JP2000121550A - Method for detecting image of organismic sample by heterodyne detection and its device - Google Patents

Method for detecting image of organismic sample by heterodyne detection and its device

Info

Publication number
JP2000121550A
JP2000121550A JP10295696A JP29569698A JP2000121550A JP 2000121550 A JP2000121550 A JP 2000121550A JP 10295696 A JP10295696 A JP 10295696A JP 29569698 A JP29569698 A JP 29569698A JP 2000121550 A JP2000121550 A JP 2000121550A
Authority
JP
Japan
Prior art keywords
light beam
signal
biological sample
image
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10295696A
Other languages
Japanese (ja)
Inventor
Tsutomu Ichimura
勉 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP10295696A priority Critical patent/JP2000121550A/en
Publication of JP2000121550A publication Critical patent/JP2000121550A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for detecting the image of an organismic sample by more practical and reliable heterodyne detection. SOLUTION: One of two light fluxes is a signal light flux for obtaining the transmission diffraction image of an organismic sample 7 on which spatial speckle correction processing has been performed. The other light flux is a reference light flux to be superimposed on the above-mentioned transmission diffraction image. A difference in length is provided between the optical path of the reference light flux and that of the signal light flux. The signal light flux is superimposed on the reference light flux to be two light fluxes and are detected by a photodetector 9, and the detected intermediate frequency signal is demodulated. Then, the demodulated signal is subjected to data processing to display the image of the organismic sample 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヘテロダイン検波
による生体試料の画像検出方法及びその装置に係り、特
に、その透視画像検出、断層画像検出に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting an image of a biological sample by heterodyne detection, and more particularly to a method of detecting a fluoroscopic image and a tomographic image.

【0002】[0002]

【従来の技術】レーザーなど外部光源を用いて生体に光
を照射し、その透過光あるいは反射測定を測定して画像
化し、これにより生体内部の形態情報、機能情報を得よ
うとする方法の開拓が世界的に注目されている。これか
らの高齢化社会を踏まえて、疾病の早期発見・予防、更
には機能状況の継続的把握のための、無侵襲、非接触、
より安全(脱アイソトープ、脱放射線)な計測方法とし
て「光CT(Optical Computed To
mography)」に代表される光計測法あるいは画
像計測診断装置への期待が急速に高まってきている。
2. Description of the Related Art Pioneering a method of irradiating a living body with light using an external light source such as a laser, measuring the transmitted light or reflection measurement and forming an image, thereby obtaining morphological information and functional information inside the living body. Is attracting worldwide attention. Based on the aging society in the future, non-invasive, non-contact,
As a safer (de-isotope, de-radiation) measurement method, "Optical CT (Optical Computed To
The expectation for an optical measurement method or an image measurement / diagnosis apparatus typified by “mography” is rapidly increasing.

【0003】既に、本願発明者等は、光ヘテロダイン検
出法に基づくCDI(Coherent Detect
ion Imaging)法(例えば、特開平2−15
0747号公報参照)あるいは、光波反射測定装置(例
えば、特公平6−35946号公報参照)を提案してい
る。これらは、試料を透過直進光あるいは反射直進光と
参照光束を重ね合せ、その干渉によるビート成分を1個
の0次元検出器で検出し、画像化は試料又は光束を走査
することにより行っていた。
[0003] The present inventors have already proposed a CDI (Coherent Detect) based on an optical heterodyne detection method.
ion imaging) method (for example, see JP-A-2-15)
No. 0747) or a light wave reflection measuring device (for example, see Japanese Patent Publication No. 6-35946). In these methods, the transmitted straight light or reflected straight light and the reference light beam are superimposed on the sample, and the beat component due to the interference is detected by one 0-dimensional detector, and the imaging is performed by scanning the sample or the light beam. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の光断層像画像化装置では、その試料を生体とし
た場合には、生体表面のランダムな凹凸により照射光の
空間コヒーレンスが崩れ、検出面で空間的スペックルが
生じる。また、生体内部の媒質の吸収の変化や屈折率の
変化により時間的スペックルが生じるといった問題があ
り、これらの問題は十分に解決されておらず、技術的に
満足のいくものではなかった。
However, in the above-mentioned conventional optical tomographic imaging apparatus, when the sample is a living body, the spatial coherence of the irradiation light is broken by random irregularities on the surface of the living body, and the detection surface Produces spatial speckle. In addition, there is a problem that temporal speckle occurs due to a change in absorption or a change in the refractive index of a medium inside a living body, and these problems have not been sufficiently solved and have not been technically satisfactory.

【0005】本発明は、上記した従来の光断層像画像化
を更に発展させて、より実用的な信頼性の高いヘテロダ
イン検波による生体試料の画像検出方法及びその装置を
提供することを目的とする。
An object of the present invention is to further develop the above-described conventional optical tomographic imaging, and to provide a more practical and highly reliable image detection method for a biological sample by heterodyne detection and a device therefor. .

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、生体試料表面の凹凸により生じる空間的
スペックルを軽減するための補正処理は、生体表面にそ
れと略等しい透明の屈折率物質を、表面を鏡面にして塗
布することにより行われる。一方、時間的スペックルを
軽減するための補正処理には、従来1個の0次元検出器
でビート成分を検出していたものを、生体表面または生
体内部に焦点を合わせた2個のレンズにより成り立つ結
像系と、この結像系からの2光束を平行光束に置換する
レンズにより平行光束を得て、その光束を複数個の検出
器で、それぞれ独立に検出し、その加算平均を求めるこ
とにより行われる。即ち、従来1個の検出器で二光束が
重ね会わされた部分を面積積分して検出していたもの
を、光学系を用いて検出光束面を拡大し、拡大した光束
を分割して独立にヘテロダイン検波し、その出力の加算
平均を求めることにより、時間的スペックル補正が行わ
れるようにする。
According to the present invention, in order to achieve the above object, a correction process for reducing spatial speckles caused by irregularities on the surface of a biological sample is performed by applying a transparent refraction to the surface of the biological sample. This is performed by applying the material with a mirror surface. On the other hand, correction processing for reducing temporal speckle is performed by using two lenses focused on the surface of the living body or inside the living body, instead of detecting the beat component with a single 0-dimensional detector. Obtaining a parallel light beam by an imaging system that holds, and a lens that replaces two light beams from this imaging system with a parallel light beam, detecting the light beams independently with a plurality of detectors, and calculating the average of the additions. It is performed by That is, what has been conventionally detected by integrating the area where the two light beams are overlapped by one detector and detecting the area is integrated, the detected light beam surface is enlarged using an optical system, and the expanded light beam is divided and independently. Heterodyne detection is performed, and an average of the outputs is obtained, so that temporal speckle correction is performed.

【0007】これらは、一つ目は、レーザーを用いて透
過像を検出する従来のヘテロダイン検波(特開平2−1
50747号公報参照)に採用する。二つ目は、部分的
コヒーレント光を用いて反射断層像を検出する従来のヘ
テロダイン検波(特公平6−35946号公報参照)に
採用する。以下、本発明の課題を解決するための手段
は、以下のようである。
[0007] The first of these is a conventional heterodyne detection that detects a transmission image using a laser (Japanese Patent Laid-Open No. 2-1).
No. 50747). The second method is employed for conventional heterodyne detection (see Japanese Patent Publication No. 6-35946) in which a reflected tomographic image is detected using partially coherent light. Hereinafter, means for solving the problems of the present invention are as follows.

【0008】〔1〕ヘテロダイン検波による生体試料の
画像検出方法において、一方を生体試料の空間的スペッ
クル補正処理を行った透過回折像を得る信号光束とし、
他方を前記透過回折像と重ね合わせる参照光束とし、こ
の参照光束の光路長を信号光束の光路長に対して光路差
を生ぜしめ、前記信号光束と参照光束を重ね合わせた二
光束を二次元検出器で検出し、この検出された中間周波
数信号を復調し、この復調された信号のデータ処理を行
い、生体試料の画像を表示するようにしたものである。
[1] In a method of detecting an image of a biological sample by heterodyne detection, one of the signals is a signal light beam for obtaining a transmission diffraction image obtained by performing a spatial speckle correction process on the biological sample,
The other is a reference light beam to be superimposed on the transmitted diffraction image, and the optical path length of the reference light beam is caused to have an optical path difference with respect to the optical path length of the signal light beam, and the two light beams obtained by superimposing the signal light beam and the reference light beam are two-dimensionally detected. The detected intermediate frequency signal is demodulated by the detector, data processing of the demodulated signal is performed, and an image of the biological sample is displayed.

【0009】〔2〕ヘテロダイン検波による生体試料の
画像検出方法において、一方を生体試料の透過回折像を
得る信号光束とし、他方を前記透過回折像と重ね合わせ
る参照光束とし、この参照光束の光路長を信号光束の光
路長に対して光路差を生ぜしめ、各画素の出力を加算平
均することにより、時間的スペックル補正処理を行い信
号光束と参照光束を重ね合わせた二光束を二次元検出器
で検出し、この検出された中間周波数信号を復調し、こ
の復調された信号のデータ処理を行い、生体試料の画像
を表示するようにしたものである。
[2] In the method for detecting an image of a biological sample by heterodyne detection, one is a signal light beam for obtaining a transmission diffraction image of the biological sample, and the other is a reference light beam superimposed on the transmission diffraction image, and the optical path length of the reference light beam The optical path difference is generated with respect to the optical path length of the signal light beam, and the output of each pixel is added and averaged to perform temporal speckle correction processing, and the two light beams obtained by superimposing the signal light beam and the reference light beam on the two-dimensional detector And demodulates the detected intermediate frequency signal, performs data processing on the demodulated signal, and displays an image of the biological sample.

【0010】〔3〕ヘテロダイン検波による生体試料の
画像検出方法において、一方を生体試料の空間的スペッ
クル補正処理を行った反射回折像を得る信号光束とし、
他方を前記反射回折像と重ね合わせる参照光束とし、こ
の参照光束の光路長を信号光束の光路長に対して光路差
を生ぜしめ、前記信号光束と参照光束を重ね合わせた二
光束を二次元検出器で検出し、この検出された中間周波
数信号を復調し、この復調された信号のデータ処理を行
い、生体試料の画像を表示するようにしたものである。
[3] In the method of detecting an image of a biological sample by heterodyne detection, one of the signals is a signal light beam for obtaining a reflection diffraction image obtained by performing a spatial speckle correction process on the biological sample.
The other is used as a reference light beam to be superimposed on the reflected diffraction image, and the optical path length of the reference light beam is caused to have an optical path difference with respect to the optical path length of the signal light beam, and the two light beams obtained by superimposing the signal light beam and the reference light beam are two-dimensionally detected. The detected intermediate frequency signal is demodulated by the detector, data processing of the demodulated signal is performed, and an image of the biological sample is displayed.

【0011】〔4〕ヘテロダイン検波による生体試料の
画像検出方法において、一方を生体試料の反射回折像を
得る信号光束とし、他方を前記反射回折像と重ね合わせ
る参照光束とし、この参照光束の光路長を信号光束の光
路長に対して光路差を生ぜしめ、各画素の出力を加算平
均することにより時間的スペックル補正処理を行い信号
光束と参照光束を重ね合わせた二光束を二次元検出器で
検出し、この検出された中間周波数信号を復調し、この
復調された信号のデータ処理を行い、生体試料の画像を
表示するようにしたものである。
[4] In the method for detecting an image of a biological sample by heterodyne detection, one is a signal light beam for obtaining a reflected diffraction image of the biological sample, and the other is a reference light beam superimposed on the reflected diffraction image, and the optical path length of the reference light beam The optical path difference is generated with respect to the optical path length of the signal light beam, and the temporal Speckle correction processing is performed by adding and averaging the output of each pixel, and the two light beams obtained by superimposing the signal light beam and the reference light beam are detected by the two-dimensional detector. The detected intermediate frequency signal is detected, the detected intermediate frequency signal is demodulated, data processing of the demodulated signal is performed, and an image of the biological sample is displayed.

【0012】〔5〕ヘテロダイン検波による生体試料の
画像検出装置において、光源としてのレーザーと、この
レーザーが照射される生体試料の空間的スペックル補正
手段と、この空間的スペックル補正が行われた透過回折
像を得るための信号光束を生成する手段と、前記透過回
折像と重ね合わせた参照光束を生成する手段と、前記参
照光束の光路長を信号光束の光路長に対して光路差を生
ぜしめる手段と、前記信号光束と参照光束を重ね合わせ
た二光束を検出する二次元検出器と、この検出された中
間周波数信号を復調する手段と、この復調された信号の
データ処理を行うコンピュータと、生体試料の画像を表
示する表示装置とを具備するようにしたものである。
[5] In an apparatus for detecting an image of a biological sample by heterodyne detection, a laser as a light source, a spatial speckle correcting means for the biological sample irradiated with the laser, and the spatial speckle correction are performed. Means for generating a signal light beam for obtaining a transmission diffraction image, means for generating a reference light beam superimposed on the transmission diffraction image, and generating an optical path difference between the optical path length of the reference light beam and the optical path length of the signal light beam. A two-dimensional detector for detecting two light beams obtained by superimposing the signal light beam and the reference light beam, a means for demodulating the detected intermediate frequency signal, and a computer for performing data processing of the demodulated signal. And a display device for displaying an image of the biological sample.

【0013】〔6〕ヘテロダイン検波による生体試料の
画像検出装置において、光源としてのレーザーと、この
レーザーが照射される生体試料の透過回折像を得るため
の信号光束を生成する手段と、前記透過回折像と重ね合
わせた参照光束を生成する手段と、前記参照光束の光路
長を信号光束の光路長に対して光路差を生ぜしめる手段
と、各画素の出力を加算平均することにより時間的スペ
ックル補正処理を行い信号光束と参照光束を重ね合わせ
た二光束を検出する二次元検出器と、この検出された中
間周波数信号を復調する手段と、この復調された信号の
データ処理を行うコンピュータと、生体試料の画像を表
示する表示装置とを具備するようにしたものである。
[6] In an apparatus for detecting an image of a biological sample by heterodyne detection, a laser as a light source, means for generating a signal beam for obtaining a transmission diffraction image of the biological sample irradiated with the laser, and the transmission diffraction Means for generating a reference light beam superimposed on an image, means for generating an optical path difference between the optical path length of the reference light beam and the optical path length of the signal light beam, and temporal speckle by averaging the output of each pixel. A two-dimensional detector that performs a correction process and detects two light beams obtained by superimposing a signal light beam and a reference light beam, a unit that demodulates the detected intermediate frequency signal, and a computer that performs data processing of the demodulated signal, A display device for displaying an image of the biological sample.

【0014】〔7〕ヘテロダイン検波による生体試料の
画像検出装置において、光源としての部分的コヒーレン
ト光と、この部分的コヒーレント光が照射される生体試
料の空間的スペックル補正手段と、この空間的スペック
ル補正が行われた反射回折像を得るための信号光束を生
成する手段と、前記反射回折像と重ね合わせた参照光束
を生成する手段と、前記参照光束の光路長を信号光束の
光路長に対して光路差を生ぜしめる手段と、信号光束と
参照光束を重ね合わせた二光束を検出する二次元検出器
と、この検出された中間周波数信号を復調する手段と、
この復調された信号のデータ処理を行うコンピュータ
と、生体試料の画像を表示する表示装置とを具備するよ
うにしたものである。
[7] In a biological sample image detecting apparatus by heterodyne detection, a partially coherent light as a light source, a spatial speckle correcting means for a biological sample irradiated with the partially coherent light, and a spatial speckle correcting means. Means for generating a signal light beam for obtaining a reflected diffraction image on which the reflection correction is performed, means for generating a reference light beam superimposed on the reflected diffraction image, and an optical path length of the reference light beam as an optical path length of the signal light beam. Means for generating an optical path difference, a two-dimensional detector for detecting two light beams obtained by superimposing a signal light beam and a reference light beam, and a means for demodulating the detected intermediate frequency signal,
The apparatus includes a computer that performs data processing of the demodulated signal and a display device that displays an image of the biological sample.

【0015】〔8〕ヘテロダイン検波による生体試料の
画像検出装置において、光源としての部分的コヒーレン
ト光と、この部分的コヒーレント光が照射される生体試
料の反射回折像を得るための信号光束を生成する手段
と、空間的スペックル補正が行われた反射回折像を得る
ための信号光束を生成する手段と、各画素の出力を加算
平均することにより時間的スペックル補正処理を行い信
号光束と参照光束を重ね合わせた二光束を検出する二次
元検出器と、この検出された中間周波数信号を復調する
手段と、この復調された信号のデータ処理を行うコンピ
ュータと、生体試料の画像を表示する表示装置とを具備
するようにしたものである。
[8] In an image detecting apparatus for a biological sample by heterodyne detection, a partially coherent light beam as a light source and a signal light beam for obtaining a reflection diffraction image of the biological sample irradiated with the partially coherent light beam are generated. Means, a means for generating a signal light beam for obtaining a reflected diffraction image subjected to spatial speckle correction, and a signal light flux and a reference light flux by performing temporal speckle correction processing by averaging the outputs of each pixel. Two-dimensional detector for detecting two light beams obtained by superposing the two, a means for demodulating the detected intermediate frequency signal, a computer for performing data processing of the demodulated signal, and a display device for displaying an image of the biological sample Are provided.

【0016】[0016]

〔9〕上記〔5〕又は〔7〕記載のヘテロ
ダイン検波による生体試料の画像検出装置において、前
記空間的スペックル補正手段は、信号光束に対する前記
生体試料の表面に、この生体試料の表面付近の光学的屈
折率に等しい物質をこの生体試料の表面の凹凸がなくな
るように塗布し、その表面を整形し、信号光束の空間コ
ヒーレンスが崩れるのを防ぐようにしたものである。
[9] In the apparatus for detecting an image of a biological sample by the heterodyne detection according to the above [5] or [7], the spatial speckle correcting means may be provided on a surface of the biological sample with respect to a signal beam, near a surface of the biological sample. A substance having an optical refractive index is applied so as to eliminate irregularities on the surface of the biological sample, and the surface is shaped to prevent the spatial coherence of the signal light beam from being destroyed.

【0017】〔10〕上記〔6〕又は〔8〕記載のヘテ
ロダイン検波による生体試料の画像検出装置において、
前記時間的スペックルを補正する手段は、検出面となる
生体表面又は生体内部の検出光束面のビート成分の出力
強度を求めるのを、光学系にて前記検出光束面を拡大
し、拡大した光束を複数個に分割して独立にヘテロダイ
ン検波し、その出力の加算平均を求めるようにしたもの
である。
[10] The apparatus for detecting an image of a biological sample by heterodyne detection according to the above [6] or [8],
The means for correcting the temporal speckle is to determine the output intensity of the beat component of the surface of the living body or the inside of the living body as the detection surface by detecting the beat component. Is divided into a plurality of parts, and heterodyne detection is performed independently, and an average of the outputs is obtained.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら詳細に説明する。図1は本発明にかかる
ヘテロダイン検波による生体試料の画像検出装置の概略
全体構成図である。この図において、1はレーザー(C
Wレーザー)発生装置、2はレンズ系、3はビームスプ
リッタ(BS1)、4はAOM(超音波光モジュレー
タ)、5はミラー(M1)、6はミラー(M2)、7は
パルスステージを備える生体試料、8はビームスプリッ
タ(BS2)、9は光検出器、10は復調器、11はコ
ンピュータ、12は生体試料の画像表示装置である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic overall configuration diagram of an apparatus for detecting an image of a biological sample by heterodyne detection according to the present invention. In this figure, 1 is a laser (C
W laser generator, 2 is a lens system, 3 is a beam splitter (BS1), 4 is an AOM (ultrasonic light modulator), 5 is a mirror (M1), 6 is a mirror (M2), and 7 is a living body equipped with a pulse stage. A sample, 8 is a beam splitter (BS2), 9 is a photodetector, 10 is a demodulator, 11 is a computer, and 12 is an image display device of a biological sample.

【0019】狭スペクトル線幅のCWレーザー発生装置
1の出力は、ビームスプリッタ3により生体試料7に向
かう信号光と、参照光(局部発振光)に2分される。参
照光はAOM4によって所定の周波数シフト(例えば、
2個のAOMを用いたとき、その差の周波数100kH
z)を受ける。信号光は生体試料7を透過すると相当減
衰するが、ビームスプリッタ8を通って参照光と波面整
合のうえ重畳され光検出器9で、その中間周波数が電気
信号(IF信号)として検出される。
The output of the CW laser generator 1 having a narrow spectral line width is divided into two parts by a beam splitter 3 into a signal light heading for a biological sample 7 and a reference light (local oscillation light). The reference light is shifted by a predetermined frequency (for example,
When two AOMs are used, the difference frequency is 100 kHz.
z). Although the signal light is considerably attenuated when transmitted through the biological sample 7, the signal light passes through the beam splitter 8 and is superimposed on the reference light after wavefront matching, and the intermediate frequency thereof is detected by the photodetector 9 as an electric signal (IF signal).

【0020】この光ヘテロダイン検出法では、重ね合わ
せる両光ビームの波面と偏波面が一致しないとヘテロダ
イン検出であるビート成分の検出効率が顕著に低下する
ため、見かけ上の透過直進光成分のみを選択的に検出で
きる鋭い指向性と散乱除去効果特性を備えている。ま
た、検出されるIF信号は、信号光と参照光の振幅の積
に比例するために、信号光が微弱でも参照光強度の最適
化により、高感度特性が得られる。このシステムでは、
例えば、10-16 W程度の極微弱光を容易に検出するこ
とができ、測定系のダイナミックレンジは120dB以
上である。
In this optical heterodyne detection method, if the wavefronts and the polarization planes of the two light beams to be superimposed do not coincide with each other, the detection efficiency of the beat component for heterodyne detection is significantly reduced. It has sharp directivity and scattering elimination effect characteristic that can be detected. Further, since the detected IF signal is proportional to the product of the amplitude of the signal light and the reference light, high sensitivity characteristics can be obtained by optimizing the reference light intensity even if the signal light is weak. In this system,
For example, extremely weak light of about 10 −16 W can be easily detected, and the dynamic range of the measurement system is 120 dB or more.

【0021】IF信号は、試料台(図示なし)の移動あ
るいは回転のステップに合わせて、コンピュータ11に
取り込まれ、それぞれの信号光ビームの方向に対応して
投影定理に基づきデータ処理され、生体試料の透視画像
や断層画像などの画像情報が表示装置12に表示され
る。このシステムの空間分解能は入射レーザービームに
依存するが、例えば、直径500μmのビームにより最
高で約250μmの分解能が得られる。
The IF signal is taken into the computer 11 in accordance with the movement or rotation step of a sample stage (not shown), and is subjected to data processing based on the projection theorem in accordance with the direction of each signal light beam, and the biological sample is processed. Is displayed on the display device 12. The spatial resolution of this system depends on the incident laser beam, for example, a beam with a diameter of 500 μm can give a maximum resolution of about 250 μm.

【0022】しかしながら、このような試料が生体試料
7である場合には、特に、スペックル補正を行う必要が
生じる。本発明によれば、そのスペックル補正には、
(1)空間的スペックル補正と、(2)時間的スペック
ル補正とを施すようにする。まず、空間的スペックル補
正について説明する。
However, when such a sample is the biological sample 7, it is particularly necessary to perform speckle correction. According to the present invention, the speckle correction includes:
(1) Spatial speckle correction and (2) temporal speckle correction are performed. First, the spatial speckle correction will be described.

【0023】図2は本発明の第1実施例を示す生体試料
の画像検出における空間的スペックル補正装置を示す図
である。この図において、20は生体試料、21は表面
に設けられるガラス、22は生体試料20の表面とガラ
ス21間を埋める等屈折率媒質である。つまり、信号光
束に対する生体試料20の表面付近は、光学的屈折率に
等しい物質で生体試料20の表面の凹凸がなくなるよう
に整形処理する。
FIG. 2 is a view showing a spatial speckle correcting apparatus for detecting an image of a biological sample according to a first embodiment of the present invention. In this figure, 20 is a biological sample, 21 is glass provided on the surface, and 22 is an equirefractive index medium that fills the space between the surface of the biological sample 20 and the glass 21. That is, a shaping process is performed on the vicinity of the surface of the biological sample 20 with respect to the signal light flux using a substance having an optical refractive index equal to that of the biological sample 20 so that the surface of the biological sample 20 is not uneven.

【0024】このように、第1実施例によれば、生体試
料の入射面、射出面に略等光学的屈折率媒質を付着する
ことにより、空間的スペックル補正を行うことができ
る。つまり、生体試料表面のランダムな凹凸により生じ
る、生体試料の入射面、射出面の信号光束の空間コヒー
レンス(空間位相コヒーレンス)が崩れるのを防ぐこと
ができる。
As described above, according to the first embodiment, spatial speckle correction can be performed by attaching a substantially equal optical refractive index medium to the entrance surface and the exit surface of the biological sample. That is, it is possible to prevent the spatial coherence (spatial phase coherence) of the signal light flux on the entrance surface and the exit surface of the biological sample from being destroyed due to random irregularities on the surface of the biological sample.

【0025】次に、時間的スペックル補正について説明
する。図3は本発明の第2実施例を示す生体試料の画像
検出における透過型時間的スペックル補正装置を有する
ヘテロダイン検波による生体試料の画像検出システム構
成図である。この図において、31はレーザー(CWレ
ーザー)発生装置、32はレンズ系、33はビームスプ
リッタ(BS1)、34は生体試料、34Aは試料のx
−y走査ステージ、35は1個の検出器でヘテロダイン
検波するのではなく、複数個の検出器でヘテロダイン検
波して加算平均するために、生体表面又は生体内部に焦
点を合わせた検出光束面拡大光学系で、35Aは0次元
以外の空間高周波成分をカットする空間フィルター、3
6はビームスプリッタ(BS2)、37はミラー(M
1)、38は光学的周波数シフター、39はレンズ系、
40はミラー(M2)、41は複数の検出器、50は復
調器であり、この復調器50は、前置増幅器51、バン
ドパスフィルタ52、増幅器53、整流器54から構成
されている。55は整流器54に接続されるコンピュー
タ、56は生体試料の画像表示装置である。
Next, the temporal speckle correction will be described. FIG. 3 is a configuration diagram of a biological sample image detection system by heterodyne detection having a transmission-type temporal speckle correction device in image detection of a biological sample according to a second embodiment of the present invention. In this figure, 31 is a laser (CW laser) generator, 32 is a lens system, 33 is a beam splitter (BS1), 34 is a biological sample, and 34A is x of the sample.
The y-scanning stage 35 is not a heterodyne detector with one detector, but is a heterodyne detector with a plurality of detectors. An optical system 35A is a spatial filter that cuts spatial high-frequency components other than 0-dimensional,
6 is a beam splitter (BS2), 37 is a mirror (M
1) and 38 are optical frequency shifters, 39 is a lens system,
Reference numeral 40 denotes a mirror (M2), 41 denotes a plurality of detectors, and 50 denotes a demodulator. The demodulator 50 includes a preamplifier 51, a bandpass filter 52, an amplifier 53, and a rectifier 54. Reference numeral 55 denotes a computer connected to the rectifier 54, and reference numeral 56 denotes an image display device for a biological sample.

【0026】そこで、複数の検出器41から得られたヘ
テロダイン信号出力は、多チャンネル信号収集システム
を用いることにより、リアルタイムに瞬時に得ることが
できる。その各チャンネルには、例えば、23dBの前
置増幅器(アナログモジュール710−47)51、バ
ンドパスフィルタ(ミニ・サーキットSHP−300)
52、23dBの増幅器(ミニ・サーキットZFL−5
00)53及びマイクロウエーブ検出器として用いられ
る整流器(Narda 4503)54が設けられ、そ
の多チャンネル信号が、例えば、CAMACシステムで
制御されるコンピュータ55に送られる。そこで、デー
タ処理が行われ、生体試料の画像表示装置56に生体試
料の透視画像や断層画像などの画像情報が表示される。
Therefore, the heterodyne signal outputs obtained from the plurality of detectors 41 can be obtained instantaneously in real time by using a multi-channel signal collection system. Each channel includes, for example, a 23 dB preamplifier (analog module 710-47) 51 and a band-pass filter (mini-circuit SHP-300).
52, 23dB amplifier (mini circuit ZFL-5)
00) 53 and a rectifier (Narda 4503) 54 used as a microwave detector, and the multi-channel signal is sent to a computer 55 controlled by, for example, a CAMAC system. Therefore, data processing is performed, and image information such as a fluoroscopic image and a tomographic image of the biological sample is displayed on the biological sample image display device 56.

【0027】このように、第2実施例によれば、レーザ
ー光を生体試料34に照射し、生体の光束出射面となる
生体表面又は生体内部に焦点を合わせた焦点距離f1
レンズを出射した光束を、焦点距離f2 のレンズを(f
1 +f2 )の距離に配置して、空間フィルター35Aの
位置に集光する。焦点距離f2 のレンズ後方(f2 +f
3 )の位置に配置されたf3 のレンズにより、f3 の位
置に配置された2次元検出器41に入射検出される。こ
のとき、参照光束を2次元検出器41の入射面で、信号
光束と同等の大きさのビームとし、重ね合わせてヘテロ
ダイン検出される。
As described above, according to the second embodiment, the living body sample 34 is irradiated with the laser beam, and the lens having the focal length f 1 focused on the living body surface or the inside of the living body, which is the light emitting surface of the living body, is emitted. the light beam, the lens focal length f 2 (f
1 + f 2 ) and condensed at the position of the spatial filter 35A. The focal length f 2 of the lens rear (f 2 + f
The arranged f 3 of the lens at the position of 3), it is incident detected in a two-dimensional detector 41 which is arranged at the position of f 3. At this time, the reference light beam is made into a beam having the same size as the signal light beam on the incident surface of the two-dimensional detector 41, and the beam is superposed and heterodyne detected.

【0028】これは、本発明で示されている2次元検出
器41を大きな0次元検出器に置き換えるのと等価的に
従来の1個の検出器のヘテロダイン検出と同じになる。
レンズf1 の焦点面と空間フィルター35Aは、共焦点
関係にあるためレンズf1 の焦点面を表面に合わせると
表面が検出光束面に、レンズf1 の焦点面を内部に合わ
せると、その焦点面が検出光束面になる。この検出光束
面は、透過直進光も多重散乱光も入っているため、時間
的に干渉光が変動する時間的スペックルを生じる。
This is equivalent to replacing the two-dimensional detector 41 shown in the present invention with a large zero-dimensional detector and equivalent to the conventional heterodyne detection of one detector.
Focal plane and the spatial filter 35A of the lens f 1 is the surface Focusing plane of the lens f 1 on the surface detecting light beam surface because of the confocal relationship, the focus plane of the lens f 1 therein, the focal point The surface becomes the detection light beam surface. Since this detection light beam surface contains both transmitted straight light and multiple scattered light, it produces temporal speckle in which interference light fluctuates with time.

【0029】これをレンズ光学拡大系を用いて、複数の
ヘテロダイン検出ができる光束とし、複数のヘテロダイ
ン検出を行うと、各ヘテロダイン検出の時間的スペック
ルは、変動分が小さくなり、各々の加算平均は、1個の
検出器の変動分により小さくなり、結果的に時間的スペ
ックル補正ができる。そして、復調器50により各々の
ヘテロダイン検出を行うことができる。
Using this as a light beam capable of detecting a plurality of heterodynes using a lens optical magnification system, and performing a plurality of heterodyne detections, the temporal speckle of each heterodyne detection has a small variation, and the average of each Becomes smaller due to the fluctuation of one detector, and as a result, temporal speckle correction can be performed. And each heterodyne detection can be performed by the demodulator 50.

【0030】その場合に、生体試料34を透過した散乱
光は、空間フィルター35Aで除去される。図4は本発
明の第3実施例を示す生体試料の画像検出における反射
型時間的スペックル補正装置を有するヘテロダイン検波
による生体試料の画像検出システム構成図である。
In this case, the scattered light transmitted through the biological sample 34 is removed by the spatial filter 35A. FIG. 4 is a block diagram of a biological sample image detection system by heterodyne detection having a reflection type temporal speckle correction device in biological sample image detection according to a third embodiment of the present invention.

【0031】この図において、61は部分的にコヒーレ
ント光を得る発光素子、62はレンズ系、63はビーム
スプリッタ(ハーフミラー)、64は周波数シフター
(PZT)を有するミラー、65は生体試料、66は照
射ビーム拡大光学系、66Aは空間フィルター、67は
2次元光検出器、70は復調器であり、この復調器70
は前置増幅器71、バンドパスフィルタ72、増幅器7
3、整流器74から構成されている。81はコンピュー
タ、82は生体試料の画像表示装置である。
In this figure, 61 is a light emitting element for obtaining partially coherent light, 62 is a lens system, 63 is a beam splitter (half mirror), 64 is a mirror having a frequency shifter (PZT), 65 is a biological sample, 66 Is an irradiation beam expanding optical system, 66A is a spatial filter, 67 is a two-dimensional photodetector, and 70 is a demodulator.
Denotes a preamplifier 71, a bandpass filter 72, and an amplifier 7
3. It is composed of a rectifier 74. 81 is a computer, and 82 is an image display device for a biological sample.

【0032】そこで、2次元光検出器67からのヘテロ
ダイン信号出力は、多チャンネル信号収集システムを用
いることにより、リアルタイムに瞬時に得ることができ
る。その各チャンネルには、例えば、23dBの前置増
幅器(アナログモジュール710−47)71、バンド
パスフィルタ(ミニ・サーキットSHP−300)7
2、23dBの増幅器(ミニ・サーキットZFL−50
0)73及びマイクロウエーブ検出器として用いられる
整流器(Narda 4503)74が設けられ、その
多チャンネル信号が、例えば、CAMACシステムで制
御されるコンピュータ81に送られる。そこで、データ
処理が行われ、生体試料の画像表示装置82に生体試料
の透視画像や断層画像などの画像情報が表示される。
Therefore, the heterodyne signal output from the two-dimensional photodetector 67 can be instantaneously obtained in real time by using a multi-channel signal collection system. Each channel includes, for example, a 23 dB preamplifier (analog module 710-47) 71, a band-pass filter (mini-circuit SHP-300) 7
2,23dB amplifier (mini circuit ZFL-50)
0) 73 and a rectifier (Narda 4503) 74 used as a microwave detector, and the multi-channel signal is sent to a computer 81 controlled by, for example, a CAMAC system. Therefore, data processing is performed, and image information such as a fluoroscopic image and a tomographic image of the biological sample is displayed on the biological sample image display device 82.

【0033】このように、第3実施例によれば、部分的
コヒーレント光を生体試料65に照射し、散乱物体内部
の奥行き方向の屈折率の異なる地点からの反射光と、照
射光の周波数を周波数シフター64でシフトされた参照
光とを合成する合成手段としてのハーフミラー63で合
成する。この合成された光を光電変換するのに、照射ビ
ーム拡大光学系(レンズ系)66を用いてビームを拡大
する。
As described above, according to the third embodiment, the biological sample 65 is irradiated with the partially coherent light, and the frequency of the reflected light from the point in the scattering object having a different refractive index in the depth direction and the frequency of the irradiated light are changed. The reference light shifted by the frequency shifter 64 and the reference light are combined by a half mirror 63 as a combining unit. To photoelectrically convert the combined light, the beam is expanded using an irradiation beam expanding optical system (lens system) 66.

【0034】このレンズ光学拡大系を用いて、複数のヘ
テロダイン検出ができる光束とし、複数のヘテロダイン
検出を行うと、各ヘテロダイン検出の時間的スペックル
は変動分が小さくなり、各々の加算平均は、1個の検出
器の変動分より小さくなり、結果的に時間的スペックル
補正ができる。その場合に、生体試料65を反射した散
乱光は空間フィルター66Aでカットされる。
When a plurality of heterodyne detection light beams are formed by using this lens optical magnification system and a plurality of heterodyne detections are performed, the temporal speckle of each heterodyne detection has a small variation, and the averaging of each is It becomes smaller than the fluctuation of one detector, and as a result, temporal speckle correction can be performed. In that case, the scattered light reflected by the biological sample 65 is cut by the spatial filter 66A.

【0035】複数の検出器67以下は、第2実施例と同
じなのでその説明は省略する。なお、本発明は上記実施
例に限定されるものではなく、本発明の趣旨に基づいて
種々の変形が可能であり、これらを本発明の範囲から排
除するものではない。
Since the operation of the plurality of detectors 67 and below is the same as that of the second embodiment, the description thereof will be omitted. It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0036】[0036]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 (A)生体試料の極微弱光を的確に検出することがで
き、より実用的な信頼性の高い光ヘテロダイン検出法に
基づく画像検出法を提供することができ、その実用的効
果は著大である。
As described above, according to the present invention, the following effects can be obtained. (A) It is possible to accurately detect extremely weak light of a biological sample, and to provide an image detection method based on a more practical and highly reliable optical heterodyne detection method, and its practical effect is remarkable. is there.

【0037】(B)検体が生体試料である場合、信号光
束に対する前記生体試料の表面付近の光学的屈折率に等
しい物質を、その生体試料の表面の凹凸がなくなるよう
にして整形処理して、信号光束の空間コヒーレンス(空
間位相コヒーレンス)が崩れるのを防ぐようにしてい
る。すなわち、セルに入れた散乱体とは異なり、検体が
生体試料の場合は、表面の凹凸で空間コヒーレンスが崩
れ、信号成分が極端に小さくなるのを防ぐことができ
る。
(B) In the case where the specimen is a biological sample, a substance having an optical refractive index near the surface of the biological sample with respect to the signal light beam is shaped so that the surface of the biological sample has no irregularities. The spatial coherence (spatial phase coherence) of the signal light beam is prevented from being broken. That is, unlike a scatterer placed in a cell, when the specimen is a biological sample, it is possible to prevent spatial coherence from being collapsed due to unevenness of the surface, and preventing a signal component from becoming extremely small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるヘテロダイン検波による生体試
料の画像検出装置の概略全体構成図である。
FIG. 1 is a schematic overall configuration diagram of an apparatus for detecting an image of a biological sample by heterodyne detection according to the present invention.

【図2】本発明の第1実施例を示す生体試料の画像検出
における空間的スペックル補正装置を示す図である。
FIG. 2 is a diagram illustrating a spatial speckle correction device in image detection of a biological sample according to the first embodiment of the present invention.

【図3】本発明の第2実施例を示す生体試料の画像検出
における透過型時間的スペックル補正装置を有するヘテ
ロダイン検波による生体試料の画像検出システム構成図
である。
FIG. 3 is a configuration diagram of an image detection system of a biological sample by heterodyne detection having a transmission-type temporal speckle correction device in image detection of a biological sample according to a second embodiment of the present invention.

【図4】本発明の第3実施例を示す生体試料の画像検出
における反射型時間的スペックル補正装置を有するヘテ
ロダイン検波による生体試料の画像検出システム構成図
である。
FIG. 4 is a configuration diagram of a biological sample image detection system by heterodyne detection having a reflection-type temporal speckle correction device in biological sample image detection according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,31 レーザー(CWレーザー)発生装置 2,32,39,62 レンズ系 3,33 ビームスプリッタ(BS1) 4 AOM(超音波光モジュレータ) 5,37 ミラー(M1) 6,40 ミラー(M2) 7,20,34,65 生体試料 8,36 ビームスプリッタ(BS2) 9 光検出器 10,50,70 復調器 11,55,81 コンピュータ 12,56,82 生体試料の画像表示装置 21 ガラス 22 等屈折率媒質 34A 試料のx−y走査ステージ 35 検出光束面拡大光学系 35A 0次元以外の空間高周波成分をカットする空
間フィルター 38 光学的周波数シフター 41 複数の検出器 51,71 前置増幅器 52,72 バンドパスフィルタ 53,73 増幅器 54,74 整流器 61 部分的にコヒーレント光を得る発光素子 63 ビームスプリッタ(ハーフミラー) 64 周波数シフター(PZT)を有するミラー 66 照射ビーム拡大光学系(レンズ系) 66A 空間フィルター 67 2次元光検出器
1,31 laser (CW laser) generator 2,32,39,62 lens system 3,33 beam splitter (BS1) 4 AOM (ultrasonic light modulator) 5,37 mirror (M1) 6,40 mirror (M2) 7 , 20, 34, 65 Biological sample 8, 36 Beam splitter (BS2) 9 Photodetector 10, 50, 70 Demodulator 11, 55, 81 Computer 12, 56, 82 Image display device of biological sample 21 Glass 22 Equi-refractive index Medium 34A xy scanning stage of sample 35 Detected light beam plane expanding optical system 35A Spatial filter that cuts spatial high-frequency components other than zero dimensions 38 Optical frequency shifter 41 Plural detectors 51,71 Preamplifier 52,72 Band pass Filters 53, 73 Amplifiers 54, 74 Rectifiers 61 Light-emitting elements that partially obtain coherent light 63 a beam splitter (half mirror) mirror 66 having 64 frequency shifter (PZT) illumination beam expander optical system (lens system) 66A spatial filter 67 the two-dimensional photodetector

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】(a)一方を生体試料の空間的スペックル
補正処理を行った透過回折像を得る信号光束とし、
(b)他方を前記透過回折像と重ね合わせる参照光束と
し、(c)該参照光束の光路長を信号光束の光路長に対
して光路差を生ぜしめ、(d)前記信号光束と参照光束
を重ね合わせた二光束を二次元検出器で検出し、(e)
該検出された中間周波数信号を復調し、(f)該復調さ
れた信号のデータ処理を行い、生体試料の画像を表示す
ることを特徴とするヘテロダイン検波による生体試料の
画像検出方法。
(A) one of which is a signal light flux for obtaining a transmission diffraction image obtained by subjecting a biological sample to spatial speckle correction processing;
(B) the other is a reference light beam to be superimposed on the transmission diffraction image, (c) an optical path difference is generated between the optical path length of the reference light beam and the optical path length of the signal light beam, and (d) the signal light beam and the reference light beam The superposed two light beams are detected by a two-dimensional detector, and (e)
A method of detecting an image of a biological sample by heterodyne detection, comprising: demodulating the detected intermediate frequency signal; (f) performing data processing on the demodulated signal; and displaying an image of the biological sample.
【請求項2】(a)一方を生体試料の透過回折像を得る
信号光束とし、(b)他方を前記透過回折像と重ね合わ
せる参照光束とし、(c)該参照光束の光路長を信号光
束の光路長に対して光路差を生ぜしめ、(d)各画素の
出力を加算平均することにより、時間的スペックル補正
処理を行い信号光束と参照光束を重ね合わせた二光束を
二次元検出器で検出し、(e)該検出された中間周波数
信号を復調し、(f)該復調された信号のデータ処理を
行い、生体試料の画像を表示することを特徴とするヘテ
ロダイン検波による生体試料の画像検出方法。
(A) one is a signal light beam for obtaining a transmission diffraction image of a biological sample, (b) the other is a reference light beam to be superimposed on the transmission diffraction image, and (c) the signal path length of the reference light beam is a signal light beam. (D) A temporal speckle correction process is performed by adding and averaging the output of each pixel to obtain a two-dimensional light beam obtained by superimposing a signal light beam and a reference light beam on the two-dimensional detector. (E) demodulates the detected intermediate frequency signal, (f) performs data processing on the demodulated signal, and displays an image of the biological sample. Image detection method.
【請求項3】(a)一方を生体試料の空間的スペックル
補正処理を行った反射回折像を得る信号光束とし、
(b)他方を前記反射回折像と重ね合わせる参照光束と
し、(c)該参照光束の光路長を信号光束の光路長に対
して光路差を生ぜしめ、(d)前記信号光束と参照光束
を重ね合わせた二光束を二次元検出器で検出し、(e)
該検出された中間周波数信号を復調し、(f)該復調さ
れた信号のデータ処理を行い、生体試料の画像を表示す
ることを特徴とするヘテロダイン検波による生体試料の
画像検出方法。
(A) one of which is a signal light beam for obtaining a reflection diffraction image obtained by performing a spatial speckle correction process on a biological sample;
(B) the other is a reference light beam to be superimposed on the reflection diffraction image, (c) an optical path difference is generated between the optical path length of the reference light beam and the optical path length of the signal light beam, and (d) the signal light beam and the reference light beam The superposed two light beams are detected by a two-dimensional detector, and (e)
A method of detecting an image of a biological sample by heterodyne detection, comprising: demodulating the detected intermediate frequency signal; (f) performing data processing on the demodulated signal; and displaying an image of the biological sample.
【請求項4】(a)一方を生体試料の反射回折像を得る
信号光束とし、(b)他方を前記反射回折像と重ね合わ
せる参照光束とし、(c)該参照光束の光路長を信号光
束の光路長に対して光路差を生ぜしめ、(d)各画素の
出力を加算平均することにより時間的スペックル補正処
理を行い信号光束と参照光束を重ね合わせた二光束を二
次元検出器で検出し、(e)該検出された中間周波数信
号を復調し、(f)該復調された信号のデータ処理を行
い、生体試料の画像を表示することを特徴とするヘテロ
ダイン検波による生体試料の画像検出方法。
4. A method according to claim 1, wherein one is a signal light beam for obtaining a reflection diffraction image of the biological sample, (b) the other is a reference light beam to be superimposed on the reflection diffraction image, and (c) the signal path length of the reference light beam is a signal light beam. (D) A temporal speckle correction process is performed by adding and averaging the output of each pixel, and a two-beam obtained by superimposing a signal beam and a reference beam is detected by a two-dimensional detector. (E) demodulating the detected intermediate frequency signal, (f) performing data processing on the demodulated signal, and displaying an image of the biological sample, wherein an image of the biological sample is detected by heterodyne detection. Detection method.
【請求項5】(a)光源としてのレーザーと、(b)該
レーザーが照射される生体試料の空間的スペックル補正
手段と、(c)該空間的スペックル補正が行われた透過
回折像を得るための信号光束を生成する手段と、(d)
前記透過回折像と重ね合わせた参照光束を生成する手段
と、(e)前記参照光束の光路長を信号光束の光路長に
対して光路差を生ぜしめる手段と、(f)前記信号光束
と参照光束を重ね合わせた二光束を検出する二次元検出
器と、(g)該検出された中間周波数信号を復調する手
段と、(h)該復調された信号のデータ処理を行うコン
ピュータと、(i)生体試料の画像を表示する表示装置
とを具備することを特徴とするヘテロダイン検波による
生体試料の画像検出装置。
5. A laser as a light source, (b) a spatial speckle correcting means for a biological sample irradiated with the laser, and (c) a transmission diffraction image on which the spatial speckle correction has been performed. Means for generating a signal beam for obtaining
Means for generating a reference light beam superimposed on the transmission diffraction image; (e) means for generating an optical path difference between the optical path length of the reference light beam and the optical path length of the signal light beam; and (f) reference to the signal light beam. A two-dimensional detector for detecting two light beams obtained by superimposing light beams, (g) means for demodulating the detected intermediate frequency signal, (h) a computer for processing data of the demodulated signal, and (i) A) a display device for displaying an image of the biological sample; and a biological sample image detecting device using heterodyne detection.
【請求項6】(a)光源としてのレーザーと、(b)該
レーザーが照射される生体試料の透過回折像を得るため
の信号光束を生成する手段と、(c)前記透過回折像と
重ね合わせた参照光束を生成する手段と、(d)前記参
照光束の光路長を信号光束の光路長に対して光路差を生
ぜしめる手段と、(e)各画素の出力を加算平均するこ
とにより時間的スペックル補正処理を行い信号光束と参
照光束を重ね合わせた二光束を検出する二次元検出器
と、(f)該検出された中間周波数信号を復調する手段
と、(g)該復調された信号のデータ処理を行うコンピ
ュータと、(h)生体試料の画像を表示する表示装置と
を具備することを特徴とするヘテロダイン検波による生
体試料の画像検出装置。
6. A laser as a light source, (b) means for generating a signal beam for obtaining a transmission diffraction image of a biological sample irradiated with the laser, and (c) superimposition on the transmission diffraction image. Means for generating a combined reference light beam, (d) means for generating an optical path difference between the optical path length of the reference light beam and the optical path length of the signal light beam, and (e) time by adding and averaging the output of each pixel. A two-dimensional detector for detecting two light beams obtained by superimposing a signal light beam and a reference light beam by performing a speckle correction process; (f) means for demodulating the detected intermediate frequency signal; and (g) means for demodulating the detected intermediate frequency signal. An apparatus for detecting an image of a biological sample by heterodyne detection, comprising: a computer that performs signal data processing; and (h) a display device that displays an image of the biological sample.
【請求項7】(a)光源としての部分的コヒーレント光
と、(b)該部分的コヒーレント光が照射される生体試
料の空間的スペックル補正手段と、(c)該空間的スペ
ックル補正が行われた反射回折像を得るための信号光束
を生成する手段と、(d)前記反射回折像と重ね合わせ
た参照光束を生成する手段と、(e)前記参照光束の光
路長を信号光束の光路長に対して光路差を生ぜしめる手
段と、(f)信号光束と参照光束を重ね合わせた二光束
を検出する二次元検出器と、(g)該検出された中間周
波数信号を復調する手段と、(h)該復調された信号の
データ処理を行うコンピュータと、(i)生体試料の画
像を表示する表示装置とを具備することを特徴とするヘ
テロダイン検波による生体試料の画像検出装置。
7. A partial coherent light as a light source, (b) a spatial speckle correction means for a biological sample irradiated with the partial coherent light, and (c) a spatial speckle correction. Means for generating a signal light beam for obtaining the performed reflected diffraction image; (d) means for generating a reference light beam superimposed on the reflected diffraction image; and (e) an optical path length of the reference light beam for the signal light beam. Means for producing an optical path difference with respect to the optical path length; (f) a two-dimensional detector for detecting two light beams obtained by superposing a signal light beam and a reference light beam; and (g) means for demodulating the detected intermediate frequency signal. And (h) a computer for performing data processing of the demodulated signal; and (i) a display device for displaying an image of the biological sample, the biological sample image detecting device using heterodyne detection.
【請求項8】(a)光源としての部分的コヒーレント光
と、(b)該部分的コヒーレント光が照射される生体試
料の反射回折像を得るための信号光束を生成する手段
と、(c)空間的スペックル補正が行われた反射回折像
を得るための信号光束を生成する手段と、(d)各画素
の出力を加算平均することにより時間的スペックル補正
処理を行い信号光束と参照光束を重ね合わせた二光束を
検出する二次元検出器と、(e)該検出された中間周波
数信号を復調する手段と、(f)該復調された信号のデ
ータ処理を行うコンピュータと、(g)生体試料の画像
を表示する表示装置とを具備することを特徴とするヘテ
ロダイン検波による生体試料の画像検出装置。
8. A means for generating (a) a partially coherent light beam as a light source, (b) a signal beam for obtaining a reflected diffraction image of a biological sample irradiated with the partially coherent light beam, and (c). Means for generating a signal beam for obtaining a reflected diffraction image on which spatial speckle correction has been performed; and (d) a signal beam and a reference beam which perform temporal speckle correction processing by averaging the output of each pixel. (E) means for demodulating the detected intermediate frequency signal, (f) a computer for performing data processing on the demodulated signal, and (g) A display device for displaying an image of the biological sample; and a biological sample image detecting device using heterodyne detection.
【請求項9】 請求項5又は7記載のヘテロダイン検波
による生体試料の画像検出装置において、前記空間的ス
ペックル補正手段は、信号光束に対する前記生体試料の
表面に、該生体試料の表面付近の光学的屈折率に等しい
物質を該生体試料の表面の凹凸がなくなるように塗布
し、その表面を整形し、信号光束の空間コヒーレンスが
崩れるのを防ぐようにしたことを特徴とするヘテロダイ
ン検波による生体試料の画像検出装置。
9. An apparatus for detecting an image of a biological sample by heterodyne detection according to claim 5 or 7, wherein the spatial speckle correcting means is provided on an optical surface near the surface of the biological sample with respect to a signal light beam. A biological sample by heterodyne detection, characterized in that a substance having an equivalent refractive index is applied so as to eliminate irregularities on the surface of the biological sample, and the surface is shaped so as to prevent the spatial coherence of the signal beam from collapsing. Image detection device.
【請求項10】 請求項6又は8記載のヘテロダイン検
波による生体試料の画像検出装置において、前記時間的
スペックルを補正する手段は、検出面となる生体表面又
は生体内部の検出光束面のビート成分の出力強度を求め
るのを、光学系にて前記検出光束面を拡大し、拡大した
光束を複数個に分割して独立にヘテロダイン検波し、そ
の出力の加算平均を求めることを特徴とするヘテロダイ
ン検波による生体試料の画像検出装置。
10. An apparatus for detecting an image of a biological sample by heterodyne detection according to claim 6 or 8, wherein the means for correcting the temporal speckles comprises a beat component on a living body surface serving as a detection surface or a detection light flux surface inside the living body. Heterodyne detection is performed by enlarging the detected light beam surface with an optical system, dividing the expanded light beam into a plurality of parts, and independently performing heterodyne detection, and obtaining an average of the outputs. For detecting an image of a biological sample.
JP10295696A 1998-10-16 1998-10-16 Method for detecting image of organismic sample by heterodyne detection and its device Withdrawn JP2000121550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10295696A JP2000121550A (en) 1998-10-16 1998-10-16 Method for detecting image of organismic sample by heterodyne detection and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10295696A JP2000121550A (en) 1998-10-16 1998-10-16 Method for detecting image of organismic sample by heterodyne detection and its device

Publications (1)

Publication Number Publication Date
JP2000121550A true JP2000121550A (en) 2000-04-28

Family

ID=17823992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10295696A Withdrawn JP2000121550A (en) 1998-10-16 1998-10-16 Method for detecting image of organismic sample by heterodyne detection and its device

Country Status (1)

Country Link
JP (1) JP2000121550A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121346A (en) * 2001-10-17 2003-04-23 Japan Science & Technology Corp Method and apparatus for light-wave coherence tomogram imaging
US6873405B2 (en) 2001-07-02 2005-03-29 Advantest Corporation Propagation measuring apparatus and a propagation measuring method
US6980288B2 (en) 2001-04-02 2005-12-27 Advantest Corporation Optical network analyzer
JP2009276292A (en) * 2008-05-16 2009-11-26 Fujifilm Corp Method for evaluating anisotropy of surface property of liquid, and device used therefor
US7738945B2 (en) 2002-04-19 2010-06-15 University Of Washington Method and apparatus for pseudo-projection formation for optical tomography
US7787112B2 (en) 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
US7811825B2 (en) 2002-04-19 2010-10-12 University Of Washington System and method for processing specimens and images for optical tomography
WO2010123147A1 (en) * 2009-04-23 2010-10-28 株式会社アドバンテスト Housing, housing placement method, and measurement method
US7835561B2 (en) 2007-05-18 2010-11-16 Visiongate, Inc. Method for image processing and reconstruction of images for optical tomography
US7907765B2 (en) 2001-03-28 2011-03-15 University Of Washington Focal plane tracking for optical microtomography
US8143600B2 (en) 2008-02-18 2012-03-27 Visiongate, Inc. 3D imaging of live cells with ultraviolet radiation
US11069054B2 (en) 2015-12-30 2021-07-20 Visiongate, Inc. System and method for automated detection and monitoring of dysplasia and administration of immunotherapy and chemotherapy

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907765B2 (en) 2001-03-28 2011-03-15 University Of Washington Focal plane tracking for optical microtomography
US6980288B2 (en) 2001-04-02 2005-12-27 Advantest Corporation Optical network analyzer
US6873405B2 (en) 2001-07-02 2005-03-29 Advantest Corporation Propagation measuring apparatus and a propagation measuring method
DE10297037B4 (en) * 2001-07-02 2008-01-17 Advantest Corp. Spreading measuring device and propagation measuring method
JP2003121346A (en) * 2001-10-17 2003-04-23 Japan Science & Technology Corp Method and apparatus for light-wave coherence tomogram imaging
US7738945B2 (en) 2002-04-19 2010-06-15 University Of Washington Method and apparatus for pseudo-projection formation for optical tomography
US7811825B2 (en) 2002-04-19 2010-10-12 University Of Washington System and method for processing specimens and images for optical tomography
US7835561B2 (en) 2007-05-18 2010-11-16 Visiongate, Inc. Method for image processing and reconstruction of images for optical tomography
US7787112B2 (en) 2007-10-22 2010-08-31 Visiongate, Inc. Depth of field extension for optical tomography
US7933010B2 (en) * 2007-10-22 2011-04-26 Rahn J Richard Depth of field extension for optical tomography
US8143600B2 (en) 2008-02-18 2012-03-27 Visiongate, Inc. 3D imaging of live cells with ultraviolet radiation
US8368035B2 (en) 2008-02-18 2013-02-05 Visiongate Inc. 3D imaging of live cells with ultraviolet radiation
JP2009276292A (en) * 2008-05-16 2009-11-26 Fujifilm Corp Method for evaluating anisotropy of surface property of liquid, and device used therefor
WO2010123147A1 (en) * 2009-04-23 2010-10-28 株式会社アドバンテスト Housing, housing placement method, and measurement method
US8378703B2 (en) 2009-04-23 2013-02-19 Advantest Corporation Container, a method for disposing the same, and a measurement method
JP5274654B2 (en) * 2009-04-23 2013-08-28 株式会社アドバンテスト Container, container arrangement method and measurement method
US11069054B2 (en) 2015-12-30 2021-07-20 Visiongate, Inc. System and method for automated detection and monitoring of dysplasia and administration of immunotherapy and chemotherapy

Similar Documents

Publication Publication Date Title
JP4705707B2 (en) Method and system for detecting internal characteristics of a mass of tissue
US6037579A (en) Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
EP3326152B1 (en) Laser multibeam differential interferometric sensor and methods for vibration imaging
US8913247B2 (en) Device and method for interferometric vibration measurement of an object
JP2000121550A (en) Method for detecting image of organismic sample by heterodyne detection and its device
CN109520619B (en) Correlated imaging spectral camera based on non-Rayleigh speckle field and imaging method thereof
US20080094633A1 (en) Enhanced Detection of Acousto-Photonic Emissions in Optically Turbid Media Using a Photo-Refractive Crystal-Based Detection System
US11042017B2 (en) Point-spread-function measurement device and measurement method, image acquisition apparatus, and image acquisition method
JP2021531481A (en) Optical coherent tomography equipment and video generation method using this
JP2846079B2 (en) Photoacoustic signal detection method and apparatus
JP4369766B2 (en) Surface inspection device
JPH11506839A (en) Device for localizing objects in turbid media
US5008558A (en) System for detecting minute particles on or above a substrate
JP3940336B2 (en) Surface inspection device
JP3379180B2 (en) Photoacoustic signal detection method and device
JP2007071744A (en) Visualization system for temporal change of stress inside sample with laser
JP3544783B2 (en) Laser ultrasonic flaw detector
JP3597887B2 (en) Scanning optical tissue inspection system
JPH11295159A (en) Stress measuring device
JP2005037213A (en) Detecting apparatus and imaging apparatus using the same
JP2763271B2 (en) Transmitted light measurement device
JP3077703B2 (en) Phase image detection device using heterodyne detection light receiving system
JPH0431745A (en) Apparatus for simultaneous detecting amplitude image and phase image using heterodyne-detecting light receiving device
JPH02150747A (en) Device for optical tomographic imaging
JP3338118B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110