JP2000117102A - Charcoal and production thereof - Google Patents

Charcoal and production thereof

Info

Publication number
JP2000117102A
JP2000117102A JP10306310A JP30631098A JP2000117102A JP 2000117102 A JP2000117102 A JP 2000117102A JP 10306310 A JP10306310 A JP 10306310A JP 30631098 A JP30631098 A JP 30631098A JP 2000117102 A JP2000117102 A JP 2000117102A
Authority
JP
Japan
Prior art keywords
charcoal
titanium oxide
photocatalyst
type
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10306310A
Other languages
Japanese (ja)
Inventor
Koji Sato
孝二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUISHIYOU KK
Original Assignee
SUISHIYOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUISHIYOU KK filed Critical SUISHIYOU KK
Priority to JP10306310A priority Critical patent/JP2000117102A/en
Publication of JP2000117102A publication Critical patent/JP2000117102A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing charcoal provided with innovative functions by adding functions of decomposing organic substances by a photocatalyst to charcoal having an adsorptive function and further promoting the optimization of crystal structure of the photocatalyst of the charcoal by thermal denaturation. SOLUTION: The method for producing this photocatalytic charcoal comprises processes of setting anatase-type titanium oxide on the surface of a hydrocarbon material in the state that the titanium oxide is deposited on the surface, heating the resultant hydrocarbon material in a temperature range of 500-1,200 deg.C for about 10-90 minutes to promote carbonization of the hydrocarbon material, and then stopping the heating treatment in the middle of conversion process of the crystal structure of the deposited titanium oxide from the anatase type to the rutile type.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭と光触媒とを組
み合わせて、新たな浄化剤、脱臭剤、吸湿剤、土壌改良
剤等を開発すると共にその製造方法を提供するものであ
る。
The present invention relates to the development of a new purifying agent, a deodorant, a moisture absorbent, a soil conditioner, etc. by combining charcoal and a photocatalyst, and to provide a method for producing the same.

【0002】[0002]

【従来の技術】従来、炭の活用法として、(a)微細な
孔構造で強い吸着能を有し、吸着、脱色、CODの低
下、脱窒素を促進する飲料水や排水の浄化等の水処理剤
として、(b)微細な孔構造で臭い成分を吸着する脱臭
剤、及び、同様の水分、湿気を吸収する調湿剤として、
(c)土壌の保水性、通気性を高め、有用微生物を繁殖
させ、地温の上昇を促す土壌改良剤等としての用途が知
られている。
2. Description of the Related Art Conventionally, as a method of utilizing charcoal, (a) drinking water for purifying drinking water and wastewater, which has a strong adsorption capacity with a fine pore structure and promotes adsorption, decolorization, reduction of COD, and denitrification. As a treatment agent, (b) as a deodorant that adsorbs odor components with a fine pore structure, and as a humidity conditioner that absorbs the same moisture and moisture,
(C) It has been known to be used as a soil conditioner or the like that enhances water retention and air permeability of soil, breeds useful microorganisms, and promotes an increase in soil temperature.

【0003】しかし、これらは多孔質の炭の吸着特性を
利用しただけのものであり、炭の吸着能によって性能に
限界が課されてしまい、例えば、炭の吸着能が一杯とな
ると、その浄化や脱臭等の性能が極端に低下してしまう
等の欠点があった。
However, these methods only utilize the adsorption characteristics of porous charcoal, and the performance is limited by the charcoal adsorption capacity. For example, when the charcoal adsorption capacity becomes full, the purification is performed. There are drawbacks such as that the performances such as odor and deodorization are extremely reduced.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来の
吸着能を備えた炭に対し、これに光触媒による有機物の
分解能等を加えて、新たな機能を備えた炭を開発するこ
とを一の課題とし、更にそれを炭化処理と光触媒の結晶
構造の最適化を同時に促し得る方法で製造しようとする
ものである。
An object of the present invention is to develop a charcoal having a new function by adding the above-mentioned conventional charcoal having an adsorptive capacity to the resolution of organic substances by a photocatalyst and the like. In addition, the present invention aims at producing the carbonization by a method which can simultaneously promote the carbonization treatment and the optimization of the crystal structure of the photocatalyst.

【0005】[0005]

【課題を解決するための手段】本発明は、先ず、熱乾溜
等で炭化できる対象物を炭化素材と呼び、例えば、ナ
ラ、マツ、カシ等の木材を炭化して得られる一般木炭を
指すことは勿論、建築物から廃棄される解体木材、森林
伐採から生じる間伐材を含む。又、廃棄された紙材やモ
ミ殻等の乾留によって炭化するものでも良く、炭化され
得る素材を広く含む意味である。
The present invention first refers to an object that can be carbonized by hot dry distillation or the like as a carbonized material, and refers to, for example, general charcoal obtained by carbonizing wood such as oak, pine, and oak. This includes, of course, demolition wood discarded from buildings and thinned wood resulting from deforestation. Further, carbonized materials such as discarded paper materials and fir shells may be carbonized by carbonization, which means that materials that can be carbonized are widely included.

【0006】次に、光触媒を用いるが、該光触媒には例
えば酸化チタンを用い、該酸化チタンは、これにバンド
キャップ以上のエネルギーが与えられると、価電子帯か
ら伝導帯へ電子が励起され、伝導帯に電子が価電子帯に
正孔が生じ、励起され、該励起によって、有機物の分解
能が促され、浄化、脱臭等の作用が招来されるものであ
る。該酸化チタンには、その結晶構造の違いから、アナ
ターゼ型とルチル型とがあるが、このとき用いる出発原
料にはアナターゼ型の酸化チタンを用いる。それは、後
述する理由によりアナターゼ型からルチル型への構造変
換を促すと共に、結晶構造においてアナターゼ型からル
チル型への変換の途中の状態の触媒を得る為である。
Next, a photocatalyst is used. For example, titanium oxide is used as the photocatalyst. When the titanium oxide is supplied with energy equal to or more than the band gap, electrons are excited from the valence band to the conduction band. Electrons are generated in the conduction band and holes are generated in the valence band to be excited, and the excitation promotes the resolution of the organic substance, and brings about actions such as purification and deodorization. The titanium oxide has an anatase type and a rutile type due to a difference in crystal structure. Anatase type titanium oxide is used as a starting material used at this time. This is for promoting the structural conversion from the anatase type to the rutile type for the reason described later, and for obtaining the catalyst in the state of the conversion from the anatase type to the rutile type in the crystal structure.

【0007】そして、上記炭化素材に対し、その表面に
光触媒を付着状態に置く。ここで付着状態とは、炭化素
材と光触媒とが物理的にできる限り近接位置にあること
を言い、例えば、酸化チタンの粉粒体を粘質性の溶液に
分散させ、該分散液を噴霧器で噴き付ける等して分散液
を塗付させた状態を言う。このとき、該分散液に対する
光触媒の濃度を調整することによって、光触媒の付着量
をコントロールし、炭と光触媒との構成比率を最適なも
のとすることができる。
Then, a photocatalyst is placed on the surface of the carbonized material. Here, the attached state means that the carbonized material and the photocatalyst are physically as close as possible to each other.For example, a powder of titanium oxide is dispersed in a viscous solution, and the dispersion is sprayed with a sprayer. A state in which the dispersion is applied by spraying or the like. At this time, by adjusting the concentration of the photocatalyst with respect to the dispersion, the amount of the photocatalyst attached can be controlled, and the composition ratio between the charcoal and the photocatalyst can be optimized.

【0008】次に、上記炭化素材とその表面に付着状態
に置かれた光触媒とを、下記の二つの目的の基に加熱処
理する。その目的の一つは、炭化素材を炭化させて所謂
炭とするもので、その為には、無酸素下で加熱し、揮発
成分を蒸散させて、炭素分を残すもので、その温度範囲
は一般に400〜1300℃程度である。第二の目的
は、酸化チタンの結晶構造の変化を促すことであり、そ
の為に、アナターゼ型の酸化チタンからルチル型の酸化
チタンへと結晶構造の変化を起こし得る500〜120
0℃の範囲とする。従って、本発明における温度条件
は、上記第一の目的と、後記第二の目的との条件が重な
る、500℃〜1200℃とする。
Next, the carbonized material and the photocatalyst placed on the surface of the carbonized material are subjected to a heat treatment based on the following two purposes. One of the purposes is to carbonize the carbonized material to form a so-called charcoal. For that purpose, it is heated under oxygen-free condition to evaporate volatile components and leave carbon content. Generally, it is about 400 to 1300 ° C. The second purpose is to promote the change of the crystal structure of titanium oxide, and therefore, the crystal structure can be changed from anatase-type titanium oxide to rutile-type titanium oxide.
The range is 0 ° C. Therefore, the temperature condition in the present invention is set to 500 ° C. to 1200 ° C., where the conditions of the first object and the second object described later overlap.

【0009】これを詳述するに、上述の通り、光触媒と
しての酸化チタンには、アナターゼ型とルチル型とがあ
り、アナターゼ型は、図1に示す如く、中央のチタンに
周囲に酸素が配位した縦に長い長方形型の結晶構造で、
バンドキャップが3.23eVのものである。一方、ル
チル型は図2に示す如く、中央のチタンに酸素が配位し
て背の低い密な構造で、バンドキャップが3.02eV
である。従って、夫々に触媒活性に違いがあるが、本発
明では、後述の理由によって、アナターゼ型の酸化チタ
ンをルチル型の酸化チタンに構造変化を起こさせると共
に、結晶構造においてアナターゼ型からルチル型への変
換の途中の状態において加熱を停止させる。そこで、上
述の温度範囲を500℃〜1200℃とすると同時に、
その加熱時間をアナターゼ型からルチル型への変換が途
中で停止する10〜90分程度とする。
In detail, as described above, titanium oxide as a photocatalyst includes an anatase type and a rutile type. In the anatase type, as shown in FIG. 1, oxygen is distributed around central titanium. It has a vertically long rectangular crystal structure,
The band cap is 3.23 eV. On the other hand, as shown in FIG. 2, the rutile type has a short structure with oxygen coordinated to the central titanium, and has a band cap of 3.02 eV.
It is. Therefore, although there is a difference in the respective catalytic activities, in the present invention, for the reasons described below, the anatase type titanium oxide causes a structural change to the rutile type titanium oxide, and the crystal structure changes from the anatase type to the rutile type. Heating is stopped in the middle of the conversion. Therefore, the above temperature range is set to 500 ° C. to 1200 ° C., and at the same time,
The heating time is set to about 10 to 90 minutes at which the conversion from the anatase type to the rutile type is stopped halfway.

【0010】斯くして、上記加熱条件に置かれると、先
ず、炭化素材が乾留状態に置かれ、素材内部の揮発成分
が蒸散し、又、木酢液等が分留し、素焼状態で内部に多
数の孔を形成した炭が形成される。同時に、表面に付着
状態に置かれた酸化チタンがアナターゼ型からルチル型
へと結晶構造の変化を惹起し、且つ、その変化の途中で
加熱が停止され、アナターゼ型からルチル型への変換の
途中の状態の光触媒が形成され、上記多孔質を形成した
炭の可及的に隣接位置に光触媒が臨む形態が得られる。
即ち、炭の一部に光触媒が結合した形態の新規なる炭が
得られ、又、その光触媒の結晶形態は、アナターゼ型か
らルチル型への変換の途中の状態のものが得られる。該
炭をそのまま用いるか、或いは、粒状、粉状に破砕する
かは任意であり、目的に合わせて選択する。
[0010] Thus, when placed under the above-mentioned heating conditions, first, the carbonized material is placed in a dry-distilled state, the volatile components inside the material are evaporated, and the wood vinegar and the like are fractionated. Charcoal with many holes is formed. At the same time, the titanium oxide deposited on the surface causes a change in the crystal structure from the anatase type to the rutile type, and heating is stopped during the change, and the conversion from the anatase type to the rutile type is performed. The photocatalyst in the state described above is formed, and the form in which the photocatalyst faces as close as possible to the porous charcoal is obtained.
That is, a new charcoal having a form in which a photocatalyst is bonded to a part of the charcoal is obtained, and a crystal form of the photocatalyst is in a state of being converted from an anatase type to a rutile type. Whether the charcoal is used as it is or crushed into granules or powder is optional, and is selected according to the purpose.

【0011】次に、上記本発明製法によって得られた炭
の作用を説明する。本発明炭は、上述の通り、浄化剤、
脱臭剤、吸湿剤、土壌改良剤等として用いられるが、先
ず、例えば浄化剤として働く場合を説明すると、上記製
法で得た炭を粒状として毒性成分の近くに置く。する
と、空中又は水中に存在する有機毒性成分が、炭の孔内
に捕獲される。このとき炭は、炭素により強い凝集力を
発揮して毒性成分を吸い寄せ、且つ、そこに微細な空洞
が形成されているので、確実に毒性成分を孔内に捉える
ことができる。
Next, the function of the charcoal obtained by the method of the present invention will be described. The coal of the present invention is, as described above, a purifying agent,
It is used as a deodorant, a hygroscopic agent, a soil conditioner, etc. First, for example, when it acts as a purifying agent, the charcoal obtained by the above-mentioned manufacturing method is granulated and placed near the toxic component. Then, the organic toxic components existing in the air or water are captured in the pores of the charcoal. At this time, the charcoal exerts a stronger cohesive force on the carbon to attract the toxic component, and the fine cavities are formed therein, so that the toxic component can be reliably captured in the pores.

【0012】次いで、その孔内に捉えられた毒性成分に
対し、該炭に隣接した光触媒が作用し、その励起で、毒
性成分を分解する。その反応は、例えば毒性成分が環境
汚染物質であるトリハロメタンの1種であるクロロホル
ムの場合を例にとると、 TiO2 + hν→ e- +h- ν O2 + e- → O2 - OH- + h+ → ・OH CHCl3 + ・OH → ・CCl3 + H2O ・CCl3 + ・OH → COCl2 + HCl COCl2 + H2O → CO2 + 2HCl の如くで、クロロホルムが効率良く塩素水素と二酸化炭
素に分解される。
Next, a photocatalyst adjacent to the charcoal acts on the toxic component caught in the pore, and the excitation decomposes the toxic component. The reaction may for example take the case toxic components chloroform which is one of trihalomethanes is an environmental pollutant example, TiO 2 + hν → e - + hν O 2 + e - → O 2 - OH - + h + → OH CHCl 3 + ・ OH → ・ CCl 3 + H 2 O ・ CCl 3 + ・ OH → COCl 2 + HCl COCl 2 + H 2 O → CO 2 + 2HCl And is decomposed into carbon dioxide.

【0013】このとき、光触媒としての活性は、上述の
通り、酸化チタンがアナターゼ型単独、又は、ルチル型
単独とするよりも、アナターゼ型からルチル型への変換
の途中の状態とするのが最も良い。それは、混在するア
ナターゼ型及びルチル型の酸化チタンが、夫々の活性を
発揮すると共に、加熱によりアナターゼ型からルチル型
に結晶構造が変化する過程にあって、当初の格子を形成
する元素の結び付きが崩れ、新たな結晶格子が生成され
る過程で格子の乱れが生じ、格子としての欠陥が多数生
じる。そして、その生じた格子欠陥が触媒としての活性
点となり、光触媒として作用するとき、有機物の分解等
に有効に作用すると考えられるからである。
At this time, as described above, the activity of the photocatalyst is most likely to be in the state during the conversion of the titanium oxide from the anatase type to the rutile type, rather than the anatase type alone or the rutile type alone. good. It is because the anatase-type and rutile-type titanium oxides exhibit their respective activities, and in the process of changing the crystal structure from the anatase-type to the rutile-type by heating, the connection of the elements that form the initial lattice. In the process of collapse and generation of a new crystal lattice, lattice disorder occurs, and many defects as lattices are generated. Then, the generated lattice defect becomes an active point as a catalyst and, when acting as a photocatalyst, is considered to effectively act on decomposition of organic substances and the like.

【0014】即ち、上記活性炭によって吸着された毒性
成分は物理的に最も近い位置に臨み、且つ、活性の高い
状態の光触媒によって、極めて効率良く分解されること
になる。
That is, the toxic component adsorbed by the activated carbon comes to the nearest physically position and is decomposed extremely efficiently by the photocatalyst in a highly active state.

【0015】上記は浄化剤の1種を例に説明したが、そ
の他トリクロロエチレン、ダイオキシン等のハロゲン化
有機物、農薬等を炭が吸着し、捉えられた有機物に光触
媒が作用し、二酸化炭素、水等の無害化物に分解するこ
とができる。同様に、脱臭剤の場合には、悪臭成分を分
解し、又、土壌改良剤の場合には、土壌中に存在する硝
酸性窒素を吸着し、これを分解する。除湿剤では、主に
水分の吸着を行うが、新建材から発せられるアンモニ
ア、ホルムアルデヒド等の有害物質を含む場合に、これ
を吸着、分解することができる。即ち、本発明炭は、吸
着と分解の性能を備えたもので、上記脱臭剤、浄化剤等
のほか、吸着と分解性能を要求される他の分野にも広く
応用が可能なものである。
Although the above description has been made by taking one kind of purifying agent as an example, charcoal adsorbs other halogenated organic substances such as trichloroethylene and dioxin, pesticides, etc., and a photocatalyst acts on the trapped organic substances to cause carbon dioxide, water, etc. Can be decomposed into harmless substances. Similarly, a deodorant decomposes malodorous components, and a soil conditioner adsorbs and decomposes nitrate nitrogen present in soil. The dehumidifying agent mainly adsorbs water, but can adsorb and decompose harmful substances such as ammonia and formaldehyde emitted from new building materials. That is, the coal of the present invention has adsorption and decomposition performance, and can be widely applied to other fields requiring adsorption and decomposition performance in addition to the above-mentioned deodorants and purifying agents.

【0016】[0016]

【実施例】建築廃材と間伐材を破砕し、約50mmアン
ダーのチップ状とした。一方、アナターゼ型酸化チタン
(TiO2)を200g用意し、これを1リットルのポ
リビニルアルコール(PVA)の15%溶液に混合し
た。該混合液をスプレーガンを用いて上記チップ状の建
築廃材及び間伐材に吹き付けした。これを炭化炉に投入
し、800℃で約20分間の条件で熱処理した。その結
果、炭化したチップ状の炭の表面に酸化チタンが結合し
た状態の炭が得られた。
[Example] Construction waste and thinned wood were crushed into chips of about 50 mm under. On the other hand, 200 g of anatase-type titanium oxide (TiO 2 ) was prepared and mixed with 1 liter of a 15% solution of polyvinyl alcohol (PVA). The mixed solution was sprayed on the chip-shaped building waste and thinned wood using a spray gun. This was put into a carbonization furnace and heat-treated at 800 ° C. for about 20 minutes. As a result, charcoal was obtained in which titanium oxide was bonded to the surface of carbonized chip-shaped charcoal.

【0017】[0017]

【発明の効果】以上の構成及び作用に基づく本発明は、
吸着特性に優れた炭と、有機物等の分解能に優れた光触
媒との結合により、目的物を確実に捉えつつ無害物に分
解処理でき、脱臭剤、浄化剤、土壌改良剤、除湿剤、そ
の他広い用途に従来にない画期的効果を発揮する。又、
その製造方法にあっても、炭化素材の炭化と同時に、光
触媒の熱的変性を兼務することができ、触媒として最も
活性な構造体を得る事ができる合理的な製法となる等の
有利な発明である。
According to the present invention based on the above configuration and operation,
By combining charcoal with excellent adsorption characteristics and photocatalyst with excellent resolution of organic substances, it can be decomposed into harmless substances while reliably capturing the target substance, and deodorants, purifiers, soil conditioners, dehumidifiers, etc. Demonstrate a revolutionary effect that has never been seen before. or,
Even in the production method, it is possible to simultaneously perform the thermal modification of the photocatalyst at the same time as the carbonization of the carbonized material, and to obtain a rational production method capable of obtaining the most active structure as a catalyst. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アナターゼ型酸化チタンの結晶構造図。FIG. 1 is a crystal structure diagram of anatase type titanium oxide.

【図2】ルチル型酸化チタンの結晶構造図。FIG. 2 is a crystal structure diagram of rutile-type titanium oxide.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化素材の表面にアナタ−ゼ型酸化チタ
ンを付着状態に置き、次いで加熱処理して炭化素材の炭
化を促すと同時に、付着した酸化チタンをルチル型酸化
チタンに結晶構造の変化を起こさせると共に、アナター
ゼ型からルチル型への変換の途中の状態で熱処理を停止
させることを特徴とする炭の製造方法。
1. An anatase type titanium oxide is placed on a surface of a carbonized material in an adhered state, and then heat-treated to promote carbonization of the carbonized material. At the same time, the attached titanium oxide is changed into a rutile type titanium oxide in a crystal structure. And the heat treatment is stopped during the conversion from the anatase type to the rutile type.
【請求項2】 加熱処理の条件を、温度範囲を500〜
1200℃とし、加熱時間を10〜90分とした請求項
1記載の炭の製造方法。
2. The conditions of the heat treatment are as follows:
The method for producing charcoal according to claim 1, wherein the temperature is 1200 ° C. and the heating time is 10 to 90 minutes.
【請求項3】 炭の一部にアナターゼ型からルチル型に
構造変化させる途中状態の結晶構造の酸化チタンを結合
させたことを特徴とする炭。
3. A charcoal comprising a part of charcoal and titanium oxide having a crystal structure in a state in which the structure is changed from an anatase type to a rutile type.
JP10306310A 1998-10-13 1998-10-13 Charcoal and production thereof Pending JP2000117102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10306310A JP2000117102A (en) 1998-10-13 1998-10-13 Charcoal and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10306310A JP2000117102A (en) 1998-10-13 1998-10-13 Charcoal and production thereof

Publications (1)

Publication Number Publication Date
JP2000117102A true JP2000117102A (en) 2000-04-25

Family

ID=17955577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10306310A Pending JP2000117102A (en) 1998-10-13 1998-10-13 Charcoal and production thereof

Country Status (1)

Country Link
JP (1) JP2000117102A (en)

Similar Documents

Publication Publication Date Title
KR102615619B1 (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
US7241430B2 (en) Activated carbon for odor control and method for making same
JP2021506583A (en) Catalysts for catalyzing formaldehyde oxidation and their preparation and use
AU2001279935B2 (en) Filtering medium, method for making same
US10682639B2 (en) Method for preparing a catalyst-containing ceramic filter for off-gas or exhaust gas cleaning
JP2000317269A (en) Deodorizing device
CN102858423A (en) Filtration media having recycled waste materials
JP4175671B2 (en) NOx removal catalyst manufacturing method and exhaust gas purification method
KR100773913B1 (en) Preparing method of filter member for heat exchanger
JP2000117102A (en) Charcoal and production thereof
JP4596944B2 (en) Combustion exhaust gas treatment method
KR102501792B1 (en) Manufacturing method of activated carbon for air purifier filter with surface modification treatment
KR101329828B1 (en) A tungsten/titania-based catalyst and a method of preparing the same
JP2009219980A (en) Catalyst for removing nitrogen oxide and its manufacturing method
JP2002355299A (en) Air cleaning filter using photocatalyst
KR20020058180A (en) Catalyst for removing dioxin and nitrogen oxides in flue gas and method for treating combustion exhaust gases using the same
JP4173561B2 (en) Ozone decomposition catalyst and method for producing the same
JP3318607B2 (en) New selective NH3 deodorization method
KR102578224B1 (en) Composition of air cleaning and method for preparing the same
JP2001029786A (en) Dioxin oxidation catalyst
KR102657435B1 (en) Manganese catalyst for promoting formaldehyde oxidation and its preparation and use
JPH01189320A (en) Adsorption filter
KR20240057456A (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
JP3762121B2 (en) Exhaust gas treatment method
JP2841668B2 (en) Method for manufacturing activated carbon moldings

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107