値を求めなくても良い。First, a reference value for reference is determined in advance as described above. However, in this case, since it is assumed that there is no coexisting color product, the reference value need not be obtained for the scattered transmitted light (rfCL light) by the coexisting color product.
【0105】次いで、所望の時点において、定量すべき
呈色物を含む固相支持体からの透過光の3種類の分光そ
れぞれの透過光量を測定し、得られた透過光量から各分
光の相対強度比を求める。Next, at desired times, the amount of transmitted light of each of the three types of spectra of the transmitted light from the solid support containing the color substance to be quantified was measured, and the relative intensity of each spectrum was determined from the obtained amount of transmitted light. Find the ratio.
【0106】そして、定量すべき呈色物を含む固相支持
体の透過光(M光)を、散乱のない平行透過光(W
光)、固相支持体による散乱透過光(B光)および定量
すべき呈色物による散乱透過光(L光)のそれぞれの成
分に分けて取扱い、測定されたM光の分光透過光量およ
び相対強度比、ならびに上記基準値に基づいて、呈色物
の濃度を算出する。このとき、分光の相対強度比は上記
で定義した通り光量とは独立したパラメータであり、光
学的に同一の色調を呈する光は全て同一の値をとるの
で、前記のW光成分、B光成分およびL光成分の分光の
相対強度比は、基準値として得たrfW光、rfB光お
よびrfL光の分光の相対強度比とそれぞれ等しいもの
として扱い得る。Then, the transmitted light (M light) of the solid support containing the color substance to be quantified is converted into the parallel transmitted light (W
Light), scattered transmitted light (B light) by the solid support, and scattered transmitted light (L light) by the color object to be quantified. The density of the color object is calculated based on the intensity ratio and the reference value. At this time, the relative intensity ratio of the spectrum is a parameter independent of the light amount as defined above, and all the light having the same optical tone have the same value. The relative intensity ratio of the spectral components of the light components L and L can be treated as being equal to the relative intensity ratio of the spectral components of the rfW light, the rfB light, and the rfL light obtained as the reference values.
【0107】呈色物の濃度を算出する過程を以下に具体
的に説明する。The process of calculating the density of a color product will be specifically described below.
【0108】M光を、W光、B光およびL光の3成分に
分別し、それぞれの成分を3種類に分光してU分光、V
分光、W分光とする。これをM光の各分光の光量につい
て数式で表せば、下式(1)〜(3)の通りである。The M light is separated into three components of W light, B light and L light, and each component is divided into three types to be U-spectroscopic and V-spectroscopic.
Spectroscopy and W spectroscopy. If this is expressed by a mathematical expression with respect to the amount of light of each spectrum of M light, the following expressions (1) to (3) are obtained.
【0109】[0109]
【数1】 ここで、M光の分光の光量であるUM、VMおよびWM
以外の値は直接測定することが不可能な値であるが、そ
れらの値(光量)に関連する値である相対強度比は、基
準値測定により求められる。それぞれの光量と相対強度
比との関係は、上述の通り、下式(4)〜(9)で示さ
れる。このとき、当然ながら全ての光成分において3種
類の分光の相対強度比の合計値は1であり、これは下記
式(10)により(添字無しで)一般的に表される。(Equation 1) Here, U M , V M, and W M , which are the amounts of light of the M light, are spectrally separated.
Other values are values that cannot be directly measured, but the relative intensity ratio, which is a value related to those values (light quantity), is determined by reference value measurement. As described above, the relationship between each light amount and the relative intensity ratio is represented by the following equations (4) to (9). At this time, of course, the total value of the relative intensity ratios of the three types of spectral components for all the light components is 1, and this is generally represented by the following equation (10) (without subscripts).
【0110】[0110]
【数2】 そして、M光の成分であるL光、B光およびW光の光量
をそれぞれRL、RBおよびRWと置くと、それぞれの
光量を下式(11)〜(13)で表すことができる。(Equation 2) Then, L light is a component of the M light, each light amount of the B light and W light R L, putting the R B and R W, it is possible to represent each of the light amount by the following formula (11) - (13) .
【0111】[0111]
【数3】 従って、上記の式(1)および(2)を前記の式(4)
〜(9)を用いて変形し、さらに式(11)〜(13)
を代入することにより、下式(14)〜(16)が得ら
れる。(Equation 3) Therefore, the above equations (1) and (2) are replaced by the above equation (4)
To (9), and further transformed by equations (11) to (13).
Are substituted, the following equations (14) to (16) are obtained.
【0112】[0112]
【数4】 ここで、各光成分について、分光の相対強度比と同様に
総光量(M光の光量=RM=RL+RW+RB)に対す
るRL、RWおよびRBそれぞれの相対比をrL、rW
およびrBと置けば、rL、rWおよびrBはそれぞれ
下式(17)〜(19)と表され、このとき常に下式
(20)が成立する。(Equation 4) Here, each light component, for R L (amount = R M = R L + R W + R B of the M light) spectroscopy of the relative intensity ratio as well as the total amount of light, R W and R B each relative ratio r L , R W
And r B , r L , r W, and r B are respectively expressed by the following equations (17) to (19), and at this time, the following equation (20) is always satisfied.
【0113】[0113]
【数5】 そして、式(14)の両辺を式(16)で除して式(1
7)〜(19)を代入した後に式(20)を用いて変数
rWを消去することにより、下式(21)が得られる。
同様にして、式(15)の両辺を式(16)で除して式
(17)〜(19)を代入した後に式(20)を用いて
変数rWを消去することにより、下式(22)が得られ
る。(Equation 5) Then, dividing both sides of Expression (14) by Expression (16), Expression (1)
7) by deleting the variable r W using equation (20) after assigning to (19), the following equation (21) is obtained.
Similarly, by erasing the variable r W using equation (20) after substituting equation (17) to (19) by dividing both sides of formula (15) in equation (16), the following formula ( 22) is obtained.
【0114】[0114]
【数6】 上記の2つの式(23)、(24)に含まれる未知数は
rLとrBの2つであるので、演算によりこれら2つの
未知数を求めることが可能である。即ち、下式(25)
に示す行列式を実行してrLとrBを求めることができ
る。(Equation 6) Since the two unknowns included in the above two equations (23) and (24) are r L and r B , these two unknowns can be obtained by calculation. That is, the following equation (25)
It can be obtained r L and r B the matrix equation shown in running.
【0115】[0115]
【数7】 また、式(16)および式(17)から、RLをUM、
VMおよびWMで表す下式(26)が得られる。(Equation 7) Further, from Expressions (16) and (17), R L is expressed as UM ,
The following formula expressed by V M and W M (26) is obtained.
【0116】[0116]
【数8】 以上の演算により、定量すべき呈色物による散乱透過光
(L光)の光量であるRL(=UL+VL+WL)を、
測定値であるUM、VMおよびWM、ならびに予め測定
した基準値であるuL、vL、uW、vW、uBおよび
vBから求めることができる。(Equation 8) By the above calculation, R L (= U L + V L + W L ), which is the amount of scattered transmitted light (L light) by the color object to be quantified, is
A measurement U M, V M and W M, as well as pre-measured reference value u L, v L, u W , v W, can be determined from u B and v B.
【0117】このようにして、本法においては、定量す
べき呈色物による散乱透過光(L光)のみの光量である
RLを得ることができ、その他の光成分に影響されるパ
ラメータが全て消去される。従って、これ以降の演算に
おいては、定量すべき呈色物が、測定波長(域)におい
て光学的に透明で光路長一定の媒体中に存在するものと
見なすことができるので、ベールの法則により、光量
(RL)と呈色物濃度(C)との関係を、下式(27)
で表すことが可能であり、濃度を対数目盛、光量を等間
隔目盛としたグラフ上に濃度と光量とをプロットすれば
両者の関係を表す線分が得られる。In this way, in this method, it is possible to obtain RL , which is the amount of only scattered and transmitted light (L light) by the color object to be quantified, and to obtain other parameters affected by light components. All are erased. Therefore, in the subsequent calculations, the color object to be quantified can be regarded as existing in a medium that is optically transparent and has a constant optical path length at the measurement wavelength (range). Therefore, according to Beer's law, The relationship between the light quantity ( RL ) and the color density (C) is expressed by the following equation (27).
And plotting the density and the light amount on a graph in which the density is on a logarithmic scale and the light amount is an equally spaced scale gives a line segment representing the relationship between the two.
【0118】[0118]
【数9】 このとき、実際の測定値に基づき上記の如きグラフを作
成して得られる呈色物濃度(C)と光量(RL)との関
係を表す線分は、式(27)とは若干ずれることがあ
り、測定条件や所望の測定精度に応じて実際に得られる
グラフ上の線分の近似式を求め、得られた近似式を式
(27)に代えて用いることができる。尚、この過程
も、仮想的にグラフを描き得られる線分の近似式を求め
ることにより、全て演算によって実行することが可能で
あり、全て演算によって実行する方が省力化および正確
性の観点から有利である。そのようにして得られる近似
式としては、下記の式(28)、式(29)ならびに一
般式(30)等を例示することができるが、式(29)
で示される2次元の近似式を用いることが実用上好まし
いものと思われる。(Equation 9) At this time, the line segment representing the relationship between the color density (C) and the amount of light (R L ) obtained by creating the above-described graph based on the actual measured values slightly deviates from the equation (27). An approximate expression of a line segment on a graph that is actually obtained according to measurement conditions or desired measurement accuracy can be obtained, and the obtained approximate expression can be used in place of Expression (27). It should be noted that this process can also be executed entirely by calculation by obtaining an approximate expression of a line segment that can virtually draw a graph. From the viewpoint of labor saving and accuracy, it is preferable to execute all processes by calculation. It is advantageous. As the approximation formula obtained in such a manner, the following formula (28), formula (29) and general formula (30) can be exemplified.
It seems practically preferable to use the two-dimensional approximation formula shown by
【0119】[0119]
【数10】 上記の式(27)〜(30)においてギリシャ文字で表
した定数は、定法に従い、種々の既知濃度の呈色物を含
む試料に関する測定を行い、得られた測定値から決定す
ることができる。(Equation 10) The constants expressed in Greek letters in the above equations (27) to (30) can be determined from the measured values obtained by performing measurements on samples containing various colored substances having known densities according to a standard method.
【0120】尚、試料中に共存呈色物が存在する場合に
は、さらに共存呈色物からの散乱透過光(CL光)を分
別してM光を4種類の成分からなる透過光として取扱
い、基準値として共存呈色物からの散乱透過光(rfC
L光)の分光の相対強度比を求めて本法を実施する。こ
のとき、例えば、加法混色の法則に従って、rfCL光
の分光の相対強度比と最も近い相対強度比を有する他の
成分の光とrfCL光とを併せて変換して単一成分とし
て取扱うことにより、呈色物の濃度を求める計算を簡素
化することもできる。When a coexisting color product is present in the sample, the scattered transmitted light (CL light) from the coexisting color product is further separated and the M light is treated as transmitted light composed of four types of components. As a reference value, the scattered transmitted light (rfC
This method is carried out by determining the relative intensity ratio of the spectrum of (L light). At this time, for example, according to the law of additive color mixing, the rfCL light is converted together with the other component light having the closest relative intensity ratio to the relative intensity ratio of the rfCL light and treated as a single component, and It is also possible to simplify the calculation for obtaining the density of the color product.
【0121】以上に述べた如く、この第1の形態の呈色
物定量法においては、透過光をその性状により複数の成
分に分け、それぞれの成分を分光して得られる分光の相
対強度比に基づいて、呈色物による散乱透過光のみの光
量(RL)を求め、その光量から呈色物の定量を行うの
で、照射光の光量や固相支持体の表面状態などの変動に
よる影響を最小限に抑えることが可能である。As described above, in the method for quantifying a colored substance according to the first embodiment, the transmitted light is divided into a plurality of components according to its properties, and the relative intensity ratio of the spectrum obtained by spectrally dividing each component is obtained. Based on the light quantity (R L ) of only the scattered and transmitted light by the color object, the quantity of the color substance is determined based on the light quantity. It can be minimized.
【0122】従って、本法により、固相支持体中に含浸
させた呈色物を簡便かつ高精度に定量することができ
る。Therefore, according to this method, the color substance impregnated in the solid support can be quantitatively determined simply and with high precision.
【0123】B)第2の呈色物定量法 第2の形態の呈色物定量法は、試料中に含まれる性状既
知の1種類の成分から形成される呈色物を定量する方法
であり、上記第1の形態の呈色物定量法の変法の1つで
ある。 B) Second Colored Object Quantitative Method The second form of the colored object quantitative method is a method for quantifying a colored substance formed from one type of component of known properties contained in a sample. This is one of the modifications of the colorant quantification method of the first embodiment.
【0124】本法においては、上記第1の形態の呈色物
定量法において上述の複数の分光を選定するにあたっ
て、定量すべき呈色物が特異的に吸収する波長(特異吸
収波長)を有する光を複数の分光の1つとして必ず選択
し、その特異吸収波長を有する分光の分光透過量および
相対強度比に基づいて呈色物を定量する。In the present method, when selecting the plurality of spectroscopy in the method for quantifying a colored substance of the first embodiment, a wavelength (specific absorption wavelength) at which the colored substance to be quantified specifically absorbs is used. Light is always selected as one of a plurality of spectroscopy, and the color product is quantified based on the spectral transmission amount and the relative intensity ratio of the spectroscopy having the specific absorption wavelength.
【0125】以下に、例えば、上記第1の形態の呈色物
定量法と同様に複数の分光としてU分光、V分光および
W分光の3種類を選定し、そのときW分光が呈色物の特
異吸収波長である波長Wを有すると仮定して、主として
第1の形態の呈色物定量法と異なる部分について、本法
を説明する。In the following, for example, as in the case of the color substance quantification method of the first embodiment, three types of U spectrum, V spectrum, and W spectrum are selected as a plurality of spectrums. Assuming that the wavelength has a specific absorption wavelength W, the present method will be described mainly for the portions different from the colorant determination method of the first embodiment.
【0126】本法においては、まず、常法を用いて、定
量すべき呈色物の特異吸収波長を決定し、その特異吸収
波長である波長Wを有するW分光を複数の分光の1つと
して採用すると共に、他の分光成分を選定する。In this method, first, the specific absorption wavelength of the color substance to be quantified is determined using a conventional method, and the W spectrum having the wavelength W which is the specific absorption wavelength is determined as one of a plurality of spectra. Adopt and select other spectral components.
【0127】次いで、第1の形態の呈色物定量法と同様
にして予め種々の基準値を取得しておいてから、所望の
時点で、試料を含む固相支持体からの透過光の光量を測
定する。Next, after obtaining various reference values in advance in the same manner as in the colorant determination method of the first embodiment, the amount of transmitted light from the solid support containing the sample at a desired time point Is measured.
【0128】そして、定量すべき呈色物を含む固相支持
体の透過光(M光)を、散乱のない平行透過光(W
光)、固相支持体による散乱透過光(B光)および定量
すべき呈色物による散乱透過光(L光)のそれぞれの成
分に分けて取扱い、測定されたM光の分光透過光量およ
び相対強度比、ならびに上記基準値に基づいて、呈色物
の濃度を算出する。この算出過程も概ね上述した第1の
形態の呈色物定量法と同様に実施されるが、本法におい
ては、呈色物による散乱透過光のみの光量RLを算出し
た後、予め基準値として求めておいた、呈色物による散
乱透過光の3種類の分光それぞれの相対強度比uL、v
LおよびwLを用いて、特異吸収波長を有するW光の光
量WLを算出する。そして、第1の形態の呈色物定量法
で用いた上掲の式(27)〜(30)のいずれかの式
に、RLに替えてWLを代入して呈色物の濃度を算出し
て定量する。Then, the transmitted light (M light) of the solid support containing the color substance to be quantified is converted into the parallel transmitted light (W
Light), scattered transmitted light (B light) by the solid support, and scattered transmitted light (L light) by the color object to be quantified. The density of the color object is calculated based on the intensity ratio and the reference value. This calculation process is also generally performed in the same manner as the above-described method for quantifying a colored substance of the first embodiment. However, in this method, after calculating the light amount RL of only the scattered and transmitted light by the colored substance, the reference value is determined in advance. The relative intensity ratios u L and v of each of the three types of spectrum of the scattered and transmitted light by the color object, which were obtained as
With L and w L, and calculates the amount W L and W light having a specific absorption wavelength. Then, either of the formula, supra, was used in the coloration colored article Determination of the first form (27) - (30), the concentration of coloration colored article by substituting W L instead of R L Calculate and quantify.
【0129】上述の如く、第2の形態の呈色物定量法に
おいては、第1の形態の呈色物定量法において採用され
た呈色物による散乱透過光の分光光量の総和である光量
RLに替えて、呈色物による散乱透過光中に含まれる呈
色物の特異吸収波長の分光(W光)のみの光量WLを採
用して呈色物を定量するが、このWLは呈色物の濃度変
化に対してRLよりも高感度に変化するので、本法を用
いることによりさらに高精度な定量が可能となる。As described above, in the color object quantification method of the second embodiment, the light amount R, which is the sum of the spectral light amounts of the scattered and transmitted light by the color object employed in the color object quantification method of the first embodiment, is used. instead L, and is quantified adopted to coloration colored article the amount W L only spectral (W light) of a specific absorption wavelength of coloration colored article contained in the scattering transmitting light by coloration colored article, the W L is Since the change in the density of the coloring matter changes with higher sensitivity than that of the RL , the use of this method enables more accurate quantification.
【0130】C)第3の呈色物定量法 第3の形態の呈色物定量法は、試料中に含まれる性状既
知の1種類の成分から形成される呈色物を定量する方法
であり、上記第1の形態の呈色物定量法の変法の1つで
ある。また、本法は上記第2の形態の呈色物定量法と組
合わせて用いることもできる。 C) Third Colored Object Quantitative Method The third form of the colored object quantitative method is a method for quantifying a colored substance formed from one type of component of known properties contained in a sample. This is one of the modifications of the colorant quantification method of the first embodiment. This method can also be used in combination with the above-described second embodiment of the method for determining a colored substance.
【0131】本法においては、上記第1および第2の形
態の呈色物定量法では計算のみにより呈色物の濃度を算
出しているのに対して、上述の複数の分光を用いた相対
強度比図(色度図)をも併用して呈色物の濃度を算出す
る。In this method, while the color substance concentration is calculated only by calculation in the color substance quantification methods of the first and second embodiments, the relative density using a plurality of spectral components described above is used. The density of the color object is calculated using the intensity ratio diagram (chromaticity diagram) together.
【0132】以下に、本法を第1の形態の呈色物定量法
に準じて実施し、上記第1の形態の呈色物定量法と同様
に複数の分光としてU分光、V分光およびW分光の3種
類を選定したと仮定して、第1の形態の呈色物定量法と
異なる部分について本法を説明する。尚、本法を第2の
形態の呈色物定量法と組合わせて実施する場合には、以
下の説明例を上記B)の記載に準じて変更することによ
り実施可能である。Hereinafter, this method is carried out in accordance with the method for quantifying a colored substance according to the first embodiment, and a plurality of spectroscopy, U-spectroscopy, V-spectroscopy, and W-spectral, are performed similarly to the method for quantifying a colored substance of the first embodiment. Assuming that three types of spectroscopy are selected, the present method will be described with respect to portions different from the colorant quantification method of the first embodiment. When the present method is carried out in combination with the colorant quantitative method of the second embodiment, it can be carried out by changing the following description example according to the description of the above B) .
【0133】本法が第1の形態の呈色物定量法と異なる
のは、呈色物の濃度を算出する過程で相対強度比図を併
用することのみであり、その他の手順は同一である。The only difference between this method and the first embodiment is the use of a relative intensity ratio diagram in the process of calculating the concentration of the colored substance, and the other procedures are the same. .
【0134】従って、第1の形態の呈色物定量法と同様
にして予め種々の基準値を測定しておいてから、所望の
時点で、試料を含む固相支持体からの透過光の光量を測
定する。Therefore, after various reference values have been measured in advance in the same manner as in the first embodiment, the amount of transmitted light from the solid support containing the sample at a desired point in time. Is measured.
【0135】そして、定量すべき呈色物を含む固相支持
体の透過光(M光)を、散乱のない平行透過光(W
光)、固相支持体による散乱透過光(B光)および定量
すべき呈色物による散乱透過光(L光)のそれぞれの成
分に分けて取扱い、測定されたM光の分光透過光量およ
び相対強度比、ならびに上記基準値に基づいて、呈色物
の濃度を算出する。Then, the transmitted light (M light) of the solid support containing the color substance to be quantified is converted into the parallel transmitted light (W
Light), scattered transmitted light (B light) by the solid support, and scattered transmitted light (L light) by the color object to be quantified. The density of the color object is calculated based on the intensity ratio and the reference value.
【0136】本法では、ある光を3種類の分光により表
して分光の相対強度比を求めると、3つの分光の相対強
度比の総和は常に1となり、2つの分光の相対強度比が
定まると残りの1つの分光の相対強度比が自ずと定まる
ので、2つの分光の相対強度比を座標軸にとった2次元
の図(相対強度比図、色度図)により元の光を表し得る
という知見に基づき相対強度比図を作成して呈色物の濃
度を求める。In this method, when a certain light is represented by three types of spectral components and the relative intensity ratio of the spectral components is obtained, the sum of the relative intensity ratios of the three spectral components is always 1 and the relative intensity ratio of the two spectral components is determined. Since the relative intensity ratio of the remaining one spectrum is naturally determined, the knowledge that the original light can be represented by a two-dimensional diagram (relative intensity ratio diagram, chromaticity diagram) using the relative intensity ratio of the two spectra as a coordinate axis. Based on this, a relative intensity ratio diagram is created to determine the density of the color product.
【0137】図10は、上記知見に基づき、uを縦軸、
vを横軸とし、各光の座標を各光の略称を付した点で表
した相対強度比図を用いて、定量すべき呈色物を含む固
相支持体の透過光(M光)、定量すべき呈色物による散
乱透過光(L光)、固相支持体による散乱透過光(B
光)および散乱のない平行透過光(W光)の相互関係を
示している。この図10は、M光については測定値から
求めた相対強度比を用い、そしてL光、B光およびW光
については基準値を用いて作成することができる。図1
0中、点Pは、点Wおよび点Mを通る直線と線分LBと
の交点であり、点Qは、点Bおよび点Mを通る直線と線
分WLとの交点であり、そして点Sは、点Lおよび点M
を通る直線と線分BWとの交点をそれぞれ示している。FIG. 10 is a graph based on the above findings, where u is the vertical axis,
Using a relative intensity ratio diagram in which v is the abscissa and the coordinates of each light are represented by points with the abbreviations of each light, the transmitted light (M light) of the solid support containing the color substance to be quantified, Scattered transmitted light (L light) due to the color substance to be quantified, scattered transmitted light (B
2 shows the correlation between the light (light) and the parallel transmitted light (W light) without scattering. This FIG. 10 can be created by using the relative intensity ratio obtained from the measured value for the M light, and using the reference values for the L light, B light and W light. FIG.
0, point P is the intersection of the line LB with the line passing through points W and M, point Q is the intersection of the line WL with the line passing through points B and M, and point S Are the points L and M
Respectively, and the intersections of the straight line passing through and the line segment BW.
【0138】このとき、M光中に含まれるW光の光量
(RW)とL光の光量(RL)との相対比RW:R
Lは、両光量の和(RW+RL)に対するRLの比をq
wと置いて下式(31)で表すことができる。At this time, the relative ratio R W : R of the light amount (R W ) of the W light and the light amount (R L ) of the L light contained in the M light.
L is the ratio of R L to the sum of both light quantities (R W + R L ), q
w and can be expressed by the following equation (31).
【0139】[0139]
【数11】 同様にして、M光中に含まれるW光の光量(RW)とB
光の光量(RB)との相対比RW:RBは、両光量の和
(RW+RB)に対するRBの比をq´wと置いて下式
(32)で表すことができる。[Equation 11] Similarly, the light amount (R W ) of W light included in M light and B light
The relative ratio R W between the quantity of light (R B): R B can be expressed by the following equation (32) at the q'w the ratio of R B to the sum of both the amount of light (R W + R B) .
【0140】[0140]
【数12】 さらに、M光中に含まれるL光の光量(RL)とB光の
光量(RB)との相対比RL:RBは、両光量の和(R
L+RB)に対するRBの比をq´´wと置いて下式
(33)で表すことができる。(Equation 12) Furthermore, the relative ratio R L of the L light amount of light contained in M light (R L) and B light quantity (R B): R B is the sum of both the amount of light (R
It can be expressed by the following equation (33) L + for R B) at the q''w the ratio of R B.
【0141】[0141]
【数13】 また、M光の光量をRMとすれば、下式(34)が成立
する。(Equation 13) Further, the amount of M light if R M, the following equation (34) holds.
【0142】[0142]
【数14】 以上のことから、RL、RWおよびRBの比および総量
が求まるので、RL、RWおよびRBそれぞれの値を算
出することができる。[Equation 14] From the above, R L, and the specific and the total amount of R W and R B is determined, it is possible to calculate R L, the respective values R W and R B.
【0143】そして、得られたRLを上掲の式(27)
〜(30)のいずれか1つに代入して呈色物の濃度を求
めて定量することができる。Then, the obtained RL is represented by the above formula (27).
To (30), the density of the color product can be determined and quantified.
【0144】このようにして相対強度比図を用いる本法
の呈色物濃度算出過程は、実際に相対強度比図を作成し
て線分の長さを求めることにより実行することもできる
が、仮想的に相対強度比図を描いて得られる種々の直線
および線分を表す式を算定して全て演算により実行する
ことも可能である。As described above, the color substance density calculating process of the present method using the relative intensity ratio diagram can be executed by actually creating the relative intensity ratio diagram and obtaining the length of the line segment. It is also possible to calculate formulas representing various straight lines and line segments obtained by virtually drawing a relative intensity ratio diagram and execute them all by calculation.
【0145】以上に述べた如く、この第3の形態の呈色
物定量法においては、透過光をその性状により複数の成
分に分け、それぞれの成分を分光して得られる分光の相
対強度比に基づいて、呈色物による散乱透過光のみの透
過光量(RL)を求め、その透過光量から呈色物の定量
を行うので、照射光の光量や固相支持体等の状態の変動
による影響を最小限に抑えることが可能であり、本法に
よって固相支持体中に含浸させた呈色物を簡便かつ高精
度に定量することができる。As described above, in the colorant determination method of the third embodiment, the transmitted light is divided into a plurality of components according to its properties, and the relative intensity ratio of the spectrum obtained by spectrally separating each component is obtained. The amount of transmitted light (R L ) of only the scattered and transmitted light by the color object is calculated based on the light amount, and the amount of the color object is determined from the transmitted light amount. Can be minimized, and the color product impregnated in the solid support by the present method can be quantified simply and with high accuracy.
【0146】D)第4の呈色物定量法 第4の形態の呈色物定量法は、性状既知の2種類以上の
呈色物からなる混合物が試料中に存在する場合、即ち定
量すべき呈色物以外の共存呈色物が試料中に存在する場
合に、試料中に含まれる性状既知の1種類の成分と試薬
から形成される呈色物を定量する方法であり、上記第1
の形態の呈色物定量法の変法の1つである。また、本法
は上記第2または第3の形態の呈色物定量法と組合わせ
て用いることもできる。 D) Fourth Colored Object Quantitative Method In the fourth form of the colored material quantification method, when a mixture of two or more types of colored substances of known properties is present in a sample, that is, it should be quantified. A method for quantifying a color product formed from one kind of component of known properties and a reagent contained in a sample when a coexisting color product other than the color product is present in the sample.
This is one of the modifications of the method for quantifying a colored substance of the form (1). In addition, this method can be used in combination with the color substance determination method of the second or third embodiment.
【0147】本法は、上述の第1〜3の形態の呈色物定
量法を、特に生物試料中の特定成分の定量に適するよう
に改変した、実用的且つ簡易的な呈色物定量法である。This method is a practical and simple method for quantitatively determining a colored substance, which is a modification of the above-described first to third embodiments of the method for quantitatively determining a colored substance, particularly suitable for quantifying a specific component in a biological sample. It is.
【0148】一般に、生物試料、例えば血液、血清また
は尿等には、検出・定量すべき呈色物と類似した色調を
呈し、いわゆるバックグラウンドとして測定値に影響を
与える共存呈色物が存在することが多い。従って、その
ような共存呈色物が試料中に存在する場合には、定量す
べき呈色物を含む固相支持体の透過光(M光)を、散乱
のない平行透過光(W光)、固相支持体による散乱透過
光(B光)、定量すべき呈色物による散乱透過光(L
光)、および試料中に存在する共存呈色物による散乱透
過光(CL光)の各成分に分けて取扱う必要がある。In general, a biological sample, such as blood, serum, or urine, has a color tone similar to that of a color product to be detected and quantified, and a coexisting color product that affects a measured value as a so-called background. Often. Therefore, when such a coexisting color product is present in the sample, the transmitted light (M light) of the solid support containing the color product to be quantified is converted into the parallel transmitted light (W light) without scattering. Scattered transmitted light (B light) by the solid support, scattered transmitted light (L
Light) and scattered and transmitted light (CL light) due to coexisting colorants present in the sample.
【0149】上述の第1〜3の形態の呈色物定量法その
ままでも、M光を上記4種類の成分に分別して取扱うこ
とにより定量すべき呈色物の濃度を求めて定量すること
が可能であるが、分別して測定すべき化学種の増加(即
ち分別すべき透過光成分の種類の増加)に伴い、計算量
が増大すると共に、算出したパラメータ値の僅かな変動
が定量結果に与える影響が大きくなる傾向がある。It is possible to determine and determine the concentration of the color substance to be quantified by separating the M light into the four types of components and handling the same as it is in the color substance quantification methods of the first to third embodiments. However, as the number of chemical species to be separated and measured increases (that is, the number of types of transmitted light components to be separated increases), the amount of calculation increases, and the slight variation in the calculated parameter value affects the quantitative result. Tends to be large.
【0150】しかるに、固相支持体として、例えば可視
領域等の測定波長域において光吸収のない光学的に透明
な固相支持体を用いれば、測定波長領域では上記4種類
の透過光成分に含まれる散乱のない平行透過光(W光)
と固相支持体による散乱透過光(B光)の分光分布を同
一と見なすことができるので、例えばW光をB光に含め
て計算を省くことが可能である。それにより、上記M光
の成分は3種類に分別するだけで良いこととなり、計算
量およびパラメータ変動による影響の増大を招くことな
く、実用的且つ簡便に呈色物を定量することができる。
このような定量法は、生物試料中に含まれる成分の定量
を初めとして、広範に適用され得る実用的な定量法であ
る。However, if an optically transparent solid support that does not absorb light in the measurement wavelength range such as the visible region is used as the solid support, it is included in the four types of transmitted light components in the measurement wavelength range. Parallel transmitted light without scattering (W light)
And the spectral distribution of the scattered transmitted light (B light) by the solid support can be regarded as the same, so that the calculation can be omitted by including the W light in the B light, for example. Thereby, the component of the M light only needs to be classified into three types, and the amount of the colored material can be practically and simply quantified without increasing the amount of calculation and the influence of parameter fluctuation.
Such a quantification method is a practical quantification method that can be widely applied, including quantification of components contained in a biological sample.
【0151】従って、第4の形態の呈色物定量法は、上
記第1〜3の形態の呈色物定量法において、測定波長域
において光学的に透明な固相支持体を用いることにより
散乱のない平行透過光(W光)と固相支持体による散乱
透過光(B光)とを同一の光として扱い得るものとし、
且つ基準値として共存呈色物による散乱透過光(CL
光)の複数の分光の相対強度比を必ず用いる方法であ
る。Accordingly, the colorant determination method of the fourth embodiment is the same as the colorant determination method of the first to third embodiments, except that the solid-state support which is optically transparent in the measurement wavelength range is used. And the parallel transmitted light (W light) without light and the scattered transmitted light (B light) by the solid support can be treated as the same light,
In addition, the scattered transmitted light (CL
This is a method that always uses the relative intensity ratio of a plurality of spectral components of light.
【0152】即ち、本法によれば、上述の第1〜3の形
態の呈色物定量法に準じて、定量すべき呈色物を含む固
相支持体の透過光(M光)を、散乱のない平行透過光
(W光)または固相支持体による散乱透過光(B光)の
いずれか一方と試料中に存在する共存呈色物による散乱
透過光(CL光)とを用いて、ベースラインおよびバッ
クグランドに関して補正し、定量すべき呈色物による散
乱透過光(L光)の光量RL、またはL光中で呈色物の
特異吸収波長を有する分光の光量に基づいて呈色物の濃
度を求めて定量することができる。That is, according to this method, the transmitted light (M light) of the solid support containing the color substance to be quantified is calculated according to the color substance quantification method of the first to third embodiments. Using either one of the parallel transmitted light (W light) without scattering or the scattered transmitted light (B light) by the solid support and the scattered transmitted light (CL light) by the coexisting colorant present in the sample, The color is corrected based on the baseline and the background and based on the light amount R L of the scattered transmitted light (L light) by the color object to be quantified or the light amount of the spectrum having the specific absorption wavelength of the color object in the L light. The concentration of the substance can be determined and quantified.
【0153】以下に、本法を第1の形態の呈色物定量法
に準じて実施し、第1の形態の呈色物定量法と同様に複
数の分光としてU分光、V分光およびW分光の3種類を
選定したと仮定して、第1の形態の呈色物定量法と異な
る部分について本法を説明する。尚、本法を第2または
第3の形態の呈色物定量法と組合わせて実施する場合に
は、以下の説明例を、上記B)またはC)の記載に準じ
て変更すればよい。Hereinafter, the present method is carried out in accordance with the method for quantifying a colored substance according to the first embodiment, and a plurality of spectroscopy, U-spectroscopy, V-spectroscopy and W-spectroscopy, are carried out in the same manner as in the first embodiment. Assuming that the three types described above are selected, the present method will be described with respect to portions different from the colorant quantification method of the first embodiment. When the present method is carried out in combination with the colorant quantification method of the second or third embodiment, the following explanation example may be changed according to the description of the above B) or C) .
【0154】本法が第1の形態の呈色物定量法と異なる
のは、測定波長域において光吸収のない固相支持体を用
いること、および、基準値において散乱のない平行透過
光(rfW光)の分光の相対強度比を省いて共存呈色物
による散乱透過光(rfCL光)の分光の相対強度比を
採用することであり、その他の手順は同一である。This method differs from the first embodiment of the method for quantitatively determining a colored substance in that a solid support having no light absorption in a measurement wavelength range is used, and a parallel transmitted light (rfW) having no scattering in a reference value. In other words, the relative intensity ratio of the spectrum of the scattered and transmitted light (rfCL light) due to the coexisting color product is used without omitting the relative intensity ratio of the spectrum of the light), and the other procedures are the same.
【0155】従って、第1の形態の呈色物定量法と同様
にして予め種々の基準値を測定しておいてから、所望の
時点で、試料を含む固相支持体からの透過光の光量を測
定する。但し、上述の通り、散乱のない平行透過光(r
fW光)の分光の相対強度比に関しては基準値の測定を
省くことができ、共存呈色物による散乱透過光(rfC
L光)の分光の相対強度比は必ず取得しておく。Therefore, after various reference values are measured in advance in the same manner as in the first embodiment, the amount of transmitted light from the solid support containing the sample is determined at a desired time. Is measured. However, as described above, the parallel transmitted light (r
The measurement of the reference value can be omitted for the relative intensity ratio of the spectrum of the fW light), and the scattered and transmitted light (rfC
The relative intensity ratio of the spectrum of (L light) is always acquired.
【0156】次いで、定量すべき呈色物を含む固相支持
体の透過光(M光)を、固相支持体による散乱透過光
(B光)、定量すべき呈色物による散乱透過光(L光)
および試料中に存在する共存呈色物による散乱透過光
(CL光)のそれぞれの成分に分けて取扱い、測定され
たM光の分光透過光量および相対強度比、ならびに上記
基準値に基づいて、呈色物の濃度を算出する。この算出
過程は、上述の第1〜3の形態の呈色物定量法と同様に
して、上記A)、B)およびC)の記載において散乱の
ない平行透過光(W光)を共存呈色物による散乱透過光
(CL光)と読み換えることにより実施することができ
る。Next, the transmitted light (M light) of the solid support containing the color substance to be quantified is scattered transmitted light (B light) by the solid support and the scattered transmitted light (B light) by the color substance to be quantified. L light)
And each component of the scattered and transmitted light (CL light) due to the coexisting colorant present in the sample is handled separately, and is displayed based on the measured spectrally transmitted light amount and relative intensity ratio of the M light and the above reference value. Calculate the density of the color object. This calculation process is performed in the same manner as in the above-described first to third embodiments of the method for quantitatively determining a colored substance, in which the parallel transmitted light (W light) having no scattering in the description of the above A) , B) and C) coexists. It can be carried out by replacing it with the scattered and transmitted light (CL light) by the object.
【0157】ここで、本法を、上述の第3の形態の呈色
物定量法に準じて、相対強度比図を用いても実施し得る
ことを具体的に示せば以下の通りである。Here, it will be specifically described that the present method can be carried out by using a relative intensity ratio diagram in accordance with the above-described color form quantification method of the third embodiment.
【0158】試料中に、定量すべき呈色物と共存呈色物
の2種類の呈色物が存在する場合、定量すべき呈色物を
含む固相支持体の透過光(M光)は、散乱のない平行透
過光(W光)、固相支持体による散乱透過光(B光)、
定量すべき呈色物による散乱透過光(L光)および共存
呈色物による散乱透過光(CL光)の各成分を含む系で
あると見なすことができ、これを相対強度比図を用いて
示せば図11aの通りである。図11a中、各点に付し
たB〜Lの記号はそれぞれ対応する略称の成分光を表
し、例えば点Bは固相支持体による散乱透過光(B光)
の座標を表している。このとき、固相支持体が測定波長
域において光学的に透明であれば、図11cに見られる
如く点Wと点Bとが一点上に重なり合い点B(W)とな
る。しかし、これは理論上得られる状態であり、実際の
測定においては、殆どの場合、図11bに見られる通り
点Wと点Bは近接する別の点としてプロットされる。但
し、点Wと点Bは非常に近接して存在しており、一点上
に存在すると近似して取扱うことは可能である。この近
似により生じる誤差は、一般的な用途において許容され
得る範囲内であり、近似によりもたらされる、計算量お
よびパラメータ変動による影響の増大抑止による利益の
方が大きいものと判断される。When the sample contains two types of color products, a color product to be quantified and a coexisting color product, the transmitted light (M light) of the solid support containing the color product to be quantified is , Parallel transmitted light without scattering (W light), scattered transmitted light by solid support (B light),
It can be regarded as a system containing each component of the scattered transmitted light (L light) by the color material to be quantified and the scattered transmitted light (CL light) by the coexisting color material. This is as shown in FIG. 11A. In FIG. 11a, the symbols B to L attached to the respective points represent corresponding abbreviations of component light, for example, point B is scattered transmitted light (B light) by the solid support.
Represents the coordinates of. At this time, if the solid support is optically transparent in the measurement wavelength range, the point W and the point B overlap one point and become a point B (W) as shown in FIG. 11C. However, this is a theoretically obtainable state, and in actual measurements, in most cases, points W and B are plotted as separate points in close proximity as seen in FIG. 11b. However, the point W and the point B are located very close to each other, and it is possible to treat the point W and the point B in an approximate manner. The error caused by this approximation is within a range that can be tolerated in general use, and it is determined that the benefit brought by the approximation by suppressing the increase in the amount of calculation and the effect of parameter fluctuation is greater.
【0159】上述の如く近似することにより、図11c
に示すM光に関する相対強度比図は、W光とCL光が入
れ替わっている以外は、上記第3の形態の呈色物定量法
の説明に用いた図10と同様の図となるので、第3の形
態の呈色物定量法と同様の手順で、定量すべき呈色物の
濃度を求めて定量することができる。By approximation as described above, FIG.
The relative intensity ratio diagram for the M light shown in FIG. 10 is the same as that of FIG. 10 used for describing the colorant quantification method of the third embodiment except that the W light and the CL light are exchanged. According to the same procedure as that of the color substance quantification method of the third mode, the concentration of the color substance to be quantified can be determined and quantified.
【0160】上述の通り、本法によれば、測定波長にお
いて光学的に透明な固相支持体を用いることにより散乱
のない平行透過光(W光)と固相支持体による散乱透過
光(B光)とを同一成分の光として取扱い得るように
し、かつ試料中に存在する共存呈色物による散乱透過光
(CL光)の分光の相対強度比を必ず基準値として取得
することにより、ベースライン補正を単純化し、且つバ
ックグラウンド補正を施すことができるので、実用的精
度で簡便に、定量すべき呈色物の濃度を求めることがで
きる。As described above, according to this method, by using an optically transparent solid support at the measurement wavelength, parallel transmitted light (W light) without scattering and scattered transmitted light (B light) by the solid support are obtained. Light) can be treated as light of the same component, and the relative intensity ratio of the spectrum of the scattered transmitted light (CL light) due to the coexisting colorant present in the sample is always obtained as a reference value, thereby obtaining the baseline. Since the correction can be simplified and the background correction can be performed, the density of the color substance to be quantified can be easily and simply determined with practical accuracy.
【0161】E)第5の呈色物定量法 第5の形態の呈色物定量法は、性状既知の2種類以上の
呈色物からなる混合物が試料中に存在する場合、即ち定
量すべき呈色物以外の共存呈色物が試料中に存在する場
合に、試料中に含まれる性状既知の1種類の成分と試薬
から形成される呈色物を定量する方法であり、上述した
第3の形態の呈色物定量法の変法の1つである。 E) Fifth Colored Object Quantitative Method In the fifth form of the colored substance quantitative method, when a mixture composed of two or more types of colored substances of known properties is present in a sample, that is, it should be quantified. This is a method for quantifying a colored substance formed from one kind of component of known properties and a reagent contained in a sample when a coexisting colored substance other than the colored substance is present in the sample. This is one of the modifications of the method for quantifying a colored substance of the form (1).
【0162】本法は、上述の第3の形態の呈色物定量法
を、特に生物試料中の特定成分の定量に適するように改
変した実用的な呈色物定量法である。This method is a practical method for quantitatively determining a colored substance obtained by modifying the above-described method for determining a colored substance of the third embodiment so as to be particularly suitable for quantitatively determining a specific component in a biological sample.
【0163】既述の通り、共存呈色物が試料中に存在す
る場合には、定量すべき呈色物を含む固相支持体の透過
光(M光)を、散乱のない平行透過光(W光)、固相支
持体による散乱透過光(B光)、定量すべき呈色物によ
る散乱透過光(L光)および試料中に存在する共存呈色
物による散乱透過光(CL光)の各成分に分けて取扱う
必要があり、上述の第1〜3の形態の呈色物定量法は、
そのままでもM光を上記4種類の成分に分別して取扱う
ことにより定量すべき呈色物の濃度を求めて定量し得る
ものの、分別して測定すべき化学種の増加に伴い、計算
量が増大すると共に、算出したパラメータ値の僅かな変
動が定量結果に与える影響が大きくなる傾向がある。As described above, when the coexisting color product is present in the sample, the transmitted light (M light) of the solid support containing the color product to be quantified is converted into the parallel transmitted light (M) without scattering. W light), scattered transmitted light (B light) by a solid support, scattered transmitted light (L light) by a colorant to be quantified, and scattered transmitted light (CL light) by a coexisting colorant present in the sample. It is necessary to handle each component separately.
Although the M light can be quantified by determining the concentration of the coloring matter to be quantified by separating and handling the four components as it is, as the number of chemical species to be categorized and measured increases, the amount of calculation increases. In addition, there is a tendency that a slight change in the calculated parameter value has a large effect on the quantitative result.
【0164】そこで、本法においては、バックグラウン
ドの共存呈色物に関する補正が重要となる生物試料の測
定に際して、試料中の定量すべき成分と呈色反応して呈
色物を形成する試薬を保持する固相支持体と、試料中に
存在する共存呈色物に関する測定を行う前記試薬を保持
しない参照用固相支持体とを備える試験具を用いること
により、計算量の増大とバックグラウンドの影響を抑止
する。Therefore, in the present method, in the measurement of a biological sample in which correction of the coexisting color product in the background is important, a reagent that forms a color product by color reaction with a component to be quantified in the sample is used. By using a test device including a solid support to be retained and a reference solid support that does not retain the reagent for measuring the coexisting colorant present in the sample, the calculation amount is increased and the background is reduced. Suppress the effects.
【0165】即ち、本法では、試験具として例えば図3
に示すような固相支持体51と参照用固相支持体52を
備える試験紙54を用い、且つ上記第3の形態の呈色物
定量法の呈色物濃度算出手順を採用することにより、バ
ックグラウンドの影響に関する補正を容易ならしめる。That is, in this method, as a test device, for example, FIG.
By using a test paper 54 provided with a solid support 51 and a reference solid support 52 as shown in FIG. 5 and adopting a color substance concentration calculation procedure of the color substance quantitative method of the third embodiment, Facilitates correction for background effects.
【0166】以下に、本法を第3の形態の呈色物定量法
に準じて実施し、上記の第3の形態の呈色物定量法と同
様に複数の分光としてU分光、V分光およびW分光の3
種類を選定したと仮定して、第3の形態の呈色物定量法
と異なる部分について本法を説明する。In the following, this method is carried out in accordance with the third embodiment of the method for quantifying a colored substance, and similarly to the third embodiment, the U-spectroscopy, V-spectroscopy and W spectroscopy 3
Assuming that the type has been selected, the present method will be described with respect to portions different from the color form quantification method of the third embodiment.
【0167】本法が第3の形態の呈色物定量法と異なる
のは、試料を含む固相支持体に加えて試料を含む参照用
固相支持体についても分光透過光量を測定して相対強度
比を求め、その相対強度比を利用して呈色物の濃度を算
出する点、ならびに、その算出過程において利用する基
準値が、試料未含有の固相支持体の透過光(rfBW
光)の分光の相対強度比、および一定濃度の呈色物のみ
を含む固相支持体の透過光(rfLBW光)の分光の相
対強度比を含む点である。The present method is different from the colorimetric substance determination method of the third embodiment in that, in addition to a solid support containing a sample, a reference solid support containing a sample is measured by measuring the amount of spectrally transmitted light to obtain a relative value. The point at which the intensity ratio is determined and the concentration of the color product is calculated using the relative intensity ratio, and the reference value used in the calculation process are the transmitted light (rfBW) of the sample-free solid support.
This is a point including the relative intensity ratio of the spectral intensity of light (light) and the spectral intensity of the transmitted light (rfLBW light) of the solid support containing only a colorant at a certain concentration.
【0168】従って、第3の形態の呈色物定量法と同様
にして、予め上記の基準値を測定しておいてから、所望
の時点で、共に試料を含む固相支持体および参照用固相
支持体からの透過光の光量を測定する。Therefore, in the same manner as in the third embodiment, the above-mentioned reference value is measured in advance in the same manner as in the third embodiment. The amount of transmitted light from the phase support is measured.
【0169】次いで、定量すべき呈色物と共存呈色物を
含む固相支持体の透過光(M光)を、散乱のない平行透
過光(W光)と固相支持体による散乱透過光(B光)か
らなる固相支持体の透過光(BW光)、定量すべき呈色
物による散乱透過光(L光)と固相支持体の透過光(B
W光)からなる定量すべき呈色物と固相支持体の透過光
(LBW光)、および試料中に存在する共存呈色物によ
る散乱透過光(CL光)と固相支持体の透過光(BW
光)からなる共存呈色物と固相支持体の透過光(CLB
W光)の3つの成分に分けて取扱い、そして定量すべき
呈色物を含まず共存呈色物を含む参照用固相支持体の透
過光(rfM光)を散乱のない平行透過光(W光)と固
相支持体による散乱透過光(B光)からなる固相支持体
の透過光(BW光)、および試料中に存在する共存呈色
物による散乱透過光(CL光)と固相支持体の透過光
(BW光)からなる共存呈色物と固相支持体の透過光
(CLBW光)の2つの成分に分けて取扱い、測定され
たM光とrfM光の光量および相対強度比、ならびに上
記基準値に基づいて、呈色物の濃度を算出する。この算
出過程は、既述の第3の形態の呈色物定量法と同様にし
て、上記C)において述べた如き相対強度比図(色度
図)を用いて実行する。Next, the transmitted light (M light) of the solid support containing the color product to be quantified and the coexisting color product is converted into parallel transmitted light (W light) without scattering and scattered transmitted light by the solid support. (B light) transmitted through the solid support (BW light), scattered transmitted light (L light) by the color object to be quantified, and transmitted light (B light) through the solid support.
W light) and the transmitted light (LBW light) of the color substance to be quantified and the solid support, the scattered transmitted light (CL light) of the coexisting color substance present in the sample, and the transmitted light of the solid support. (BW
Light) and the transmitted light (CLB) of the solid support
W light) is divided into three components, and the transmitted light (rfM light) of the reference solid support containing the color material to be quantified but not containing the color material to be quantified (rfM light) is converted into parallel transmitted light (W light) without scattering. Light) and the transmitted light (BW light) of the solid support composed of the scattered transmitted light (B light) of the solid support, and the scattered transmitted light (CL light) of the coexisting colorant present in the sample and the solid phase The light quantity and the relative intensity ratio of the M light and the rfM light, which are separately handled and treated in two components, a coexisting color product composed of the light transmitted through the support (BW light) and the light transmitted through the solid support (CLBW light) , And the density of the color object is calculated based on the reference value. This calculation process is executed using the relative intensity ratio diagram (chromaticity diagram) as described in the above C) , in the same manner as in the color substance quantification method of the third embodiment described above.
【0170】以下に、本法の呈色物濃度算出過程を、図
面を用いて詳細に説明する。Hereinafter, the color substance density calculation process of the present method will be described in detail with reference to the drawings.
【0171】図12は、本法で用いる基準値および測定
により得た値をプロットした相対強度比図である。図
中、各点に付したBW〜rfMの記号はそれぞれ対応す
る略称の成分光を表しており、例えば点BWは固相支持
体の透過光(BW光)の座標を表している。また、点P
は、点BWと点LBWを通る直線と、点Mと点rfMを
通る直線との交点であり、この点P(座標P)で表され
る光をP光と称することとする。FIG. 12 is a relative intensity ratio diagram in which reference values used in the present method and values obtained by measurement are plotted. In the drawing, the symbols BW to rfM attached to the respective points represent the corresponding abbreviated component lights, for example, the point BW represents the coordinates of the transmitted light (BW light) of the solid support. Also, the point P
Is the intersection of a straight line passing through the points BW and LBW and a straight line passing through the points M and rfM. The light represented by this point P (coordinate P) is referred to as P light.
【0172】このとき、M光の光量(RM)中に含まれ
るrfM光の光量(RrfM)とP光の光量(RP)と
の相対比RrfM:RPは、線分M−rfMの長さをM
M、そして線分M−Pの長さをMPと置いて下式(3
5)で表すことができる。[0172] At this time, the relative ratio of the quantity of M optical (R M) Included RFM light quantity in (R RFM) and P light quantity (R P) R rfM: R P is the line segment M- M is the length of rfM
M and the length of the line segment MP as MP, the following equation (3)
5).
【0173】[0173]
【数15】 従って、図12および上記の式(35)よりP光の光量
RPおよびその分光の相対強度比uP、vPおよびwP
を求めることができる。(Equation 15) Accordingly, the light amount R P and its spectral relative intensity ratio u P of P light from 12 and above equation (35), v P and w P
Can be requested.
【0174】同様にして、P光の光量(RP)中に含ま
れるBW光の光量(RBW)とLBW光の光量(R
LBW)との相対比RBW:RLBWは、線分P−BW
の長さをPBW、そして線分P−LBWの長さをPLB
Wと置いて下式(36)で表すことができる。Similarly, the light amount of the BW light (R BW ) and the light amount of the LBW light (R BW ) included in the light amount of the P light (R P )
LBW ) and the relative ratio R BW : R LBW is a line segment P-BW
Is the length of PBW, and the length of the line segment P-LBW is PLB
W can be expressed by the following equation (36).
【0175】[0175]
【数16】 従って、図12および上記の式(36)よりP光の光量
RP中のLBW光の光量RLBWと、その分光の相対強
度比uLBW、vLBWおよびwLBWとを求めること
ができる。(Equation 16) Therefore, it is possible to obtain a light quantity R LBW of LBW light in the light amount R P of the P beam from FIG. 12 and the above equation (36), and its spectral relative intensity ratio u LBW, v LBW and w LBW.
【0176】しかるに、rfM光はLBW光を含まない
ので、P光中のLBW光の光量とはM光中のLBW光の
光量に他ならない。従って、上記で求めた定量すべき呈
色物と固相支持体の透過光(LBW光)中、固相支持体
による散乱透過光(B光)および散乱のない平行透過光
(W光)は略一定であるとして、LBW光の光量RL
BWを上記の式(27)〜(30)のいずれか1つに代
入して呈色物の濃度を求めて定量することが可能であ
る。However, since the rfM light does not include the LBW light, the light amount of the LBW light in the P light is nothing but the light amount of the LBW light in the M light. Therefore, among the color substances to be quantified and the transmitted light (LBW light) of the solid support determined above, the scattered transmitted light (B light) and the parallel transmitted light without scattering (W light) by the solid support are: Assuming that the light is substantially constant, the light amount R L of the LBW light
By substituting BW into any one of the above equations (27) to (30), it is possible to determine and quantify the density of the color product.
【0177】しかし、LBW光中にはL光の他にB光お
よびW光が含まれているので、より高精度に呈色物の濃
度を求めるには、LBW光の光量とその分光の相対強度
比とから、M光中のL光の光量RLと、その分光の相対
強度比uL、vLおよびwLとを算出し、それらの値か
ら呈色物の濃度を求めることが好ましい。However, since the LBW light contains the B light and the W light in addition to the L light, in order to obtain the density of the color object with higher accuracy, the relative amount of the light amount of the LBW light and its spectrum is required. from the intensity ratio, and the amount R L of the L light in M light, it calculates its spectral relative intensity ratio u L, v L and w L, it is preferable to determine the concentration of coloration colored article from these values .
【0178】即ち、LBW光は、呈色物による散乱透過
光(L光)、固相支持体による散乱透過光(B光)およ
び散乱のない平行透過光(W光)の3成分を含む透過光
であるから、B光、W光およびBLW光をプロットした
相対強度比図(色度図)を作成し、加法混色の原理に基
づいてBLW光に含まれるB光、L光およびW光の光量
の比を算出し、算出された比に従いBLW光の3種類の
分光の分光透過量を分配して得られるL光の3種類の分
光透過量から相対強度比uL、vLおよびwLを求める
ことができる。That is, the LBW light includes three components: scattered transmitted light (L light) by a colored substance, scattered transmitted light (B light) by a solid support, and parallel transmitted light (W light) without scattering. Since the light is light, a relative intensity ratio diagram (chromaticity diagram) in which the B light, W light and BLW light are plotted is created, and the B light, L light and W light included in the BLW light are formed based on the principle of additive color mixture. The relative light intensity ratios u L , v L and w L are calculated from the three types of spectral transmission amounts of L light obtained by calculating the ratio of the light amounts and distributing the three types of spectral transmission amounts of the BLW light according to the calculated ratios. Can be requested.
【0179】そして、得られたRL、または例えばW分
光が呈色物の特異吸収波長Wを有する場合にはL光中の
W分光の光量WL、を上掲の式(27)〜(30)のい
ずれか1つに代入して呈色物の濃度を求めて定量するこ
とができる。Then, the obtained R L , or, for example, when the W spectrum has the specific absorption wavelength W of the color substance, the light quantity W L of the W spectrum in the L light is calculated by the above-mentioned formulas (27) to (27). 30) can be substituted for any one of the above to determine and quantify the density of the colored substance.
【0180】このようにして相対強度比図を用いる本法
の呈色物濃度算出過程は、実際に相対強度比図を作成し
て線分の長さを求めることにより実行することもできる
が、仮想的に相対強度比図を描いて得られる種々の直線
および線分を表す式を算定して全て演算により実行する
ことも可能である。In this way, the color substance density calculating process of the present method using the relative intensity ratio diagram can be executed by actually creating the relative intensity ratio diagram and obtaining the length of the line segment. It is also possible to calculate formulas representing various straight lines and line segments obtained by virtually drawing a relative intensity ratio diagram and execute them all by calculation.
【0181】上述の通り、本法によれば、固相支持体に
加えて参照用固相支持体を備えた試験具を用いることに
より、少ない計算量でバックグラウンド補正を施すこと
ができるので、高精度で簡便に、定量すべき呈色物の濃
度を求めることができる。As described above, according to this method, the background correction can be performed with a small amount of calculation by using a test device provided with a reference solid support in addition to the solid support. The concentration of the color substance to be quantified can be determined easily with high accuracy.
【0182】F)第6の呈色物定量法 第6の形態の呈色物定量法は、複数の呈色物からなる混
合物が試料中に存在する場合、即ち定量すべき呈色物以
外の共存呈色物が試料中に存在する場合に、試料中の性
状既知の1種類の成分と試薬から形成される呈色物を定
量する方法であり、上記第3の形態の呈色物定量法の変
法の1つである。 F) Sixth Colored Object Quantitative Method The sixth form of the colored object quantitative method is used when a mixture of a plurality of colored objects is present in a sample, that is, other than the colored object to be quantified. A method for quantifying a color product formed from one kind of component of known properties and a reagent in a sample when a coexisting color product is present in the sample. This is one of the modifications.
【0183】本法は、上述の第3の形態の呈色物定量法
を、レートアッセイ用試験具に適するように改変した呈
色物定量法である。The present method is a method for quantifying a colored substance obtained by modifying the method for quantifying a colored substance of the third embodiment described above so as to be suitable for a test device for a rate assay.
【0184】本法においては、レートアッセイ用試験具
を用い、試料と固相支持体とを接触させて呈色反応によ
り生じる呈色物形成の経時変化、即ち呈色程度(発色強
度)の経時変化を透過光量を指標として一定の時間間隔
で測定して測定透過光量およびその分光の相対強度比の
差に基づき呈色物の濃度を求めて定量し、その際に1つ
の固相支持体について複数の時点で測定するので、固相
支持体の表面状態の変動や共存呈色物の影響を抑止する
ことができる。In this method, a time-dependent change in the formation of a colored substance caused by a color reaction by bringing a sample into contact with a solid support using a test device for a rate assay, that is, a time-dependent change in the degree of coloration (coloring intensity). The change is measured at a fixed time interval using the amount of transmitted light as an index, and the concentration of the colored substance is determined and quantified based on the difference between the measured transmitted light amount and the relative intensity ratio of the spectrum. Since the measurement is performed at a plurality of time points, it is possible to suppress the fluctuation of the surface state of the solid support and the influence of the coexisting color product.
【0185】以下に、本法を第3の形態の呈色物定量法
に準じて実施し、第3の形態の呈色物定量法と同様に複
数の分光としてU分光、V分光およびW分光の3種類を
選定したと仮定して、第3の形態の呈色物定量法と異な
る部分について本法を説明する。In the following, this method is carried out in accordance with the third embodiment of the method for quantifying a colored substance, and similarly to the third embodiment, a plurality of spectroscopy, U spectrum, V spectrum and W spectrum. Assuming that the following three types are selected, the present method will be described with respect to portions different from the third embodiment of the method for quantitatively determining a colored substance.
【0186】本法が第3の形態の呈色物定量法と異なる
のは、試料を含む固相支持体からの透過光量を一定の時
間間隔で複数回に亘って測定して分光の相対強度比を求
め、その相対強度比を利用して呈色物の濃度を算出する
点、ならびに、その算出過程において利用する基準値
が、試料未含有の固相支持体の透過光(rfBW光)の
分光の相対強度比、および一定濃度の呈色物のみを含む
固相支持体の透過光(rfLBW光)の分光の相対強度
比を含む点である。The difference between this method and the third embodiment is that the amount of transmitted light from the solid support containing the sample is measured a plurality of times at fixed time intervals and the relative intensity of the spectrum is measured. And the reference value used in the calculation process is the ratio of the transmitted light (rfBW light) of the solid support that does not contain the sample. This is a point that includes the relative intensity ratio of the spectral intensity and the spectral intensity ratio of the transmitted light (rfLBW light) of the solid-phase support containing only a color substance at a certain concentration.
【0187】従って、まず、第3の形態の呈色物定量法
と同様にして予め上記の基準値を測定しておく。Therefore, first, the above-mentioned reference value is measured in advance in the same manner as in the third embodiment.
【0188】次いで、所望の時点において、試料を含む
固相支持体からの透過光量を測定するのであるが、本法
においてはレートアッセイ用試験具を用いるので、透過
光量の測定は、試料を固相支持体と接触させた後、可能
な限り速やかに開始し、適当な短い時間間隔を開けて適
切な回数反復して実施する。尚、以下の説明において
は、測定された透過光およびその光量を、総称してM光
およびRMと称し、個々に取扱うときには、測定された
順番に従って番号を付して、例えばn番目に測定された
透過光をMn光、その光量をRMnと称する。。Next, at a desired time, the amount of transmitted light from the solid support containing the sample is measured. In this method, since a test device for a rate assay is used, the amount of transmitted light is measured by solidifying the sample. It is started as soon as possible after contact with the phase support and is repeated an appropriate number of times at appropriate short time intervals. In the following description, measurement of the measured transmitted light and the quantity, referred to as M light and R M collectively, when handled individually, are numbered according to the measured order, for example, the n-th has been transmitted light Mn light refers to the light amount thereof and R Mn. .
【0189】そして、定量すべき呈色物を含む固相支持
体の透過光(M光)を、散乱のない平行透過光(W光)
と固相支持体による散乱透過光(B光)からなる固相支
持体の透過光(BW光)、定量すべき呈色物による散乱
透過光(L光)と固相支持体の透過光(BW光)からな
る定量すべき呈色物と固相支持体の透過光(LBW
光)、および試料中に存在する共存呈色物による散乱透
過光(CL光)と固相支持体の透過光(BW光)からな
る共存呈色物と固相支持体の透過光(CLBW光)の3
つの成分に分けて取扱い、測定された複数のM光の透過
光量および相対強度比、ならびに上記基準値に基づい
て、呈色物の濃度を算出する。この算出過程は、既述の
第3の形態の呈色物定量法と同様にして、上記C)にお
いて述べた如き相対強度比図(色度図)を用いて実行す
る。Then, the transmitted light (M light) of the solid support containing the color substance to be quantified is converted into parallel transmitted light (W light) without scattering.
Light transmitted through the solid support (BW light) composed of light transmitted through the solid support and light transmitted through the solid support (BW light); BW light) and light transmitted through the solid support (LBW)
Light), and the coexisting color product and the transmitted light (CLBW light) of the coexisting color product and the transmitted light (BW light) of the solid support, which are scattered and transmitted by the coexisting color product (CL light) present in the sample. 3)
The density of the coloring matter is calculated based on the transmitted light amounts and the relative intensity ratios of the measured plurality of M lights and the above-mentioned reference values. This calculation process is executed using the relative intensity ratio diagram (chromaticity diagram) as described in the above C) , in the same manner as in the color substance quantification method of the third embodiment described above.
【0190】以下に、本法の呈色物濃度算出過程を、図
面を用いて詳細に説明する。Hereinafter, the color substance density calculation process of the present method will be described in detail with reference to the drawings.
【0191】図13aは、本法で用いる基準値および測
定値をプロットして示す相対強度比図であり、図13b
は、図13a中の点線Zで囲まれた領域を拡大して示す
図である。図中、各点に付したBW〜Mmの記号はそれ
ぞれ対応する略称の光を表しており、例えば点BWは固
相支持体の透過光(BW光)の座標を表している。ま
た、点Pは、点BWと点LBWを通る直線と、点Mmと
点Mnを通る直線との交点であり、この点P(座標P)
で表される光をP光と称する。同様にして、点M0は、
点BWと点M1を通る直線と、点Mmと点Mnを通る直
線との交点であり、この点M0(座標M0)で表される
光をM0光と称する。但し、Mm光およびMn光は共
に、試料と固相支持体との接触により生じた呈色反応が
終了し、M光の光量が一定となった後に測定された光、
即ちRMm=RMnであるようなM光である。FIG. 13A is a relative intensity ratio diagram plotting reference values and measured values used in the present method.
FIG. 13B is an enlarged view showing a region surrounded by a dotted line Z in FIG. 13A. In the drawing, the symbols of BW to Mm attached to the respective points represent the corresponding abbreviations of light, for example, the point BW represents the coordinates of the transmitted light (BW light) of the solid support. The point P is an intersection of a straight line passing through the points BW and LBW and a straight line passing through the points Mm and Mn. This point P (coordinate P)
Is referred to as P light. Similarly, point M0 is
The intersection of a straight line passing through the point BW and the point M1 and a straight line passing through the point Mm and the point Mn. The light represented by the point M0 (coordinate M0) is referred to as M0 light. However, both the Mm light and the Mn light were measured after the color reaction caused by the contact between the sample and the solid support was terminated and the amount of M light became constant,
That is, the M light is such that R Mm = R Mn .
【0192】このとき、M0光は試料と固相支持体が接
触した瞬間、即ち呈色反応による呈色物形成が開始され
る前の時点におけるM光であるから、BW光とCLBW
光の2成分のみからなりLBW光を含まない光であると
見なすことができる。そして、その分光の相対強度比u
M0、vM0およびwM0は、図13aの相対強度比図
から、または計算により、求めることができる。従っ
て、M0光の光量RM0をその直近で測定されたM1光
の光量RM1で近似すれば、M0光の光量RM0とその
分光の光量UM0、VM0およびWM0が得られる。At this time, the M0 light is the M light at the moment when the sample comes into contact with the solid support, that is, before the start of the formation of a colored substance by the color reaction, so that the BW light and the CLBW light are emitted.
It can be considered that the light includes only two components of light and does not include LBW light. And the relative intensity ratio u of the spectrum
M0 , vM0 and wM0 can be determined from the relative intensity ratio diagram of FIG. 13a or by calculation. Therefore, when approximated by quantity R M1 of M1 light measured the quantity R M0 of M0 light in its immediate vicinity, the light quantity U M0 of the spectral light amount R M0 of M0 light, V M0 and W M0 is obtained.
【0193】以上のことから、M0光は、上述の第5の
形態の呈色物定量法で用いた参照用固相支持体の透過光
(rfM光)と同様に扱えることが判る。従って、上記
E)の説明中のrfM光をM0光と読み替えて、定量す
べき呈色物の濃度を求めて定量することができる。From the above, it can be seen that the M0 light can be handled in the same manner as the transmitted light (rfM light) of the reference solid support used in the above-described fifth embodiment of the method for determining a colored substance. Therefore,
The rfM light in the description of E) is read as M0 light, and the concentration of the color substance to be quantified can be determined and quantified.
【0194】即ち、光量が一定となった後のM光、例え
ばMm光の光量(RMm)中に含まれるM0光の光量
(RM0)とP光の光量(RP)との相対比RM0:R
Pは、線分Mm−M0の長さをMmM0、そして線分M
m−Pの長さをMmPと置いて下式(37)で表すこと
ができる。That is, the relative light amount of the M light (R M0 ) and the light amount of the P light (R P ) included in the light amount (R Mm ) of the M light after the light amount becomes constant, for example, the M m light. Ratio R M0 : R
P represents the length of the line segment Mm-M0 as MmMO, and the line segment M
The length of m-P can be represented by the following equation (37), where MmP is set.
【0195】[0195]
【数17】 従って、図13および上記の式(37)よりP光の光量
RPおよびその分光の相対強度比uP、vPおよびwP
を求めることができる。[Equation 17] Accordingly, the light amount R P and its spectral relative intensity ratio u P of P light from 13 and above equation (37), v P and w P
Can be requested.
【0196】同様にして、P光の光量(RP)中に含ま
れるBW光の光量(RBW)とLBW光の光量(R
LBW)との相対比RBW:RLBWは、線分P−BW
の長さをPBW、そして線分P−LBWの長さをPLB
Wと置いて下式(38)で表すことができる。Similarly, the light quantity (R BW ) of the BW light and the light quantity (R BW ) of the LBW light included in the light quantity (R P ) of the P light
LBW ) and the relative ratio R BW : R LBW is a line segment P-BW
Is the length of PBW, and the length of the line segment P-LBW is PLB
W can be expressed by the following equation (38).
【0197】[0197]
【数18】 従って、図13および上記の式(38)よりP光の光量
RP中のLBW光の光量RLBWと、その分光の相対強
度比uLBW、vLBWおよびwLBWとを求めること
ができる。(Equation 18) Therefore, it is possible to obtain a light quantity R LBW of LBW light in the light amount R P of the P beam from FIG. 13 and the above equation (38), and its spectral relative intensity ratio u LBW, v LBW and w LBW.
【0198】しかるに、M0光はLBW光を含まないの
で、P光中のLBW光の光量とはM光中のLBW光の光
量に他ならない。従って、上記で求めた定量すべき呈色
物と固相支持体の透過光(LBW光)中、固相支持体に
よる散乱透過光(B光)および散乱のない平行透過光
(W光)は略一定であるとして、LBW光の光量RLB
Wを上記の式(27)〜(30)のいずれか1つに代入
して呈色物の濃度を求めて定量することが可能である。However, since the M0 light does not include the LBW light, the light amount of the LBW light in the P light is nothing but the light amount of the LBW light in the M light. Therefore, among the color substances to be quantified and the transmitted light (LBW light) of the solid support determined above, the scattered transmitted light (B light) and the parallel transmitted light without scattering (W light) by the solid support are: Assuming that the light amount is substantially constant, the light amount R LB of the LBW light
By substituting W into any one of the above formulas (27) to (30), it is possible to determine and quantify the density of the color product.
【0199】しかし、LBW光中にはL光の他にB光お
よびW光が含まれているので、より高精度に呈色物の濃
度を求めるには、LBW光の光量とその分光の相対強度
比とから、M光中のL光の光量RLと、その分光の相対
強度比uL、vLおよびwLとを算出し、それらの値か
ら呈色物の濃度を求めることが好ましい。However, since the LBW light includes the B light and the W light in addition to the L light, in order to obtain the density of the color object with higher accuracy, the relative amount of the light amount of the LBW light and its spectrum is required. from the intensity ratio, and the amount R L of the L light in M light, it calculates its spectral relative intensity ratio u L, v L and w L, it is preferable to determine the concentration of coloration colored article from these values .
【0200】即ち、LBW光は、呈色物による散乱透過
光(L光)、固相支持体による散乱透過光(B光)およ
び散乱のない平行透過光(W光)の3成分を含む透過光
であるから、B光、W光およびBLW光をプロットした
相対強度比図(色度図)を作成し、加法混色の原理に基
づいてBLW光に含まれるB光、L光およびW光の光量
の比を算出し、算出された比に従いBLW光の3種類の
分光の光量を分配して得られるL光の3種類の分光の光
量からL光の光量RLと、その分光の相対強度比uL、
vLおよびwLを求めることができる。That is, the LBW light includes three components: scattered transmitted light (L light) by a colored substance, scattered transmitted light (B light) by a solid support, and parallel transmitted light (W light) without scattering. Since the light is light, a relative intensity ratio diagram (chromaticity diagram) in which the B light, W light and BLW light are plotted is created, and the B light, L light and W light included in the BLW light are formed based on the principle of additive color mixture. The light intensity ratio is calculated, and the light intensity of the three types of LW light obtained by distributing the light intensity of the three types of light of the BLW light according to the calculated ratio is calculated from the light intensity of the three types of light L and the relative intensity of the light. Ratio u L ,
v L and w L can be determined.
【0201】そして、得られたRL、または例えばW分
光が呈色物の特異吸収波長Wを有する場合にはL光中の
W分光の光量WL、を上記の式(27)〜(30)のい
ずれか1つに代入して呈色物の濃度を求めて定量するこ
とができる。The obtained R L or, for example, when the W spectrum has the specific absorption wavelength W of the color product, the light quantity W L of the W spectrum in the L light is calculated by the above formulas (27) to (30). ) Can be substituted for any one of them to determine and quantify the density of the color product.
【0202】このようにして相対強度比図を用いる本法
の呈色物濃度算出過程は、実際に相対強度比図を作成し
て線分の長さを求めることにより実行することもできる
が、仮想的に相対強度比図を描いて得られる種々の直線
および線分を表す式を算定して全て演算により実行する
ことも可能である。In this way, the color substance density calculation process of the present method using the relative intensity ratio diagram can be executed by actually creating the relative intensity ratio diagram and obtaining the length of the line segment. It is also possible to calculate formulas representing various straight lines and line segments obtained by virtually drawing a relative intensity ratio diagram and execute them all by calculation.
【0203】上述の通り、本法によれば、レートアッセ
イ用試験具を用いることにより、少ない計算量でバック
グラウンド補正を施すことができるので、高精度で簡便
に、定量すべき呈色物の濃度を求めることができる。As described above, according to this method, background correction can be performed with a small amount of calculation by using a test device for a rate assay. The concentration can be determined.
【0204】以上に詳細に述べてきたように、本発明の
呈色物定量装置および呈色物定量用の記憶媒体により実
現される上述の第1〜6の形態の呈色物定量法は、透過
光をその性状により複数の成分として取扱い、呈色物の
定量指標として定量すべき呈色物からの散乱透過光(L
光)の光量RL、および/またはL光中に含まれる呈色
物の特異吸収波長を有する分光の光量を用いることによ
り、従来よりも簡便且つ高精度に呈色物の濃度を求めて
定量することができる。As described in detail above, the color object quantification methods of the first to sixth embodiments realized by the color object quantification apparatus and the storage medium for color object quantification of the present invention are as follows. The transmitted light is treated as a plurality of components depending on its properties, and the scattered transmitted light (L
By using the light amount R L of the light) and / or the light amount of the spectrum having the specific absorption wavelength of the color substance contained in the L light, to obtain the concentration of the color substance more simply and more accurately than in the past. can do.
【0205】この定量指標である定量すべき呈色物から
の散乱透過光(L光)中に含まれる呈色物の特異吸収波
長を有する分光の光量が、固相支持体の状態変化に左右
されない優れた定量指標であることを、下記試験例を示
してより明瞭に示す。The light quantity of the spectroscopic light having the specific absorption wavelength of the color substance contained in the scattered transmitted light (L light) from the color substance to be quantified, which is the quantitative index, depends on the state change of the solid support. It is more clearly shown by the following Test Examples that this is an excellent quantitative index that is not performed.
【0206】< 試験例 >まず、定量すべき呈色物と
して着色料である食用青色1号を選択し、この食用青色
1号を0〜500mg/dlの範囲内の種々の濃度で含
有する試料水溶液を調製した。次いで、試薬を保持しな
い試験紙を固相支持体として採用し、測定に用いる分光
として波長435nmのU分光、波長546nmのV分
光および波長700nmのW分光の3種類の分光を選定
し、上記試料水溶液を用いて基準値を取得した。そし
て、上記試料水溶液を試験紙に含浸させ、その直後、1
5分後、および30分後に透過光量を測定した。<Test Example> First, Food Blue No. 1 which is a coloring agent was selected as a coloring matter to be quantified, and a sample containing Food Blue No. 1 at various concentrations within a range of 0 to 500 mg / dl. An aqueous solution was prepared. Next, a test paper that does not hold a reagent is employed as a solid support, and three types of spectroscopy, namely, U spectroscopy at a wavelength of 435 nm, V spectroscopy at a wavelength of 546 nm, and W spectroscopy at a wavelength of 700 nm are selected as spectroscopy used for the measurement. A reference value was obtained using the aqueous solution. Then, the test paper is impregnated with the sample aqueous solution, and immediately thereafter,
The amount of transmitted light was measured after 5 minutes and after 30 minutes.
【0207】呈色物の定量指標として従来広範に用いら
れてきた総透過光光量(RM)に含まれる定量すべき呈
色物の特異吸収波長を有する分光(ここではW分光とす
る)の光量WMを縦軸とし、呈色物濃度の対数値Log
Cを横軸としたグラフを図14に、そして本発明に用い
る定量指標であるWL、即ち定量すべき呈色物による散
乱透過光(L光)の光量に含まれるW分光の光量WLを
横軸とし、呈色物濃度の対数値LogCを横軸としたグ
ラフを図15に、それぞれ示す。図14および図15に
おいて、○、□および△は、それぞれ、試料水溶液を試
験紙に含浸させた直後(○)、含浸させた15分後
(□)および含浸させた30分後(△)に測定された透
過光量を表している。A spectrometer having a specific absorption wavelength of a color substance to be quantified and included in the total amount of transmitted light (R M ), which has heretofore been widely used as a quantitative index of a color substance (herein, referred to as W spectrum). the quantity W M on the vertical axis, the logarithm of coloration colored article concentration Log
FIG. 14 shows a graph in which C is the horizontal axis, and W L which is a quantitative index used in the present invention, that is, the light amount W L of W spectrum included in the light amount of scattered and transmitted light (L light) by the colorant to be quantified. Are plotted on the horizontal axis, and the logarithmic value LogC of the color substance density is plotted on the horizontal axis in FIG. In FIGS. 14 and 15, △, □, and Δ indicate the results immediately after the test paper was impregnated with the sample aqueous solution (○), 15 minutes after the impregnation (□), and 30 minutes after the impregnation, respectively (△). The measured transmitted light amount is shown.
【0208】図14から明らかなように、定量指標とし
て従来用いられてきた総透過光に含まれるW分光の光量
WMは、時間経過による変動量が大きい。この測定値の
変動は、時間経過に連れて試料中の水が蒸発して固相支
持体の表面状態が変化して生じたものであると考えられ
る。従って、従来通りWMを定量指標として呈色物の定
量を行うときには、試料含浸からの時間経過に関して厳
密な測定条件の管理が必要である。[0208] As apparent from FIG. 14, as the amount W M and W spectral contained in the total transmitted light that has been used conventionally quantitative index, a large amount of change with time. It is considered that the fluctuation of the measured value is caused by the evaporation of water in the sample over time and the surface state of the solid support changed. Therefore, when the conventional W M perform quantification of coloration colored article as a quantitative indicator, it is necessary to manage the exact measurement conditions with respect to time elapsed from the sample impregnation.
【0209】これに対して、本発明に用いる定量指標で
ある、定量すべき呈色物による散乱透過光(L光)に含
まれるW分光の光量WLは、試料含浸からの経過時間に
左右されず、呈色物濃度によって一定値を示している。On the other hand, the amount of light W L of the W spectrum contained in the scattered transmitted light (L light) by the color object to be quantified, which is a quantitative index used in the present invention, depends on the elapsed time from the sample impregnation. However, a constant value is shown depending on the color density.
【0210】本試験例から、本発明に用いる定量指標W
Lが、従来の定量指標と異なり固相支持体の状態変化に
影響されない優れた定量指標であることが理解されよ
う。From this test example, the quantitative index W used in the present invention was
It will be understood that L is an excellent quantitative index that is not affected by changes in the state of the solid support, unlike the conventional quantitative index.
【0211】[0211]
【発明の効果】以上に述べたように、本発明の呈色物定
量装置および呈色物定量用記憶媒体は、新規な呈色物定
量法を提供し、その呈色物定量法は、固相支持体中の呈
色物に光を照射し、その透過光量を測定して得られる透
過率に相当するパラメータに基づき呈色物を定量する透
過法を採用して、このとき、透過光をその性状により複
数の成分に分けて扱い、且つそれぞれの透過光成分を予
め設定した特定の分光分布を有する複数の光に分光し、
透過光成分毎に各分光強度の総透過光成分強度(分光強
度の総和)に対する比をパラメータとしたので、検出・
定量すべき呈色物からの散乱拡散光成分のみを測定透過
光中の他の光成分と分別して扱うことが可能であり、そ
のためにベースラインおよびバックグラウンドの補正が
従来よりも格段に容易となり、生物試料のように共存呈
色物を多く含み従来はバックグラウンドの補正が困難で
あった試料を用いたときにも、簡便且つ高精度に呈色物
を定量し得るという効果を奏する。As described above, the color substance quantifying apparatus and the color medium quantification storage medium of the present invention provide a novel color substance quantification method. The colored material in the phase support is irradiated with light, and the transmitted light is quantified based on a parameter corresponding to the transmittance obtained by measuring the amount of transmitted light. Depending on its properties, it is divided into a plurality of components, and each transmitted light component is separated into a plurality of lights having a predetermined specific spectral distribution,
Since the ratio of each spectral intensity to the total transmitted light component intensity (sum of the spectral intensities) is used as a parameter for each transmitted light component,
It is possible to treat only the scattered and diffused light components from the colored object to be quantified separately from other light components in the measured transmitted light, which makes the baseline and background correction much easier than before. Even when a sample containing a large amount of co-existing color products such as a biological sample and having conventionally had difficulty in correcting the background is used, the effect of being able to easily and accurately quantify the color products is exerted.
【図1】本発明の呈色物定量装置の実施形態の1例を示
すブロック図である。FIG. 1 is a block diagram showing an example of an embodiment of a color product quantification apparatus of the present invention.
【図2】本発明の呈色物定量装置の撮像部の構成の1例
を示す模式図である。FIG. 2 is a schematic diagram illustrating an example of a configuration of an imaging unit of the color object quantification device of the present invention.
【図3】本発明の呈色物定量装置に用いる単項目試験具
の1例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a single item test device used in the color product quantification device of the present invention.
【図4】本発明の呈色物定量装置に用いる多項目試験具
の1例を示す模式図である。FIG. 4 is a schematic view showing an example of a multi-item test device used in the color product quantification device of the present invention.
【図5】本発明の呈色物定量装置に用いる単項目レート
アッセイ試験具の1例を示す模式図である。FIG. 5 is a schematic diagram showing one example of a single item rate assay test device used in the color product quantification device of the present invention.
【図6】本発明の呈色物定量装置に用いる多項目レート
アッセイ試験具の1例を示す模式図である。FIG. 6 is a schematic diagram showing one example of a multi-item rate assay test device used in the color product quantification device of the present invention.
【図7】本発明の呈色物定量装置の動作フローの1例を
示す流れ図である。FIG. 7 is a flowchart showing an example of an operation flow of the coloring matter determination device of the present invention.
【図8】本発明の呈色物定量装置においてレートアッセ
イ法を用いた場合の動作フローの1例を部分的に示す流
れ図である。FIG. 8 is a flow chart partially showing an example of an operation flow when a rate assay method is used in the color product quantification apparatus of the present invention.
【図9】本発明の呈色物定量装置においてレートアッセ
イ法を用いない場合の動作フローの1例を部分的に示す
流れ図である。FIG. 9 is a flowchart partially showing an example of an operation flow when the rate assay method is not used in the color product quantification apparatus of the present invention.
【図10】本発明により実現される呈色物定量法の1つ
の形態において用いる相対強度図である。FIG. 10 is a relative intensity diagram used in one embodiment of the method for quantifying a colored substance realized by the present invention.
【図11】本発明により実現される呈色物定量法の図1
0とは異なる形態において用いる相対強度図である。FIG. 11 is a diagram of a color substance determination method realized by the present invention.
It is a relative intensity figure used in the form different from 0.
【図12】本発明により実現される呈色物定量法の図1
0および11とは異なる形態において用いる相対強度図
である。FIG. 12 is a diagram of a color substance determination method realized by the present invention.
It is a relative intensity figure used in the form different from 0 and 11.
【図13】本発明により実現される呈色物定量法の図1
0〜12とは異なる形態において用いる相対強度図であ
る。FIG. 13 is a diagram of a color substance determination method realized by the present invention.
It is a relative intensity figure used in the form different from 0-12.
【図14】従来の呈色物定量法の定量指標である総透過
光量と呈色物濃度との関係を示すグラフである。FIG. 14 is a graph showing the relationship between the total amount of transmitted light, which is a quantitative index of the conventional color substance determination method, and the density of the color substance.
【図15】本発明に用いる定量指標である呈色物からの
散乱透過光光量と呈色物濃度との関係を示すグラフであ
る。FIG. 15 is a graph showing the relationship between the amount of scattered transmitted light from a color product and the density of the color product, which are quantitative indicators used in the present invention.
11 光源部(光照射手段) 13 相対強度比測定部(透過光測定手段) 13a 分光部 13b 光検出部 14 情報処理部(濃度演算手段) 14a 記憶部 14b 演算部 14c 入出力制御部 15 入力部 16 表示部 17 印字部 21 試験具支持台 22 光源 23 レンズ系 24 撮像部 25 ケース 31 A/D変換器 32 画像データ取得部 33 ROM 34 磁気記憶媒体 35 RAM 37 中央演算装置(CPU) 38 バス 39a 入力制御部 39b 表示制御部 39c 印字制御部 41 CCD固体撮像素子 42 撮像制御回路 43 受光素子 44 分光フィルタ 45 単項目試験紙 46 多項目試験紙 47 単項目レートアッセイ試験紙 48 多項目レートアッセイ試験紙 51 単項目試験紙の固相支持体(測定試験部) 51a〜51c 多項目試験紙の固相支持体(測定試験
部) 52 単項目試験紙の参照用固相支持体(参照試験
部) 52a〜52c 53 試験紙識別部 54 単項目レートアッセイ試験紙の固相支持体(測
定試験部) 54a〜54i 多項目レートアッセイ試験紙の固相支
持体(測定試験部)Reference Signs List 11 light source unit (light irradiation unit) 13 relative intensity ratio measurement unit (transmitted light measurement unit) 13a spectral unit 13b light detection unit 14 information processing unit (concentration calculation unit) 14a storage unit 14b calculation unit 14c input / output control unit 15 input unit Reference Signs List 16 display unit 17 printing unit 21 test fixture support base 22 light source 23 lens system 24 imaging unit 25 case 31 A / D converter 32 image data acquisition unit 33 ROM 34 magnetic storage medium 35 RAM 37 central processing unit (CPU) 38 bus 39a Input control unit 39b Display control unit 39c Print control unit 41 CCD solid-state imaging device 42 Imaging control circuit 43 Light receiving device 44 Spectral filter 45 Single item test paper 46 Multi item test paper 47 Single item rate assay test paper 48 Multi item rate assay test paper 51 Solid support of single-item test paper (measurement test section) 51a-51c Polynomial Solid support for test paper (measurement test section) 52 Solid support for reference of single item test paper (reference test section) 52a to 52c 53 Test paper identification section 54 Solid support for single item rate assay test paper ( Measurement test section) 54a-54i Solid support of multi-item rate assay test paper (measurement test section)
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G045 AA13 AA16 CA25 CB03 DA01 DA31 DA36 DA69 FA13 FB11 FB16 GC10 GC11 GC12 HA10 JA01 JA06 JA07 2G054 AA07 CA23 CA26 CA30 CE01 EA04 EA05 EA06 EB05 FA17 FA18 FA19 FA33 FA44 FB02 FB03 GA01 GA02 GA03 GB10 GE06 JA01 JA05 JA20 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G045 AA13 AA16 CA25 CB03 DA01 DA31 DA36 DA69 FA13 FB11 FB16 GC10 GC11 GC12 HA10 JA01 JA06 JA07 2G054 AA07 CA23 CA26 CA30 CE01 EA04 EA05 EA06 EB05 FA17 FA18 FA19 FA33 FA03 FB04 GA03 GB10 GE06 JA01 JA05 JA20
Claims (18)
応する試薬を保持する固相支持体を有する試験具とを接
触させて前記固相支持体中に形成される、定量すべき呈
色物の呈色強度を光学的に測定することにより前記固相
支持体中の定量すべき呈色物の濃度を求める呈色物定量
装置であって、 前記固相支持体に光を照射する光照射手段と、前記固相
支持体からの透過光を受光して光量を測定する透過光測
定手段と、測定された透過光光量および予め取得してお
いた基準値を用いて前記定量すべき呈色物の濃度を演算
して求める濃度演算手段とを備え、 前記基準値が、種々の透過光をその性状により前記定量
すべき呈色物からの散乱透過光成分およびその他の複数
の成分に分別し、各透過光成分を予め設定した特定の分
光分布を有する複数の光に分光して得られる分光透過光
光量から演算して求まる、各分光の相対強度比であり、 前記透過光測定手段において前記固相支持体からの透過
光を前記基準値と同じ複数の光に分光して分光透過光光
量を測定し、 前記濃度演算手段において前記透過光を前記基準値と同
じ複数の成分に分別し、且つ各透過光成分を分光した前
記複数の光の相対強度比を算定し、得られた相対強度比
と前記基準値を用い、前記定量すべき呈色物のみによる
散乱透過光の光量または前記光量に含まれる定量すべき
呈色物の特異吸収波長を有する分光の光量を定量指標と
して、前記定量すべき呈色物の濃度を演算して求めるこ
とを特徴とする呈色物定量装置。1. A sample to be quantified, which is formed in the solid support by bringing a sample into contact with a test device having a solid support holding a reagent that causes a color reaction with a specific component in the sample. What is claimed is: 1. An apparatus for quantitatively determining a color product, wherein a concentration of a color product to be quantified in the solid support is determined by optically measuring a color intensity of the color product, and the solid support is irradiated with light. A light irradiating means, a transmitted light measuring means for receiving a transmitted light from the solid support and measuring a light quantity, and the quantification using the measured transmitted light quantity and a previously acquired reference value. Density calculating means for calculating and calculating the density of the color product to be obtained, wherein the reference value is a scattered transmitted light component and a plurality of other components from the color product to be quantified by various properties of the transmitted light. And a plurality of transmitted light components having a predetermined specific spectral distribution. The relative intensity ratio of each spectrum obtained by calculating from the amount of spectrally transmitted light obtained by spectrally separating the transmitted light from the solid support into a plurality of lights equal to the reference value in the transmitted light measuring means. The transmitted light is separated into a plurality of components equal to the reference value by the density calculating means, and a relative intensity ratio of the plurality of lights obtained by dispersing each transmitted light component is calculated. Then, using the obtained relative intensity ratio and the reference value, the amount of scattered transmitted light only by the color object to be quantified or the amount of spectral light having a specific absorption wavelength of the color object to be quantified included in the light amount Wherein the density of the color object to be quantified is calculated and obtained using the following as a quantitative index.
応する試薬を保持する固相支持体を有する試験具とを接
触させて前記固相支持体中に形成される、定量すべき呈
色物の呈色強度を光学的に測定することにより前記固相
支持体中の定量すべき呈色物の濃度を求める呈色物定量
法に用いるプログラムを格納した記憶媒体であって、 種々の透過光をその性状により前記定量すべき呈色物か
らの散乱透過光成分およびその他の複数の成分に分別
し、各透過光成分を予め設定した特定の分光分布を有す
る複数の光に分光して得られる分光透過光光量から演算
により各分光の相対強度比を求めて参照用の基準値を取
得する基準値取得ステップと、 前記固相支持体に光を照射して得られる透過光を、前記
基準値取得ステップと同じ複数の光に分光して分光透過
光光量を測定する透過光測定ステップと、 前記透過光を前記基準値取得ステップと同じ複数の成分
に分別する分別ステップと、 前記分光透過光光量および前記基準値に基づいて前記定
量すべき呈色物からの散乱透過光成分のみの光量を算定
する成分光量算定ステップと、 前記定量すべき呈色物からの散乱透過光成分のみの光量
から前記定量すべき呈色物の濃度を求める濃度算出ステ
ップとを含むことを特徴とする呈色物定量法に用いるプ
ログラムを格納した呈色物定量用記憶媒体。2. A sample to be quantified, which is formed in the solid support by bringing a sample into contact with a test device having a solid support holding a reagent that causes a color reaction with a specific component in the sample. What is claimed is: 1. A storage medium storing a program used in a colorant determination method for determining the concentration of a colorant to be quantified in the solid support by optically measuring the color intensity of a colorant, The transmitted light is separated into a scattered transmitted light component from the color object to be quantified and a plurality of other components according to its properties, and each transmitted light component is separated into a plurality of lights having a predetermined specific spectral distribution. A reference value obtaining step of obtaining a reference intensity by calculating the relative intensity ratio of each spectrum by calculation from the amount of spectrally transmitted light obtained, and transmitting light obtained by irradiating the solid support with light, The light is split into the same plurality of lights as in the reference value obtaining step. A transmitted light measuring step of measuring the amount of transmitted light, a separating step of separating the transmitted light into a plurality of components same as the reference value acquiring step, and the quantitative determination based on the spectral transmitted light amount and the reference value. A component light amount calculating step of calculating only the amount of the scattered transmitted light component from the color object; and a density for obtaining the concentration of the color object to be quantified from the light amount of only the scattered transmitted light component from the color object to be quantified. A color medium quantitative storage medium storing a program used for a color substance quantitative method, comprising a calculating step.
応する試薬を保持する固相支持体を有し、且つ光学的に
読取可能な符号からなる試験具識別部を備える試験具と
を接触させて前記固相支持体中に形成される、定量すべ
き呈色物の呈色強度を光学的に測定することにより前記
固相支持体中の定量すべき呈色物の濃度を求める呈色物
定量法に用いるプログラムを格納した記憶媒体であっ
て、 予め前記試験具識別部の符号の解読表を取得し、且つ種
々の透過光をその性状により前記定量すべき呈色物から
の散乱透過光成分およびその他の複数の成分に分別し、
各透過光成分を予め設定した特定の分光分布を有する複
数の光に分光して得られる分光透過光光量から演算によ
り各分光の相対強度比を求めて参照用の基準値を取得す
る基準値取得ステップと、 前記固相支持体に光を照射して得られる透過光を、前記
基準値取得ステップと同じ複数の光に分光して分光透過
光光量を測定する透過光測定ステップと、 前記透過光を前記基準値取得ステップと同じ複数の成分
に分別する分別ステップと、 前記分光透過光光量から前記試験具識別部の符号を分別
し、前記試験具識別部の符号の解読表と照合して前記符
号を解読する符号解読ステップと、 前記符号解読ステップに基づき演算に用いる後段のステ
ップの種類および基準値を決定する決定ステップと、 前記決定ステップの決定に従い、前記分光透過光光量お
よび前記基準値を用いて、前記定量すべき呈色物の濃度
を求める濃度算出ステップとを含むことを特徴とする呈
色物定量法に用いるプログラムを格納した呈色物定量用
記憶媒体。3. A test device comprising: a sample; a solid support for holding a reagent capable of undergoing a color reaction with a specific component in the sample; and a test device including a test device identification portion comprising an optically readable code. To determine the concentration of the color substance to be quantified in the solid support by optically measuring the color intensity of the color substance to be quantified formed in the solid support. A storage medium storing a program used for a color object quantification method, wherein a decoding table of a code of the test device identification unit is obtained in advance, and various transmitted lights from the color object to be quantified by its properties. Separated into scattered transmitted light components and other components,
A reference value acquisition for obtaining a reference value for reference by obtaining a relative intensity ratio of each spectrum by calculation from the amount of spectral transmission light obtained by spectrally separating each transmitted light component into a plurality of lights having a predetermined specific spectral distribution. A transmission light measuring step of measuring the amount of spectrally transmitted light by dispersing transmitted light obtained by irradiating the solid support with light into the same plurality of lights as in the reference value obtaining step; A classification step of classifying the reference component into the same plurality of components as the reference value acquisition step, and classifying the code of the test device identification unit from the amount of spectrally transmitted light, collating with the decoding table of the code of the test device identification unit, A code decoding step of decoding a code; a determination step of determining a type and a reference value of a subsequent step used for an operation based on the code decoding step; and the spectral transmission light according to the determination of the determination step. The amount and by using the reference value, coloration colored article quantified storage medium storing a program used in coloration colored article assay which comprises a density calculation step of determining the concentration of coloration colored article to be the quantified.
応する試薬を保持する固相支持体を有する試験具とを接
触させて前記固相支持体中に形成される、定量すべき呈
色物の呈色強度を光学的に測定することにより前記固相
支持体中の定量すべき呈色物の濃度を求める呈色物定量
法に用いるプログラムを格納した記憶媒体であって、 種々の透過光をその性状により前記定量すべき呈色物か
らの散乱透過光成分およびその他の複数の成分に分別
し、各透過光成分を前記定量すべき呈色物の特異吸収波
長を有する光およびその他の予め設定した特定の分光分
布を有する複数の光に分光して得られる分光透過光光量
から演算により各分光の相対強度比を求めて参照用の基
準値を取得する基準値取得ステップと、 前記固相支持体に光を照射して得られる透過光を、前記
基準値取得ステップと同じ複数の光に分光して分光透過
光光量を測定する透過光測定ステップと、 前記透過光を前記基準値取得ステップと同じ複数の成分
に分別する分別ステップと、 前記基準値を用いて前記分光透過光光量に占める前記定
量すべき呈色物からの散乱透過光成分のみの光量の割合
を算定する成分光量割合算定ステップと、 前記成分光量割合算定ステップで求めた前記割合に基づ
き前記定量すべき呈色物からの散乱透過光成分に含まれ
る前記定量すべき呈色物の特異吸収波長を有する光の光
量を算定する成分分光光量算定ステップと、 前記定量すべき呈色物の特異吸収波長を有する光の光量
から前記定量すべき呈色物の濃度を求める濃度算出ステ
ップとを含むことを特徴とする呈色物定量法に用いるプ
ログラムを格納した呈色物定量用記憶媒体。4. A sample to be quantified, which is formed in the solid support by bringing a sample into contact with a test device having a solid support holding a reagent that causes a color reaction with a specific component in the sample. What is claimed is: 1. A storage medium storing a program used in a colorant determination method for determining the concentration of a colorant to be quantified in the solid support by optically measuring the color intensity of a colorant, The transmitted light is separated into a scattered transmitted light component and a plurality of other components from the color product to be quantified by its properties, and each transmitted light component has light having a specific absorption wavelength of the color product to be quantified and A reference value obtaining step of obtaining a reference value for reference by obtaining a relative intensity ratio of each spectrum by calculation from the amount of spectrally transmitted light obtained by spectrally splitting the light into a plurality of lights having a predetermined specific spectral distribution, Obtained by irradiating the solid support with light A transmitted light measuring step of dispersing the transmitted light into the same plurality of lights as in the reference value obtaining step and measuring the amount of spectrally transmitted light; and a separating step of separating the transmitted light into the same plurality of components as the reference value obtaining step And a component light amount ratio calculating step of calculating a ratio of the light amount of only the scattered transmitted light component from the color object to be quantified to the spectral transmitted light amount using the reference value, and the component light amount ratio calculating step. A component spectral light amount calculating step of calculating a light amount of light having a specific absorption wavelength of the color object to be quantified included in the scattered transmitted light component from the color object to be quantified based on the obtained ratio; A density calculation step of obtaining the density of the color product to be quantified from the amount of light having a specific absorption wavelength of the color product to be determined. Coloration colored article Quantitative storage medium storing.
度比図を用いて前記定量すべき呈色物の濃度を算出する
ことを特徴とする請求項2〜4のいずれか1項に記載の
呈色物定量用記憶媒体。5. The coloration according to claim 2, wherein, in the density calculation step, the density of the color object to be quantified is calculated using a relative intensity ratio diagram. Storage medium for material quantification.
共存呈色物を含む試料であり、そして前記固相支持体が
測定に用いる光の波長域において光学的に透明な固相支
持体であり、且つ前記基準値として前記共存呈色物によ
る散乱透過光に対応する光の分光の相対強度比を必ず含
むことを特徴とする請求項2〜5のいずれか1項に記載
の呈色物定量用記憶媒体。6. The sample according to claim 1, wherein the sample contains a colorant to be quantified in addition to the colorant to be quantified, and the solid support is an optically transparent solid support in a wavelength range of light used for measurement. The present invention according to any one of claims 2 to 5, wherein the reference value includes a relative intensity ratio of the spectrum of light corresponding to the scattered and transmitted light by the coexisting color material, as the reference value. Storage medium for color substance quantification.
応する試薬を保持する固相支持体を有する試験具とを接
触させて前記固相支持体中に形成される、定量すべき呈
色物の呈色強度を光学的に測定することにより前記固相
支持体中の定量すべき呈色物の濃度を求める呈色物定量
法に用いるプログラムを格納した記憶媒体であって、 種々の透過光をその性状により前記定量すべき呈色物か
らの散乱透過光成分およびその他の複数の成分に分別
し、各透過光成分を予め設定した特定の分光分布を有す
る複数の光に分光して得られる分光透過光光量から演算
により各分光の相対強度比を求めて参照用の基準値を取
得する基準値取得ステップと、 前記固相支持体に光を照射して得られる透過光を、前記
基準値取得ステップと同じ複数の光に分光して分光透過
光光量を測定する透過光測定ステップと、 前記透過光を前記基準値取得ステップと同じ複数の成分
に分別する分別ステップと、 前記分光透過光光量および前記基準値から相対強度比図
を作成する相対強度比図作成ステップと、 前記相対強度比図に基づいて前記定量すべき呈色物から
の散乱透過光成分のみの光量を算定する成分光量算定ス
テップと、 前記定量すべき呈色物からの散乱透過光成分のみの光量
から前記定量すべき呈色物の濃度を求める濃度算出ステ
ップとを含むことを特徴とする呈色物定量法に用いるプ
ログラムを格納した呈色物定量用記憶媒体。7. A sample to be quantified, which is formed in the solid support by bringing a sample into contact with a test device having a solid support holding a reagent that causes a color reaction with a specific component in the sample. What is claimed is: 1. A storage medium storing a program used in a colorant determination method for determining the concentration of a colorant to be quantified in the solid support by optically measuring the color intensity of a colorant, The transmitted light is separated into a scattered transmitted light component from the color object to be quantified and a plurality of other components according to its properties, and each transmitted light component is separated into a plurality of lights having a predetermined specific spectral distribution. A reference value obtaining step of obtaining a reference intensity by calculating the relative intensity ratio of each spectrum by calculation from the amount of spectrally transmitted light obtained, and transmitting light obtained by irradiating the solid support with light, The light is split into the same plurality of lights as in the reference value obtaining step. A transmitted light measuring step of measuring the amount of transmitted light; a separating step of separating the transmitted light into the same plurality of components as the reference value obtaining step; and creating a relative intensity ratio diagram from the spectral transmitted light amount and the reference value. A relative intensity ratio diagram creating step, a component light amount calculating step of calculating only the amount of scattered transmitted light component from the color object to be quantified based on the relative intensity ratio diagram, A density calculating step of calculating the density of the color object to be quantified from the light amount of only the scattered transmitted light component of the color object quantification method.
応する試薬を保持する固相支持体を有する試験具とを接
触させて前記固相支持体中に形成される、定量すべき呈
色物の呈色強度を光学的に測定することにより前記固相
支持体中の定量すべき呈色物の濃度を求める呈色物定量
法に用いるプログラムを格納した記憶媒体であって、 種々の透過光をその性状により前記定量すべき呈色物か
らの散乱透過光成分およびその他の複数の成分に分別
し、各透過光成分を前記定量すべき呈色物の特異吸収波
長を有する光およびその他の予め設定した特定の分光分
布を有する複数の光に分光して得られる分光透過光光量
から演算により各分光の相対強度比を求めて参照用の基
準値を取得する基準値取得ステップと、 前記固相支持体に光を照射して得られる透過光を、前記
基準値取得ステップと同じ複数の光に分光して分光透過
光光量を測定する透過光測定ステップと、 前記透過光を前記基準値取得ステップと同じ複数の成分
に分別する分別ステップと、 前記分光透過光光量および前記基準値から相対強度比図
を作成する相対強度比図作成ステップと、 前記相対強度比図に基づいて前記分光透過光量に占める
前記定量すべき呈色物からの散乱透過光成分のみの光量
の割合を算定する成分光量割合算定ステップと、 前記成分光量割合算定ステップで求めた前記割合に基づ
き前記定量すべき呈色物からの散乱透過光成分に含まれ
る前記定量すべき呈色物の特異吸収波長を有する光の光
量を算定する成分分光光量算定ステップと、 前記定量すべき呈色物の特異吸収波長を有する光の光量
から前記定量すべき呈色物の濃度を求める濃度算出ステ
ップとを含むことを特徴とする呈色物定量法に用いるプ
ログラムを格納した呈色物定量用記憶媒体。8. A sample to be quantified, which is formed in the solid support by bringing a sample into contact with a test device having a solid support holding a reagent that causes a color reaction with a specific component in the sample. What is claimed is: 1. A storage medium storing a program used in a colorant determination method for determining the concentration of a colorant to be quantified in the solid support by optically measuring the color intensity of a colorant, The transmitted light is separated into a scattered transmitted light component and a plurality of other components from the color product to be quantified by its properties, and each transmitted light component has light having a specific absorption wavelength of the color product to be quantified and A reference value obtaining step of obtaining a reference value for reference by obtaining a relative intensity ratio of each spectrum by calculation from the amount of spectrally transmitted light obtained by spectrally splitting the light into a plurality of lights having a predetermined specific spectral distribution, Obtained by irradiating the solid support with light A transmitted light measuring step of dispersing the transmitted light into the same plurality of lights as in the reference value obtaining step and measuring the amount of spectrally transmitted light; and a separating step of separating the transmitted light into the same plurality of components as the reference value obtaining step A relative intensity ratio diagram creating step of creating a relative intensity ratio diagram from the spectral transmitted light amount and the reference value; and from the color object to be quantified in the spectral transmitted light amount based on the relative intensity ratio diagram. A component light amount ratio calculating step of calculating a ratio of the light amount of only the scattered transmitted light component, and the quantification included in the scattered transmitted light component from the color object to be quantified based on the ratio obtained in the component light amount ratio calculating step A component spectral light amount calculating step of calculating the light amount of the light having the specific absorption wavelength of the color product to be determined; and the quantification from the light amount of the light having the specific absorption wavelength of the color product to be quantified And a density calculation step for calculating the density of the color object to be performed.
応する試薬を保持する固相支持体を有する試験具とを接
触させて前記固相支持体中に形成される、定量すべき呈
色物の呈色強度を光学的に測定することにより前記固相
支持体中の定量すべき呈色物の濃度を求める呈色物定量
法に用いるプログラムを格納した記憶媒体であって、 種々の透過光をその性状により前記定量すべき呈色物か
らの散乱透過光成分およびその他の複数の成分に分別
し、各透過光成分を予め設定した特定の分光分布を有す
る複数の光に分光して得られる分光透過光光量から演算
により各分光の相対強度比を求めて参照用の基準値を取
得する基準値取得ステップと、 前記試料と前記試験具との接触後に可能な限り速やか
に、前記固相支持体に光を照射して得られる透過光を、
前記基準値取得ステップと同じ複数の光に分光して分光
透過光光量を測定し始め、これを一定の時間間隔で前記
分光透過光光量の測定値が安定するまで複数回反復して
実施する透過光測定ステップと、 前記透過光を前記基準値取得ステップと同じ複数の成分
に分別する分別ステップと、 前記分光透過光光量および前記基準値から相対強度比図
を作成する相対強度比図作成ステップと、 前記相対強度比図に基づいて前記接触時点における前記
定量すべき呈色物形成前の固相支持体からの透過光の分
光透過光光量および相対強度比を比定する比定ステップ
と、 前記相対強度比および前記比定工程で得られる比定値に
基づき前記定量すべき呈色物からの散乱透過光成分のみ
の光量を算定する成分光量算定ステップと、 前記定量すべき呈色物からの散乱透過光成分のみの光量
から前記定量すべき呈色物の濃度を求める濃度算出ステ
ップとを含むことを特徴とする呈色物定量法に用いるプ
ログラムを格納した呈色物定量用記憶媒体。9. A sample to be quantified, which is formed in the solid support by bringing a sample into contact with a test device having a solid support holding a reagent that causes a color reaction with a specific component in the sample. What is claimed is: 1. A storage medium storing a program used in a colorant determination method for determining the concentration of a colorant to be quantified in the solid support by optically measuring the color intensity of a colorant, The transmitted light is separated into a scattered transmitted light component from the color object to be quantified and a plurality of other components according to its properties, and each transmitted light component is separated into a plurality of lights having a predetermined specific spectral distribution. A reference value obtaining step for obtaining a reference value for reference by calculating a relative intensity ratio of each spectrum by calculation from the amount of spectral transmitted light obtained by the method, as soon as possible after contacting the sample with the test tool, Transmission obtained by irradiating the solid support with light The,
The transmission is started by measuring the amount of spectrally transmitted light by dispersing the light into the same plurality of lights as in the step of acquiring the reference value, and repeating this a plurality of times at fixed time intervals until the measured value of the amount of spectrally transmitted light is stabilized. A light measurement step, a separation step of separating the transmitted light into the same plurality of components as the reference value acquisition step, and a relative intensity ratio diagram creation step of creating a relative intensity ratio diagram from the spectral transmitted light amount and the reference value. A determining step of determining a relative intensity ratio and a spectrally transmitted light amount of transmitted light from the solid support before the formation of the color substance to be quantified at the contact time based on the relative intensity ratio diagram; A component light amount calculating step of calculating the light amount of only the scattered transmitted light component from the color object to be quantified based on the relative intensity ratio and the ratio value obtained in the ratio determining step, from the color object to be quantified Coloration colored article Quantitative storage medium storing a program used in coloration colored article assay which comprises a density calculation step of determining the concentration of coloration colored article to be the quantified from the light amount of only the scattered transmitted light component.
反応する試薬を保持する固相支持体を有する試験具とを
接触させて前記固相支持体中に形成される、定量すべき
呈色物の呈色強度を光学的に測定することにより前記固
相支持体中の定量すべき呈色物の濃度を求める呈色物定
量法に用いるプログラムを格納した記憶媒体であって、 種々の透過光をその性状により前記定量すべき呈色物か
らの散乱透過光成分およびその他の複数の成分に分別
し、各透過光成分を前記定量すべき呈色物の特異吸収波
長を有する光およびその他の予め設定した特定の分光分
布を有する複数の光に分光して得られる分光透過光光量
から演算により各分光の相対強度比を求めて参照用の基
準値を取得する基準値取得ステップと、 前記試料と前記試験具との接触後に可能な限り速やか
に、前記固相支持体に光を照射して得られる透過光を、
前記基準値取得ステップと同じ複数の光に分光して分光
透過光光量を測定し始め、これを一定の時間間隔で前記
分光透過光光量の測定値が安定するまで複数回反復して
実施する透過光測定ステップと、 前記透過光を前記基準値取得ステップと同じ複数の成分
に分別する分別ステップと、 前記分光透過光光量および前記基準値から相対強度比図
を作成する相対強度比図作成ステップと、 前記相対強度比図に基づいて前記接触時点における前記
定量すべき呈色物形成前の固相支持体からの透過光の分
光透過光量および相対強度比を比定する比定ステップ
と、 前記相対強度比および前記比定工程で得られる比定値に
基づいて前記分光透過光光量に占める前記定量すべき呈
色物からの散乱透過光成分のみの光量の割合を算定する
成分光量割合算定ステップと、 前記成分光量割合算定ステップで求めた前記割合に基づ
き前記定量すべき呈色物からの散乱透過光成分に含まれ
る前記定量すべき呈色物の特異吸収波長を有する光の光
量を算定する成分分光光量算定ステップと、 前記定量すべき呈色物の特異吸収波長を有する光の光量
から前記定量すべき呈色物の濃度を求める濃度算出ステ
ップとを含むことを特徴とする呈色物定量法に用いるプ
ログラムを格納した呈色物定量用記憶媒体。10. A sample to be quantified, which is formed in the solid support by bringing a sample into contact with a test device having a solid support holding a reagent that causes a color reaction with a specific component in the sample. What is claimed is: 1. A storage medium storing a program used in a colorant determination method for determining the concentration of a colorant to be quantified in the solid support by optically measuring the color intensity of a colorant, The transmitted light is separated into a scattered transmitted light component and a plurality of other components from the color product to be quantified by its properties, and each transmitted light component has light having a specific absorption wavelength of the color product to be quantified and A reference value obtaining step of obtaining a reference value for reference by obtaining a relative intensity ratio of each spectrum by calculation from the amount of spectrally transmitted light obtained by spectrally splitting the light into a plurality of lights having a predetermined specific spectral distribution, After contact between the sample and the test device As soon ability as far as, the transmitted light obtained by irradiating light to said solid support,
The transmission is started by measuring the amount of spectrally transmitted light by dispersing the light into the same plurality of lights as in the step of acquiring the reference value, and repeating this a plurality of times at fixed time intervals until the measured value of the amount of spectrally transmitted light is stabilized. A light measurement step, a separation step of separating the transmitted light into the same plurality of components as the reference value acquisition step, and a relative intensity ratio diagram creation step of creating a relative intensity ratio diagram from the spectral transmitted light amount and the reference value. A determining step of determining a relative intensity ratio and a spectral transmission light amount of transmitted light from the solid support before the formation of the color product to be quantified at the time of the contact based on the relative intensity ratio diagram; A component light amount ratio calculation unit that calculates a ratio of the light amount of only the scattered transmitted light component from the color object to be quantified to the spectral transmitted light amount based on the intensity ratio and the fixed value obtained in the setting step. And calculating the light amount of light having a specific absorption wavelength of the color object to be quantified included in the scattered transmitted light component from the color object to be quantified based on the ratio obtained in the component light amount ratio calculation step. A component spectral light quantity calculation step, and a density calculation step of calculating the density of the color substance to be quantified from the light quantity of light having a specific absorption wavelength of the color substance to be quantified. A storage medium for quantifying colored substances, which stores a program used for the quantification method.
記透過光を、散乱のない平行透過光、固相支持体による
散乱透過光、定量すべき呈色物による散乱透過光、およ
び存在する場合には共存呈色物による散乱透過光の各透
過光成分に分別することを特徴とする請求項2〜10の
いずれか1項に記載の呈色物定量用記憶媒体。11. In the reference value acquiring step, the transmitted light is a parallel transmitted light without scattering, a scattered transmitted light by a solid support, a scattered transmitted light by a colorant to be quantified, and if present, The storage medium for quantifying a colored substance according to any one of claims 2 to 10, wherein the storage medium is classified into each transmitted light component of scattered transmitted light by the coexisting colored substance.
記複数の光が、3種類の分光であることを特徴とする請
求項2〜11のいずれか1項に記載の呈色物定量用記憶
媒体。12. The storage medium according to claim 2, wherein the plurality of lights obtained in the reference value obtaining step are three types of light. .
定めたRGB表色系(CIE表色系)の原刺激であるこ
とを特徴とする請求項12に記載の呈色物定量用記憶媒
体。13. The storage device for quantifying a colored substance according to claim 12, wherein the three kinds of spectroscopy are primary stimuli of an RGB color system (CIE color system) defined by the International Commission on Illumination. Medium.
定めたXYZ表色系(CIE1931標準表色系)の原
刺激であることを特徴とする請求項12に記載の呈色物
定量用記憶媒体。14. The method according to claim 12, wherein the three types of spectroscopy are primary stimuli in the XYZ color system (CIE1931 standard color system) defined by the International Commission on Illumination. Storage medium.
定めたUCS表色系の原刺激であることを特徴とする請
求項12に記載の呈色物定量用記憶媒体。15. The storage medium according to claim 12, wherein the three types of spectroscopy are primary stimuli of the UCS color system defined by the International Commission on Illumination.
るために行う演算過程において、グラスマンの加法混色
の法則を用いることを特徴とする請求項2〜15のいず
れか1項に記載の呈色物定量用記憶媒体。16. The method according to claim 2, wherein in the calculation process performed to calculate the concentration of the color substance to be quantified, Grassmann's law of additive color mixture is used. Storage medium for quantitative determination of color products.
定量すべき呈色物の濃度を、下記の式: Log(C)=α(A)2+β(A)+γ (式中、Cは定量すべき呈色物の濃度、Aは定量すべき
呈色物からの散乱透過光の光量またはそれに含まれる定
量すべき呈色物の特異吸収波長を有する光の光量、そし
てα,βおよびγは定数をそれぞれ表す)を用いて求め
ることを特徴とする請求項2〜16のいずれか1項に記
載の呈色物定量用記憶媒体。17. In the density calculating step, the density of the color substance to be quantified is calculated by the following equation: Log (C) = α (A) 2 + β (A) + γ (where C is to be quantified) The concentration of the color substance, A is the amount of scattered transmitted light from the color substance to be quantified or the amount of light contained in the color substance having a specific absorption wavelength to be quantified, and α, β and γ are constants. 17. The storage medium according to any one of claims 2 to 16, wherein the storage medium is used to determine the colorant.
反応する試薬を保持する固相支持体を有する試験具とを
接触させて前記固相支持体中に形成される、定量すべき
呈色物の呈色強度を光学的に測定することにより前記固
相支持体中の定量すべき呈色物の濃度を求める呈色物定
量装置であって、 前記固相支持体に光を照射する光照射手段と、前記固相
支持体からの透過光を受光して光量を測定する透過光測
定手段と、測定された透過光光量および予め取得してお
いた基準値を用いて前記定量すべき呈色物の濃度を演算
して求める濃度演算手段とを備え、 前記演算手段が前記請求項2〜17のいずれか1項に記
載の呈色物定量用記憶媒体を含むことを特徴とする呈色
物定量装置。18. A sample to be quantified, which is formed in the solid support by bringing a sample into contact with a test device having a solid support holding a reagent that causes a color reaction with a specific component in the sample. What is claimed is: 1. An apparatus for quantitatively determining a color product, wherein a concentration of a color product to be quantified in the solid support is determined by optically measuring a color intensity of the color product, and the solid support is irradiated with light. A light irradiating means, a transmitted light measuring means for receiving a transmitted light from the solid support and measuring a light quantity, and the quantification using the measured transmitted light quantity and a previously acquired reference value. Density calculation means for calculating and calculating the density of a color product to be obtained, wherein the calculation device includes the color medium quantitative storage medium according to any one of claims 2 to 17. Colored object quantitative device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10294275A JP2000121562A (en) | 1998-10-15 | 1998-10-15 | Device for quantitatively determining coloring substance and storage medium for quantitatively determining coloring substance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10294275A JP2000121562A (en) | 1998-10-15 | 1998-10-15 | Device for quantitatively determining coloring substance and storage medium for quantitatively determining coloring substance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000121562A true JP2000121562A (en) | 2000-04-28 |
Family
ID=17805607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10294275A Pending JP2000121562A (en) | 1998-10-15 | 1998-10-15 | Device for quantitatively determining coloring substance and storage medium for quantitatively determining coloring substance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000121562A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6819422B2 (en) | 2000-04-12 | 2004-11-16 | Hamamatsu Photonics K.K. | Measuring method for immunochromatographic test strip |
US6879399B2 (en) | 2000-04-12 | 2005-04-12 | Hamamatsu Photonics K.K. | Measuring method for immunochromatographic test strip |
JP2007255995A (en) * | 2006-03-22 | 2007-10-04 | Nec Corp | Color discrimination device and gas specification device |
JP2015011011A (en) * | 2013-07-02 | 2015-01-19 | オリンパス株式会社 | Method for selecting pancreatic disease marker detection duodenal fluid specimen and method for detecting pancreatic disease marker |
WO2019082467A1 (en) * | 2017-10-25 | 2019-05-02 | オルガノ株式会社 | Sample analysis device, sample analysis method, sample analysis system, and program |
JP2020168602A (en) * | 2019-04-02 | 2020-10-15 | オルガノ株式会社 | Sample analysis system, sample analysis method and terminal device |
-
1998
- 1998-10-15 JP JP10294275A patent/JP2000121562A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6819422B2 (en) | 2000-04-12 | 2004-11-16 | Hamamatsu Photonics K.K. | Measuring method for immunochromatographic test strip |
US6879399B2 (en) | 2000-04-12 | 2005-04-12 | Hamamatsu Photonics K.K. | Measuring method for immunochromatographic test strip |
JP2007255995A (en) * | 2006-03-22 | 2007-10-04 | Nec Corp | Color discrimination device and gas specification device |
JP2015011011A (en) * | 2013-07-02 | 2015-01-19 | オリンパス株式会社 | Method for selecting pancreatic disease marker detection duodenal fluid specimen and method for detecting pancreatic disease marker |
WO2019082467A1 (en) * | 2017-10-25 | 2019-05-02 | オルガノ株式会社 | Sample analysis device, sample analysis method, sample analysis system, and program |
JP2019078661A (en) * | 2017-10-25 | 2019-05-23 | オルガノ株式会社 | Sample analyzer, sample analysis method, sample analysis system, and program |
JP7008468B2 (en) | 2017-10-25 | 2022-01-25 | オルガノ株式会社 | Sample analyzer, sample analysis method, sample analysis system, and program |
JP2020168602A (en) * | 2019-04-02 | 2020-10-15 | オルガノ株式会社 | Sample analysis system, sample analysis method and terminal device |
JP7263084B2 (en) | 2019-04-02 | 2023-04-24 | オルガノ株式会社 | SAMPLE ANALYSIS SYSTEM, SAMPLE ANALYSIS METHOD AND TERMINAL DEVICE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210302321A1 (en) | Calibration method for reagent card analyzers | |
JP3559975B2 (en) | Analysis method using test pieces | |
US20050203353A1 (en) | Multiple purpose, portable apparatus for measurement, analysis and diagnosis | |
JPH0746111B2 (en) | Sample analysis method and automatic analyzer using the same | |
US20020067476A1 (en) | Analytical method and apparatus for blood using near infrared spectroscopy | |
DE60132142D1 (en) | Analysis apparatus and method with sample quality measurement | |
EP0795129B1 (en) | Apparatus for analysing blood and other samples | |
JP2003502631A (en) | Method and apparatus for testing biologically derived fluids | |
CN105102698A (en) | Reduction of false positive on reagent test devices | |
JPH0666808A (en) | Chromogen measurement method | |
JP2000121562A (en) | Device for quantitatively determining coloring substance and storage medium for quantitatively determining coloring substance | |
JP2023539444A (en) | Circuit board with built-in light source | |
EP3752819B1 (en) | Analyzer | |
US7310149B2 (en) | Systems and methods for measurement of properties of small volume liquid samples | |
JPS5910850A (en) | Analytical implement | |
US20230324422A1 (en) | Diagnostic analyzer having a dual-purpose imager | |
JPH1073534A (en) | Equipment for determining color developing matter | |
ATE245282T1 (en) | IMPROVE ANALYZER THROUGHPUT USING PIPETTE TIP ANALYSIS | |
CN107796760A (en) | Signal drift determines and correction | |
JP4117253B2 (en) | Automatic analyzer | |
JP2000121561A (en) | Coloring substance quantitative determination method | |
JPH0290041A (en) | Method and apparatus for spectrochemical analysis | |
WO2004063393A1 (en) | Measurement of analyte concentration | |
WO2023037726A1 (en) | Automated analyzing device, data processing device, and precision management method for automated analyzing device | |
JP2013024746A (en) | Automatic analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061219 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070417 |