JP2000120557A - Seal device of fluid machine - Google Patents

Seal device of fluid machine

Info

Publication number
JP2000120557A
JP2000120557A JP10293307A JP29330798A JP2000120557A JP 2000120557 A JP2000120557 A JP 2000120557A JP 10293307 A JP10293307 A JP 10293307A JP 29330798 A JP29330798 A JP 29330798A JP 2000120557 A JP2000120557 A JP 2000120557A
Authority
JP
Japan
Prior art keywords
seal
fin
seal part
fluid
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10293307A
Other languages
Japanese (ja)
Inventor
Eiji Ishii
英二 石井
Haruo Miura
治雄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10293307A priority Critical patent/JP2000120557A/en
Publication of JP2000120557A publication Critical patent/JP2000120557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently regulate flow speed of a seal part, suppress leaking flow, and prevent self-excited vibration of a rotary shaft by changeably forming a seal part passage shape using a shape memory alloy and bimetal for a material for forming a fin part or a groove part of a seal part. SOLUTION: In a turbo machine, after passing through a space (a) a fluid passes an impeller 11, and discharged to a passage 10. A part thereof passes a clearance (b) formed on a back surface of the impeller 11, and leaks from a space (d) passing through a seal part passage 15. The seal part passage 15 is divided into several chambers by fins 17 attached on a seal ring 16, and a flow rate of the fluid leaked from the seal part passage 15 is reduced by energy loss caused by friction when the fluid passes those chambers. In this time, the fin 17 is formed of shape memory alloy or bimetal. When a fluid temperature in a seal changes, the fin 17 is deformed. It is thus possible to reduce leaking flow of the seal part, and it is also possible to prevent self-excited vibration of a rotary shaft 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流体機械内部のシー
ル装置において、流体が高圧部から低圧部へ漏れるのを
低減または防止したり、シール内に発生する流体力が回
転軸に作用することが原因で生じる回転軸の自励振動を
防止する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing device inside a fluid machine, which reduces or prevents leakage of a fluid from a high-pressure portion to a low-pressure portion, and that a fluid force generated in a seal acts on a rotating shaft. The present invention relates to a technique for preventing self-excited vibration of a rotating shaft caused by a cause.

【0002】[0002]

【従来の技術】シール部からの漏れ流量をシールの形状
を変化させることにより低減または防止する従来のシー
ル装置としては、特開平2−130296 号公報がある。この
特許では、回転軸と、回転軸にがい着された羽根車とを
備え、羽根車出口側の高圧領域と低圧領域とを仕切るケ
ーシングの軸貫通部に軸封機構を有するターボ機械の軸
封装置において、軸封機構のシール部材内部に冷媒を流
す手段と、回転軸とシール部材との隙間を検出する手段
を設け、その検出手段の検出値に応じて前記シール部材
への流入冷媒量を制御している。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 2-130296 discloses a conventional sealing device for reducing or preventing a leakage flow rate from a seal portion by changing the shape of the seal. In this patent, a shaft seal of a turbomachine having a rotating shaft and an impeller attached to the rotating shaft, and having a shaft sealing mechanism in a shaft penetrating portion of a casing that separates a high pressure region and a low pressure region on an impeller outlet side. In the apparatus, a means for flowing a coolant inside the seal member of the shaft sealing mechanism, and a means for detecting a gap between the rotating shaft and the seal member are provided, and the amount of refrigerant flowing into the seal member is determined according to a detection value of the detection means. Controlling.

【0003】シール内に発生する流体力が回転軸に作用
することが原因で生じる回転軸の自励振動を防止する従
来のシール装置としては、特開昭58−152974号公報にあ
るように、固定部に固着したハニカムシールの開口端よ
り離れた部分に円周方向へ連通する空間部を設けた軸封
装置によって、回転部と固定部間の遊隙部流体圧の円周
アンバランスを均一化して回転軸の自励振動を防止して
いる。
[0003] As a conventional seal device for preventing self-excited vibration of a rotating shaft caused by a fluid force generated in a seal acting on the rotating shaft, as disclosed in JP-A-58-152974, Uniform circumferential imbalance of fluid pressure in the clearance between the rotating part and the fixed part is achieved by a shaft sealing device that has a space part that communicates in the circumferential direction at the part distant from the open end of the honeycomb seal fixed to the fixed part. To prevent self-excited vibration of the rotating shaft.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来技術
では、例えばシール全体を冷却すると、シールが収縮し
た際にケーシングとシールとの間に隙間が開いてしまう
という問題や、シール全体を冷却するためには多くの冷
却水が必要であるという問題があった。
In the prior art as described above, for example, when the entire seal is cooled, a gap is opened between the casing and the seal when the seal shrinks, and the entire seal is cooled. There is a problem that a large amount of cooling water is required in order to do so.

【0005】また、シール装置に発生する流体力が回転
軸に作用することが原因で生じる回転軸の自励振動を防
止する例では、遊隙部と空間部の間を流体は効率よく出
入りすることができないために、圧力が空間部に十分に
拡散されず、遊隙部流体圧の円周方向アンバランスを均
一化する作用が十分ではないという問題があった。
[0005] In an example of preventing self-excited vibration of the rotating shaft caused by the fluid force generated in the sealing device acting on the rotating shaft, the fluid efficiently enters and exits between the play space and the space. Therefore, the pressure is not sufficiently diffused into the space, and there is a problem that the action of equalizing the fluid pressure imbalance in the circumferential direction in the circumferential direction is not sufficient.

【0006】本発明の目的は、シール部流路形状を変化
させることにより、シール部での漏れ流れの低減または
防止や、シール内に発生する流体力が回転軸に作用する
ことが原因で生じる回転軸の自励振動を防止する流体機
械のシール装置を提供することにある。
An object of the present invention is to reduce or prevent a leakage flow in a seal portion by changing a shape of a flow passage in the seal portion, and to cause a fluid force generated in the seal to act on a rotating shaft. An object of the present invention is to provide a sealing device for a fluid machine that prevents self-excited vibration of a rotating shaft.

【0007】[0007]

【課題を解決するための手段】上記の目的は、シール部
のフィン部もしくは溝部を形成する材料に形状記憶合
金、またはバイメタルを用いてシール部流路形状を変化
させることで、シール部の流速を効率良く調節すること
が可能となり、この結果漏れ流れの低減または防止や、
シール内に発生する流体力が原因で生じる回転軸の自励
振動の防止が可能となる。
The object of the present invention is to change the shape of the flow path of the seal by changing the shape of the flow path of the seal using a shape memory alloy or a bimetal as a material for forming the fins or grooves of the seal. Can be adjusted efficiently, thereby reducing or preventing leakage flow,
It is possible to prevent self-excited vibration of the rotating shaft caused by the fluid force generated in the seal.

【0008】[0008]

【発明の実施の形態】本発明の第一実施形態を説明す
る。図1は本発明をターボ機械のラビリンスシールに使
用した例を示している。図1において11は羽根車、1
2は回転軸、13はケーシングを示す。回転軸にはスリ
ーブ14が嵌められ、スリーブ14とシールリング16
の間にはシール部流路15がある。図中の矢印は流れの
方向を表しており、aを通った流れは羽根車11を通過
した後流路10に吐出されるが、一部の流れは羽根車背
面の隙間bを通り、cからシール部流路15を通ってd
から漏れ出る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described. FIG. 1 shows an example in which the present invention is used for a labyrinth seal of a turbo machine. In FIG. 1, 11 is an impeller, 1
Reference numeral 2 denotes a rotating shaft, and 13 denotes a casing. A sleeve 14 is fitted on the rotating shaft, and the sleeve 14 and the seal ring 16
There is a seal part flow path 15 between them. The arrows in the figure indicate the direction of the flow, and the flow passing through a is discharged to the flow path 10 after passing through the impeller 11, but a part of the flow passes through the gap b on the back of the impeller and c Through the seal portion flow path 15 and d
Leaks from

【0009】一般にシール部流路15はシールリング1
6に取り付けたフィン17により幾つかの部屋に分けら
れ、流体がこれらの部屋を通過する際の摩擦によるエネ
ルギー損失を利用してシール部流路15からの漏れ流量
が低減される。
Generally, the seal portion flow path 15 is
The room is divided into several rooms by the fins 17 attached to the space 6, and the flow rate of leakage from the seal portion flow path 15 is reduced by utilizing energy loss due to friction when the fluid passes through these rooms.

【0010】図1ではフィンはスリーブ14とシールリ
ング16の双方に設けられているがどちらか片側だけに
設けられていてもよい。またフィン17の形には様々な
ものがある。
In FIG. 1, the fins are provided on both the sleeve 14 and the seal ring 16, but may be provided on only one side. There are various shapes of the fins 17.

【0011】図2を用いて本発明によるシール部漏れ流
れの制御方法について説明する。(a)はスリーブ14
にのみフィンが設けられた場合を示し、漏れ流れはフィ
ン先端とシールリング16の隙間幅eにより制御され
る。図の矢印は流れの方向を示す。本発明ではフィン1
7に形状記憶合金またはバイメタルを用い、温度により
フィン形状が変形して漏れ流れを制御することを特徴と
している。
Referring to FIG. 2, a description will be given of a method of controlling a leakage flow of a seal portion according to the present invention. (A) is the sleeve 14
This shows a case where fins are provided only on the fin, and the leakage flow is controlled by the gap width e between the fin tip and the seal ring 16. The arrows in the figure indicate the direction of flow. In the present invention, the fin 1
7 is characterized in that a shape memory alloy or a bimetal is used, and a fin shape is deformed by temperature to control a leakage flow.

【0012】例えば、回転機械の起動時にはフィン17
とシールリング16が接触しないように隙間幅eを広
げ、定格回転時には隙間幅eを小さくして漏れ流れを小
さくするには、起動時の流体温度で図2(a)のフィン
形状とし、定格時の流体温度では(b)の形状にフィン
17を変形することで可能となる。
For example, when the rotating machine is started, the fins 17
In order to increase the gap width e so that the seal ring 16 does not come into contact with the seal ring 16 and reduce the gap width e at the time of rated rotation to reduce the leakage flow, the fin shape shown in FIG. The fluid temperature at this time is made possible by deforming the fin 17 into the shape shown in FIG.

【0013】フィン部に形状記憶合金またはバイメタル
を用いると、シール内の流体温度が図3の(a)のよう
に時間t1からt2に変化する間に流体温度がT1から
T2に変化する場合、シール内の流体温度が図3の
(b)のようにT1からT2に変化すると、フィンの変
形量がd1からd2に変化するような材料を使用すれ
ば、図2で示した効果が実現される。図2の隙間幅eは
温度Tの関数であるからe(T)で表し、温度T1での隙
間幅をe0とすると、隙間幅はe(T1)=e0,e(T
2)=e0−(d2−d1)となる。
When a shape memory alloy or bimetal is used for the fin portion, when the fluid temperature in the seal changes from T1 to T2 while the fluid temperature in the seal changes from time t1 to t2 as shown in FIG. When the fluid temperature inside the seal changes from T1 to T2 as shown in FIG. 3 (b), the effect shown in FIG. 2 can be realized by using a material that changes the deformation amount of the fin from d1 to d2. You. Since the gap width e in FIG. 2 is a function of the temperature T, it is represented by e (T). If the gap width at the temperature T1 is e0, the gap widths are e (T1) = e0, e (T
2) = e0− (d2−d1).

【0014】また、フィン17は図4に示すようにスリ
ーブ14とシールリング16の双方に用いることで、漏
れ流量を効率よく低減することが可能となる。フィン形
状に関しては図4に示す以外に様々なものが考えられ、
例えば図5に示すようなフィン形状も考えられる。図5
では、フィン形状が(a),(b)のように変形すること
により高速回転時での漏れ流れの低減が可能となる。
By using the fins 17 for both the sleeve 14 and the seal ring 16 as shown in FIG. 4, the leakage flow rate can be reduced efficiently. There are various fin shapes other than those shown in FIG.
For example, a fin shape as shown in FIG. 5 is also conceivable. FIG.
In this case, it is possible to reduce the leakage flow at the time of high-speed rotation by deforming the fin shape as shown in (a) and (b).

【0015】シール内の流体温度を使用する場合とは別
に、外部から形状記憶合金またはバイメタルでできたフ
ィン部に温度変化を与へフィン部を変形させる方法を図
6に示す。(a)は冷却水や温水等の流体をフィン部に
流してフィン部に温度変化を与える方法であり、(b)
はヒータ等の加熱手段を用いて温度変化を与える方法で
ある。(a)の18は冷却水等の流路で冷却水は矢印の
方にながれる。また(b)の19はヒータを示す。
FIG. 6 shows a method of deforming the fin portion by giving a temperature change to the fin portion made of a shape memory alloy or bimetal from the outside, separately from the case of using the fluid temperature in the seal. (A) is a method in which a fluid such as cooling water or hot water is caused to flow through the fin portion to give a temperature change to the fin portion, and (b)
Is a method of giving a temperature change using a heating means such as a heater. 18A is a flow path for cooling water or the like, and the cooling water flows in the direction of the arrow. Also, 19 in (b) indicates a heater.

【0016】図7は図1のスリーブ14とシールリング
16のシール部流路にフィンを設ける代わりに溝を設
け、溝の深さを変化させる「溝リング20」を設けた例
を示したものである。溝部20には形状記憶合金または
バイメタルが用いられ、溝部の温度が変化することによ
り溝部深さが(a),(b)のように変化して漏れ流れの
制御が可能となる。本例でも図6と同様の冷却・加熱手
段の使用が可能である。
FIG. 7 shows an example in which a groove is provided instead of a fin in the seal portion flow path of the sleeve 14 and the seal ring 16 of FIG. 1 and a "groove ring 20" for changing the depth of the groove is provided. It is. The groove 20 is made of a shape memory alloy or a bimetal, and the temperature of the groove changes to change the depth of the groove as shown in FIGS. In this embodiment, the same cooling / heating means as in FIG. 6 can be used.

【0017】上記ではシール部における漏れ流れを低減
または防止する方法を示したが、以下では回転機械のシ
ール部に発生する流体力が原因で生じる回転軸の自励振
動を防止する方法について説明する。回転軸の自励振動
は回転軸の偏心により、シール内の周方向圧力が不均一
になり、回転軸に流体力が作用することにより発生す
る。この自励振動はシール内の隙間幅を広げることによ
り防止することができる。シール内の隙間幅は、図2の
隙間幅eを広げたり図7の溝深さを深くすることにより
実現できる。よってシール部のフィン部や溝部に形状記
憶合金またはバイメタルを用いてシール部の流路形状を
変形させることにより回転軸の自励振動の防止が可能と
なる。回転軸の自励振動を防止するために、フィン部や
溝部の形状を変化させる方法として、図6の冷却・加熱
手段を用いることはもちろん可能である。
Although the method for reducing or preventing the leakage flow in the seal portion has been described above, a method for preventing the self-excited vibration of the rotating shaft caused by the fluid force generated in the seal portion of the rotating machine will be described below. . The self-excited vibration of the rotating shaft is generated when the circumferential pressure in the seal becomes uneven due to the eccentricity of the rotating shaft and a fluid force acts on the rotating shaft. This self-excited vibration can be prevented by increasing the width of the gap in the seal. The gap width in the seal can be realized by increasing the gap width e in FIG. 2 or increasing the groove depth in FIG. Therefore, self-excited vibration of the rotating shaft can be prevented by deforming the flow path shape of the seal portion using a shape memory alloy or a bimetal for the fin portion or the groove portion of the seal portion. As a method of changing the shapes of the fins and the grooves in order to prevent self-excited vibration of the rotating shaft, it is of course possible to use the cooling / heating means of FIG.

【0018】以上の説明では本発明をターボ機械のよう
な回転機械に適用した例を示したものであるが、回転機
械以外の流体装置のシール装置へももちろん適用可能で
ある。例えば、マイクロマシンのような非常い狭い流路
のシール装置などへ適用することも可能である。
In the above description, an example is shown in which the present invention is applied to a rotating machine such as a turbomachine. However, the present invention is naturally applicable to a sealing device of a fluid device other than the rotating machine. For example, the present invention can be applied to a sealing device having a very narrow flow path such as a micromachine.

【0019】[0019]

【発明の効果】本発明によれば、シール部のフィン部や
溝部の形状を変形することによってシール部漏れ流れの
低減または防止や、シール部の流体力が回転軸に作用す
ることにより生じる回転軸の自励振動を防止することが
可能である。
According to the present invention, the shape of the fin portion and the groove portion of the seal portion is deformed to reduce or prevent the leakage flow of the seal portion, and the rotation caused by the fluid force of the seal portion acting on the rotating shaft. It is possible to prevent self-excited vibration of the shaft.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1であるターボ機械のラビリン
スシールを示す部分断面図。
FIG. 1 is a partial cross-sectional view showing a labyrinth seal of a turbo machine which is Embodiment 1 of the present invention.

【図2】(a)及び(b)は図1のフィン形状の一例を
示す部分断面図。
FIGS. 2A and 2B are partial cross-sectional views showing an example of the fin shape of FIG. 1;

【図3】(a)及び(b)はフィン部を変形させた時の
特性図。
FIGS. 3A and 3B are characteristic diagrams when a fin portion is deformed.

【図4】(a)及び(b)はフィン形状の一例を示す断
面図。
4A and 4B are cross-sectional views showing an example of a fin shape.

【図5】(a)及び(b)はフィン形状の一例を示す断
面図。
FIGS. 5A and 5B are cross-sectional views showing an example of a fin shape.

【図6】(a)及び(b)は溝形状の一例を示す断面
図。
FIGS. 6A and 6B are cross-sectional views showing an example of a groove shape.

【図7】(a)及び(b)はフィン部の冷却・加熱手法
の例を示す断面図。
FIGS. 7A and 7B are cross-sectional views illustrating an example of a cooling / heating method of a fin portion.

【符号の説明】[Explanation of symbols]

11…羽根車、12…回転軸、13…ケーシング、14
…スリーブ、16…シールリング。
11 impeller, 12 rotating shaft, 13 casing, 14
... sleeve, 16 ... seal ring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体機械内部のシール装置において、フィ
ン部あるいは溝部に、またはフィン部と溝部両者の材料
に形状記憶合金またはバイメタルを用い、フィン部もし
くは溝部の形状を変化させることを特徴とする流体機械
のシール装置。
1. A sealing device inside a fluid machine, wherein a shape memory alloy or a bimetal is used for a fin or a groove, or a material of both the fin and the groove, and the shape of the fin or the groove is changed. Sealing device for fluid machinery.
JP10293307A 1998-10-15 1998-10-15 Seal device of fluid machine Pending JP2000120557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10293307A JP2000120557A (en) 1998-10-15 1998-10-15 Seal device of fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293307A JP2000120557A (en) 1998-10-15 1998-10-15 Seal device of fluid machine

Publications (1)

Publication Number Publication Date
JP2000120557A true JP2000120557A (en) 2000-04-25

Family

ID=17793149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293307A Pending JP2000120557A (en) 1998-10-15 1998-10-15 Seal device of fluid machine

Country Status (1)

Country Link
JP (1) JP2000120557A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987539B1 (en) 2008-12-30 2010-10-12 엘에스엠트론 주식회사 Centrifugal Compressor having Structure for Preventing Oil Likeage
CN110056535A (en) * 2019-05-27 2019-07-26 新乡市中机工业有限公司 A kind of water pump wear resistant corrosion resistant choma device
WO2023273232A1 (en) * 2021-07-02 2023-01-05 鑫磊压缩机股份有限公司 Assembly accuracy self-correcting compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987539B1 (en) 2008-12-30 2010-10-12 엘에스엠트론 주식회사 Centrifugal Compressor having Structure for Preventing Oil Likeage
CN110056535A (en) * 2019-05-27 2019-07-26 新乡市中机工业有限公司 A kind of water pump wear resistant corrosion resistant choma device
WO2023273232A1 (en) * 2021-07-02 2023-01-05 鑫磊压缩机股份有限公司 Assembly accuracy self-correcting compressor

Similar Documents

Publication Publication Date Title
CA1257623A (en) Rotary seal
EP0578377B1 (en) Seals
US5525032A (en) Process for the operation of a fluid flow engine
US7985045B2 (en) Steam turbines, seals, and control methods therefor
JP4898743B2 (en) Sealing structure of rotating machine
JPH11280771A (en) Device for controlling radial directional play of roller bearing
JP2006307853A (en) Method for adjusting radial gap in axial flow fluid machine and compressor
JP2002201914A (en) Rotor and stator leaf spring seal of turbine and related method
JP2010185450A (en) Steam turbine
JP2003079101A (en) Cooling structure for rotating electric machine
US6436022B1 (en) Roll adjustable in shape
KR19980033014A (en) How to cool gas turbine stator vanes and stator vanes
JP2000120557A (en) Seal device of fluid machine
JP4371610B2 (en) Steam turbine sealing equipment
JP4707956B2 (en) Steam turbine and operation method thereof
KR100264020B1 (en) Variable capacity type viscous heater
US4341093A (en) Device for leading cooling liquid out of rotary electric machine with liquid cooled rotor
JP2005513329A (en) Sealed structure for turbine engine components
JP3984413B2 (en) Lock-up clutch mechanism
JP4598583B2 (en) Steam turbine seal equipment
JPH09229069A (en) Thrust bearing
JP2630217B2 (en) Variable preload spindle unit
JP3705026B2 (en) Rotating fluid machine
WO2018074593A1 (en) Steam turbine
JPH03129133A (en) Viscous fluid coupling