JP2000119952A - Liquid crystal polyester fiber and production of liquid crystal polyester nonwoven fabric - Google Patents

Liquid crystal polyester fiber and production of liquid crystal polyester nonwoven fabric

Info

Publication number
JP2000119952A
JP2000119952A JP10330119A JP33011998A JP2000119952A JP 2000119952 A JP2000119952 A JP 2000119952A JP 10330119 A JP10330119 A JP 10330119A JP 33011998 A JP33011998 A JP 33011998A JP 2000119952 A JP2000119952 A JP 2000119952A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal polyester
thermoplastic resin
producing
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10330119A
Other languages
Japanese (ja)
Inventor
Motonobu Furuta
元信 古田
Takazo Yamaguchi
登造 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10330119A priority Critical patent/JP2000119952A/en
Publication of JP2000119952A publication Critical patent/JP2000119952A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/96Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paper (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce liquid crystal polyester fiber capable of providing nonwoven fabric having high porosity, small anisotropy in breaking length and excellent air permeability and flexibility by forming fiber made of a specific thermoplastic resin composition through melt spinning and then removing the thermoplastic resin through dissolving it in its solvent. SOLUTION: This liquid crystal polyester fiber is produced by extruding a thermoplastic resin composition comprising (A) 70.0-90.0 wt.% thermoplastic resin such as polycarbonate and poly(2,6-dimethylphenylene ether) and (B) 30.0-10.0 wt.% liquid crystal polyester such as a liquid crystal polyester including >=30 mol% repeating structural unit of the formula in a molten state from nozzles so as to form a continuous phase from the component A and a dispersed phase from the component B, by drawing filaments at >=3 times draft ratio, by cooling them to solidify and then dissolving the component A in a solvent such as chloroform to be removed. The above composition is pref. melted at a temperature higher than the flow-initiating temperature of the component B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐熱性、対薬品性、
通気性にすぐれた不織布の製造方法、並びに、そのため
に好適な、絡み合いの多い液晶ポリエステル繊維および
その製造方法に関する。
TECHNICAL FIELD The present invention relates to heat resistance, chemical resistance,
The present invention relates to a method for producing a nonwoven fabric having excellent air permeability, a liquid crystal polyester fiber having many entanglements, and a method for producing the same.

【0002】[0002]

【従来の技術】液晶ポリエステルは機械強度、耐熱性、
対薬品性に優れているため、それによる不織布は酸、ア
ルカリなどの腐食条件下、高温条件下での使用を前提と
する用途に対して他の材料による不織布に対しはるかに
優ると期待される。しかし、液晶ポリエステルは剛直な
分子が長軸方向をそろえて高度に分子配向するという性
質を持ち、細長い繊維を作ってから繊維間を融着するこ
とが困難であり、できたとしても融着部での強度が低く
十分な強度が得られなかった。さらに、剛直な長繊維を
用いることで、出来上がった不織布の物性が異方性を持
つことがあった。たとえば、特開昭60−239600
号公報にはフィブリル化した液晶ポリエステル系繊維を
結合した紙が開示されているが、フィブリル間の3次元
的な絡み合いが無いためか強度が十分でなかった。
2. Description of the Related Art Liquid crystal polyester has mechanical strength, heat resistance,
Because of its excellent chemical resistance, the resulting nonwoven fabric is expected to be far superior to nonwoven fabrics made of other materials for applications that require use under high-temperature conditions under corrosive conditions such as acids and alkalis. . However, liquid crystal polyester has the property that rigid molecules are aligned in the major axis direction to a high degree of molecular orientation, and it is difficult to fuse elongated fibers after making elongated fibers. , The strength was low and sufficient strength could not be obtained. Furthermore, by using rigid long fibers, the physical properties of the resulting nonwoven fabric sometimes have anisotropy. For example, JP-A-60-239600
Japanese Patent Application Laid-Open Publication No. H11-139,086 discloses a paper in which fibrillated liquid crystal polyester fibers are bonded, but the strength is not sufficient because there is no three-dimensional entanglement between fibrils.

【0003】また、強度保持という観点からは、特開平
6−128857号公報では液晶ポリエステル長繊維不
織布の製造方法において、強度保持のため均一かつ緻密
に自己融着させる方法が開示されているが、構造が緻密
すぎて樹脂や溶媒を含浸させる用途には不向きである。
特開平7−243162号公報には溶融紡糸法により製
造した液晶ポリエステル繊維を用いて不織布を製造する
方法が記載されているが、この方法で得られた液晶ポリ
エステル繊維は棒状で絡み合いに乏しいものになると考
えられ、特殊なエンボスロールや液晶ポリエステルの流
動開始温度前後の高温での熱処理を要するなど、長繊維
の成形から最終処理までの工程が多く成形条件が複雑で
高価という欠点があるうえに、裂断長などの縦横の物性
バランスが良好でないことがあった。さらに、特開平9
−31817号公報にはフィブリル化した液晶ポリエス
テルを含むポリエステル不織布について開示している
が、強度の異方性が大きいという欠点があった。
From the viewpoint of maintaining strength, Japanese Patent Application Laid-Open No. 6-128857 discloses a method for producing a liquid crystal polyester long-fiber nonwoven fabric, which is uniformly and densely self-fused for maintaining strength. The structure is too dense and is not suitable for use in impregnating a resin or a solvent.
Japanese Patent Application Laid-Open No. 7-243162 describes a method for producing a nonwoven fabric using a liquid crystal polyester fiber produced by a melt spinning method. However, the liquid crystal polyester fiber obtained by this method has a rod-like shape and is poorly entangled. It is thought that it becomes necessary, and it requires heat treatment at a high temperature around the flow start temperature of special embossing rolls and liquid crystal polyester, and there are many steps from long fiber molding to final treatment, and there are many molding conditions complicated and expensive, In some cases, the balance of vertical and horizontal physical properties such as the breaking length was not good. Further, Japanese Patent Application Laid-Open
JP-A-31817 discloses a polyester nonwoven fabric containing a fibrillated liquid crystal polyester, but has a drawback that strength anisotropy is large.

【0004】[0004]

【発明が解決しようとする課題】このように、液晶ポリ
エステルにおいては不織布としての性能を生かすための
空隙率、強度保持、低異方性を同時に満たす不織布を製
造することが困難であった。また、かかる不織布を製造
する際、坪量をコントロールして望みの空隙率の不織布
を得ることも困難であった。
As described above, it has been difficult to produce a non-woven fabric which simultaneously satisfies the porosity, strength retention, and low anisotropy for utilizing the performance of the liquid crystal polyester as a non-woven fabric. When manufacturing such a nonwoven fabric, it was also difficult to control the basis weight to obtain a nonwoven fabric having a desired porosity.

【0005】かかる実状に鑑み本発明が解決しようとす
る課題は、空隙率が高く強度の異方性の小さい、耐屈曲
性、耐熱性、対薬品性に優れた液晶ポリエステル不織布
を、坪量コントロール性よく製造する方法、並びに、そ
のために好適な液晶ポリエステル繊維およびその製造方
法を提供することにある。
In view of such circumstances, the problem to be solved by the present invention is to provide a liquid crystal polyester nonwoven fabric having a high porosity, a small strength anisotropy, and excellent in bending resistance, heat resistance and chemical resistance. It is an object of the present invention to provide a method for producing a liquid crystal polyester fiber with good characteristics, and a liquid crystal polyester fiber suitable for the method and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、熱可塑性樹脂
(A)が連続相を液晶ポリエステル(B)が分散相を形
成している熱可塑性樹脂組成物の熱可塑性樹脂(A)を
溶媒に溶解して除去する液晶ポリエステル繊維の製造方
法、および該製造方法により得られる液晶ポリエステル
繊維にかかるものである。また本発明は、該製造方法に
より得られる液晶ポリエステル繊維を、実質的に液晶ポ
リエステル(B)が不要である液体に分散させて抄紙し
た後、3次元的に結合させる液晶ポリエステル不織布の
製造方法にかかるものである。
According to the present invention, a thermoplastic resin (A) of a thermoplastic resin composition having a continuous phase of a thermoplastic resin (A) and a dispersed phase of a liquid crystal polyester (B) is used as a solvent. The present invention relates to a method for producing a liquid crystal polyester fiber which is dissolved and removed in water, and a liquid crystal polyester fiber obtained by the production method. Further, the present invention relates to a method for producing a liquid crystal polyester nonwoven fabric, in which liquid crystal polyester fibers obtained by the production method are dispersed in a liquid that does not substantially require liquid crystal polyester (B), paper is formed, and three-dimensionally bonded. Such is the case.

【0007】[0007]

【発明の実施の形態】次に、本発明を更に詳細に説明す
る。本発明で使用する熱可塑性樹脂(A)は液晶ポリエ
ステル以外の熱可塑性樹脂で、水、有機溶媒、酸、アル
カリなどの溶媒に可溶のものであり、それを溶解する際
に使用される溶媒が、同時に使用する液晶ポリエステル
(B)を実質的に溶解しないように使用できれば特にそ
の分子構造にこだわらない。具体的な熱可塑性樹脂と溶
媒の組み合わせの例は、ポリフェニレンエーテルとクロ
ロフォルム、ポリカーボネートとクロロフォルム、ポリ
スチレンとクロロフォルム、ポリエーテルサルフォンと
NMPなどがあげられるが、それらに限定されるもので
はない。
Next, the present invention will be described in more detail. The thermoplastic resin (A) used in the present invention is a thermoplastic resin other than the liquid crystal polyester, which is soluble in a solvent such as water, an organic solvent, an acid, or an alkali. However, if the liquid crystal polyester (B) used at the same time can be used so as not to be substantially dissolved, the molecular structure is not particularly limited. Specific examples of the combination of the thermoplastic resin and the solvent include, but are not limited to, polyphenylene ether and chloroform, polycarbonate and chloroform, polystyrene and chloroform, polyether sulfone and NMP, and the like.

【0008】以上のなかでも液晶ポリエステル(B)と
の溶融混練時の耐熱性、樹脂の入手、溶媒の入手と汎用
性から、ポリ(2,6−ジメチルフェニレンエーテル)
とクロロフォルム、またはポリカーボネート(ビスフェ
ノールAタイプ)とクロロフォルムの組み合わせが好ま
しい。
Among them, poly (2,6-dimethylphenylene ether) is preferred from the viewpoint of heat resistance during melt-kneading with the liquid crystal polyester (B), availability of resin, availability of solvent and versatility.
And chloroform, or a combination of polycarbonate (bisphenol A type) and chloroform.

【0009】本発明で使用する液晶ポリエステル(B)
は、サーモトロピック液晶ポリマーと呼ばれるポリエス
テルである。
The liquid crystal polyester (B) used in the present invention
Is a polyester called a thermotropic liquid crystal polymer.

【0010】具体的には、 (1)芳香族ジカルボン酸と芳香族ジオールと芳香族ヒ
ドロキシカルボン酸とを反応させて得られるもの。
(2)異種の芳香族ヒドロキシカルボン酸の組み合わせ
を反応させて得られるもの。 (3)芳香族ジカルボン酸と核置換芳香族ジオールとを
反応させて得られるもの。 (4)ポリエチレンテレフタレートなどのポリエステル
に芳香族ヒドロキシカルボン酸を反応させて得られるも
の。 などが挙げられ、400℃以下の温度で異方性溶融体を
形成するものが好ましい。なお、これらの芳香族ジカル
ボン酸、芳香族ジオール及び芳香族ヒドロキシカルボン
酸の代わりに、それらのエステル誘導体が使用されるこ
ともある。
Specifically, (1) a compound obtained by reacting an aromatic dicarboxylic acid, an aromatic diol and an aromatic hydroxycarboxylic acid.
(2) Those obtained by reacting a combination of different aromatic hydroxycarboxylic acids. (3) Those obtained by reacting an aromatic dicarboxylic acid with a nucleus-substituted aromatic diol. (4) Those obtained by reacting an aromatic hydroxycarboxylic acid with a polyester such as polyethylene terephthalate. And those forming an anisotropic melt at a temperature of 400 ° C. or less are preferred. In addition, instead of these aromatic dicarboxylic acids, aromatic diols, and aromatic hydroxycarboxylic acids, ester derivatives thereof may be used.

【0011】該液晶ポリエステルの繰返し構造単位とし
ては、下記の芳香族ジカルボン酸に由来する繰返し構
造単位、芳香族ジオールに由来する繰返し構造単位、
芳香族ヒドロキシカルボン酸に由来する繰返し構造単
位を例示することができるが、これらに限定されるもの
ではない。
The repeating structural units of the liquid crystalline polyester include the following repeating structural units derived from an aromatic dicarboxylic acid, the following repeating structural units derived from an aromatic diol,
Examples of the repeating structural unit derived from an aromatic hydroxycarboxylic acid include, but are not limited to, these.

【0012】芳香族ジカルボン酸に由来する繰り返し
構造単位:
A repeating structural unit derived from an aromatic dicarboxylic acid:

【0013】 [0013]

【0014】芳香族ジオールに由来する繰返し構造単
位:
A repeating structural unit derived from an aromatic diol:

【0015】 [0015]

【0016】芳香族ヒドロキシカルボン酸に由来する
繰返し構造単位:
A repeating structural unit derived from an aromatic hydroxycarboxylic acid:

【0017】耐熱性、機械的特性、加工性のバランスか
ら特に好ましい液晶ポリエステルは なる繰り返し構造単位を含むものであり、さらに好まし
くはかかる繰り返し構造単位を少なくとも全体の30モ
ル%以上含むものである。具体的には繰り返し構造単位
の組み合わせが下記(I)〜(VI)のいずれかのもの
が好ましい。
A liquid crystal polyester which is particularly preferred from the balance of heat resistance, mechanical properties and workability is And more preferably at least 30 mol% or more of such a repeating structural unit. Specifically, the combination of repeating structural units is preferably any one of the following (I) to (VI).

【0018】 [0018]

【0019】 [0019]

【0020】 [0020]

【0021】 [0021]

【0022】 [0022]

【0023】 [0023]

【0024】該液晶ポリエステル(I)〜(VI)の製
法については、例えば特公昭47−47870号公報、
特公昭63−3888号公報、特公昭63−3891号
公報、特公昭56−18016号公報、特開平2−51
523号公報などに記載されている。これらの中で好ま
しくは(I)、(II)または(IV)の組合せであ
り、さらに好ましくは(I)または(II)の組み合せ
が挙げられる。
The method for producing the liquid crystal polyesters (I) to (VI) is described in, for example, JP-B-47-47870.
JP-B-63-3888, JP-B-63-3891, JP-B-56-18016, JP-A-2-51
No. 523, etc. Of these, a combination of (I), (II) or (IV) is preferable, and a combination of (I) or (II) is more preferable.

【0025】本発明において、高い耐熱性が要求される
分野には成分(A)の液晶ポリエステルが、下記の繰り
返し単位(a’)が30〜80モル%、繰り返し単位
(b’)が0〜10モル%、繰り返し単位(c’)が1
0〜25モル%、繰り返し単位(d’)が10〜35モ
ル%からなる液晶ポリエステルが好ましく使用される。
In the field where high heat resistance is required in the present invention, the liquid crystal polyester of the component (A) contains 30 to 80 mol% of the following repeating unit (a ') and 0 to 100% of the repeating unit (b'). 10 mol%, repeating unit (c ') is 1
A liquid crystal polyester having 0 to 25 mol% and a repeating unit (d ') of 10 to 35 mol% is preferably used.

【0026】 [0026]

【0027】本発明の液晶ポリエステル繊維または不織
布として、環境問題の見地から使用後の焼却などの廃棄
の容易さが求められる分野には、ここまで挙げたそれぞ
れに要求される分野の好ましい組み合わせの中で特に炭
素、水素、酸素のみの元素からなる組み合わせによる液
晶ポリエステルが特に好ましく使用される。
The fields in which the liquid crystal polyester fiber or nonwoven fabric of the present invention requires easy disposal such as incineration after use from the viewpoint of environmental problems include the preferred combinations of the fields required in each of the above. In particular, a liquid crystal polyester formed of a combination of only carbon, hydrogen, and oxygen is particularly preferably used.

【0028】本発明の熱可塑性樹脂組成物は、熱可塑性
樹脂(A)70.0〜90.0重量%、好ましくは7
5.0〜85.0重量%、さらに好ましくは78〜83
重量%、および液晶ポリエステル(B)30.0〜1
0.0重量%、好ましくは25.0〜15.0重量%、
さらに好ましくは22〜17重量%を含有する熱可塑性
樹脂組成物である。成分(A)が70重量%未満である
と該組成物の溶融物中成分(B)の分散粒径が大きくな
ったり、連続的になる場合があり好ましくない。また成
分(A)が90.0重量%を超えると該組成物の溶融物
を延伸しても、成分(B)が長い繊維状にならないこと
があり好ましくない。
The thermoplastic resin composition according to the present invention comprises 70.0 to 90.0% by weight, preferably 7% by weight of the thermoplastic resin (A).
5.0-85.0% by weight, more preferably 78-83%
% By weight, and liquid crystal polyester (B) 30.0 to 1
0.0% by weight, preferably 25.0 to 15.0% by weight,
More preferably, it is a thermoplastic resin composition containing 22 to 17% by weight. If the content of the component (A) is less than 70% by weight, the dispersion particle size of the component (B) in the melt of the composition may become large or continuous, which is not preferable. On the other hand, if the content of the component (A) exceeds 90.0% by weight, the component (B) may not be formed into a long fiber even when the melt of the composition is stretched.

【0029】本発明における熱可塑性樹脂組成物を製造
する方法としては周知の方法を用いることができる。工
業的見地からみると溶融状態で上記組成の各成分を混練
する方法が好ましい。溶融混練には一般に使用されてい
る一軸または二軸の押出機、各種のニーダー等の混練装
置を用いることができる。特に二軸の高混練機が好まし
い。溶融混練に際しては、混練装置のシリンダー設定温
度を成分(B)の流動開始温度より高い温度にすること
が好ましい。シリンダー設定温度が成分(B)の流動開
始温度より低いと、成分(B)が十分に融解せず、分散
不良を起こすことがあり好ましくない。ここで、流動開
始温度とは、毛細管型レオメーター(例えば島津製作所
製フローテスターCFT−500型)で測定され、4℃
/分の昇温速度で加熱溶融された樹脂を、荷重100k
gf/cmのもとで、内径1mm、長さ10mmのノ
ズルから押し出したときに、溶融粘度が48000ポイ
ズを示す温度(℃)をいう。
As a method for producing the thermoplastic resin composition in the present invention, a known method can be used. From an industrial point of view, a method of kneading each component of the above composition in a molten state is preferred. For the melt kneading, kneading apparatuses such as a single-screw or twin-screw extruder and various kneaders which are generally used can be used. In particular, a biaxial high kneader is preferred. At the time of melt-kneading, it is preferable to set the cylinder set temperature of the kneading device to a temperature higher than the flow start temperature of the component (B). If the cylinder set temperature is lower than the flow start temperature of the component (B), the component (B) does not sufficiently melt, and dispersion failure may occur, which is not preferable. Here, the flow start temperature is measured by a capillary rheometer (eg, a flow tester CFT-500 manufactured by Shimadzu Corporation) and measured at 4 ° C.
Resin heated and melted at a heating rate of
When extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm under gf / cm 2 , a temperature (° C.) at which the melt viscosity shows 48,000 poise.

【0030】混練に際しては、各成分は予めタンブラー
もしくはヘンシェルミキサーのような装置で各成分を均
一に混合してもよいし、必要な場合には混合を省き、混
練装置にそれぞれ別個に定量供給する方法も用いること
ができる。
At the time of kneading, the respective components may be previously mixed uniformly using a device such as a tumbler or a Henschel mixer, or if necessary, the mixing may be omitted, and each component may be separately supplied to the kneading device. Methods can also be used.

【0031】本発明に使用する熱可塑性樹脂組成物に、
必要に応じて、有機充填剤、酸化防止剤、熱安定剤、光
安定剤、難燃剤、滑剤、帯電防止剤、防錆剤、架橋剤、
発泡剤、蛍光剤、表面平滑剤、表面光沢改良剤、フッ素
樹脂などの離型改良剤などの各種の添加剤を製造工程中
あるいはその後の加工工程において用いることができ
る。
The thermoplastic resin composition used in the present invention comprises:
If necessary, organic fillers, antioxidants, heat stabilizers, light stabilizers, flame retardants, lubricants, antistatic agents, rust inhibitors, crosslinkers,
Various additives such as a foaming agent, a fluorescent agent, a surface smoothing agent, a surface gloss improving agent, and a mold release improving agent such as a fluororesin can be used in the production process or in the subsequent processing process.

【0032】本発明の液晶ポリエステル繊維は、上記の
熱可塑性樹脂組成物を前記溶媒で処理して、熱可塑性樹
脂(A)を該溶媒に溶解して除去して得られる。前記溶
媒で処理する上記の熱可塑性樹脂組成物のモルフォロジ
ーは、液晶ポリエステル(B)が繊維状であることが好
ましい。繊維状の液晶ポリエステル(B)が存在する熱
可塑性樹脂組成物は、上記の熱可塑性樹脂組成物の溶融
物を延伸し固化することによって好適に得ることができ
る。
The liquid crystal polyester fiber of the present invention is obtained by treating the above-mentioned thermoplastic resin composition with the above-mentioned solvent, and dissolving and removing the thermoplastic resin (A) in the solvent. The morphology of the thermoplastic resin composition treated with the solvent is preferably such that the liquid crystal polyester (B) is fibrous. The thermoplastic resin composition containing the fibrous liquid crystal polyester (B) can be suitably obtained by stretching and solidifying a melt of the above thermoplastic resin composition.

【0033】上記の熱可塑性樹脂組成物の溶融物の延伸
は、一軸または二軸の押出機の先端に取り付けたノズル
から該熱可塑性樹脂組成物を押し出し、市販のストラン
ドカッターなどで延伸して行うことができる。延伸倍率
(ストランドカッターによる引き取り速度/ノズルから
の吐出速度)は3倍以上が好ましい。3倍未満である
と、溶融物中で成分(B)が十分延伸されず繊維状の成
分(B)が得られないことがあり好ましくない。延伸さ
れた溶融樹脂は通常、空冷もしくは水冷などの方法によ
り冷却され固化し、糸状の熱可塑性樹脂組成物が得られ
る。かかる糸状の熱可塑性樹脂組成物はそのまま用いて
もよいし、ストランドカッターなどでペレット状に切断
して用いてもよい。本発明においては、ペレット状のも
のを用いる方がその後の処理が容易であり好ましい。熱
可塑性樹脂組成物を溶融させる温度は、液晶ポリエステ
ル(B)の流動開始温度より高い温度であることが好ま
しい。
The stretching of the melt of the above thermoplastic resin composition is performed by extruding the thermoplastic resin composition from a nozzle attached to the tip of a single-screw or twin-screw extruder and stretching it with a commercially available strand cutter or the like. be able to. The stretching ratio (drawing speed by a strand cutter / discharge speed from a nozzle) is preferably 3 times or more. If the ratio is less than 3 times, the component (B) is not sufficiently stretched in the melt, and the fibrous component (B) may not be obtained, which is not preferable. The stretched molten resin is usually cooled and solidified by a method such as air cooling or water cooling to obtain a thread-like thermoplastic resin composition. Such a thread-like thermoplastic resin composition may be used as it is, or may be cut into pellets using a strand cutter or the like. In the present invention, it is preferable to use pellets because the subsequent treatment is easy. The temperature at which the thermoplastic resin composition is melted is preferably higher than the flow start temperature of the liquid crystal polyester (B).

【0034】熱可塑性樹脂(A)を該溶媒に溶解する
際、環境問題、コストなどの面から、該溶媒は蒸発させ
た後冷却して回収できることが好ましい。溶媒の種類
は、成分(A)の種類により選定され、具体例は先述し
た通りである。
When the thermoplastic resin (A) is dissolved in the solvent, it is preferable that the solvent can be recovered by evaporating and then cooling it from the viewpoints of environmental problems and costs. The type of the solvent is selected according to the type of the component (A), and specific examples are as described above.

【0035】このようにして得られた液晶ポリエステル
繊維は、通常、熱可塑性樹脂(A)の溶解除去に使用し
た溶媒で十分洗浄した後、実質的に液晶ポリエステル
(B)が不溶である液体に分散させ、抄紙法によって紙
状に成形した後、3次元的に結合させることにより液晶
ポリエステル不織布を製造することができる。
The liquid crystal polyester fiber thus obtained is usually sufficiently washed with the solvent used for dissolving and removing the thermoplastic resin (A), and then converted into a liquid in which the liquid crystal polyester (B) is substantially insoluble. A liquid crystal polyester non-woven fabric can be manufactured by dispersing and forming into a paper shape by a papermaking method and then three-dimensionally bonding.

【0036】ここで使用する、実質的に液晶ポリエステ
ル(B)が不溶である液体としては、水の粘度1.0c
p(センチポアズ)よりも高い粘度(20℃)を有する
ものが好ましく用いられる。該液体の粘度が低いと、繊
維状の液晶ポリエステル(B)が凝集してしまったり、
分散液中での分散が均一でなくなることがあり好ましく
ない。具体的には、エチレングリコール(21cp)、
グリセリン(1500cp)などや、エチレングリコー
ルと水との混合液、エチレングリコールとエタノールと
の混合液などが好ましく用いられる。エチレングリコー
ルが特に好ましく用いられる。
The liquid in which the liquid crystal polyester (B) is substantially insoluble is water having a viscosity of 1.0 c
Those having a viscosity (20 ° C.) higher than p (centipoise) are preferably used. When the viscosity of the liquid is low, the fibrous liquid crystal polyester (B) is aggregated,
The dispersion in the dispersion may not be uniform, which is not preferable. Specifically, ethylene glycol (21 cp),
Glycerin (1500 cp), a mixed solution of ethylene glycol and water, a mixed solution of ethylene glycol and ethanol, and the like are preferably used. Ethylene glycol is particularly preferably used.

【0037】液体中に分散された液晶ポリエステル繊維
は抄紙法によって、紙状に成形される。この際、分散液
の量、抄紙の仕方(すくいとり回数)、分散液の組成比
や粘度を変えることで厚さを変化させることができ、坪
量のコントロールができる。たとえば分散液の量が多か
ったり分散液の粘度が低いと、分散液中での繊維状の液
晶ポリエステルの広がりが大きくなり、坪量が下がる。
本発明では坪量のコントロール性が良好であり、広範囲
の空隙率の不織布を得ることができる。
The liquid crystal polyester fiber dispersed in the liquid is formed into a paper by a paper making method. At this time, the thickness can be changed by changing the amount of the dispersion, the papermaking method (the number of times of scooping), the composition ratio and the viscosity of the dispersion, and the basis weight can be controlled. For example, when the amount of the dispersion is large or the viscosity of the dispersion is low, the spread of the fibrous liquid crystal polyester in the dispersion becomes large, and the basis weight decreases.
In the present invention, the controllability of the basis weight is good, and a nonwoven fabric having a wide range of porosity can be obtained.

【0038】抄紙によって得られた紙状の液晶ポリエス
テル(B)は3次元的に結合させることにより不織布と
することができるが、その方法としては熱および/また
は圧力によって処理することが好ましい。圧力は100
Kg/cm以下がより好ましく、これ以上であると空
隙率が小さくなりすぎることがあり好ましくない。温度
は液晶ポリエステル(B)の流動開始温度より低い温度
がより好ましい。流動開始温度より高い温度で熱処理す
ると繊維状の液晶ポリエステル(B)が融解してしま
い、好ましくない。好ましくは圧力100Kg/cm
では、成分(B)の流動開始温度より150℃以上低い
温度、圧力50Kg/cmでは、成分(B)の流動開
始温度より100℃以上低い温度が用いられる。
The paper-like liquid crystal polyester (B) obtained by papermaking can be made into a non-woven fabric by three-dimensionally bonding, but it is preferable to treat by heat and / or pressure. Pressure is 100
Kg / cm 2 or less is more preferable, and if it is more than this, the porosity may be too small, which is not preferable. The temperature is more preferably lower than the flow start temperature of the liquid crystal polyester (B). If heat treatment is performed at a temperature higher than the flow start temperature, the fibrous liquid crystal polyester (B) melts, which is not preferable. Preferably, the pressure is 100 kg / cm 2
In this case, a temperature lower than the flow start temperature of the component (B) by 150 ° C. or more is used. At a pressure of 50 kg / cm 2 , a temperature lower than the flow start temperature of the component (B) by 100 ° C. or more is used.

【0039】本発明による不織布の厚み、形状、は自由
に選ぶことができる。
The thickness and shape of the nonwoven fabric according to the present invention can be freely selected.

【0040】本発明の不織布は単体で用いられることは
もちろん、他の熱可塑性樹脂フィルム、不織布、織布な
どと重ねたり張り合わせたりして用いることもできる。
The nonwoven fabric of the present invention can be used alone, or can be used by laminating or bonding with other thermoplastic resin films, nonwoven fabrics, woven fabrics and the like.

【0041】本発明の不織布の表面には、必要に応じて
表面処理を施すことができる。このような表面処理法と
しては、例えばコロナ放電処理、プラズマ処理、火炎処
理、スパッタリング処理、溶剤処理、紫外線処理、赤外
線処理、オゾン処理、研摩処理などが挙げられる。
The surface of the nonwoven fabric of the present invention can be subjected to a surface treatment as required. Examples of such a surface treatment method include corona discharge treatment, plasma treatment, flame treatment, sputtering treatment, solvent treatment, ultraviolet treatment, infrared treatment, ozone treatment, and polishing treatment.

【0042】[0042]

【実施例】以下、実施例により本発明を説明するが、こ
れらは単なる例示であり、本発明はこれらに限定される
ことはない。
EXAMPLES The present invention will be described below with reference to examples, but these are merely examples, and the present invention is not limited to these examples.

【0043】(1)成分(A)の熱可塑性樹脂 市販の住友ダウ(株)社製ポリカーボネート 商品名
CALIBRE 200−4を用いた。以下該熱可塑性
樹脂をA−1と略記する。
(1) Thermoplastic resin of component (A) Commercially available polycarbonate manufactured by Sumitomo Dow KK
CALIBRE 200-4 was used. Hereinafter, the thermoplastic resin is abbreviated as A-1.

【0044】(2)成分(B)の液晶ポリエステル (i)p−アセトキシ安息香酸8.3kg(60モ
ル)、テレフタル酸2.49kg(15モル)、イソフ
タル酸0.83kg(5モル)および4,4’−ジアセ
トキシジフェニル5.45kg(20.2モル)を櫛型
撹拌翼をもつ重合槽に仕込み、窒素ガス雰囲気下で撹拌
しながら昇温し330℃で1時間重合させた。この間に
副生する酢酸ガスを冷却管で液化し回収、除去しなが
ら、強力な撹拌下で重合させた。その後、系を徐々に冷
却し、200℃で得られたポリマーを系外へ取出した。
この得られたポリマーを細川ミクロン(株)製のハンマ
ーミルで粉砕し、2.5mm以下の粒子とした。これを
更にロータリーキルン中で窒素ガス雰囲気下に280℃
で3時間処理することによって、流動開始温度が324
℃の粒子状の下記の繰り返し構造単位からなる全芳香族
ポリエステルを得た。ここで、流動開始温度とは、島津
製作所製フローテスターCFT−500型で測定され、
4℃/分の昇温速度で加熱溶融された樹脂を、荷重10
0kgf/cmのもとで、内径1mm、長さ10mm
のノズルから押し出したときに、溶融粘度が48000
ポイズを示す温度(℃)をいう。以下該液晶ポリエステ
ルをB−1と略記する。このポリマーは加圧下で340
℃以上で光学異方性を示した。液晶ポリエステルB−1
の繰り返し構造単位は、次の通りである。
(2) Liquid crystal polyester of component (B) (i) 8.3 kg (60 mol) of p-acetoxybenzoic acid, 2.49 kg (15 mol) of terephthalic acid, 0.83 kg (5 mol) of isophthalic acid and 4 5,45 kg (20.2 mol) of 4,4'-diacetoxydiphenyl was charged into a polymerization tank having a comb-shaped stirring blade, and the temperature was increased while stirring under a nitrogen gas atmosphere, and polymerization was performed at 330 ° C. for 1 hour. The acetic acid gas produced as a by-product during this period was polymerized under strong stirring while being liquefied and collected and removed by a cooling tube. Thereafter, the system was gradually cooled, and the polymer obtained at 200 ° C. was taken out of the system.
The obtained polymer was pulverized with a hammer mill manufactured by Hosokawa Micron Co., Ltd. to obtain particles of 2.5 mm or less. This is further heated at 280 ° C. in a rotary kiln under a nitrogen gas atmosphere.
For 3 hours, the flow start temperature becomes 324.
A wholly aromatic polyester comprising the following repeating structural units in the form of particles at a temperature of ° C was obtained. Here, the flow start temperature is measured with a flow tester CFT-500 manufactured by Shimadzu Corporation.
The resin heated and melted at a heating rate of 4 ° C./min is loaded with a load of 10
Under 0 kgf / cm 2, an inner diameter of 1 mm, length 10mm
When extruded from the nozzle, the melt viscosity is 48000
A temperature (° C.) indicating poise. Hereinafter, the liquid crystal polyester is abbreviated as B-1. The polymer is 340 under pressure
It showed optical anisotropy at a temperature of at least ° C. Liquid crystal polyester B-1
Are as follows.

【0045】 [0045]

【0046】(ii)p−ヒドロキシ安息香酸16.6
kg(12.1モル)と6−ヒドロキシ−2−ナフトエ
酸8.4kg(45モル)および無水酢酸18.6kg
(182モル)を櫛型撹拌翼付きの重合槽に仕込み、窒
素ガス雰囲気下で攪拌しながら昇温し、320℃で1時
間、そしてさらに2.0torrの減圧下に320℃で
1時間重合させた。この間に、副生する酢酸を系外へ留
出し続けた。その後、系を除々に冷却し、180℃で得
られたポリマーを系外へ取出した。この得られたポリマ
ーを前記の(B−1)と同様に粉砕したあと、ロータリ
ーキルン中で窒素ガス雰囲気下に240℃で5時間処理
することによって、流動開始温度が270℃の粒子状の
下記の繰り返し単位からなる全芳香族ポリエステルを得
た。以下該液晶ポリエステルをB−2と略記する。この
ポリマーは加圧下で280℃以上で光学異方性を示し
た。液晶ポリエステルB−2の繰り返し構造単位の比率
は次の通りである。
(Ii) p-hydroxybenzoic acid 16.6
kg (12.1 mol) and 8.4 kg (45 mol) of 6-hydroxy-2-naphthoic acid and 18.6 kg of acetic anhydride
(182 mol) was charged into a polymerization vessel equipped with a comb-shaped stirring blade, and the temperature was increased while stirring under a nitrogen gas atmosphere, and the polymerization was performed at 320 ° C. for 1 hour, and further at 320 ° C. for 1 hour under a reduced pressure of 2.0 torr. Was. During this time, acetic acid produced as a by-product was continuously distilled out of the system. Thereafter, the system was gradually cooled, and the polymer obtained at 180 ° C. was taken out of the system. The obtained polymer is pulverized in the same manner as in the above (B-1), and then treated in a rotary kiln under a nitrogen gas atmosphere at 240 ° C. for 5 hours to obtain a particulate starting material having a flow start temperature of 270 ° C. A wholly aromatic polyester consisting of repeating units was obtained. Hereinafter, the liquid crystal polyester is abbreviated as B-2. This polymer showed optical anisotropy at 280 ° C. or more under pressure. The ratio of the repeating structural units of the liquid crystal polyester B-2 is as follows.

【0047】 [0047]

【0048】(3)物性の測定法 (i)空隙率:試料片の重さと、体積から見かけの比重
を換算し、原料の液晶ポリエステルの比較で算出した。
(3) Measurement method of physical properties (i) Porosity: The apparent specific gravity was converted from the weight and the volume of the sample piece, and the porosity was calculated by comparing the liquid crystal polyester as a raw material.

【0049】(ii)裂断長:JIS P8113−1
976の規格に準じて測定した。
(Ii) Breaking length: JIS P813-1
It was measured according to the 976 standard.

【0050】(iii)耐屈曲性:液晶ポリエステル不
織布の直行した方向のサンプルを切り出し、それぞれに
ついて東洋精機(株)製MIT屈曲試験機 Foldi
ngEndurance Tester MIT−D型
を使用し、JIS−p−8115に基づいて荷重1Kg
f、折り曲げ角 135度、折り曲げ面曲率半径1m
m、折り曲げ速度175回/minで屈曲試験を行い、
フィルム、シートが破断するまでの屈曲回数を求めた。
(Iii) Flex resistance: A sample of a liquid crystal polyester nonwoven fabric in a direction perpendicular to the liquid crystal polyester was cut out, and each was subjected to a MIT flex tester Foldi manufactured by Toyo Seiki Co., Ltd.
Using ngEndurance Tester MIT-D type, load 1 kg based on JIS-p-8115
f, bending angle 135 degrees, bending surface curvature radius 1m
m, a bending test was performed at a bending speed of 175 times / min.
The number of times of bending until the film or sheet was broken was determined.

【0051】参考例1 A−1 80重量%、B−1 20重量%を、日本製鋼
(株)製 TEX−30型二軸押出機を用い、シリンダ
ー設定温度340℃、スクリュー回転数200rpmで
溶融混練を行って組成物を得た。円形ノズルから押し出
し、吐出速度は7.0m/min.で、星プラスチック
(株)製ペレタイザーを用いて、引き取り速度は35m
/minとし、同時にペレット化した。この組成物のペ
レット10gを2Lフラスコ中で60℃に加熱したクロ
ロフォルムに加え、1時間攪拌し、ポリカーボネートを
溶解した。不溶成分を#200の金網でろ過回収し、6
0℃のクロロフォルムでよく洗浄した。必要な不溶成分
量が得られるまでこの操作を繰り返した。この不溶成分
をC−1と略記する。
Reference Example 1 80% by weight of A-1 and 20% by weight of B-1 were melted at a cylinder set temperature of 340 ° C. and a screw rotation speed of 200 rpm using a TEX-30 type twin screw extruder manufactured by Nippon Steel Corporation. The composition was obtained by kneading. Extruded from a circular nozzle, the discharge speed was 7.0 m / min. With a plasticizer manufactured by Hoshi Plastics Co., Ltd., the take-up speed is 35m
/ Min, and pelletized at the same time. 10 g of pellets of this composition were added to chloroform heated to 60 ° C. in a 2 L flask, and stirred for 1 hour to dissolve the polycarbonate. The insoluble components were collected by filtration through a # 200 wire mesh, and 6
Washed well with chloroform at 0 ° C. This operation was repeated until the required amount of insoluble components was obtained. This insoluble component is abbreviated as C-1.

【0052】参考例2 A−1 92重量%、B−1 8重量%である以外は参
考例1と同様に操作した。得られた不溶成分をC−2と
略記する。
Reference Example 2 The same operation as in Reference Example 1 was carried out except that A-1 was 92% by weight and B-1 was 8% by weight. The obtained insoluble component is abbreviated as C-2.

【0053】参考例3 A−1 68重量%、B−1 32重量%である以外は
参考例1と同様に操作した。得られた不溶成分をC−3
と略記する。
Reference Example 3 The same operation as in Reference Example 1 was carried out except that A-1 was 68% by weight and B-1 was 32% by weight. The obtained insoluble component was C-3
Abbreviated.

【0054】参考例4 引き取り速度が14m/min.である以外は参考例1
と同様に操作した。得られた不溶成分をC−4と略記す
る。
Reference Example 4 A take-up speed of 14 m / min. Reference example 1 except for
The same operation was performed. The obtained insoluble component is abbreviated as C-4.

【0055】参考例5 A−1 85重量%、B−2 15重量%とし、シリン
ダー設定温度を280℃である以外は参考例1と同様に
操作した。得られた不溶成分をC−5と略記する。
Reference Example 5 The procedure of Reference Example 1 was repeated except that A-1 was 85% by weight and B-2 was 15% by weight, and the cylinder set temperature was 280 ° C. The obtained insoluble component is abbreviated as C-5.

【0056】参考例6 A−1 60重量%、B−2 40重量%とし、シリン
ダー設定温度を280℃である以外は参考例1と同様に
操作した。得られた不溶成分をC−6と略記する。
Reference Example 6 The procedure of Reference Example 1 was repeated except that A-1 was 60% by weight and B-2 was 40% by weight, and the cylinder set temperature was 280 ° C. The obtained insoluble component is abbreviated as C-6.

【0057】実施例1 参考例1で得たC−1を乾燥後、4gのC−1を800
gのエチレングリコールに加え、ミキサーを用いて十分
攪拌、分散させ、水準器を用いて水平にした1μmのテ
フロンフィルターでゆっくりろ過した。ろ過終了後、テ
フロンフィルターから注意深くはがして得られた紙状の
サンプルを乾燥させ、150℃、50Kgf/cm
2分間熱プレスした。得られた不織布の厚みは50μ
m、空隙率は60%(坪量27.7g/m)、直行し
た2方向にサンプリングして測定した平均裂断長は、そ
れぞれ、5.4Km、5.2Kmであり、異方性比
(5.4/5.2)は1.04であり、異方性はほとん
ど認められなかった。また、屈曲試験は50000回以
上で破断しなかった。このサンプルを組織を壊さないよ
う注意深くサンプリングし電子顕微鏡で観察したとこ
ろ、長い繊維状の液晶ポリエステルが3次元的に絡まっ
て結合している様子が観察された(図1、2)。
Example 1 After drying C-1 obtained in Reference Example 1, 4 g of C-1 was added to 800
g of ethylene glycol, sufficiently stirred and dispersed using a mixer, and slowly filtered through a horizontal 1 μm Teflon filter using a level. After the completion of the filtration, the paper-like sample obtained by carefully peeling off the Teflon filter was dried and hot-pressed at 150 ° C. and 50 kgf / cm 2 for 2 minutes. The thickness of the obtained nonwoven fabric is 50μ.
m, the porosity is 60% (basis weight 27.7 g / m 2 ), the average breaking length measured by sampling in two orthogonal directions is 5.4 Km and 5.2 Km, respectively. (5.4 / 5.2) was 1.04, and almost no anisotropy was recognized. The bending test did not break after 50,000 times. When this sample was carefully sampled so as not to damage the tissue and observed with an electron microscope, it was observed that long fibrous liquid crystal polyesters were three-dimensionally entangled and bonded (FIGS. 1 and 2).

【0058】比較例1 参考例2で得たC−2を用いて、実施例1と同様にして
得られた紙状のサンプルを乾燥させ、150℃、50K
gf/cmで2分間熱プレスした。得られたサンプル
はもろく、裂断長試験、屈曲試験の測定はできなかっ
た。このサンプルを組織を壊さないよう注意深くサンプ
リングし電子顕微鏡で観察したところ、図3に示したよ
うなラグビーボール状、短い繊維状の液晶ポリエステル
がほぼ独立している様子が観察された。
Comparative Example 1 Using C-2 obtained in Reference Example 2, a paper-like sample obtained in the same manner as in Example 1 was dried.
It was hot pressed at gf / cm 2 for 2 minutes. The obtained sample was brittle and could not be measured in the breaking length test and the bending test. When this sample was carefully sampled so as not to damage the tissue and observed with an electron microscope, it was observed that the rugby ball-shaped and short fibrous liquid crystal polyester as shown in FIG. 3 were almost independent.

【0059】比較例2 参考例3で得たC−3を用いて、実施例1と同様にして
得られた紙状のサンプルを乾燥させ、150℃、50K
gf/cmで2分間熱プレスした。得られた不織布の
厚みは33μm、空隙率は27%(坪量33.4g/m
)、直行した2方向にサンプリングして測定した裂断
長は、それぞれ、1.5Kmと1.2Kmで、ばらつき
があった。異方性比は1.25と大きかった。また、屈
曲試験は5000回程度で破断した。このサンプルを組
織を壊さないよう注意深くサンプリングし電子顕微鏡で
観察したところ、すべてが繊維状にはならず、図4に示
したような不均質な塊り状の液晶ポリエステルが存在し
ている様子が観察された。
Comparative Example 2 Using C-3 obtained in Reference Example 3, a paper sample obtained in the same manner as in Example 1 was dried.
It was hot pressed at gf / cm 2 for 2 minutes. The thickness of the obtained nonwoven fabric is 33 μm, and the porosity is 27% (basis weight 33.4 g / m 2).
2 ) The breaking length measured by sampling in two orthogonal directions was 1.5 Km and 1.2 Km, respectively, and varied. The anisotropy ratio was as large as 1.25. In the bending test, it was broken about 5000 times. When this sample was carefully sampled so as not to damage the tissue, and observed with an electron microscope, it was found that not all of the sample had a fibrous shape and that a non-homogeneous lumpy liquid crystal polyester as shown in FIG. 4 was present. Was observed.

【0060】比較例3 参考例4で得たC−4を用いて、実施例1と同様にして
得られた紙状のサンプルを乾燥させ、150℃、50K
gf/cmで2分間熱プレスした。不織布の厚みは6
0μm、空隙率は51%、もろくて裂断長の測定は困難
であったが約1.6Km以下であった。電子顕微鏡の観
察では、比較例1(図3)に近い構造が認められた。
Comparative Example 3 Using C-4 obtained in Reference Example 4, a paper-like sample obtained in the same manner as in Example 1 was dried.
It was hot pressed at gf / cm 2 for 2 minutes. The thickness of the nonwoven is 6
It was 0 μm, the porosity was 51%, and it was brittle and the measurement of the breaking length was difficult, but it was about 1.6 km or less. By observation with an electron microscope, a structure close to Comparative Example 1 (FIG. 3) was observed.

【0061】実施例2 参考例5で得たC−5を乾燥後、C−5を重量で200
倍のエチレングリコールに分散させ、1μmのテフロン
フィルターでろ過した。得られた紙状のサンプルを乾燥
させ、90℃、50Kgf/cmで2分間熱プレスし
た。得られた不織布の厚みは65μm、空隙率は55%
(坪量55.6g/m)、直行した2方向にサンプリ
ングして測定した裂断長は、それぞれ、6.9Km、
7.0Kmであり、異方性比は1.01と、異方性はほ
とんど認められなかった。また、屈曲試験は50000
回以上破断しなかった。電子顕微鏡で観察した結果、繊
維状の液晶ポリエステルが3次元的に絡み合った構造が
観察された。
Example 2 After drying C-5 obtained in Reference Example 5, C-5 was added in a weight of 200
It was dispersed in 1-fold ethylene glycol and filtered through a 1 μm Teflon filter. The obtained paper-like sample was dried and hot-pressed at 90 ° C. and 50 kgf / cm 2 for 2 minutes. The thickness of the obtained nonwoven fabric is 65 μm, and the porosity is 55%.
(Basis weight 55.6 g / m 2 ), the breaking length measured by sampling in two orthogonal directions was 6.9 km, respectively.
7.0 Km, the anisotropy ratio was 1.01, and almost no anisotropy was observed. The bending test is 50,000
It did not break more than once. As a result of observation with an electron microscope, a structure in which fibrous liquid crystal polyester was intertwined three-dimensionally was observed.

【0062】比較例4 参考例6で得たC−6を乾燥後、C−6を重量で200
倍のエチレングリコールに分散させ、1μmのテフロン
フィルターでろ過した。得られた紙状のサンプルを乾燥
させ、90℃、50Kgf/cmで2分間熱プレスし
た。得られた不織布の厚みは33μm、空隙率は28%
(坪量45.1g/m)、直行した2方向にサンプリ
ングして測定した裂断長は、それぞれ、2.0Km、
1.8Kmであり、ばらつきが認められた。異方性比は
1.11であった。また、屈曲試験は3000回程度で
破断した。電子顕微鏡の観察では、比較例1に近い構造
が見とめられた。
Comparative Example 4 After drying C-6 obtained in Reference Example 6, C-6 was added in a weight of 200
It was dispersed in 1-fold ethylene glycol and filtered through a 1 μm Teflon filter. The obtained paper-like sample was dried and hot-pressed at 90 ° C. and 50 kgf / cm 2 for 2 minutes. The thickness of the obtained nonwoven fabric is 33 μm, and the porosity is 28%.
(Basis weight 45.1 g / m 2 ), the breaking length measured by sampling in two orthogonal directions was 2.0 Km, respectively.
It was 1.8 km, and variation was observed. The anisotropy ratio was 1.11. In the bending test, it was broken about 3000 times. By observation with an electron microscope, a structure close to that of Comparative Example 1 was observed.

【0063】[0063]

【発明の効果】本発明の液晶ポリエステル不織布の製造
方法は、耐熱性、耐薬品性、異方性などが良好な不織布
を優れた坪量コントロール性で製造することができるこ
とから、空隙率が大きく通気性に優れているうえに、裂
断長の異方性が小さく、屈曲性にも優れた不織布を得る
ことができ、さらには本発明の製造方法ではバインダー
樹脂を使用する必要が無く液晶ポリエステルのみからな
るものを得ることができるため、液晶ポリエステルが本
来有する耐薬品性、耐熱性をそのまま保持した優れた不
織布が製造される。これにより、フィルター、セパレー
ター、衣服内材など産業界の広い分野に大きな貢献をす
ることができる。また本発明の液晶ポリエステル繊維の
製造方法によれば、かかる液晶ポリエステル不織布の製
造に好適な液晶ポリエステル繊維を製造することができ
る。
According to the method for producing a liquid crystal polyester nonwoven fabric of the present invention, a nonwoven fabric having good heat resistance, chemical resistance, anisotropy and the like can be produced with excellent control of the basis weight. In addition to being excellent in air permeability, a nonwoven fabric having a small anisotropy in the breaking length and excellent in flexibility can be obtained. Therefore, an excellent non-woven fabric can be produced which retains the inherent chemical resistance and heat resistance of the liquid crystal polyester. This can make a significant contribution to a wide range of industries such as filters, separators, and inner materials for clothes. Further, according to the method for producing a liquid crystal polyester fiber of the present invention, a liquid crystal polyester fiber suitable for producing such a liquid crystal polyester nonwoven fabric can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A−1/B−1=80/20の組成物から得た
実施例1の不織布の表面の電子顕微鏡写真。5000
倍。
FIG. 1 is an electron micrograph of the surface of the nonwoven fabric of Example 1 obtained from a composition of A-1 / B-1 = 80/20. 5000
Times.

【図2】A−1/B−1=80/20の組成物から得た
実施例1の不織布の表面の電子顕微鏡写真。200倍。
FIG. 2 is an electron micrograph of the surface of the nonwoven fabric of Example 1 obtained from a composition of A-1 / B-1 = 80/20. 200 times.

【図3】A−1/B−1=92/8の組成物から得た比
較例1の試料の表面の電子顕微鏡写真。1000倍。
FIG. 3 is an electron micrograph of the surface of a sample of Comparative Example 1 obtained from a composition of A-1 / B-1 = 92/8. 1000 times.

【図4】A−1/B−1=68/32の組成物から得た
比較例2の不織布の表面の電子顕微鏡写真。500倍。
FIG. 4 is an electron micrograph of the surface of a nonwoven fabric of Comparative Example 2 obtained from a composition of A-1 / B-1 = 68/32. 500 times.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D04H 3/14 D04H 3/14 Z D21H 13/24 D21H 13/24 D06M 5/08 Fターム(参考) 4L031 AA18 AB01 AB34 BA31 CA08 CA11 DA00 DA17 4L035 BB40 CC20 FF05 HH10 MC04 4L047 AA21 BA21 BD04 CB01 CB05 CB10 CC01 CC12 4L055 AF33 AF44 AF47 AG88 BE20 EA25 EA32 EA40 FA11 FA19 FA23 GA39 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) D04H 3/14 D04H 3/14 Z D21H 13/24 D21H 13/24 D06M 5/08 F term (reference) 4L031 AA18 AB01 AB34 BA31 CA08 CA11 DA00 DA17 4L035 BB40 CC20 FF05 HH10 MC04 4L047 AA21 BA21 BD04 CB01 CB05 CB10 CC01 CC12 4L055 AF33 AF44 AF47 AG88 BE20 EA25 EA32 EA40 FA11 FA19 FA23 GA39

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂(A)70.0〜90.0重
量%および液晶ポリエステル(B)30.0〜10.0
重量%からなり、熱可塑性樹脂(A)が連続相を液晶ポ
リエステル(B)が分散相を形成している熱可塑性樹脂
組成物の溶融物を3倍以上延伸し固化した後、熱可塑性
樹脂(A)を溶媒に溶解して除去することを特徴とする
液晶ポリエステル繊維の製造方法。
(1) 70.0 to 90.0% by weight of a thermoplastic resin (A) and 30.0 to 10.0 of a liquid crystal polyester (B).
% Of the thermoplastic resin (A) having a continuous phase and a liquid crystal polyester (B) forming a dispersed phase, and a melt of the thermoplastic resin composition is stretched three times or more and solidified. A method for producing a liquid crystal polyester fiber, wherein A) is dissolved in a solvent and removed.
【請求項2】熱可塑性樹脂(A)70.0〜90.0重
量%および液晶ポリエステル(B)30.0〜10.0
重量%からなり、熱可塑性樹脂(A)が連続相を液晶ポ
リエステル(B)が分散相を形成している熱可塑性樹脂
組成物を溶融させてノズルから押し出し、吐出速度の3
倍以上の引き取り速度で延伸し冷却固化した後、熱可塑
性樹脂(A)を溶媒に溶解して除去することを特徴とす
る液晶ポリエステル繊維の製造方法。
2. A thermoplastic resin (A) of 70.0 to 90.0% by weight and a liquid crystal polyester (B) of 30.0 to 10.0.
Wt%, and the thermoplastic resin (A) melts the thermoplastic resin composition in which the continuous phase forms the dispersed phase with the liquid crystal polyester (B), and is extruded from the nozzle.
A method for producing a liquid crystal polyester fiber, comprising: stretching at a take-up speed of twice or more, cooling and solidifying, and then dissolving and removing the thermoplastic resin (A) in a solvent.
【請求項3】熱可塑性樹脂組成物を溶融させる温度が、
液晶ポリエステル(B)の流動開始温度より高い温度で
あることを特徴とする請求項1または2記載の液晶ポリ
エステル繊維の製造方法。ここで、流動開始温度とは、
毛細管型レオメーターで測定され、4℃/分の昇温速度
で加熱溶融された樹脂を、荷重100kgf/cm
もとで、内径1mm、長さ10mmのノズルから押し出
したときに、溶融粘度が48000ポイズを示す温度
(℃)をいう。
3. The temperature at which the thermoplastic resin composition is melted,
3. The method for producing a liquid crystal polyester fiber according to claim 1, wherein the temperature is higher than a flow start temperature of the liquid crystal polyester (B). Here, the flow start temperature is
When a resin measured by a capillary rheometer and heated and melted at a heating rate of 4 ° C./min is extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm under a load of 100 kgf / cm 2 , a melt viscosity is obtained. Refers to a temperature (° C.) at which 48,000 poise is exhibited.
【請求項4】熱可塑性樹脂(A)が、ポリカーボネート
またはポリ(2,6−ジメチルフェニレンエーテル)で
あることを特徴とする請求項1〜3のいずれかに記載の
液晶ポリエステル繊維の製造方法。
4. The method for producing a liquid crystal polyester fiber according to claim 1, wherein the thermoplastic resin (A) is polycarbonate or poly (2,6-dimethylphenylene ether).
【請求項5】熱可塑性樹脂(A)を溶媒に溶解して除去
する際に使用する溶媒が、クロロフォルムであることを
特徴とする請求項4記載の液晶ポリエステル繊維の製造
方法。
5. The method according to claim 4, wherein the solvent used for dissolving and removing the thermoplastic resin (A) in the solvent is chloroform.
【請求項6】液晶ポリエステル(B)が、下記の繰り返
し構造単位を少なくとも全体の30モル%含むものであ
ることを特徴とする請求項1〜5のいずれかに記載の液
晶ポリエステル繊維の製造方法。
6. The method for producing a liquid crystal polyester fiber according to claim 1, wherein the liquid crystal polyester (B) contains at least 30 mol% of the following repeating structural units.
【請求項7】液晶ポリエステル(B)が、芳香族ジカル
ボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸
とを反応させて得られるものであることを特徴とする請
求項1〜6のいずれかに記載の液晶ポリエステル繊維の
製造方法。
7. The liquid crystal polyester (B) according to claim 1, which is obtained by reacting an aromatic dicarboxylic acid, an aromatic diol and an aromatic hydroxycarboxylic acid. The method for producing the liquid crystal polyester fiber according to the above.
【請求項8】液晶ポリエステル(B)が、異種の芳香族
ヒドロキシカルボン酸の組合せを反応させて得られるも
のであることを特徴とする請求項1〜6のいずれかに記
載の液晶ポリエステル繊維の製造方法。
8. The liquid crystal polyester fiber according to claim 1, wherein the liquid crystal polyester (B) is obtained by reacting a combination of different kinds of aromatic hydroxycarboxylic acids. Production method.
【請求項9】請求項1〜8のいずれかに記載の製造方法
により得られることを特徴とする液晶ポリエステル繊
維。
9. A liquid crystal polyester fiber obtained by the production method according to claim 1.
【請求項10】請求項1〜8のいずれかに記載の製造方
法により得られる液晶ポリエステル繊維を、実質的に液
晶ポリエステル(B)が不溶である液体に分散させて抄
紙した後、3次元的に結合させることを特徴とする液晶
ポリエステル不織布の製造方法。
10. A paper made by dispersing a liquid crystal polyester fiber obtained by the production method according to any one of claims 1 to 8 in a liquid in which the liquid crystal polyester (B) is substantially insoluble. A method for producing a liquid crystal polyester non-woven fabric, characterized in that the non-woven fabric is bonded to
【請求項11】請求項1〜8のいずれかに記載の製造方
法により得られる液晶ポリエステル繊維を、実質的に成
分(B)が液晶ポリエステルである液体に分散させて抄
紙した後、熱および/または圧力により3次元的に結合
させることを特徴とする液晶ポリエステル不織布の製造
方法。
11. A paper made by dispersing a liquid crystal polyester fiber obtained by the production method according to any one of claims 1 to 8 in a liquid in which the component (B) is liquid crystal polyester. Alternatively, a method for producing a liquid crystal polyester nonwoven fabric, wherein the nonwoven fabric is bonded three-dimensionally by pressure.
【請求項12】実質的に液晶ポリエステル(B)が不溶
である液体が、1.0cpよりも高い粘度(20℃)を
有する実質的に液晶ポリエステル(B)が不溶である液
体であることを特徴とする請求項10または11記載の
液晶ポリエステル不織布の製造方法。
12. A liquid in which the liquid crystal polyester (B) is substantially insoluble is a liquid having a viscosity (20 ° C.) higher than 1.0 cp, wherein the liquid crystal polyester (B) is substantially insoluble. The method for producing a liquid crystal polyester nonwoven fabric according to claim 10 or 11, wherein:
JP10330119A 1998-10-14 1998-10-14 Liquid crystal polyester fiber and production of liquid crystal polyester nonwoven fabric Pending JP2000119952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10330119A JP2000119952A (en) 1998-10-14 1998-10-14 Liquid crystal polyester fiber and production of liquid crystal polyester nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10330119A JP2000119952A (en) 1998-10-14 1998-10-14 Liquid crystal polyester fiber and production of liquid crystal polyester nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2000119952A true JP2000119952A (en) 2000-04-25

Family

ID=18229023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10330119A Pending JP2000119952A (en) 1998-10-14 1998-10-14 Liquid crystal polyester fiber and production of liquid crystal polyester nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2000119952A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223210A (en) * 2007-02-16 2008-09-25 Sumitomo Chemical Co Ltd Liquid crystalline polyester fiber, liquid crystalline polyester fiber cloth and method for producing liquid crystalline polyester fiber
WO2012093775A3 (en) * 2011-01-05 2012-09-07 삼성정밀화학(주) Fiber web, preparation method thereof, and filter including fiber web
US8703630B2 (en) 2005-05-09 2014-04-22 Cytec Technology Corp Resin-soluble thermoplastic veil for composite materials
WO2016088356A1 (en) * 2014-12-02 2016-06-09 セイコーエプソン株式会社 Film-forming ink, film-forming method, film-equipped device, and electronic apparatus
WO2023074737A1 (en) * 2021-10-29 2023-05-04 株式会社村田製作所 Porous material and method for producing porous material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703630B2 (en) 2005-05-09 2014-04-22 Cytec Technology Corp Resin-soluble thermoplastic veil for composite materials
US9566762B2 (en) 2005-05-09 2017-02-14 Cytec Technology Corp. Resin-soluble thermoplastic veil for composite materials
JP2008223210A (en) * 2007-02-16 2008-09-25 Sumitomo Chemical Co Ltd Liquid crystalline polyester fiber, liquid crystalline polyester fiber cloth and method for producing liquid crystalline polyester fiber
WO2012093775A3 (en) * 2011-01-05 2012-09-07 삼성정밀화학(주) Fiber web, preparation method thereof, and filter including fiber web
CN103392034A (en) * 2011-01-05 2013-11-13 三星精密化学株式会社 Fiber web, preparation method thereof, and filter including fiber web
US9084953B2 (en) 2011-01-05 2015-07-21 Shenzhen Wote Advanced Materials Co., Ltd. Fiber web, preparation method thereof, and filter including fiber web
CN103392034B (en) * 2011-01-05 2016-09-28 深圳市沃特新材料股份有限公司 Fibre web, its preparation method and include the filter of this fibre web
TWI577845B (en) * 2011-01-05 2017-04-11 深圳市沃特新材料股份有限公司 Fiberweb, method of preparing the same, and filter including fiberweb
WO2016088356A1 (en) * 2014-12-02 2016-06-09 セイコーエプソン株式会社 Film-forming ink, film-forming method, film-equipped device, and electronic apparatus
WO2023074737A1 (en) * 2021-10-29 2023-05-04 株式会社村田製作所 Porous material and method for producing porous material
DE112022003653T5 (en) 2021-10-29 2024-05-29 Murata Manufacturing Co., Ltd. POROUS BODY AND METHOD FOR PRODUCING A POROUS BODY

Similar Documents

Publication Publication Date Title
EP0593592A4 (en) Thermotropic liquid crystal segmented block copolymer
Maccaferri et al. Rubbery nanofibers by co-electrospinning of almost immiscible NBR and PCL blends
Cacciotti et al. Tailoring the properties of electrospun PHBV mats: Co-solution blending and selective removal of PEO
JP4720306B2 (en) Liquid crystalline resin fiber and method for producing the same
JP4736548B2 (en) Nonwoven fabric made of liquid crystalline resin fiber
JP2000119952A (en) Liquid crystal polyester fiber and production of liquid crystal polyester nonwoven fabric
JP2001207335A (en) Fibrillar material and method for producing the same
JP2009007702A (en) Method for producing exrafine crystalline polymer fiber
JP2010254943A (en) Polyarylene sulfide-based porous membrane and process for producing the same
JP2023171380A (en) Polyphenylene ether melt extrusion molded body and method for producing polyphenylene ether melt extrusion molded body
JP2013087392A (en) Biodegradable polyester-based nanofiber and method of producing the same
JP4381576B2 (en) Heat resistant nonwoven fabric
KR20020075276A (en) Low hygroscopic paper and method of producing the same
KR101031924B1 (en) Process Of Producing Nano Size Meta-Aramid Fibrils
İlhan et al. Oriented fibrous poly (butylene adipate-co-terephthalate) matrices with nanotopographic features: Production and characterization
JP4032781B2 (en) Branched liquid crystal polymer filler and method for producing the same
JP5504610B2 (en) Method for producing ultrafine carbon fiber filament
JPH09300429A (en) Production of polyester film
JP2001064399A (en) Preparation of liquid crystalline polyester microsphere
JP2006169691A (en) Easily splittable fiber bundle and microfine fiber and methods for producing them
JP5689626B2 (en) Wet short fiber nonwoven fabric
JP3473237B2 (en) Method for producing liquid crystal polyester resin composition film
JP4595714B2 (en) Method for producing blend type composite fiber
JP3473191B2 (en) Method for producing liquid crystal polyester film
WO2023228904A1 (en) Liquid crystal polymer pellets, liquid crystal polymer powder, liquid crystal polymer film and production methods of those