JP2000111598A - Linear coupling transmission line cell - Google Patents

Linear coupling transmission line cell

Info

Publication number
JP2000111598A
JP2000111598A JP11187151A JP18715199A JP2000111598A JP 2000111598 A JP2000111598 A JP 2000111598A JP 11187151 A JP11187151 A JP 11187151A JP 18715199 A JP18715199 A JP 18715199A JP 2000111598 A JP2000111598 A JP 2000111598A
Authority
JP
Japan
Prior art keywords
outer conductor
transmission line
conductor
connector means
coupled transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11187151A
Other languages
Japanese (ja)
Other versions
JP3187790B2 (en
Inventor
Zaifuun In
在▲フーン▼ 尹
Koin Cho
光胤 趙
Soseki Sai
宗錫 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JP2000111598A publication Critical patent/JP2000111598A/en
Application granted granted Critical
Publication of JP3187790B2 publication Critical patent/JP3187790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0821Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning rooms and test sites therefor, e.g. anechoic chambers, open field sites or TEM cells
    • G01R29/0828TEM-cells

Abstract

PROBLEM TO BE SOLVED: To provide a linear coupling transmission line cell which eliminates multiple reflection and widens used frequency zone by generating frequency window with large Q. SOLUTION: A line cell has external conductors 4, 5 and 6 provided with a taper part coupled in one on both sides center, connector means 10, 11, 12 and 13, internal conductor, internal conductor support means 17 and 18, and an open/close means where an electromagnetic wave shield window is formed. The internal conductor is placed in internal space so as to be isolated from the external conductors 4, 5 and 6 and constituted of an upper side first internal conductor plate 7 positioning in line with the connector means 10 and 12 and a lower side second internal conductor plate 8 positioning in line with the connectors 11 and 13 and forming a parallel plane facing to the upper first internal conductor plate 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結合伝送線路(Co
upled Transmission Line)の内部で相互反対方向の電
力を伝送する時、同位相で出会う地点では低インピーダ
ンス電磁波(磁場)を発生させ、180°の位相差をも
つ地点では高インピーダンス電磁波(電気場)を発生さ
せる特性を用いて、電磁波耐性(EMS:Electromagne
tic Susceptibility)及び電磁波障害(EMI:Electr
omagnetic Interference)測定、電磁界プローブの校
正、無線機器感度測定などの分野で必ず必要な標準電磁
波を発生させるための直線型結合伝送線路セルに関す
る。
The present invention relates to a coupled transmission line (Co).
When transmitting power in opposite directions inside an upled transmission line, low impedance electromagnetic waves (magnetic fields) are generated at points where they meet in phase, and high impedance electromagnetic waves (electric fields) are generated at points with a phase difference of 180 °. Electromagnetic immunity (EMS: Electromagnetic)
Tic Susceptibility and Electromagnetic Interference (EMI: Electr)
The present invention relates to a linear coupled transmission line cell for generating a standard electromagnetic wave that is always required in fields such as omagnetic interference (Magnetic Interference) measurement, electromagnetic field probe calibration, and wireless device sensitivity measurement.

【0002】[0002]

【従来の技術】一般に、TEMセル装置は、クローフォ
ードTEMセル(Crawford TEM cell)、ギガ−ヘルツ
TEMセル(Giga-Hertz TEM cell:GTEMセル)、
トリプルTEMセル(Triple TEM cell:TTEMセ
ル)、ワイヤTEMセル(Wire TEM cell:WTEMセ
ル)、改良型GTEMセル、自動測定用TEMセル、6
端子TEMセルなどいろいろな種類があるが、これは2
種に大別することができる。GTEMセル、WTEMセ
ル、TTEMセル、改良型GTEMセルなどのように一
端側に入出力端子が存在する「一端TEMセル」と、ク
ローフォードTEMセル(一名、対称型TEMセルとも
呼ぶ)、非対称型TEMセル、自動測定用TEMセル、
6端子TEMセルなどのように両端側に入出力端子が存
在する「両端TEMセル」に区分することができる。こ
れらは共に不要電磁波測定、電磁波耐性測定、アンテナ
校正などに活用されるが、前者は遠域場に対する試験の
みが可能であり、後者は遠域場及び近域場の試験に対し
て支援することができるという点で、これらは相違す
る。
2. Description of the Related Art In general, TEM cell devices include a Crawford TEM cell, a Giga-Hertz TEM cell (GTEM cell),
Triple TEM cell (TTEM cell), wire TEM cell (Wire TEM cell: WTEM cell), improved GTEM cell, TEM cell for automatic measurement, 6
There are various types such as terminal TEM cells.
They can be broadly classified into species. "One-end TEM cell" having an input / output terminal at one end like a GTEM cell, WTEM cell, TTEM cell, improved GTEM cell, etc .; Crawford TEM cell (one name, also called symmetric TEM cell); asymmetric Type TEM cell, TEM cell for automatic measurement,
It can be classified as a "double-ended TEM cell" having input / output terminals at both ends, such as a 6-terminal TEM cell. Both of these are used for unnecessary electromagnetic wave measurement, electromagnetic wave immunity measurement, antenna calibration, etc., but the former can only perform tests in the far field, and the latter should support far-field and near-field tests. They differ in that they can be

【0003】なお、前記両端TEMセルはさらに、2種
類に区分可能である。すなわち、クローフォードTEM
セル、非対称型TEMセル、結合伝送線路セルなどのよ
うに垂直分極のみ支援されるTEMセルと、6端子TE
Mセル、自動測定用TEMセル、回転型円筒TEMセル
などのように垂直、水平分極両方とも支援されるTEM
セルとに分けることができる。
[0003] The above-mentioned double-sided TEM cell can be further divided into two types. That is, Crawford TEM
TEM cells that support only vertical polarization, such as cells, asymmetric TEM cells, coupled transmission line cells, etc .;
TEM that supports both vertical and horizontal polarization such as M cell, TEM cell for automatic measurement, rotating cylindrical TEM cell, etc.
Can be divided into cells.

【0004】一般に、垂直分極のみ支援されるTEMセ
ルの一つである結合伝送線路セルは、既存施設に比べて
電磁波均一度が約4倍程度高く、電力有用度は約2倍程
度良い特性をもっている。
[0004] In general, a coupled transmission line cell, which is one of the TEM cells that support only vertical polarization, has approximately four times higher electromagnetic wave uniformity and approximately twice as good power as existing facilities. I have.

【0005】しかし、従来の結合伝送線路セル、例えば
本願出願人の特許第137576号の結合伝送線路セル
は、電磁波均一度が極めて高く、電力有用度に優れてい
るという特性をもっているが、図1に示すように上、下
側内部導体101、102が、被試験体領域201の両
端部から両側の同軸コネクタ接続部に至るまで、両者の
相互間の間隔が段々狭くなる折り曲げられた構造となっ
ているため、小さい角度誤差でも上、下側内部導体10
1、102の終端103位置に対する誤差が大きく、イ
ンピーダンス整合がわずらわしいという問題点を抱えて
いる。
[0005] However, the conventional coupled transmission line cell, for example, the coupled transmission line cell disclosed in Japanese Patent No. 137576 of the present applicant has the characteristics that the electromagnetic wave uniformity is extremely high and the power utility is excellent. As shown in the figure, the upper and lower inner conductors 101 and 102 have a bent structure in which the distance between both ends is gradually narrowed from both ends of the DUT region 201 to the coaxial connector connection portions on both sides. Therefore, even if the angle error is small, the upper and lower inner conductors 10
There is a problem that an error with respect to the position of the terminal 103 of the first and the second 102 is large and impedance matching is troublesome.

【0006】なお、被試験体領域201の両側における
上、下側内部導体101,102が進行波の反射を誘発
するか、外部導体104の壁での反射を誘発するなど多
重点による反射105が発生して、Q(Quality Facto
r)が小さくなる技術的な問題点がある。これは図10
に示すように149MHz〜200MHz中の定在波が
高いため、共振周波数間の周波数窓(frequency windo
w)を活用することができなくて可用周波数帯域が減る
ことになり、上、下側内部導体101、102の折曲部
では角波が発生し、前記角波は被試験体の置かれる領域
に流入して均一場領域(uniform area)における標準電
磁波を歪ませる問題点として作用している一方、携帯電
話人体有害の可否を測定するための電磁界プローブは、
大部分電波の進行方向に対して水平に固定して電界を測
定するために、このような方向に対する校正は必ず行わ
れるべきであり、電磁界プローブにおけるこのような位
置の校正は非常に重要である。
The reflection 105 caused by multiple points such as the upper and lower inner conductors 101 and 102 on both sides of the DUT 201 induces the reflection of a traveling wave or the reflection on the wall of the outer conductor 104. Occurs and Q (Quality Facto
There is a technical problem that r) becomes smaller. This is shown in FIG.
Since the standing wave in the range of 149 MHz to 200 MHz is high as shown in FIG.
w) cannot be used, and the available frequency band is reduced, and angular waves are generated at the bent portions of the upper and lower inner conductors 101 and 102, and the angular waves are generated in an area where the device under test is placed. The electromagnetic field probe for measuring whether a mobile phone is harmful to the human body has been acting as a problem of distorting the standard electromagnetic wave in the uniform field area.
Calibration in such a direction should always be performed in order to measure the electric field while being fixed horizontally with respect to the traveling direction of most radio waves.Calibration of such a position in an electromagnetic field probe is very important. is there.

【0007】電磁波人体影響研究分野で用いられる電磁
界プローブに対する校正は、測定周波数帯域の高い個所
に対する校正が必要であるため、小さい結合伝送線路セ
ルを用いて校正を行っているが、従来の結合伝送線路セ
ルを電磁界プローブ校正分野に利用しようとする場合、
前記外部導体の給電用N型コネクタが近接して密集して
いるので、電波の進行方向に対してプローブが平行に位
置するようにする校正ができないという問題点がある。
[0007] The calibration of the electromagnetic field probe used in the field of research on the effects of electromagnetic waves on the human body requires calibration at a high point in the measurement frequency band. Therefore, the calibration is performed using a small coupled transmission line cell. When trying to use transmission line cells in the field probe calibration field,
Since the power supply N-type connector of the outer conductor is close and dense, there is a problem that calibration cannot be performed so that the probe is positioned parallel to the traveling direction of the radio wave.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる問題
点を解決するためのもので、その目的は結合伝送線路内
の上、下側内部導体を水平的に撓まないように平行に備
えさせ、給電端子を所定の距離だけ離隔して設置するこ
とにより、インピーダンス整合を容易に具現し、多重反
射を無くし、Qの大きい周波数窓が発生するようにして
使用周波数帯域を広めた直線型結合伝送線路セルを提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide upper and lower inner conductors in a coupled transmission line in parallel so as not to bend horizontally. In addition, by installing the power supply terminals at a predetermined distance from each other, impedance matching can be easily realized, multiple reflections can be eliminated, and a frequency window with a large Q can be generated, thereby expanding the frequency band used. It is to provide a transmission line cell.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明は、その内部に被試験体を位置させるための内
部空間が形成され、中央部の両側に一体に結合されるテ
ーパー部と、前記両側テーパー部の終端部を夫々遮断す
るように対向して形成された終わり部が備えられた外部
導体と、前記外部導体の一側終わり部の上下位置に備え
られ、相互間に所定の離隔距離をもつように配置された
第1及び第2コネクタ接続手段と、前記外部導体の他側
終わり部の上下位置に備えられ、相互間に所定の離隔距
離をもつように配置された第3及び第4コネクタ接続手
段と、前記外部導体から離隔するようにその内部空間に
備えられ、前記第1及び第3コネクタ接続手段と一直線
上に位置する上側導体板と、前記第2及び第4コネクタ
接続手段と一直線上に位置しながら、前記上側導体板と
対向する平行面を成す下側導体板からなる内部導体と、
前記内部導体を前記外部導体の内側に固定させるための
内部導体支持手段と、前記中央部外部導体の一側面で開
閉可能に備えられ、被試験体の状態を観察するための所
定の大きさの電磁波遮蔽窓付き開閉手段とを含む直線型
結合伝送線路セルを提供する。
In order to achieve the above object, the present invention provides an internal space for locating a device under test, and a tapered portion integrally connected to both sides of a central portion. An outer conductor provided with end portions formed to face each other so as to block the end portions of the tapered portions on both sides, and an outer conductor provided at an upper and lower position of one end portion of the outer conductor, a predetermined distance therebetween. First and second connector connection means arranged to have a separation distance, and third and third connector connection means provided at upper and lower positions of the other end of the outer conductor and arranged to have a predetermined separation distance therebetween. And an upper conductor plate provided in an internal space of the connector so as to be separated from the external conductor and positioned in line with the first and third connector connection means, and the second and fourth connectors. Straight line with connecting means An inner conductor consisting of lower conductor plate while located, forming the upper conductor plate parallel surface opposed to,
An inner conductor supporting means for fixing the inner conductor to the inside of the outer conductor; and a predetermined size for observing the state of the device under test, which is provided to be openable and closable on one side surface of the central outer conductor. The present invention provides a linear coupled transmission line cell including an opening / closing means having an electromagnetic wave shielding window.

【0010】[0010]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0011】本発明による直線型結合伝送線路セルはQ
の大きい共振が出現するようにしてより優れた広帯域特
性をもたせ、電磁波進行方向の垂直成分に対する電磁界
プローブの校正ができるように具現したもので、本発明
では図2〜図5に示すように、被試験体の載せられる被
試験体領域部1と、同軸ケーブルコネクタと外部本体を
連結するための同軸コネクタ接続部3と、前記被試験体
領域部1と同軸コネクタ接続部3を連結するテーパー領
域部2とに区分される。
The linear coupled transmission line cell according to the present invention has Q
The present invention is embodied in such a manner that a large resonance is exhibited to give a better broadband characteristic, and that the electromagnetic field probe can be calibrated for a vertical component in the traveling direction of the electromagnetic wave. In the present invention, as shown in FIGS. A test object region 1 on which a test object is mounted, a coaxial connector connection portion 3 for connecting a coaxial cable connector to an external main body, and a taper connecting the test object region 1 and the coaxial connector connection portion 3 And an area 2.

【0012】ここで、前記被試験体領域部1は、内部空
間を有する中心外部導体4と、第1内部導体7及び第2
内部導体8とを有する。第1及び第2内部導体は、それ
ぞれ、平面形状は、その幅が両端部で中心方向に向かっ
て狭まった形状であり、正面形状は直線状である。これ
ら第1内部導体7及び第2内部導体8が、前記中心外部
導体4の内部で上下平行に設置された構造を取ってい
る。
Here, the test object region 1 includes a center outer conductor 4 having an inner space, a first inner conductor 7 and a second
And an internal conductor 8. Each of the first and second inner conductors has a planar shape in which the width is narrowed toward the center at both ends, and the front shape is linear. The first internal conductor 7 and the second internal conductor 8 have a structure in which they are installed vertically inside the center external conductor 4.

【0013】なお、前記被試験体領域部1の中心外部導
体4は、その一側面には被試験体の状態を観察するため
の遮蔽窓16付きのドア15が装着され、且つ底面には
胴体全体を支え、移動自在にするため輪が装着されてい
る支え台14が備えられる。ここで、前記遮蔽窓は、ガ
ラス、プラスチックのような透明物質に薄く金または銀
などでコーティング処理するか、或いは細い金属網のワ
イヤメッシュなどを用いて電磁波が遮蔽されるように構
成する。
The center outer conductor 4 of the test object region 1 has a door 15 with a shielding window 16 for observing the state of the test object on one side surface, and a body 15 on the bottom surface. There is provided a support base 14 on which wheels are mounted so as to support the whole and to make it movable. Here, the shielding window may be formed by coating a transparent material such as glass or plastic with a thin coating of gold or silver, or by using a thin metal mesh wire mesh to shield electromagnetic waves.

【0014】前記第1内部導体7は、中心外部導体4の
内部上面に懸架されるように第1支持台17によって支
持され、前記第2内部導体8は中心外部導体4の内部底
面から直立した第2支持台18によって支持される。
The first inner conductor 7 is supported by a first support 17 so as to be suspended on the inner upper surface of the center outer conductor 4, and the second inner conductor 8 stands upright from the inner bottom surface of the center outer conductor 4. It is supported by the second support base 18.

【0015】前記同軸コネクタ接続部3は、第1及び第
2内部導体7、8の両端のそれぞれに給電するためのコ
ネクタ10〜13と、前記それぞれのコネクタを支持し
外部本体と連結するための第1外部導体6が備えられ
る。この時、前記両側第1外部導体6の上下面に2つず
つ所定の距離だけ離隔したまま第1乃至第4コネクタ1
0、11、12、13が装着された構造を取っており、
前記テーパー領域部2は被試験体領域部1の中心外部導
体4と前記同軸コネクタ接続部3の第1外部導体6を所
定の勾配で連結するための第2外部導体5が備えられ
る。
The coaxial connector connecting portion 3 includes connectors 10 to 13 for supplying power to both ends of the first and second inner conductors 7 and 8, and a connector for supporting the respective connectors and connecting them to an external body. A first outer conductor 6 is provided. At this time, the first to fourth connectors 1 are separated from each other by a predetermined distance on the upper and lower surfaces of the first outer conductors 6 on both sides, respectively.
It has a structure with 0, 11, 12, and 13 attached,
The tapered region 2 is provided with a second external conductor 5 for connecting the central external conductor 4 of the device under test region 1 and the first external conductor 6 of the coaxial connector connection portion 3 at a predetermined gradient.

【0016】従って、図3の結合伝送線路セルの正断面
図に示すように、前記第1内部導体7は、左側端第1コ
ネクタ10及び右側端第3コネクタ12と水平的に一直
線上に位置しながら連結され、且つ前記第2内部導体8
も同様に、第2コネクタ11及び第4コネクタ13と一
直線上に位置しながら連結される。
Therefore, as shown in the front sectional view of the coupled transmission line cell in FIG. 3, the first inner conductor 7 is horizontally aligned with the left end first connector 10 and the right end third connector 12. And the second inner conductor 8
Similarly, the second connector 11 and the fourth connector 13 are connected while being located in a straight line.

【0017】一方、このような被試験体領域部1では、
被試験体の位置する均一場領域、即ち内部導体と外部導
体との間の1/3中心領域(国際規格であるIEC10
00−4−3、IEC:International Electrotechnic
al Commission)を最大限確保して、多様な被試験体に
対する電磁波障害及び耐性などの測定を可能にし、均一
場領域での良質の標準電磁波発生を可能とするために均
一度(field uniformity)を提供する。
On the other hand, in such a test object region 1,
The uniform field region where the DUT is located, that is, the 1/3 center region between the inner conductor and the outer conductor (IEC10 which is an international standard)
00-4-3, IEC: International Electrotechnic
al Commission) as much as possible, enabling measurement of electromagnetic interference and immunity to various test objects, and field uniformity to enable the generation of high-quality standard electromagnetic waves in a uniform field region. provide.

【0018】前記均一場領域における均一度は、従来の
TEMセルよりも良い特性をもつ。なぜなら、従来のT
EMセルの場合、内部電磁界分布は両側第1外部導体6
と内部導体との間の電位差によって形成される電磁場に
よる影響で均一度が崩れるが、本発明の構造上内部導体
が上下平行に置かれ両端から電圧が同時に給電されるこ
とにより、両側外部導体側に向かう電界及びこのような
電界の垂直方向に形成される磁界成分が相殺されるから
である。
The uniformity in the uniform field region has better characteristics than the conventional TEM cell. Because the conventional T
In the case of an EM cell, the internal electromagnetic field distribution is based on the first outer conductor 6 on both sides.
The uniformity is destroyed by the influence of the electromagnetic field formed by the potential difference between the inner conductor and the inner conductor. However, the inner conductor is placed vertically in parallel with the structure of the present invention, and the voltage is simultaneously supplied from both ends. And the magnetic field component formed in the vertical direction of such an electric field are cancelled.

【0019】従って、電磁波障害及び電磁波耐性などの
測定や、均一場領域での良質の標準電磁波発生を可能に
するため最大均一度(field uniformity)を提供しなけ
ればならないという条件を満足させるには、前記第1及
び第2内部導体7、8を中心外部導体4の上下壁面に近
く設置して均一場領域を広めることができるが、それだ
け第1外部導体6の側壁に近くなり、これは前記第1外
部導体6の壁面で電磁波が遺棄されて均一度を崩すの
で、電磁波の均一度が悪くなるという性質がある。
Therefore, in order to satisfy the conditions that the maximum uniformity (field uniformity) must be provided to enable measurement of electromagnetic wave interference and electromagnetic wave immunity, etc., and the generation of high-quality standard electromagnetic waves in a uniform field region. The first and second inner conductors 7 and 8 can be installed close to the upper and lower wall surfaces of the center outer conductor 4 to spread the uniform field area, but closer to the side wall of the first outer conductor 6, which is Since the electromagnetic wave is abandoned on the wall surface of the first outer conductor 6 to break the uniformity, the uniformity of the electromagnetic wave is deteriorated.

【0020】前記中心外部導体4の横及び縦長さが定め
られる時、均一場領域の均一度(CISPR24では電
界が6dB偏差以内に在るべきと規定しており、IEC
1000−4−3では占有領域比が75%以上を確保し
なければ電磁波耐性試験施設と認めていない)を満足す
る範囲内にできる限り前記第1及び第2内部導体7、8
間の間隔を広くしながらインピーダンス整合が行われる
ように構造を設定する必要がある。
When the horizontal and vertical lengths of the central outer conductor 4 are determined, the uniformity of the uniform field region (CISPR24 specifies that the electric field should be within 6 dB deviation, and IEC
In the case of 1000-4-3, the first and second inner conductors 7 and 8 are as far as possible within a range satisfying the requirement that the occupied area ratio does not secure 75% or more.
It is necessary to set the structure so that impedance matching is performed while widening the space between them.

【0021】本実施の形態では上述の点を考慮して、図
5に示すように前記被試験体領域部1の第1及び第2内
部導体7、8の幅を第1外部導体6の側壁電磁波が遺棄
されない限度内で中心外部導体4の内壁上下面に近接し
て設置することにより、より広い均一場領域を確保でき
るようにした構造を取っている。
In the present embodiment, in consideration of the above points, as shown in FIG. 5, the width of the first and second inner conductors 7 and 8 of the region under test 1 is changed to the side wall of the first outer conductor 6. The structure is such that a wider uniform field region can be secured by installing the inner outer conductor 4 close to the upper and lower surfaces of the inner wall within a limit where the electromagnetic waves are not abandoned.

【0022】また、前記第1及び第2内部導体7、8は
共に一般同軸ケーブルの特性インピーダンスである50
Ωに整合しなければならないので、第1及び第2内部導
体7、8の位置が固定されると、それらの幅も決定され
なければならず、且つ給電方式によっても50Ωの特性
インピーダンスをもつ構造に変更されなければならな
い。即ち、EMI/EMS用に制作するモデルの場合、
精巧な制作をするために、前記第1及び第2内部導体
7、8は、同一大きさの入力電圧及び180°位相差を
もつように給電する方式である奇数モード(odd mode)
給電にして、特性インピーダンスZ0o整合構造を決定す
るのが好ましい。
The first and second inner conductors 7, 8 are both the characteristic impedance of a general coaxial cable.
Since the positions of the first and second inner conductors 7 and 8 are fixed, the width of the first and second inner conductors 7 and 8 must also be determined. Must be changed to That is, in the case of a model produced for EMI / EMS,
The first and second inner conductors 7 and 8 are configured to supply power so as to have the same magnitude of input voltage and 180 ° phase difference in order to produce a sophisticated operation.
It is preferable to determine the characteristic impedance Z0o matching structure by supplying power.

【0023】前記被試験体領域部1において第1内部導
体7と第2内部導体8との位相差が180 °で電圧が
同一であれば、これらはそれぞれ被試験体領域の中心で
大きさが同一であり且つ相互反対方向の磁界を形成して
相殺される反面、電波の進行方向が相互反対方向となる
ように給電するので、電界は大きさが同一で方向も互い
に同一であって2倍の値をもつ。
If the first internal conductor 7 and the second internal conductor 8 have a phase difference of 180 ° and the same voltage in the test object region 1, they have a magnitude at the center of the test object region. Although they are the same and form magnetic fields in mutually opposite directions, they cancel each other. On the other hand, electric power is supplied so that the traveling directions of radio waves are opposite to each other. Has the value of

【0024】この時、一側端の電圧を調節すると、高い
電界、低い磁界をもつ任意の電波インピーダンス(37
7Ω以上)具現が可能である。たとえば、本発明では前
記第1及び第2内部導体7、8のインピーダンス整合時
に、一方の第1外部導体6に位置した第1及び第2コネ
クタ10、11または第3及び第4コネクタ12、13
に対して、反対位相としての奇数モード給電を行う時、
形成される特性インピーダンスが、連結しようとする第
3及び第4コネクタ12、13または第1及び第2コネ
クタ10、11の特性インピーダンスを備えるように具
現した。
At this time, if the voltage at one end is adjusted, any radio wave impedance (37
(7Ω or more) can be realized. For example, in the present invention, at the time of impedance matching of the first and second inner conductors 7 and 8, the first and second connectors 10, 11 or the third and fourth connectors 12, 13 located on one of the first outer conductors 6 are provided.
In contrast, when feeding odd mode power as the opposite phase,
The formed characteristic impedance has the characteristic impedance of the third and fourth connectors 12 and 13 or the first and second connectors 10 and 11 to be connected.

【0025】また、給電端子としての前記第1乃至第4
コネクタ10、11、12、13における反射を最小化
させるために、いずれか一つの端子のみ給電し、残りは
すべて終端させる一端子給電方式として特性インピーダ
ンスZ0整合構造を決定するのが好ましい。
Also, the first to fourth power supply terminals
To minimize reflections at the connector 10, 11, 12, 13, and feeding only one of the terminals, it is preferable to determine the characteristic impedance Z 0 matching structure as one terminal feeding system for all the remaining termination.

【0026】前記被試験体領域部1で第1内部導体7と
第2内部導体8は、それぞれ外部導体との位相差が同位
相で電圧が同一であれば、これはそれぞれ被試験体領域
の中心で同一大きさで相互反対方向の電界を形成させて
相殺される反面、電波の進行方向が相互反対方向となる
ように給電するので、磁界は大きさが同一で方向も相互
同一であって2倍の値をもつ。
If the first internal conductor 7 and the second internal conductor 8 have the same phase difference with the outer conductor and the same voltage in the DUT region 1, respectively, Electric fields are formed at the center of the same magnitude and opposite to each other. It has twice the value.

【0027】この時、一側端の電圧を調節すると、低い
電界、高い磁界をもつ任意の電波インピーダンス(37
7Ω以下)具現が可能である。即ち、入力電圧の大きさ
が同一で同位相差をもつように給電する方式である偶数
モード給電にして決定される特定インピーダンスをZ0e
とする場合、常時Z0=√(Z0o0e)の関係が成立す
るので、前記特性インピーダンスZ0が50Ωとなるよ
うに内部構造とするのが好ましい。
At this time, if the voltage at one end is adjusted, any radio wave impedance (37
(7Ω or less) is possible. That is, the specific impedance determined as the even mode power supply, which is a method of supplying power so that the input voltage has the same magnitude and the same phase difference, is Z 0e
In this case, since the relationship of Z 0 = √ (Z 0o Z 0e ) always holds, the internal structure is preferably set so that the characteristic impedance Z 0 is 50Ω.

【0028】第1内部導体7と第2内部導体8間の位相
差が180゜であり且つ電圧の大きさが同一である場合
(奇数モード給電)、形成される特性インピーダンスを
0oとする。そして、第1内部導体7と第2内部導体8
間の位相差が同位相であり且つ電圧の大きさが同一であ
る場合(偶数モード給電)、形成される特性インピーダ
ンスZ0eとする。本発明は、これら特性インピーダンス
0o、Z0eの幾何平均値Z0=√(Z0o0e)が、両側
の外部導体に付いているコネクタ10、11、12、1
3の特性インピーダンス(通常50Ω)と同じ値を持つ
ように具現した。
When the phase difference between the first inner conductor 7 and the second inner conductor 8 is 180 ° and the voltages are the same (odd mode power supply), the characteristic impedance to be formed is Z 0o . Then, the first inner conductor 7 and the second inner conductor 8
When the phase difference between them is the same and the magnitude of the voltage is the same (even mode power supply), the characteristic impedance is defined as Z 0e . According to the present invention, the geometrical average value Z 0 = √ (Z 0o Z 0e ) of these characteristic impedances Z 0o and Z 0e is calculated based on the values of the connectors 10, 11, 12, and 1 attached to the outer conductors on both sides.
3 was implemented to have the same value as the characteristic impedance (normally 50Ω).

【0029】前記同軸コネクタ接続部3は、第1乃至第
4コネクタ10、11、12、13と第1外部導体6の
他に、一端は前記第1乃至第4コネクタ10、11、1
2、13のそれぞれに連結され、他端は第1及び第2内
部導体7、8の端部に連結される第3内部導体9を備え
る。前記第3内部導体9の内部には、第1及び第2内部
導体7、8を固定し得るように誘電率の低いテフロンの
ような非伝導性誘電体21が充たされている。これらの
構造は、すべてインピーダンス整合が保たれるように設
計されるべきである。
The coaxial connector connection section 3 has one end in addition to the first to fourth connectors 10, 11, 12, 13 and the first external conductor 6, and one end at the first to fourth connectors 10, 11, 1, 1.
2 and 13 and a third inner conductor 9 connected at the other end to ends of the first and second inner conductors 7 and 8. The inside of the third internal conductor 9 is filled with a non-conductive dielectric 21 such as Teflon having a low dielectric constant so that the first and second internal conductors 7 and 8 can be fixed. All of these structures should be designed so that impedance matching is maintained.

【0030】また、前記テーパー領域部2は、被試験体
領域部1の大きさを保つためにテーパーを有する領域
で、その断面形状は被試験体領域部1と同様であり、前
記同軸コネクタ接続部3側へ行けば行くほど段々窄まる
テーパー構造をもつ。
The tapered region 2 is a region having a taper in order to maintain the size of the device region 1 under test. The cross-sectional shape is the same as that of the device region 1. It has a tapered structure that becomes gradually narrower as it goes to the part 3 side.

【0031】このようなテーパー構造は、被試験体領域
部1の構造と共に可用周波数と非常に密接な関係をもっ
ており、前記テーパー領域部2の大きさ及び長さが小さ
いほど、被試験体の空間は小さくなるが、加用周波数の
範囲は広くなる。従って、このようなテーパー領域では
適切な大きさを保つと共に有効長さを短くすべきであ
る。
Such a tapered structure has a very close relationship with the usable frequency together with the structure of the DUT region 1, and the smaller the size and the length of the tapered region 2, the smaller the space of the DUT. Becomes smaller, but the range of applied frequencies becomes wider. Therefore, in such a tapered region, an appropriate size should be maintained and the effective length should be reduced.

【0032】一方、前記テーパー長さが長くなると、有
効長さが増加して共振周波数が低くなるので、前記テー
パー領域部2はできる限り電磁波歪みの無い範疇内で短
く維持すべきである。
On the other hand, if the taper length increases, the effective length increases and the resonance frequency decreases. Therefore, the taper region 2 should be kept as short as possible without causing electromagnetic wave distortion.

【0033】本実施の形態では許容限度内でインピーダ
ンスマッチングが最も適切に行われるように、同軸コネ
クタ接続部3に連結されるテーパー領域部2の最小幅と
被試験体領域部1に連結されるテーパー領域部2の最大
幅との傾きが45°となるようにした構造を取ってい
る。前述した被試験体領域部1、テーパー領域部2、同
軸コネクタ接続部3は、組立て式で、分離・制作ができ
るように螺旋によって結合される。
In this embodiment, the tapered region 2 connected to the coaxial connector connecting portion 3 and the test object region 1 are connected to each other so that impedance matching can be performed most appropriately within an allowable limit. The taper region 2 has a structure in which the inclination with respect to the maximum width is 45 °. The test object region 1, the tapered region 2, and the coaxial connector connection portion 3 are assembled and connected by a spiral so that they can be separated and manufactured.

【0034】一方、本発明の他の実施の形態では、図6
〜図9に示すように、電磁界プローブを校正し得るよう
にするための直線型結合伝送線路セル構造を提示してい
る。本実施の形態の構成は、図示したように前述した図
2〜図5の実施の形態の構成と同様の構成であるが、前
記同軸コネクタ接続部3の一方の第1外部導体6の中央
部から中心外部導体4側に貫通し、電磁界プローブが進
入可能な大きさの第1プローブ孔19aを形成して、電
波が進む方向に対して電磁界プローブが水平に置かれる
位置に対する校正ができるようにしている。
On the other hand, in another embodiment of the present invention, FIG.
FIG. 9 to FIG. 9 present a linear coupled transmission line cell structure for calibrating an electromagnetic field probe. The configuration of the present embodiment is the same as the configuration of the above-described embodiment of FIGS. 2 to 5 as illustrated, but the central portion of one of the first outer conductors 6 of the coaxial connector connection portion 3 is shown. The first probe hole 19a penetrates through to the center outer conductor 4 and is large enough to allow the electromagnetic field probe to enter, so that the position where the electromagnetic field probe is placed horizontally with respect to the direction in which radio waves travel can be calibrated. Like that.

【0035】この時、前記第1孔19aは電磁界プロー
ブ及び内部被測定体の観察を容易にするため半径に比べ
て長さが長い形の中空管19に連結されている。また、
前記第1プローブ孔19aに対して垂直方向に位置する
ように、前記被試験体領域部1の中心外部導体4の一面
に装着され、その中央部に第2孔20aが貫通するよう
に形成されたドア20が備えられている。従って、本実
施の形態では全ての方向に対する電磁界プローブ校正が
できるものである。
At this time, the first hole 19a is connected to the hollow tube 19 whose length is longer than the radius in order to facilitate observation of the electromagnetic field probe and the internal measurement object. Also,
It is mounted on one surface of the central outer conductor 4 of the DUT region 1 so as to be located in a direction perpendicular to the first probe hole 19a, and a second hole 20a is formed at the center thereof so as to penetrate. Door 20 is provided. Therefore, in this embodiment, the electromagnetic field probe can be calibrated in all directions.

【0036】ここで、前記第1及び第2プローブ孔19
a、20aは、それらの半径を孔の深さより短く保もた
せ、導波管の原理に基づいた電磁波漏洩を最小化してい
る。また、内部における前記第1及び第2プローブ孔1
9a、20aの位置は、電磁界が最少値を保つ地域で、
電磁界プローブ試験中に電磁波漏洩がほとんど発生しな
い位置である。しかも、結合伝送線路セルは、内部に第
1及び第2内部導体7、8が2つ位置することにより、
第1遮断周波数(TE10モード)の大きさを既存の対称
型及び非対称型TEMセルに比べて約1.4倍高い帯域
で発生するので、既存の電磁界プローブ校正用TEMセ
ルよりも高い帯域まで使用可能である。
Here, the first and second probe holes 19 are formed.
a, 20a keep their radii less than the depth of the hole and minimize electromagnetic wave leakage based on the waveguide principle. Also, the first and second probe holes 1 inside
Positions 9a and 20a are areas where the electromagnetic field keeps the minimum value.
This is a position where electromagnetic wave leakage hardly occurs during the electromagnetic field probe test. Moreover, the coupled transmission line cell has two first and second inner conductors 7 and 8 located inside,
Since the magnitude of the first cutoff frequency (TE 10 mode) is generated in a band approximately 1.4 times higher than that of the existing symmetric and asymmetric TEM cells, the band is higher than that of the existing TEM cell for electromagnetic field probe calibration. Can be used up to.

【0037】本発明で説明したように電磁波障害及び電
磁波耐性の測定、そしてプローブ校正などの試験のため
には、まず被試験体領域部1で各周波数の帯域より高い
均一度を保つことが非常に重要である。
As described in the present invention, in order to measure electromagnetic interference and electromagnetic wave immunity, and to perform tests such as probe calibration, it is very important to maintain uniformity higher than each frequency band in the test object region 1 first. Is important.

【0038】既存の結合伝送線路セルと、本発明による
直線型結合伝送線路セルに対して直接制作されたモデル
に対して測定された定在波比(VSWR)及び均一度評
価結果を図11〜図13に示した。
The standing wave ratio (VSWR) and uniformity evaluation results measured for the existing coupled transmission line cell and the model directly produced for the linear coupled transmission line cell according to the present invention are shown in FIGS. As shown in FIG.

【0039】図10に示した従来の結合伝送線路セル
は、149MHz〜200MHz間の周波数窓で定在波
比が高く、インピーダンス整合が悪いという特性を示し
ている。これは本明細書の従来の技術の欄で述べたよう
にテーパー領域端の多重点反射で生じる現象を示してい
る。図11に示した本発明による直線型結合伝送線路セ
ルは、198MHz〜255MHzの間の周波数窓で、
定在波比が低い値を保っていることを示している。これ
はインピーダンス整合が正しく行われていることを示す
ものである。よって、前記帯域は、共振の現れる周波数
のみを除いた帯域で電磁波障害及び電磁波耐性の測定が
可能である。
The conventional coupled transmission line cell shown in FIG. 10 has such characteristics that the standing wave ratio is high and the impedance matching is poor in a frequency window between 149 MHz and 200 MHz. This indicates a phenomenon caused by multiple point reflection at the end of the tapered region as described in the section of the prior art in this specification. The linear coupled transmission line cell according to the present invention shown in FIG. 11 has a frequency window between 198 MHz and 255 MHz,
This indicates that the standing wave ratio has a low value. This indicates that the impedance matching is correctly performed. Therefore, in the above-mentioned band, it is possible to measure the electromagnetic wave interference and the electromagnetic wave resistance in a band excluding only the frequency at which resonance appears.

【0040】また、図12に示した従来の結合伝送線路
セルに比べて、図13に示した本発明の直線型結合伝送
線路セルは、電界均一度が非常に改善されたことがわか
る。図12及び図13の測定地点は、国際規格のCIS
PR、ENで要求する均一場領域としての1/3中心領
域内で測定された結果であり、従来の結合伝送線路セル
は9点測定法で、本発明は12点測定法で測定した結果
を示す。
Further, it can be seen that the linear coupling transmission line cell of the present invention shown in FIG. 13 has much improved electric field uniformity as compared with the conventional coupling transmission line cell shown in FIG. The measurement points in FIGS. 12 and 13 are based on the international standard CIS.
This is a result measured in a 1/3 center region as a uniform field region required by PR and EN. The conventional coupled transmission line cell uses a 9-point measurement method, and the present invention uses a 12-point measurement method. Show.

【0041】なお、以上説明した本発明は、前述した実
施の形態及び添付図面によって限定されるものではな
く、本発明の技術的思想を外れない範囲内で種々の置
換、変形及び変更が可能であることは本発明の属する技
術分野で通常の知識を有する者に明らかなことである。
The present invention described above is not limited by the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made without departing from the technical idea of the present invention. Some will be apparent to those of ordinary skill in the art to which this invention pertains.

【0042】上述したように、本発明によれば、第1及
び第2内部導体を直線型で構成して、従来の結合伝送線
路セルの内部導体の折曲げによって生じる角波による電
磁波歪み現象を除去することにより、電磁波の均一度を
高くし、精密な電磁波耐性及び電磁波障害の測定、そし
て電磁界プローブ校正の測定を可能にする効果を奏す
る。なお、前記第1及び第2内部導体の水平的撓みがな
いので、制作が容易でセルの精密制作が可能であり、共
振周波数の間の周波数窓(frequency window)を活用
することができて、既存の施設に比べて広帯域周波数特
性を有する。また、本発明の直線型結合伝送線路セル
は、内部導体を2つ配置することにより、第1遮断周波
数(TE10モード)の大きさを既存のTEMセルに比べ
て約1.4倍高い帯域で発生するので、これを活用して
電磁界プローブ校正用として制作する場合、既存同一大
きさの電磁界プローブ校正用TEMセルよりも高い帯域
まで使用できる効果を奏する。
As described above, according to the present invention, the first and second inner conductors are formed in a linear shape, and the electromagnetic wave distortion phenomenon caused by the angular wave caused by the bending of the inner conductor of the conventional coupled transmission line cell is reduced. By removing, the effect of increasing the uniformity of the electromagnetic wave, enabling accurate measurement of electromagnetic wave resistance and electromagnetic wave interference, and measurement of electromagnetic field probe calibration is achieved. In addition, since the first and second inner conductors do not have horizontal bending, they can be manufactured easily and can be manufactured precisely, and a frequency window between resonance frequencies can be utilized. Has broadband frequency characteristics compared to existing facilities. In addition, the linear coupling transmission line cell of the present invention has the first cut-off frequency (TE 10 mode) of about 1.4 times higher than the existing TEM cell by arranging two inner conductors. In the case of utilizing it to produce an electromagnetic field probe calibration, there is an effect that a higher band can be used than an existing electromagnetic probe TEM cell of the same size.

【0043】[0043]

【発明の効果】上述してきたように、本発明では、結合
伝送線路内の上、下側内部導体を水平的に撓まないよう
に平行に備えさせ、給電端子を所定の距離だけ離隔して
設置することにより、インピーダンス整合を容易に具現
し、多重反射を無くし、Qの大きい周波数窓が発生する
ようにして使用周波数帯域を広めた直線型結合伝送線路
セルを提供することができる。
As described above, in the present invention, the upper and lower inner conductors in the coupled transmission line are provided in parallel so as not to bend horizontally, and the power supply terminals are separated by a predetermined distance. By providing such a circuit, it is possible to provide a linear coupling transmission line cell that can easily realize impedance matching, eliminate multiple reflections, generate a frequency window with a large Q, and widen the frequency band used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の技術の結合伝送線路セルの構成を示す概
略的な断面図である。
FIG. 1 is a schematic cross-sectional view showing a configuration of a conventional coupled transmission line cell.

【図2】本発明の一実施の形態によるEMI/EMC測
定用直線型構成を概略的に示す斜視図である。
FIG. 2 is a perspective view schematically showing a linear configuration for EMI / EMC measurement according to an embodiment of the present invention.

【図3】図2の結合伝送線路セルの断面図である。FIG. 3 is a cross-sectional view of the coupled transmission line cell of FIG.

【図4】図3の結合伝送線路セルのA−A’断面図であ
る。
FIG. 4 is a sectional view taken along line AA ′ of the coupled transmission line cell of FIG. 3;

【図5】図4の結合伝送線路セルのB−B’断面図であ
る。
FIG. 5 is a sectional view of the coupled transmission line cell taken along line BB ′ of FIG. 4;

【図6】本発明の別の実施の形態の電磁界プローブ校正
用直線型結合伝送線路セルの構成を示す斜視図である。
FIG. 6 is a perspective view showing a configuration of a linear coupling transmission line cell for electromagnetic field probe calibration according to another embodiment of the present invention.

【図7】図6の結合伝送線路セルの断面図である。FIG. 7 is a cross-sectional view of the coupled transmission line cell of FIG.

【図8】図7の結合伝送線路セルのC−C’断面図であ
る。
FIG. 8 is a cross-sectional view taken along the line CC ′ of the coupled transmission line cell of FIG. 7;

【図9】図7の結合伝送線路セルのD−D’断面図であ
る。
FIG. 9 is a sectional view taken along the line DD ′ of the coupled transmission line cell of FIG. 7;

【図10】従来の技術による結合伝送線路セルの定在波
を示すグラフである。
FIG. 10 is a graph showing a standing wave of a coupled transmission line cell according to the related art.

【図11】本実施の形態によるEMI/EMC測定用直
線型結合伝送線路セルの定在波を示すグラフである。
FIG. 11 is a graph showing standing waves of the EMI / EMC measurement linear coupling transmission line cell according to the present embodiment.

【図12】従来の技術による結合伝送線路セルの各周波
数別均一度の評価結果を示すグラフである。
FIG. 12 is a graph showing the evaluation results of the uniformity of each frequency of the coupled transmission line cell according to the related art.

【図13】本実施の形態によるEMI/EMC測定用直
線型結合伝送線路セルの各周波数別均一度の評価結果を
示すグラフである。
FIG. 13 is a graph showing the evaluation results of the uniformity of each frequency of the linear coupled transmission line cell for EMI / EMC measurement according to the present embodiment.

【符号の説明】[Explanation of symbols]

1 被試験体領域部 2 テーパー領域部 3 同軸コネクタ接続部 4 中心外部導体 5 第2外部導体 6 第1外部導体 7 第1内部導体 8 第2内部導体 9 第3内部導体 10 第1コネクタ 11 第2コネクタ 12 第3コネクタ 13 第4コネクタ 14 支え台 15、20 ドア 16 遮蔽窓 17 第1内部導体支持台 18 第2内部導体支持台 19 中空管 21 誘電体 DESCRIPTION OF SYMBOLS 1 DUT area | region 2 Tapered area | region 3 Coaxial connector connection part 4 Center outer conductor 5 2nd outer conductor 6 1st outer conductor 7 1st inner conductor 8 2nd inner conductor 9 3rd inner conductor 10 1st connector 11th 2 Connector 12 Third Connector 13 Fourth Connector 14 Support 15, 20 Door 16 Shielding Window 17 First Internal Conductor Support 18 Second Internal Conductor Support 19 Hollow Tube 21 Dielectric

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference)

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 その内部に被試験体を位置させるための
内部空間が形成され、かつ、中央部両側に一体に結合さ
れるテーパー部と、前記テーパー部の両側端部をそれぞ
れ遮断するように対向して形成された終わり部とが備え
られた外部導体と、 前記外部導体の一側終わり部の上下位置に備えられ、相
互間に所定の離隔距離をもつように配置された第1及び
第2コネクタ手段と、 前記外部導体の他側終わり部の上下位置に備えられ、相
互間に所定の離隔距離をもつように配置された第3及び
第4コネクタ手段と、 前記外部導体と離隔するようにその内部空間に備えら
れ、前記第1及び第3コネクタ手段と一直線上に位置す
る上側第1内部導体板と、前記第2及び第4コネクタ手
段と一直線上に位置し、かつ、前記上側第1内部導体板
と対向する平行面を成す下側第2内部導体板とからなる
内部導体と、 前記内部導体を前記外部導体の内側に固定させるための
内部導体支持手段と、 前記外部導体の中央部の一側面に開閉可能に備えられ、
前記被試験体の状態を観察するための所定の大きさの電
磁波遮蔽窓が形成された開閉手段と、 を含むことを特徴とする直線型結合伝送線路セル。
An internal space for positioning a device under test is formed therein, and a tapered portion integrally connected to both sides of a central portion and both side ends of the tapered portion are cut off. An outer conductor having an end portion formed opposite to the first end portion, and a first and a second portion provided at upper and lower positions of one end portion of the outer conductor and arranged so as to have a predetermined distance therebetween. 2 connector means, 3rd and 4th connector means provided at the upper and lower positions of the other end of the outer conductor and arranged so as to have a predetermined separation distance therebetween, and to be separated from the outer conductor An upper first internal conductor plate, which is provided in the internal space thereof and is located in line with the first and third connector means, and is located in line with the second and fourth connector means, and 1 Opposed to the internal conductor plate An inner conductor comprising a lower second inner conductor plate forming a parallel surface; an inner conductor supporting means for fixing the inner conductor to the inside of the outer conductor; Prepared for
Opening / closing means having an electromagnetic wave shielding window of a predetermined size for observing a state of the device under test.
【請求項2】 前記外部導体の前記一側終わり部に備え
られ、前記外部導体の内部に連通する中空管をさらに含
むことを特徴とする請求項1記載の直線型結合伝送線路
セル。
2. The linear coupled transmission line cell according to claim 1, further comprising a hollow tube provided at the one end of the outer conductor and communicating with the inside of the outer conductor.
【請求項3】 前記外部導体は、 対向する上・下面及び前・後面が四角筒状を成す中央部
と、 前記中央部の両側にそれぞれ結合され、その両端に行く
ほど対向する面間の間隔が段々狭くなるように形成され
るが、上・下面のテーパーされた角度より前・後面のテ
ーパーされた角度が大きく形成された左右側テーパー部
と、 前記左右側テーパー部の端に備えられた前記左右側終わ
り部とを含むことを特徴とする請求項1または請求項2
記載の直線型結合伝送線路セル。
3. The outer conductor includes a central portion having opposing upper / lower surfaces and front / rear surfaces forming a quadrangular cylindrical shape, and is coupled to both sides of the central portion. Are formed so that the taper angle of the front and rear surfaces is larger than the tapered angle of the upper and lower surfaces, and provided at the ends of the left and right taper portions. 3. The method according to claim 1, further comprising the left and right ends.
A linear coupled transmission line cell as described.
【請求項4】 前記外部導体の内部上下面に直立するよ
うに設置され、前記内部導体を支持する支持手段をさら
に含むことを特徴とする請求項1または請求項2記載の
直線型結合伝送線路セル。
4. The linear coupled transmission line according to claim 1, further comprising a supporting means installed upright on the inner upper and lower surfaces of the outer conductor and supporting the inner conductor. cell.
【請求項5】 前記内部空間の前記第1及び第2内部導
体板の幅は、前記外部導体の側壁で電磁波が遺棄されな
い限度内で、前記外部導体の内壁上下面に近接して設置
されることを特徴とする請求項1または請求項2記載の
直線型結合伝送線路セル。
5. The width of the first and second inner conductor plates in the inner space is set close to upper and lower surfaces of the inner wall of the outer conductor, as long as electromagnetic waves are not discarded on the side wall of the outer conductor. 3. The linear coupled transmission line cell according to claim 1, wherein
【請求項6】 前記内部空間の前記第1及び第2内部導
体板は、前記外部導体の前記一側終わり部に位置する前
記コネクタ手段に対して反対位相をもち、かつ、同一大
きさの印加電圧を給電する時に形成される特性インピー
ダンスが、連結される前記コネクタ手段の特性インピー
ダンスをもつようにしたことを特徴とする請求項1また
は請求項2記載の直線型結合伝送線路セル。
6. The first and second inner conductor plates in the inner space have opposite phases to the connector means located at the one end of the outer conductor, and have the same magnitude. 3. The linear coupled transmission line cell according to claim 1, wherein a characteristic impedance formed when a voltage is supplied has a characteristic impedance of the connected connector means.
【請求項7】 前記外部導体の前記一側終わり部に位置
する前記コネクタ手段に対して反対位相をもち、かつ、
同一大きさの印加電圧を給電する時に形成される特性イ
ンピーダンスをZ0oとし、前記外部導体の前記一側終わ
り部に位置する前記コネクタ手段に対して同位相をも
ち、かつ、同一大きさの印加電圧を給電する時に形成さ
れる特性インピーダンスをZ0eとした場合、幾何平均値
√(Z0o0e)が、前記コネクタ手段の特性インピーダ
ンスと同じ値であることを特徴とする請求項1または請
求項2記載の直線型結合伝送線路セル。
7. An opposite phase to said connector means located at said one end of said outer conductor, and
Let Z 0o be the characteristic impedance formed when supplying the same magnitude of applied voltage, and apply the same magnitude and the same magnitude to the connector means located at the one end of the outer conductor. The characteristic impedance formed when supplying a voltage is represented by Z 0e, and the geometric average value √ (Z 0o Z 0e ) is the same value as the characteristic impedance of the connector means. Item 3. A linear coupled transmission line cell according to Item 2.
【請求項8】 電磁界プローブを校正し得るようにする
ため、前記コネクタ手段の配置された前記外部導体の前
記終わり部の中央部から前記内部空間側に貫通した第1
孔と、前記中央部の前記外部導体の一面に装着され、前
記中央部に貫通する第2孔が形成されたドアとをさらに
含むことを特徴とする請求項1または請求項2記載の直
線型結合伝送線路セル。
8. A first electrode penetrating from the center of the end portion of the outer conductor, on which the connector means is arranged, to the inner space side so that the electromagnetic field probe can be calibrated.
3. The linear type according to claim 1, further comprising a hole, and a door mounted on one surface of the outer conductor in the central portion and having a second hole penetrating the central portion. Coupled transmission line cell.
【請求項9】 前記テーパー部は、前記コネクタ手段に
行くほど段々窄まるテーパー構造をもち、 許容限度内でインピーダンスマッチングが最も適切に行
われるように、前記コネクタ手段に連結される前記テー
パー部の最小幅と前記中央部に連結される前記テーパー
部の最大幅との傾きが、45°となるようにしたことを
特徴とする請求項1または請求項2記載の直線型結合伝
送線路セル。
9. The tapered portion connected to the connector means has a tapered structure that gradually tapers toward the connector means so that impedance matching is performed most appropriately within an allowable limit. 3. The linear coupled transmission line cell according to claim 1, wherein an inclination between a minimum width and a maximum width of the tapered portion connected to the central portion is 45 degrees.
JP18715199A 1998-09-29 1999-07-01 Linear coupled transmission line cell Expired - Fee Related JP3187790B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019980040512A KR100289618B1 (en) 1998-09-29 1998-09-29 Straight Coupled Transmission Line cell
KR98-40512 1998-09-29

Publications (2)

Publication Number Publication Date
JP2000111598A true JP2000111598A (en) 2000-04-21
JP3187790B2 JP3187790B2 (en) 2001-07-11

Family

ID=19552339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18715199A Expired - Fee Related JP3187790B2 (en) 1998-09-29 1999-07-01 Linear coupled transmission line cell

Country Status (2)

Country Link
JP (1) JP3187790B2 (en)
KR (1) KR100289618B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533702A (en) * 2000-05-16 2003-11-11 インスティテュート ナショナル デ レチェルヒ サー レス トランスポーツ エト レウアー セキュリテ(インレッツ) Electromagnetic compatibility test equipment
JP2005061949A (en) * 2003-08-11 2005-03-10 Device Co Ltd Electromagnetic wave measuring camera obscura
JP2010518770A (en) * 2007-02-14 2010-05-27 エアバス・オペレーションズ Tunable antenna for electromagnetic environment compatibility performance test
US9523728B2 (en) 2013-01-11 2016-12-20 Ford Global Technologies, Llc Electromagnetic stripline transmission line structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674089B1 (en) * 2004-12-13 2007-01-24 한국전자통신연구원 Straight dual polarization TEM line
KR102132909B1 (en) * 2013-05-29 2020-07-13 한국전자통신연구원 Standard fields generation cell for emc testing and calibration using slit structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533702A (en) * 2000-05-16 2003-11-11 インスティテュート ナショナル デ レチェルヒ サー レス トランスポーツ エト レウアー セキュリテ(インレッツ) Electromagnetic compatibility test equipment
JP4909483B2 (en) * 2000-05-16 2012-04-04 インスティテュート ナショナル デ レチェルヒ サー レス トランスポーツ エト レウアー セキュリテ(インレッツ) Electromagnetic compatibility test equipment
JP2005061949A (en) * 2003-08-11 2005-03-10 Device Co Ltd Electromagnetic wave measuring camera obscura
JP2010518770A (en) * 2007-02-14 2010-05-27 エアバス・オペレーションズ Tunable antenna for electromagnetic environment compatibility performance test
US9523728B2 (en) 2013-01-11 2016-12-20 Ford Global Technologies, Llc Electromagnetic stripline transmission line structure

Also Published As

Publication number Publication date
KR100289618B1 (en) 2001-05-02
JP3187790B2 (en) 2001-07-11
KR20000021422A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
Meys et al. Measuring the impedance of balanced antennas by an S-parameter method
JP2004069337A (en) Magnetometric sensor, side-opened type transverse electromagnetic cell, and device using them
US6795030B2 (en) Electromagnetic compatibility testing device
JP3187790B2 (en) Linear coupled transmission line cell
Moravek et al. Precise measurement using coaxial-to-microstrip transition through radiation suppression
KR0137576B1 (en) Variable impedance emi generator
Joseph et al. The influence of the measurement probe on the evaluation of electromagnetic fields
US6114860A (en) Rotary coupled transmission line cell
KR100243090B1 (en) Y-transverse electromagnetic cell
US9470731B1 (en) Transverse electromagnetic cell
Sivaraman et al. Three dimensional scanning system for near-field measurements
US8610630B2 (en) 4-port strip line cell for generating standard near fields
CN115436717A (en) Cable sheath high-frequency pulse electromagnetic shielding effectiveness testing device
US5793215A (en) 6 port TEM cell and radiation field immunity measuring system using the same
Sorensen et al. Design of TEM transmission line for probe calibration up to 40 GHz
Garn et al. Primary standards for antenna factor calibration in the frequency range of (30 to 1000) MHz
KR0144869B1 (en) 3p-tem cell
Coenen Shielding Effectiveness Measurements DC to 40 GHz, draft IEEE 2855
KR100674089B1 (en) Straight dual polarization TEM line
KR20040089193A (en) Broad Band Coupled Transmission Line Cell
JP4044983B2 (en) EMC testing equipment for electrical equipment
JPH07191122A (en) Loop probe calibrating method and its calibrating jig
KR950014756B1 (en) Improved giga tem cell
KR100238445B1 (en) E-field and h-field generation system with 8p-vwig
KR100579126B1 (en) Broad band magnetic field generator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010403

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees