JP2000110046A - Woven fabric - Google Patents
Woven fabricInfo
- Publication number
- JP2000110046A JP2000110046A JP10277104A JP27710498A JP2000110046A JP 2000110046 A JP2000110046 A JP 2000110046A JP 10277104 A JP10277104 A JP 10277104A JP 27710498 A JP27710498 A JP 27710498A JP 2000110046 A JP2000110046 A JP 2000110046A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fibers
- woven fabric
- reinforcing
- tracer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002759 woven fabric Substances 0.000 title claims abstract description 25
- 239000000835 fiber Substances 0.000 claims abstract description 44
- 239000000700 radioactive tracer Substances 0.000 claims abstract description 21
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 19
- 239000004917 carbon fiber Substances 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 12
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 7
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims abstract description 5
- 239000011151 fibre-reinforced plastic Substances 0.000 claims abstract description 5
- 239000002657 fibrous material Substances 0.000 claims abstract description 3
- 239000004744 fabric Substances 0.000 claims description 6
- -1 polyparaphenylene benzobisoxazole Polymers 0.000 claims description 6
- 229920005989 resin Polymers 0.000 abstract description 10
- 239000011347 resin Substances 0.000 abstract description 10
- 239000011159 matrix material Substances 0.000 abstract description 5
- 238000009941 weaving Methods 0.000 abstract 2
- ICXAPFWGVRTEKV-UHFFFAOYSA-N 2-[4-(1,3-benzoxazol-2-yl)phenyl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C3=CC=C(C=C3)C=3OC4=CC=CC=C4N=3)=NC2=C1 ICXAPFWGVRTEKV-UHFFFAOYSA-N 0.000 abstract 1
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 230000003014 reinforcing effect Effects 0.000 abstract 1
- 229920006231 aramid fiber Polymers 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 4
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920003192 poly(bis maleimide) Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 229920003369 Kevlar® 49 Polymers 0.000 description 1
- XKUYGKRBEAAGIZ-UHFFFAOYSA-N O=C(C(C=C1)=CC=C1OC(C=CC=C1C2=CC=CC=C2)=C1F)C(C=C1)=CC=C1OC(C=CC=C1C2=CC=CC=C2)=C1F Chemical compound O=C(C(C=C1)=CC=C1OC(C=CC=C1C2=CC=CC=C2)=C1F)C(C=C1)=CC=C1OC(C=CC=C1C2=CC=CC=C2)=C1F XKUYGKRBEAAGIZ-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Woven Fabrics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、繊維強化プラスチ
ックを成形する場合に使用する織物に関するものであ
る。更に詳しくは、炭素繊維などを強化繊維とした場合
に、容易に織目ずれを判別することができ、且つ、マト
リックス樹脂の優れた機械的特性を損ねることのない織
物に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a woven fabric used for molding a fiber reinforced plastic. More specifically, the present invention relates to a woven fabric in which, when carbon fiber or the like is used as a reinforcing fiber, misregistration can be easily determined and excellent mechanical properties of a matrix resin are not impaired.
【0002】[0002]
【従来の技術】近年、炭素繊維、芳香族ポリアミド繊維
等を強化繊維として用いた複合材料は、その高い比強
度、比剛性を利用して、航空機等の構造材として多く用
いられてきている。2. Description of the Related Art In recent years, composite materials using carbon fibers, aromatic polyamide fibers, and the like as reinforcing fibers have been widely used as structural materials for aircraft and the like by utilizing their high specific strength and specific rigidity.
【0003】これらの複合材料は、積層成形、レジンイ
ンジェクション、ハンドレイアップ等の成形工程を経て
用いられる場合が多い。これらの成形では、繊維材料と
して、一方向の繊維シートや織物が用いられるが、繊維
の配向性に乱れを生じないことが重要であり、各種の裏
打ち材や目止め材が提案されている。[0003] These composite materials are often used through molding steps such as lamination molding, resin injection, and hand lay-up. In these moldings, a unidirectional fiber sheet or woven fabric is used as a fiber material, but it is important that the orientation of the fibers is not disturbed, and various backing materials and filling materials have been proposed.
【0004】そして、織物の目ずれの有無を確認する手
段として織物の緯糸方向及び/または経糸方向にいわゆ
るトレーサーヤーンを配置することが知られている。It is known that a so-called tracer yarn is arranged in a weft direction and / or a warp direction of a woven fabric as a means for confirming the presence or absence of misalignment of the woven fabric.
【0005】従来、このトレーサーヤーンには、識別容
易なアラミド繊維が用いられる場合が多かった。Heretofore, in many cases, aramid fibers which are easy to identify are used for this tracer yarn.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、この手
法は大きな問題を抱えている。すなわち、アラミド繊維
は、寺西:「スーパー繊維の最近の動向」化学経済、4
月号、58頁(1997)で述べられているように吸水
率が4.5%を超えるので、アラミド繊維をトレーサー
ヤーンとして使用すると、硬化時に水分の影響を受け易
く、硬化不良となり易いマトリックス樹脂系、例えば、
ビスマレイミド樹脂系の繊維強化プラスチックでは機械
的特性を損ねる場合があった。However, this method has a serious problem. In other words, aramid fiber is Teranishi: “Recent trend of super fiber” Chemical economy, 4
Since the water absorption exceeds 4.5%, as described in the Monthly Magazine, p. 58 (1997), when an aramid fiber is used as a tracer yarn, the matrix resin is liable to be affected by moisture at the time of curing and is liable to be cured poorly. System, for example,
Bismaleimide resin-based fiber-reinforced plastics sometimes impair the mechanical properties.
【0007】従って、アラミド繊維をトレーサーヤーン
として使用すると、適用できるマトリックス樹脂の種類
に制限が加えられてしまう。[0007] Therefore, the use of aramid fibers as tracer yarns limits the types of matrix resins that can be applied.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上述の問
題を解決する為、鋭意研究した結果、以下の手法を用い
ることで、容易に織目ずれを判別することができ、か
つ、機械的特性を損なうことのない優れた織物を見出
し、本発明に至った。Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by using the following method, it is possible to easily determine the texture deviation, and The present inventors have found an excellent woven fabric without impairing the mechanical properties, and have reached the present invention.
【0009】即ち、本発明は、その緯糸方向及びまたは
経糸方向に吸水率が2.5%以下の繊維からなるトレー
サーヤーンが配置されていることを特徴とする織物であ
る。更に、具体的には、本発明は次の様態を含む。すな
わち本発明は、 1.強化繊維を緯糸及び経糸とする長尺の織物であっ
て、かつ、その緯糸方向及び/または経糸方向に吸水率
が2.5%以下の繊維からなるトレーサーヤーンが配置
されていることを特徴とする織物。 2.吸水率が2.5%以下の繊維がポリパラフェニレン
ベンゾビスオキサゾ−ル繊維からなることを特徴とする
上記1記載の織物。 3.強化繊維が、炭素繊維である上記1記載の織物。That is, the present invention is a woven fabric characterized in that a tracer yarn composed of fibers having a water absorption of 2.5% or less is arranged in the weft direction and / or the warp direction. More specifically, the present invention includes the following aspects. That is, the present invention provides: A long woven fabric using reinforcing fibers as a weft and a warp, and a tracer yarn composed of fibers having a water absorption of 2.5% or less is arranged in the weft direction and / or the warp direction. Woven fabric. 2. 2. The woven fabric according to the above 1, wherein the fiber having a water absorption of 2.5% or less is made of polyparaphenylene benzobisoxazole fiber. 3. The woven fabric according to claim 1, wherein the reinforcing fibers are carbon fibers.
【0010】[0010]
【発明の実施の形態】本発明の織物に用いられる強化繊
維は、炭素繊維、ガラス繊維、全芳香族ポリエステル繊
維などの無機もしくは有機繊維の単独または2種類以上
の組合せである。例えば、炭素繊維とガラス繊維や全芳
香族ポリエステル繊維とを合糸して織物の緯糸または経
糸としたり、経糸に炭素繊維を使用して、緯糸にガラス
繊維や全芳香族ポリエステル繊維を使用することができ
る。BEST MODE FOR CARRYING OUT THE INVENTION The reinforcing fibers used in the woven fabric of the present invention are inorganic fibers or organic fibers such as carbon fibers, glass fibers and wholly aromatic polyester fibers alone or in combination of two or more. For example, combining a carbon fiber with a glass fiber or a wholly aromatic polyester fiber to make a weft or a warp of a woven fabric, using a carbon fiber for a warp, and using a glass fiber or a wholly aromatic polyester fiber for a weft. Can be.
【0011】繊維の形態としては、長繊維状モノフィラ
メントを束にしたものが使用される。好ましくは炭素繊
維であり、特に好ましくは炭素繊維フィラメントであ
る。As the form of the fiber, a bundle of long fiber monofilaments is used. Preferred are carbon fibers, and particularly preferred are carbon fiber filaments.
【0012】織物の織組織は、特に制限はなく、例え
ば、平織、八枚朱子織、四枚朱子織、綾織等の何れでも
よい。また、いわゆるバイアス織であってもよい。さら
に、特開昭55−30974号公報に記載されているよ
うな実質的に屈曲を有しないいわゆるノンクリンプ織物
であってもよい。The weave structure of the woven fabric is not particularly limited, and may be any of plain weave, eight-sheet satin, four-sheet satin, twill and the like. Further, a so-called bias weave may be used. Further, a so-called non-crimp fabric having substantially no bending as described in JP-A-55-30974 may be used.
【0013】本発明における吸水率が2.5%以下の繊
維からなるトレーサーヤーンは、例えば、ポリパラフェ
ニレンベンゾビスオキサゾ−ル繊維、全芳香族ポリエス
テル繊維等の有機繊維からなるトレーサーヤーンであ
る。トレーサーヤーンはフィラメントヤーンでもスパン
ヤーンでも良い。トレーサーヤーンの太さは、強化繊維
に対しての識別性を損なわない範囲で可及的に細いほう
が好ましい。たとえば、強化繊維材としてフィラメント
数が3、000から12、000本の炭素繊維フィラメ
ント(繊維径7μ、比重1.77)を使用し、トレーサ
ーヤーンとして繊維径6μ、比重1.54の繊維を使用
する場合、フィラメント数が150から1、200本の
フィラメントヤーンを用いるのが好ましい。トレーサー
ヤーンとしてスパンヤーンを用いる場合は(繊維径6
μ、比重1.54の繊維の場合)、綿番手が10番手か
ら50番手のスパンヤーンを用いるのが好ましい。The tracer yarn comprising fibers having a water absorption of 2.5% or less in the present invention is, for example, a tracer yarn comprising organic fibers such as polyparaphenylene benzobisoxazole fibers and wholly aromatic polyester fibers. . The tracer yarn may be a filament yarn or a spun yarn. The thickness of the tracer yarn is preferably as thin as possible without impairing the distinctiveness to the reinforcing fibers. For example, carbon fiber filaments having a filament number of 3,000 to 12,000 (fiber diameter 7 μ, specific gravity 1.77) are used as reinforcing fiber materials, and fibers having a fiber diameter 6 μ and specific gravity 1.54 are used as tracer yarns. In this case, it is preferable to use a filament yarn having 150 to 1,200 filaments. When spun yarn is used as the tracer yarn (fiber diameter 6
In the case of a fiber having a μ and specific gravity of 1.54), it is preferable to use a spun yarn having a cotton count of 10 to 50.
【0014】ポリパラフェニレンベンゾビスオキサゾ−
ル繊維からなるトレーサーヤーンは、難燃性や耐熱性も
良好であるので、特に好ましい。トレーサーヤーンは緯
糸方向及びまたは経糸方向に配置する。配置間隔は、特
に制限されないが、例えば、緯糸方向に50cmから
2.5cmの間隔及び/または経糸方向に25cmから
2.5cmの間隔で配置する。Polyparaphenylene benzobisoxazo-
Tracer yarns made of polyester fibers are particularly preferable because of their good flame retardancy and heat resistance. Tracer yarns are arranged in the weft direction and / or the warp direction. The arrangement interval is not particularly limited. For example, the arrangement interval is 50 cm to 2.5 cm in the weft direction and / or 25 cm to 2.5 cm in the warp direction.
【0015】本発明の織物を図1、図2に示す。図1、
図2に示されるように、本発明では、強化繊維を緯糸及
び経糸とする長尺の織物であって、かつ、その緯糸方向
及び/または経糸方向に吸水率が2.5%以下の繊維か
らなるトレーサーヤーンを配置する。The fabric of the present invention is shown in FIGS. Figure 1,
As shown in FIG. 2, in the present invention, a long woven fabric using reinforcing fibers as a weft and a warp, and a fiber having a water absorption of 2.5% or less in the weft direction and / or the warp direction is used. Place a tracer yarn.
【0016】[0016]
【実施例】以下に実施例を示す。吸水率は以下の方法で
測定した。温度23℃、相対湿度55%条件下で2時間
間隔で繊維の重量を測定し、調湿前後の重量差が0.0
5%以下になるまで調湿、重量測定を繰り返す。これを
重量W1とする。次に温度105℃の乾燥器に試料を入
れて水分を蒸発させて、10分間隔で重量を測定する。
乾燥前後の重量差が0.05%以下になるまで乾燥、重
量測定を繰り返す。これを重量W2とする。そして、次
式によって吸水率を求める。 吸水率=((W1−W2)/W2)x100Examples are shown below. The water absorption was measured by the following method. The weight of the fiber was measured at intervals of 2 hours at a temperature of 23 ° C. and a relative humidity of 55%, and the weight difference before and after the humidity control was 0.0
The humidity control and weight measurement are repeated until the concentration becomes 5% or less. This is designated as weight W1. Next, the sample is placed in a dryer at a temperature of 105 ° C. to evaporate water, and the weight is measured at intervals of 10 minutes.
Drying and weight measurement are repeated until the difference in weight before and after drying becomes 0.05% or less. This is designated as weight W2. Then, the water absorption is determined by the following equation. Water absorption = ((W1−W2) / W2) × 100
【0017】[0017]
【実施例1】炭素繊維ベスファイトHTA−3K(東邦
レ−ヨン社製、フィラメント数3000、引張強度40
0kgf/mm2 、引張弾性率24x103 kgf/mm2 )を経糸
として配列し、ベスファイトHTA−3K及びポリパラ
フェニレンベンゾビスオキサゾ−ル繊維(PBO繊維)
ZYLON PBO−HM(東洋紡社製、フィラメント
数332、引張強度580kgf/mm2 、引張弾性率29x
103 kgf/mm2 、吸水率0.6%)を緯糸として配列
し、平織の織物を作製した。Example 1 Carbon fiber vesfight HTA-3K (manufactured by Toho Rayon Co., Ltd., 3000 filaments, 40 tensile strength)
0 kgf / mm 2 , tensile modulus of elasticity 24 × 10 3 kgf / mm 2 ) are arranged as warp yarns, and Vesfite HTA-3K and polyparaphenylene benzobisoxazole fibers (PBO fibers)
ZYLON PBO-HM (manufactured by Toyobo Co., Ltd., number of filaments: 332, tensile strength: 580 kgf / mm 2 , tensile modulus: 29 ×
10 3 kgf / mm 2 , water absorption 0.6%) were arranged as weft yarns to produce plain weave fabrics.
【0018】経糸の炭素繊維打ち込み密度は、492本
/mとし、緯糸の炭素繊維及びポリパラフェニレンベン
ゾビスオキサゾ−ル繊維の打ち込み密度は、それぞれ、
492本/m及び10本/mとした。The carbon fiber driving density of the warp is 492 fibers / m, and the carbon fiber of the weft and the driving density of polyparaphenylene benzobisoxazole fiber are respectively
492 / m and 10 / m.
【0019】次にこの織物の両面から下記の組成よりな
る樹脂組成物をホットメルト法にて含浸し、成形物中間
体(プリプレグ)を作製した。 1)ビスマレイミド樹脂 (シェル社製、Compimide 796)−−−−−−−−−−60重量部 2)4,4'−ヒ゛ス(o-フ゜ロヘ゜ニルフェノキシ)ヘ゛ンソ゛フェノン (シェル社製、Compimide TM-123)−−−−−−−−−40重量部 プリプレグの樹脂含有率は40重量%であった。得られ
たプリプレグは、良好なタック、ドレ−プ性を有してい
た。また、炭素繊維が黒色であるのに対して、PBO繊
維は褐色であるので、容易に織目ずれの有無を判別する
ことができるが、選られたプリプレグには、織目ずれは
認められなかった。このプリプレグ14枚を面内の中心
に必ずPBO繊維が配置されるように同一方向(緯糸方
向)に積層し、オ−トクレ−ブ成形により昇温速度20
℃/分、180℃で2時間の硬化条件で硬化した。そ
の後、210℃で9時間、250℃で10時間アフタ−
キュアして(昇温速度20 ℃/分)、成形板を作製し
た。そして、PBO繊維が配置された個所が試験片の長
手方向の中央に位置するように試験片を切り出し、層間
せん断強度(ILSS)をASTM D2344に準拠
して23℃で測定した。ILSSは8.0kgf/mm2 であ
った。Next, a resin composition having the following composition was impregnated from both sides of the woven fabric by a hot melt method to prepare a molded product intermediate (prepreg). 1) Bismaleimide resin (Compimide 796, manufactured by Shell Co., Ltd.) 60 parts by weight 2) 4,4'-bis (o-fluorophenylphenoxy) benzophenone (Compimide TM-123, manufactured by Shell Co., Ltd.) ) 40 parts by weight The resin content of the prepreg was 40% by weight. The obtained prepreg had good tack and drapability. In addition, since the carbon fiber is black and the PBO fiber is brown, it is possible to easily determine the presence or absence of a texture shift, but no texture shift is observed in the selected prepreg. Was. The 14 prepregs are laminated in the same direction (weft direction) so that the PBO fibers are always arranged at the center of the plane, and the temperature is raised by autoclave molding to a heating rate of 20%.
The composition was cured at 180 ° C. for 2 hours at 180 ° C./minute. Thereafter, after-heating at 210 ° C. for 9 hours and 250 ° C. for 10 hours.
After curing (heating rate: 20 ° C./min), a molded plate was produced. Then, the test piece was cut out so that the place where the PBO fiber was disposed was located at the center in the longitudinal direction of the test piece, and the interlaminar shear strength (ILSS) was measured at 23 ° C. in accordance with ASTM D2344. ILSS was 8.0 kgf / mm 2 .
【0020】[0020]
【比較例1】実施例1のPBO繊維をアラミド繊維ケブ
ラー49(東レデュポン社製、フィラメント数768、
引張強度290kgf/mm2 、引張弾性率11x103kgf/m
m2、23℃相対湿度55%条件下での平衡吸水率4.5
%)に変えて実施例1と同様の手順によりプリプレグを
作製した。得られたプリプレグは良好なタック、ドレ−
プ性を有していた。このプリプレグを実施例1と同様に
硬化した。そして実施例1と同様にこの成形物のILS
Sを測定すると6.2kgf/mm2 であった。実施例1と比
較例1と比較すると、ビスマレイミド樹脂系の場合、ア
ラミド繊維に変えてPBO繊維をトレーサーヤーンとす
ると機械的特性(ILSS)が優れていることが明らか
となった。Comparative Example 1 Aramid fiber Kevlar 49 (manufactured by Toray Dupont, filament number: 768,
Tensile strength 290 kgf / mm 2 , Tensile modulus 11 × 10 3 kgf / m
m 2 , equilibrium water absorption under a condition of 23 ° C. and a relative humidity of 55% 4.5
%), And a prepreg was prepared in the same procedure as in Example 1. The obtained prepreg has good tack and drainage.
Had the property of This prepreg was cured in the same manner as in Example 1. Then, in the same manner as in Example 1, the ILS
When S was measured, it was 6.2 kgf / mm 2 . Comparing Example 1 with Comparative Example 1, it became clear that in the case of the bismaleimide resin, the mechanical properties (ILSS) were excellent when the PBO fiber was replaced with a tracer yarn instead of the aramid fiber.
【0021】[0021]
【実施例2】実施例1で使用した炭素繊維及びPBO繊
維を経糸及び緯糸として配列した(図2)。PBO繊維
は約500mm間隔で炭素繊維の間に配列し、平織の織
物を作製した。経糸の炭素繊維及びPBO繊維の打ち込
み密度は、それぞれ、492本/m及び10本/mと
し、緯糸の炭素繊維及びPBO繊維の打ち込み密度も、
それぞれ、492本/m及び10本/mとした。Example 2 The carbon fibers and PBO fibers used in Example 1 were arranged as warp and weft (FIG. 2). The PBO fibers were arranged between carbon fibers at intervals of about 500 mm to produce a plain woven fabric. The driving density of the warp carbon fiber and the PBO fiber was 492 / m and 10 / m, respectively, and the driving density of the weft carbon fiber and the PBO fiber was also
They were 492 lines / m and 10 lines / m, respectively.
【0022】このように、次にこの織物を使用し、実施
例1と同様にしてホットメルト法にてプリプレグを作製
した。この織物プリプレグは、PBO繊維によって織目
ずれがないことが明瞭に認識できた。As described above, a prepreg was prepared using the woven fabric in the same manner as in Example 1 by the hot melt method. It was clearly recognizable that this woven prepreg did not have texture shift due to the PBO fiber.
【0023】[0023]
【発明の効果】本発明により得られた織物は、容易に織
目ずれを判別することができ、且つ、マトリックス樹脂
の優れた機械的特性及を損ねることがないので、航空機
構造材料、宇宙構造物材料等へ好適に使用される。The woven fabric obtained according to the present invention can easily determine the misalignment and does not impair the excellent mechanical properties of the matrix resin. It is suitably used for material and the like.
【図1】本発明の織物の一例の斜視図である。FIG. 1 is a perspective view of an example of the fabric of the present invention.
【図2】本発明の織物の一例の斜視図である。FIG. 2 is a perspective view of an example of the fabric of the present invention.
1強化繊維 2トレーサーヤーン 1 Reinforced fiber 2 Tracer yarn
Claims (3)
ーサーヤーンが緯糸方向及び/または経糸方向に配置さ
れていることを特徴とする繊維強化プラスチック成形用
強化繊維材織物。1. A reinforced fiber material woven fabric for molding a fiber reinforced plastic, wherein tracer yarns comprising fibers having a water absorption of 2.5% or less are arranged in a weft direction and / or a warp direction.
ンゾビスオキサゾ−ル繊維であることを特徴とする請求
項1記載の織物。2. The fabric according to claim 1, wherein the tracer yarn is a polyparaphenylene benzobisoxazole fiber.
の織物3. The woven fabric according to claim 1, wherein the reinforcing fiber material is carbon fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10277104A JP2000110046A (en) | 1998-09-30 | 1998-09-30 | Woven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10277104A JP2000110046A (en) | 1998-09-30 | 1998-09-30 | Woven fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000110046A true JP2000110046A (en) | 2000-04-18 |
Family
ID=17578843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10277104A Pending JP2000110046A (en) | 1998-09-30 | 1998-09-30 | Woven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000110046A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1777063A1 (en) * | 2005-10-21 | 2007-04-25 | Snecma | Manufacturing process of a composite turbine blade and the blade obtained thereby |
-
1998
- 1998-09-30 JP JP10277104A patent/JP2000110046A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1777063A1 (en) * | 2005-10-21 | 2007-04-25 | Snecma | Manufacturing process of a composite turbine blade and the blade obtained thereby |
JP2007112132A (en) * | 2005-10-21 | 2007-05-10 | Snecma | Manufacturing method of composite turbomachine blade and the blade obtained thereby |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3691000A (en) | Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli | |
US4868038A (en) | Carbonaceous fiber reinforced composites | |
US5085928A (en) | Fiber reinforced composites comprising uni-directional fiber layers and aramid spunlaced fabric layers | |
CA1210683A (en) | Non-woven reinforcement for composite | |
US4892780A (en) | Fiber reinforcement for resin composites | |
US5538781A (en) | Composite reinforcing fabric | |
US3914494A (en) | Pervious low density carbon fiber reinforced composite articles | |
US20150047780A1 (en) | Stabilizable preform precursors and stabilized preforms for composite materials and processes for stabilizing and debulking preforms | |
CA1269576A (en) | Sizing agents | |
Dharmavarapu et al. | Aramid fibre as potential reinforcement for polymer matrix composites: a review | |
KR101155765B1 (en) | Composite of aramid and Method for manufacturing tComposite of aramid and Method for manufacturing the same he same | |
US3859158A (en) | Production of pervious low density carbon fiber reinforced composite articles | |
US5256475A (en) | Fabric for fiber-reinforced thermoplastic composite material | |
JP2019522119A (en) | Hybrid fabric for reinforcing composites | |
Yaakob et al. | Effect of stitching patterns on tensile strength of kenaf woven fabric composites | |
JPH0135101B2 (en) | ||
US3925587A (en) | Pervious low density carbon fiber reinforced composite articles | |
Chang | Aramid fibers | |
US3993829A (en) | Production of pervious low density carbon fiber reinforced composite articles | |
JP2000110046A (en) | Woven fabric | |
JPH04353525A (en) | Blended yarn for composite and formed product thereof | |
US4919978A (en) | Production of fiber composites | |
JP2876028B2 (en) | Unidirectional preform sheet and method of manufacturing the same | |
Ramakrishna et al. | Fabrication of knitted glass fibre fabric reinforced thermoplastic composite laminates | |
US3955256A (en) | Process for the production of a carbon tape |