JP2000109971A - Method and device for producing thin film by raman shift pulse laser beam vapor deposition - Google Patents

Method and device for producing thin film by raman shift pulse laser beam vapor deposition

Info

Publication number
JP2000109971A
JP2000109971A JP10296145A JP29614598A JP2000109971A JP 2000109971 A JP2000109971 A JP 2000109971A JP 10296145 A JP10296145 A JP 10296145A JP 29614598 A JP29614598 A JP 29614598A JP 2000109971 A JP2000109971 A JP 2000109971A
Authority
JP
Japan
Prior art keywords
target
thin film
laser beam
light
pulse laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10296145A
Other languages
Japanese (ja)
Other versions
JP3790809B2 (en
Inventor
Hachizo Muto
八三 武藤
Takeshi Kusumori
毅 楠森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP29614598A priority Critical patent/JP3790809B2/en
Publication of JP2000109971A publication Critical patent/JP2000109971A/en
Application granted granted Critical
Publication of JP3790809B2 publication Critical patent/JP3790809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for producing a thin film having smoothness of a nanometer dimension by raman shift pulse laser beam vapor deposition. SOLUTION: In this method, a thin film of a substance is formed on a substrate by irradiating a substance having a high reference molecular frequency with an ultraviolet ray pulse laser beam, making the laser beam a short wave length, generating the pulse laser beam, which is subjected to laman shift, contains a vacuum ultraviolet ray and has the output energy enough for vapor deposition and stability, and evaporating a target substance pulse with pulse laser beam vapor deposition including a laman shift vacuum ultraviolet ray. This laser beam deposition method is independent of a kind of a thin film material/substance to be produced. When a target is produced, independently of an inorganic material or an organic material, even in the case any of a metal oxide group, metal group, compound group of a semiconductor and dielectric inductive, super conductive, magnetic, conductive, insulation substances, etc., is objective substance, its crystal thin film can be produced, further, a high quality multilayer laminated layer thin film can be produced by only changing a target position sequentially.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラマンシフトパル
スレーザ蒸着により表面粒子の発生を抑制し、ナノメー
タ次元の平滑度を有する高品質の結晶薄膜及び積層薄膜
を作製する方法及びその装置に関するものであり、さら
に詳しくは、半導体、誘電体、超伝導体、磁性体、伝導
体、絶縁体などの金属酸化物系、金属系や、無機及び有
機化合物系などの諸材料の薄膜、例えば、電子・磁気材
料のエピタキシャル( 単結晶)薄膜、結晶性薄膜、非晶
性薄膜とそれらの積層薄膜や人工格子及び電子・磁気素
子用薄膜を作製する方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing high-quality crystalline thin films and laminated thin films having nanometer-dimensional smoothness by suppressing the generation of surface particles by Raman shift pulse laser deposition. Yes, more specifically, thin films of various materials such as semiconductors, dielectrics, superconductors, magnetic materials, conductors, metal oxides such as insulators, metals, and inorganic and organic compounds, for example, The present invention relates to a method and an apparatus for producing an epitaxial (single-crystal) thin film, a crystalline thin film, an amorphous thin film, a laminated thin film thereof, an artificial lattice, and a thin film for an electronic / magnetic element of a magnetic material.

【0002】[0002]

【従来の技術】諸材料の薄膜作製法として、パルスレー
ザ蒸着法、スパッター法、Kセルや電子ビームを使った
加熱蒸着法、プラズマCVD法などがある。そのうち、
パルスレーザ蒸着法は、無機、有機の両材料に適用でき
ること、酸素圧下でもその成膜が可能であること、膜中
の構成元素の組成比を精密に制御し易いこと、などの特
長を有する。そのために、パルスレーザ蒸着法は、複雑
な元素構成比からなる銅酸化物系の高温超伝導体やマン
ガン系酸化物の巨大磁気抵抗物質のような金属酸化物や
化合物などの素子作製のための成膜方法として適してい
る。しかし、レーザ蒸着法には表面粒子が生成し易いと
いう欠点があり、このことが解決すべき最大の課題とな
っている。
2. Description of the Related Art As methods for producing thin films of various materials, there are a pulse laser deposition method, a sputtering method, a heating deposition method using a K cell or an electron beam, a plasma CVD method, and the like. Of which
The pulse laser vapor deposition method has features such as being applicable to both inorganic and organic materials, being capable of forming a film even under an oxygen pressure, and being easy to precisely control the composition ratio of constituent elements in the film. For that purpose, pulsed laser deposition is used for the production of devices such as metal oxides and compounds such as copper oxide-based high-temperature superconductors and manganese-based oxide giant magnetoresistive materials with complex element composition ratios. Suitable as a film forming method. However, the laser vapor deposition method has a disadvantage that surface particles are easily generated, and this is the biggest problem to be solved.

【0003】また、超伝導体の3端子素子やジョセフソ
ン結合素子、巨大磁気抵抗物質の磁気ヘッドやトンネル
トランジスターのような次世代の電子・磁気薄膜素子の
開発を行うにはナノメータ次元の平滑度と厚さを持つ高
品質の結晶薄膜の作製と薄膜の積層化とを達成する必要
がある。しかし、従来のいずれの方法でも表面粒子の析
出などによりそのような高品質の結晶薄膜と積層薄膜は
できていないので、これまでの方法はいずれも産業での
利用にまで至っていない。
In order to develop next-generation electronic and magnetic thin-film devices such as a superconductor three-terminal device, a Josephson coupling device, a magnetic head made of a giant magnetoresistive material, and a tunnel transistor, a nanometer-dimensional smoothness is required. It is necessary to achieve the production of a high-quality crystal thin film having a high thickness and the lamination of thin films. However, none of the conventional methods has produced such a high-quality crystal thin film and a laminated thin film due to precipitation of surface particles or the like, and none of the conventional methods has been used in industry.

【0004】パルスレーザ蒸着法では、短波長のレーザ
光を使うほど良質の膜が作製できると期待されることか
ら、波長193nmのフッ化アルゴン(ArF)や24
9nmのフッ化クリプトン(KrF)などの紫外線エキ
シマーガスレーザが主に用いられ研究されているが、い
まだ表面粒子を完全には抑制するに至っていない。N
d:YAGなどの固体レーザは基本波(1064n
m)、第2高調波(532nm)、第3高調波(355
nm)、第4高調波(266nm)と倍波発生結晶を使
って波長を変えることができる。従来の第3高調波まで
を使った場合は、表面粒子が多くて良質の結晶薄膜は作
製されていなかった。
In the pulse laser deposition method, it is expected that a higher quality film can be produced by using a laser beam having a shorter wavelength. Therefore, argon fluoride (ArF) having a wavelength of 193 nm or 24
Ultraviolet excimer gas lasers such as 9 nm krypton fluoride (KrF) have been mainly used and studied, but they have not yet completely suppressed surface particles. N
d: A solid-state laser such as YAG has a fundamental wave (1064n
m), the second harmonic (532 nm), and the third harmonic (355 nm).
nm), the fourth harmonic (266 nm) and a harmonic generation crystal can be used to change the wavelength. When using up to the conventional third harmonic, a high-quality crystal thin film having many surface particles has not been produced.

【0005】[0005]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、Nd:YAG第4高調波を使ったレ
ーザ蒸着法によりBa2 Cu3 y (YBCO)高温超
伝導体の薄膜作製の研究を行い、表面粒子生成を大幅に
抑制することに成功した。これは、レーザ光を第3から
第4高調波へと短波長光に変えたことと、YAG固体レ
ーザはエキシマーガスレーザよりパルス幅が狭い(1/
3−1/5)ことなどが有利に働き表面粒子の低減化が
できたものであり、このことから、より短波長化を図れ
ば表面粒子の発生をさらに落とすことができるものと本
発明者らは認定するに至った。
Under these circumstances, the present inventors have developed a Ba 2 Cu 3 O y (YBCO) high-temperature superconductor by a laser deposition method using the fourth harmonic of Nd: YAG. Research on the preparation of thin films has succeeded in significantly suppressing the generation of surface particles. This is because the laser light was changed to short-wavelength light from the third to the fourth harmonic, and the pulse width of the YAG solid-state laser was narrower than that of the excimer gas laser (1/1).
3-1 / 5) is advantageous, and the surface particles can be reduced. From this, it can be seen that generation of surface particles can be further reduced by shortening the wavelength. Came to be certified.

【0006】電子・磁気素子の開発に向けて表面粒子の
発生を抑制しナノメータ次元の平滑度を有する高品質の
結晶薄膜と積層薄膜の作製を可能するには、できる限り
短波長の真空紫外線域のレーザ光が必要となる。また、
無機材料をパルスレーザ法で蒸発させて薄膜を作るには
数十mJ/パルスの出力エネルギーとパルスレーザ光の
連続的かつ安定な発振が要求される。しかし、ArFエ
キシマーレーザの発振周波数193nmよりも短い波長
を持ち、高出力でかつ安定発振する光源はないので、十
分な出力と安定度とを持つ真空紫外線域のパルスレーザ
光源とそれを用いたレーザ蒸着による薄膜や積層薄膜の
作製方法と装置を開発することが必要となる。
[0006] In order to suppress the generation of surface particles and to produce a high-quality crystal thin film and laminated thin film having nanometer-order smoothness for the development of electronic and magnetic elements, a vacuum ultraviolet region with a wavelength as short as possible is required. Laser light is required. Also,
In order to form a thin film by evaporating an inorganic material by a pulse laser method, continuous and stable oscillation of pulse laser light with an output energy of several tens mJ / pulse is required. However, since there is no light source having a wavelength shorter than the 193 nm oscillation frequency of the ArF excimer laser, and having high output and stable oscillation, a pulsed laser light source in the vacuum ultraviolet region having a sufficient output and stability and a laser using the same. It is necessary to develop a method and an apparatus for producing a thin film or a laminated thin film by vapor deposition.

【0007】本発明は、このような課題を解決するため
になされたものであって、ラマン効果を使ってレーザ光
の短波長化を行い真空紫外線を含み蒸着に充分な出力エ
ネルギーと安定度とを持つラマンシフトしたパルスレー
ザ光を発生させ、それを使ったパルスレーザ蒸着による
表面粒子の発生を抑制した良質な結晶薄膜及び積層薄膜
の作製方法と、該方法を具現化し得る装置を提供するこ
とを目的とする。また、本発明は、表面粒子の発生を抑
制しナノメータ次元の平滑度を有する高品質の結晶薄膜
と積層薄膜の作製を可能とするラマンシフトパルスレー
ザ蒸着による薄膜の作製方法及びその装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is intended to reduce the wavelength of a laser beam by using the Raman effect and to provide sufficient output energy and stability for vacuum deposition including vacuum ultraviolet rays. Provided are a method for producing a high-quality crystal thin film and a laminated thin film in which a Raman-shifted pulsed laser beam having the following characteristics is generated and generation of surface particles is suppressed by pulsed laser deposition using the laser beam, and an apparatus capable of embodying the method. With the goal. The present invention also provides a method and apparatus for producing a thin film by Raman shift pulsed laser deposition that suppresses generation of surface particles and enables production of a high-quality crystal thin film and a laminated thin film having nanometer-dimensional smoothness. The purpose is to:

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の本発明は、高い基準分子振動数を持つ物質に紫外線パ
ルスレーザ光を照射して該レーザ光の短波長化を行い、
真空紫外線を含み蒸着に充分な出力エネルギーと安定度
とを持つラマンシフト化したパルスレーザ光を発生さ
せ、該ラマンシフト真空紫外線を含むパルスレーザ蒸着
により、ターゲット物質を蒸発させて基板上に該物質の
薄膜を作製する方法である。また、本発明は、以下の行
程; (1)光を透過し得る光学窓を両端に有する高圧ガス封
入管の中に水素や重水素分子などの高い基準分子振動数
νf を持つガスをあらかじめ数気圧から数十気圧の所定
の圧まで封入しておき、一方の窓から振動数ν0 を持つ
紫外線パルスレーザ光をレンズなどを用いて封入ガス中
に集光し照射してν0 ±n νf ( nは整数) の振動数を
持ち真空紫外線も含むラマンシフト光を他方の窓に向か
って効率よく発生させる第1行程、(2)無機単結晶基
板やガラス基板などの基板をセットしその温度を制御で
きるヒータ付きの基板ホルダーと薄膜を作製しようとす
る無機や有機材料のタ−ゲットをセットできるターゲッ
トホルダーとを具備しかつ低圧や真空まで排気できる真
空チャンバーの中にあらかじめターゲットをセットして
おき、ラマンシフトしたパルスレーザ光又はそれを分光
した光をレンズを使いターゲット上に集光し照射して、
ターゲット物質をパルス的に分解し蒸発させて基板上に
衝突させる第2行程、を所定のパルスの回数だけ行い、
その物質の結晶性や非晶性の薄膜を作製する方法であ
る。
SUMMARY OF THE INVENTION The present invention for solving the above problems is to irradiate a substance having a high reference molecular frequency with an ultraviolet pulse laser beam to shorten the wavelength of the laser beam,
Raman-shifted pulsed laser light having sufficient output energy and stability for vapor deposition including vacuum ultraviolet rays is generated, and the target material is vaporized by pulsed laser deposition including the Raman-shifted vacuum ultraviolet rays to deposit the substance on a substrate. This is a method for producing a thin film. Further, the present invention provides the following stroke; advance (1) gas having a higher standard molecular vibration frequency [nu f such as hydrogen and deuterium molecules in the high-pressure gas-filled tube having at both ends an optical window that can transmit light A predetermined pressure of several atmospheres to several tens of atmospheres is sealed, and an ultraviolet pulse laser beam having a frequency of ν 0 is condensed into a sealed gas using a lens or the like from one of the windows to irradiate ν 0 ± n a first step of efficiently generating Raman shift light having a frequency of ν f (n is an integer) and including vacuum ultraviolet rays toward the other window; (2) setting a substrate such as an inorganic single crystal substrate or a glass substrate; The target is previously set in a vacuum chamber having a substrate holder with a heater capable of controlling the temperature and a target holder capable of setting a target of an inorganic or organic material for forming a thin film and capable of evacuating to a low pressure or vacuum. ; Then condenses irradiated with light spectrally pulsed laser beam or it was Raman shift on use lens target,
A second step of decomposing and evaporating the target material in a pulsed manner and evaporating the same to collide with the substrate is performed a predetermined number of times, and
This is a method for producing a crystalline or amorphous thin film of the substance.

【0009】また、本発明は、複数個のタ−ゲットをセ
ットできるターゲットホルダーと、基板ホルダーとを具
備する真空チャンバーの中にあらかじめ複数個のターゲ
ットをセットしておき、上記の第1行程と、第2行程
と、を所定のパルスの回数だけ行う過程を各ターゲット
について順次に行い、基板上にそれらの物質の薄膜を順
次に積層して薄膜(積層薄膜)を作製する方法である。
Further, according to the present invention, a plurality of targets are set in advance in a vacuum chamber provided with a target holder on which a plurality of targets can be set and a substrate holder. , The second step are performed for each target sequentially for a predetermined number of pulses, and thin films (laminated thin films) of these materials are sequentially stacked on a substrate to produce a thin film (laminated thin film).

【0010】また、本発明は、上記薄膜を作製する装置
であって、高圧ガスを封入しパルスレーザ光を照射して
より短波長の真空紫外線を含むラマンシフトパルスレー
ザ光を発生させ得るラマンシフトレーザ光発生手段と、
ラマンシフトレーザ光又はそれを分光した光を真空紫外
線をも透過可能なレンズなどにより集光の程度を変えて
タ−ゲットに照射するラマンシフト光の集光可変照射手
段と、基板をセットし高温までその温度制御が可能なヒ
ータ付きの基板ホルダーとタ−ゲットをセットできかつ
均一にターゲットを蒸発させるためのターゲット回転機
構などのターゲット均一蒸発機構とを具備する真空チャ
ンバーを用いた蒸着手段と、を有してなる装置である。
[0010] The present invention is also an apparatus for producing the above thin film, wherein a Raman shift pulse laser beam containing vacuum ultraviolet rays having a shorter wavelength is generated by filling a high pressure gas and irradiating the pulse laser beam. Laser light generating means,
Raman-shifted laser beam or a light beam obtained by splitting the laser beam is radiated to a target by changing the degree of focusing with a lens or the like that can also transmit vacuum ultraviolet rays. Vapor deposition means using a vacuum chamber having a substrate holder with a heater capable of controlling the temperature thereof and a target uniform evaporation mechanism such as a target rotation mechanism capable of setting a target and uniformly evaporating the target; It is a device which has.

【0011】さらに、本発明は、上記積層薄膜を作製す
る装置であって、上記ラマンシフトパルスレーザ光を発
生させる手段と、ラマンシフトパルスレーザ光の集光可
変照射手段と、上記基板ホルダー及びターゲット均一蒸
発機構と、種々の物質や材料の複数個のタ−ゲットをセ
ットできかつ各ターゲットをレーザ光の集光照射位置へ
順次に移動できるターゲット位置移動機構と、を具備す
る真空チャンバーを用いた蒸着手段と、を有してなる装
置である。
Further, the present invention relates to an apparatus for producing the above-mentioned laminated thin film, wherein the means for generating the Raman shift pulse laser light, the variable irradiation means for focusing the Raman shift pulse laser light, the substrate holder and the target A vacuum chamber having a uniform evaporation mechanism and a target position moving mechanism capable of setting a plurality of targets of various substances and materials and sequentially moving each target to a laser beam condensing irradiation position is used. And a vapor deposition unit.

【0012】[0012]

【発明の実施の形態】次に、本発明についてさらに詳細
に説明する。本発明は、上記のように、高い基準分子振
動数を持つ物質に紫外線パルスレーザ光を照射して該レ
ーザ光の短波長化を行い、真空紫外線を含み蒸着に充分
な出力エネルギーと安定度とを持つラマンシフト化した
パルスレーザ光を発生させ、該ラマンシフト真空紫外線
を含むパルスレーザ蒸着により、ターゲット物質を蒸発
させて基板上に該物質の薄膜を作製する点に特徴を有す
る。なお、ラマン効果とは、振動数νf の基準分子振動
数を持つ物質に、ν0 の振動数を持ち高出力のパルスレ
ーザ光などの光を照射すると、ν0 +n νf ( nは整
数) の振動数を持つ光(アンチストークス線)とν0
n νf の振動数を持つ光(ストークス線)とが発生する
現象である。短波長のパルス真空紫外線を効率よく発生
させるには、入射光としてNd:YAGレーザの第4高
調波やArFエキシマーガスレーザのようなできる限り
高振動数で高出力の紫外線パルスレーザ光を使い、ま
た、ラマンシフト用の物質としては、ラマン効果が起こ
る必要条件である点対称分子構造を持ち、かつ、できる
限り高い基準振動数を持つ水素や重水素のような分子性
ガスを用いる必要がある。本発明では、入射光として、
Nd:YAGレーザの第4高調波、Ti:サファイアレ
ーザの第3及び第4高調波やArFエキシマ−ガスレー
ザが、また、ラマンシフト用の物質として、水素、重水
素、メタン、重水素化メタン、エタン、重水素化エタン
などが好適に使用されるが、これらは制限されない。
Next, the present invention will be described in more detail. As described above, the present invention irradiates a substance having a high reference molecular frequency with an ultraviolet pulse laser beam to shorten the wavelength of the laser beam, including vacuum ultraviolet rays, and having sufficient output energy and stability for vapor deposition. The method is characterized in that a Raman-shifted pulse laser beam having the following characteristics is generated, and a target material is evaporated by pulse laser deposition including the Raman-shifted vacuum ultraviolet light to form a thin film of the material on a substrate. Note that the Raman effect, a substance having a reference molecule frequency of vibration frequency [nu f, is irradiated with light such as pulsed laser light having high power the frequency of ν 0, ν 0 + n ν f (n is an integer ) Frequency (anti-Stokes line) and ν 0
This is a phenomenon in which light having a frequency of n ν f (Stokes line) is generated. In order to efficiently generate short-wavelength pulsed vacuum ultraviolet light, a high-frequency and high-output ultraviolet pulsed laser light such as the fourth harmonic of an Nd: YAG laser or an ArF excimer gas laser is used as incident light. As a substance for Raman shift, it is necessary to use a molecular gas such as hydrogen or deuterium having a point symmetric molecular structure, which is a necessary condition for the Raman effect to occur, and having the highest possible reference frequency. In the present invention, as incident light,
The fourth harmonic of a Nd: YAG laser, the third and fourth harmonics of a Ti: sapphire laser, and an ArF excimer gas laser, and hydrogen, deuterium, methane, deuterated methane, Ethane, deuterated ethane and the like are preferably used, but these are not limited.

【0013】なお、該ラマンシフトによるパルスレーザ
蒸着方法による成膜は、作製しようとする薄膜の材料や
物質の種類に依存しないが、本発明を説明するにあたっ
て、該ラマンシフト真空紫外線を含むパルスレーザ蒸着
により、YBCO超伝導体とLaPbMnO系磁性体の
薄膜、及び、YBCOとCeO2 (酸化セリウム)との
積層薄膜の作製の研究中に本発明者らが知り得た事実、
及び、本発明の方法は、従来法よりも高品質な結晶薄膜
及び積層薄膜が作製可能であることを実証したことを例
として以下に詳述する。
The film formation by the pulsed laser deposition method based on the Raman shift does not depend on the material or substance of the thin film to be formed. However, in describing the present invention, a pulse laser including the Raman shift vacuum ultraviolet light will be described. The facts that the present inventors have learned during the study of the preparation of a thin film of YBCO superconductor and LaPbMnO-based magnetic material and a laminated thin film of YBCO and CeO 2 (cerium oxide) by vapor deposition,
In addition, the method of the present invention will be described in detail below by taking as an example that it has been demonstrated that a crystal thin film and a laminated thin film with higher quality than conventional methods can be produced.

【0014】真空紫外線への変換効率を高めて良質の結
晶薄膜を作製するには、高圧ガス封入管中の水素ガスな
どのガス圧は4−20気圧程の範囲で最適の圧を設定す
る必要がある。従来のYAGレーザの第4高調波を用い
てレーザ蒸着により結晶薄膜を作製する際には25−4
0mJ/パルス程のレーザエネルギーを要する。これに
対し、該ラマンシフトによるパルスレーザ蒸着方法によ
る成膜の場合には、封入管中のガスによる光吸収と散乱
及びレンズなどによる吸収に伴うエネルギー損失がある
ので、高圧ガス封入管への入射用の第4高調波は約2倍
の50−70mJ/パルス程のエネルギーを要した。し
たがって、入射用のレーザは高出力かつ可変である必要
があり、また、真空紫外線への変換効率を高めるにはガ
ス封入管中へ集光して照射するための集光可変機能を必
要とする。
In order to increase the efficiency of conversion into vacuum ultraviolet rays and produce a good quality crystal thin film, it is necessary to set the gas pressure of hydrogen gas and the like in the high-pressure gas sealing tube within the range of about 4-20 atm. There is. When a crystal thin film is formed by laser evaporation using the fourth harmonic of a conventional YAG laser, 25-4
A laser energy of about 0 mJ / pulse is required. On the other hand, in the case of film formation by the pulsed laser deposition method using the Raman shift, there is an energy loss due to light absorption and scattering by the gas in the sealed tube and absorption by a lens or the like. The fourth harmonic required about twice the energy of about 50-70 mJ / pulse. Therefore, the laser for incidence needs to be high power and variable, and in order to increase the conversion efficiency to vacuum ultraviolet rays, a variable focusing function for focusing and irradiating into the gas sealed tube is required. .

【0015】成膜時には、パルスレーザ光の照射により
ターゲット物質の化学結合が切断されて構成元素の原
子、イオンや様々なクラスターなどの粒子が瞬間的に発
生してアブレーションプルーム(蒸発炎)と呼ばれるプ
ラズマ状態の炎が発生し、それが基板に衝突して薄膜が
形成される。この蒸発炎中では、粒子が酸素と衝突し酸
化反応が起きている。薄膜の良否と電磁気学的特性は成
膜時のこの蒸発炎中の粒子の持つエネルギーと酸化の程
度、したがって、蒸発炎の形、大きさ、色に大きく依存
する。また、該ラマンシフトパルスレーザ蒸着方法では
種々の波長の光が混在しており、それらの光は全て焦点
距離が異なるので、レンズでどの波長の光を主体に、ま
た、どの程度までターゲット上に集光し照射してターゲ
ットを分解・蒸発させるかで蒸発炎は大きく変化する。
そのために、短波長の真空紫外線をも透過するレンズを
用い真空下などでその位置を変えて集光を可変にする必
要がある。また、例えば、YBCOとCeO2 などの複
数の材料の結晶積層薄膜を作製するには、両方のターゲ
ットを最初から真空チャンバー中に入れておき、真空を
破ることなく順次にターゲットを変えて蒸着する必要が
ある。
At the time of film formation, a chemical bond of a target material is cut by irradiation with a pulse laser beam, and particles such as atoms, ions, and various clusters of constituent elements are instantaneously generated and are called an ablation plume. A flame in the plasma state is generated, which strikes the substrate and forms a thin film. In this evaporating flame, the particles collide with oxygen and an oxidation reaction occurs. The quality and electromagnetic properties of the thin film greatly depend on the energy and the degree of oxidation of the particles in the evaporating flame at the time of film formation and, therefore, the shape, size and color of the evaporating flame. In addition, in the Raman shift pulse laser deposition method, light of various wavelengths is mixed, and all of these lights have different focal lengths, so that the lens mainly emits light of which wavelength and to what extent on the target. The evaporation flame changes greatly depending on whether the target is decomposed and evaporated by condensing and irradiating.
For this purpose, it is necessary to use a lens that also transmits short-wavelength vacuum ultraviolet rays and change its position under vacuum or the like to make the light collection variable. Further, for example, in order to produce a crystal laminated thin film of a plurality of materials such as YBCO and CeO 2 , both targets are placed in a vacuum chamber from the beginning, and the targets are sequentially changed without breaking the vacuum and vapor deposition is performed. There is a need.

【0016】これらの事実に基づき、該ラマンシフトパ
ルスレーザ蒸着方法は、従来の方法に比べてラマン効果
に付随する分だけ多くの作製手段の構築と条件の最適化
を行う必要があるが、一旦構築及び最適化すれば、該ラ
マンシフトパルスレーザ蒸着により、再現良く表面粒子
が低減化された薄膜や積層薄膜を作製することが可能で
あることが実証され、産業に利用可能な技術になり得る
ことが明らかとなった。
Based on these facts, the Raman shift pulse laser vapor deposition method needs to construct and optimize the number of manufacturing means and optimization of the conditions as much as the Raman effect as compared with the conventional method. If constructed and optimized, the Raman shift pulsed laser deposition will demonstrate that it is possible to produce thin films and multilayer thin films with reduced surface particles with good reproducibility, and this can be a technology that can be used in industry. It became clear.

【0017】[0017]

【実施例】次に、本発明に係わる薄膜と積層薄膜の作製
方法及び薄膜と積層薄膜の作製装置の一実施例を添付図
面に基づいて説明するが、該実施例は、本発明の好適な
一実施例を示すものであって、本発明は該実施例によっ
て何ら限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a method for producing a thin film and a laminated thin film and an apparatus for producing a thin film and a laminated thin film according to the present invention will be described with reference to the accompanying drawings. 1 shows an embodiment, and the present invention is not limited to the embodiment.

【0018】図1は、本発明に係わる薄膜と積層薄膜の
作製方法を具現化した薄膜と積層薄膜の作製装置1の構
成の一例を示す概略図である。該実施例においては、該
薄膜と積層薄膜の作製装置1は、短波長の紫外線パルス
レーザ発生部2と、水素などのガスを高圧に封入できか
つラマンシフト効果により真空紫外線を発生できる高圧
ガス封入管3と、高圧ガス封入管3中に紫外線パルスレ
ーザ発生部2からの光を集光し照射するための集光可変
用レンズ4と、ラマン効果により発生した真空紫外線を
含むパルスレーザ光をレンズ位置を変えるなどして真空
チャンバー内のターゲットへ集光の程度を変えて照射す
る集光可変照射手段5と、結晶やガラス基板などの基板
をセットし高温まで基板の温度を制御可能なヒータ付き
の基板ホルダー6とタ−ゲットをセットできるターゲッ
トホルダー7とを具備しかつ真空ポンプ8により低圧や
真空まで排気できる真空チャンバー9と、からなるもの
とした。
FIG. 1 is a schematic view showing an example of the configuration of a thin film / laminated thin film manufacturing apparatus 1 embodying the method for manufacturing a thin film and a laminated thin film according to the present invention. In this embodiment, the thin-film and laminated thin-film manufacturing apparatus 1 includes a short-wavelength ultraviolet pulse laser generation unit 2 and a high-pressure gas sealing capable of sealing a gas such as hydrogen to a high pressure and generating vacuum ultraviolet rays by a Raman shift effect. A tube 3, a condensing variable lens 4 for condensing and irradiating the light from the ultraviolet pulse laser generation unit 2 into the high-pressure gas sealed tube 3, and a pulse laser beam containing vacuum ultraviolet light generated by the Raman effect Includes variable condensing irradiation means 5 for changing the degree of light condensing on the target in the vacuum chamber by changing the position, etc., and a heater that can set a substrate such as a crystal or glass substrate and control the temperature of the substrate to a high temperature A vacuum chamber 9 having a substrate holder 6 and a target holder 7 in which a target can be set, and which can be evacuated to a low pressure or vacuum by a vacuum pump 8. It was the thing.

【0019】なお、紫外線パルスレーザ発生部2はでき
る限り出力が高くレーザ光が安定に発振をすることが必
要なので、できる限り高振動数で高出力の紫外線パルス
レーザ光、例えば、Nd:YAGの第4高調波パルスレ
ーザ又はArFやKrFなどのエキシマーガスレーザな
どが用いられる。また、高圧ガス封入管3は、好適に
は、封入ガスの圧力を数気圧から数十気圧まで変えてラ
マンシフト真空紫外線の発生効率とレーザ蒸着への効果
を最適化できるように圧力調整機能付きの水素ガスボン
ベ3aと圧力計3bなどとを具備するものが使用され
る。該高圧ガス封入管3は、レーザ入射用光学窓3cと
ラマンシフト光の出力用の光学窓とを有するが、入射用
光学窓はレーザ発生部2からの紫外線パルスレーザ光を
照射するためにその光を透過し得る溶融石英製の窓材な
どとし、出力用の光学窓はラマン効果で発生した真空紫
外線をも透過するようにフッ化マグネシウム、フッ化カ
ルシウムやフッ化リチウム製の光学窓とするか、ターゲ
ットへの集光も兼ねてそれらの集光照射用レンズ5aと
することができる。
Since the ultraviolet pulse laser generator 2 needs to have as high an output as possible and oscillate the laser light stably, the pulsed ultraviolet laser light having the highest possible frequency and the highest output, for example, Nd: YAG A fourth harmonic pulse laser or an excimer gas laser such as ArF or KrF is used. The high-pressure gas sealing tube 3 preferably has a pressure adjusting function so that the pressure of the sealing gas can be changed from several atmospheres to several tens of atmospheres to optimize the Raman shift vacuum ultraviolet ray generation efficiency and the effect on laser deposition. Equipped with a hydrogen gas cylinder 3a and a pressure gauge 3b. The high-pressure gas sealing tube 3 has a laser incident optical window 3c and an optical window for outputting Raman shift light. The incident optical window is used for irradiating an ultraviolet pulse laser beam from the laser generating unit 2. An optical window for output is made of magnesium fluoride, calcium fluoride, or lithium fluoride so that it can transmit vacuum ultraviolet rays generated by the Raman effect. Alternatively, these lenses 5a for condensing irradiation can also be used for condensing light on the target.

【0020】基板ホルダー6は成膜条件の最適化の際
に、条件の1つとしてターゲットと基板間の距離の最適
化を行うので、該距離を変えるための直線導入機構(端
子)10を具備するものとした。また、ターゲットホル
ダー7は1つの薄膜の作製のみでなく、複数個(例え
ば、A、B、C3つなど)のターゲットをセットしそれ
らの薄膜を順次に積層化できるように、ラマンシフト真
空紫外線を含むパルスレーザ光が集光照射される位置へ
順次にターゲットを移動するためのステップモータ駆動
などによるターゲット位置移動機構11と、レーザ光が
一点に集中してターゲットの損傷を起こすことを避ける
ためのモータ駆動によるターゲット自転機構12などの
ターゲット均一蒸発機構とを具備するものとした。ま
た、真空ポンプ8は、レーザ蒸着による金属酸化物系の
電子・磁気材料の薄膜作製の場合には、低圧ながら酸素
圧を変えて条件の最適化を行う必要があることから、電
磁弁などによる圧力制御系8aを具備するものとした。
上記各機構は、同様の機能を有するものであればその構
成は制限されない。
Since the substrate holder 6 optimizes the distance between the target and the substrate as one of the conditions when optimizing the film forming conditions, the substrate holder 6 has a linear introduction mechanism (terminal) 10 for changing the distance. To do. In addition, the target holder 7 is not only for producing one thin film, but also for setting a plurality of targets (for example, three A, B, C, etc.) and applying Raman shift vacuum ultraviolet rays so that the thin films can be sequentially laminated. A target position moving mechanism 11 such as a step motor drive for sequentially moving the target to a position where the pulsed laser light is condensed and irradiated, and a method for preventing the laser light from concentrating on one point and causing damage to the target. A target uniform evaporation mechanism such as a target rotation mechanism 12 driven by a motor is provided. In the case where a thin film of a metal oxide-based electronic or magnetic material is formed by laser deposition, the vacuum pump 8 needs to change the oxygen pressure while changing the pressure to optimize the conditions. A pressure control system 8a was provided.
The configuration of each of the above mechanisms is not limited as long as they have similar functions.

【0021】次に、上記のように構成したレーザ蒸着薄
膜作製装置を用いてYBCO超伝導体の結晶薄膜を作製
した例に基づいて本発明の方法を具体的に説明する。
Next, the method of the present invention will be specifically described based on an example in which a crystal thin film of a YBCO superconductor is manufactured using the laser-evaporated thin film manufacturing apparatus configured as described above.

【0022】1)方法 YBCO超伝導体などの円盤状に成形したターゲット
を、真空チャンバー9中のターゲットホルダー7にセッ
トする。レーザ光が一点に集中してターゲットの損傷が
起こるのを避けるためのターゲット自転機構12によ
り、ターゲットを回転させておく。洗浄したSrTiO
3 (STO)単結晶基板をヒータ付きの基板ホルダー6
にセットして、真空チャンバーを一旦高真空まで排気す
る。基板温度を所定の温度(650−800℃程) まで
上げて基板表面を清浄化した後、超高純度酸素を真空チ
ャンバー中に少量導入し、真空ポンプ8につながってい
る圧力制御系8aを調整して所定の酸素圧(0.1−
1.0Torr程) に設定する。ラマンシフト用の高圧
ガス封入管3の中に水素を所定の圧(4−20気圧程)
まで導入する。
1) Method A disk-shaped target such as a YBCO superconductor is set on a target holder 7 in a vacuum chamber 9. The target is rotated by a target rotation mechanism 12 for preventing the laser beam from concentrating on one point and causing damage to the target. Washed SrTiO
3 (STO) Substrate holder 6 with heater
, And the vacuum chamber is once evacuated to a high vacuum. After cleaning the substrate surface by raising the substrate temperature to a predetermined temperature (about 650-800 ° C.), a small amount of ultra-high purity oxygen is introduced into the vacuum chamber, and the pressure control system 8 a connected to the vacuum pump 8 is adjusted. To a predetermined oxygen pressure (0.1-
(About 1.0 Torr). A predetermined pressure (approximately 4 to 20 atm) of hydrogen is introduced into the high-pressure gas sealing tube 3 for Raman shift.
To introduce.

【0023】あらかじめ以上の操作をした後、YAGパ
ルスレーザの第4高調波を集光可変用レンズ4を使って
高圧ガス封入管3の中へ集光し照射して、ラマン効果に
より真空紫外線パルスレーザ光を発生させる。この真空
紫外線を含むパルスレーザ光を集光可変照射手段5によ
りターゲットへ集光して照射し、ターゲット物質をパル
ス的に基板に向けてアブレーションさせて基板上にYB
COの結晶薄膜を作製する。成膜時には、通常のレーザ
蒸着法における条件、即ち、基板温度、酸素圧、レーザ
周波数などの諸条件の他、該ラマンシフトレーザ蒸着方
法に付随する条件、即ち、高圧ガス封入管中の水素ガス
圧、YAGレーザの第4高調波の出力と高圧ガス封入管
中での集光距離、真空紫外線を含むラマンシフトパルス
レーザ光のターゲット上での集光密度などを以下のよう
に最適化した。基板温度:740℃、酸素圧:50P
a、レーザ周波数:1ヘルツ、水素ガス圧:5気圧、Y
AGレーザの第4高調波の出力:70mJ/パルス、高
圧ガス封入管中の集光距離:45cm、ラマンシフトパ
ルスレーザ光の集光密度:約2J/cm2 /パルス。上
記行程により、YBCO超伝導体の結晶薄膜を作製し
た。
After performing the above operation in advance, the fourth harmonic of the YAG pulse laser is condensed into the high-pressure gas sealing tube 3 by using the converging lens 4, and is irradiated with the vacuum ultraviolet pulse by the Raman effect. Generates laser light. The pulsed laser light including the vacuum ultraviolet light is condensed and irradiated on the target by the converging variable irradiation means 5, and the target material is ablated toward the substrate in a pulsed manner, and the YB is irradiated on the substrate.
A crystal thin film of CO is prepared. At the time of film formation, in addition to the conditions in a normal laser vapor deposition method, that is, various conditions such as a substrate temperature, an oxygen pressure, and a laser frequency, the conditions accompanying the Raman shift laser vapor deposition method, that is, hydrogen gas in a high-pressure gas sealed tube The pressure, the output of the fourth harmonic of the YAG laser, the focusing distance in the high-pressure gas sealing tube, and the focusing density of the Raman shift pulse laser light including vacuum ultraviolet rays on the target were optimized as follows. Substrate temperature: 740 ° C, oxygen pressure: 50P
a, laser frequency: 1 Hz, hydrogen gas pressure: 5 atm, Y
The output of the fourth harmonic of the AG laser: 70 mJ / pulse, the focusing distance in the high-pressure gas sealed tube: 45 cm, the focusing density of the Raman shift pulse laser beam: about 2 J / cm 2 / pulse. Through the above process, a crystal thin film of the YBCO superconductor was produced.

【0024】2)結果 a)上記のラマンシフトパルスレーザ蒸着方法の実験に
より作製したYBCO超伝導体の結晶薄膜の特性と、
b)従来のYAG第4高調波を用いたレーザ蒸着方法で
作製した薄膜の特性との比較を図2、図3、図4と図5
に示す。図2は電気抵抗の温度依存性である。両方の薄
膜の超伝導転移温度は共に約89Kであり互いに遜色は
ない。しかし、同転移温度以上での温度域での電気抵抗
をみると、a)の該ラマンシフトパルスレーザ蒸着方法
で作製した試料は、b)の試料の3分の1以下の値を示
しており、より良質な薄膜であることが分かる。
2) Results a) The characteristics of the crystal thin film of the YBCO superconductor produced by the experiment of the Raman shift pulse laser deposition method described above,
b) Comparison with the characteristics of a thin film produced by a conventional laser vapor deposition method using the fourth harmonic of YAG is shown in FIGS. 2, 3, 4 and 5.
Shown in FIG. 2 shows the temperature dependence of the electric resistance. The superconducting transition temperature of both thin films is about 89K, which is comparable to each other. However, looking at the electrical resistance in the temperature range above the transition temperature, the sample prepared by the Raman shift pulse laser vapor deposition method of a) shows a value less than one third of the sample of b). It can be seen that the thin film has better quality.

【0025】図3の薄膜のX線回折スペクトルに示すよ
うに、a),b)の両レーザ蒸着方法で作製した膜は共
に、基板に使ったSTO結晶の(h00);h=1−3
のX線回折線以外には、YBCO超伝導結晶の(00
l);l=1−11の回折スペクトルのみからなってい
るが、回折線の強度はa)の薄膜の方が全体的に強い。
このことは、共にc軸配向した単結晶薄膜が作製されて
いるが、a)の方がより良質の結晶膜であることを示し
ている。
As shown in the X-ray diffraction spectrum of the thin film in FIG. 3, the films prepared by both the laser deposition methods a) and b) are both (h00); h = 1-3 of the STO crystal used for the substrate.
Other than the X-ray diffraction line of
l); only consists of the diffraction spectrum of l = 1-11, but the intensity of the diffraction line is generally stronger in the thin film of a).
This indicates that although a single-crystal thin film having both c-axis orientations was prepared, a) is a better quality crystal film.

【0026】さらに、図4、図5の薄膜の走査型電子顕
微鏡( SEM) 写真(内尺は上図:1μm,下図:10
μm)が示すように、図4のa)の該ラマンシフトパル
スレーザ蒸着法で作製した膜では、図5のb)の従来の
YAG第4高調波を用いて作製した薄膜よりも不純物表
面粒子の数が大幅に減少すると共にその大きさも極めて
小さくなっている。以上のことから、a)の該ラマンシ
フトパルスレーザ蒸着方法で作製した膜は表面粒子の発
生が抑制され膜質が向上していることが分かる。
Further, scanning electron microscope (SEM) photographs of the thin films of FIGS. 4 and 5 (upper figure: 1 μm, lower figure: 10 μm)
As shown in FIG. 4A, the film produced by the Raman shift pulse laser deposition method shown in FIG. 4A has a more impurity surface particle than the thin film produced using the conventional YAG fourth harmonic shown in FIG. Have been greatly reduced and their size has become extremely small. From the above, it can be seen that the film produced by the Raman shift pulse laser vapor deposition method of a) has improved surface quality by suppressing generation of surface particles.

【0027】図6は該ラマンシフトパルスレーザ蒸着方
法でYBCOとCeO2 を順番に成膜した2層積層試料
のX線回折スペクトルである。基板に使ったSTO結晶
の(h00);h=1−3のX線回折線以外には、YB
CO超伝導結晶の(00l);l=1−11とCeO2
結晶の(h00);h=2,4の回折スペクトルのみか
らなっていることから、YBCO/CeO2 の良質な結
晶積層薄膜が作製されていることを示している。
FIG. 6 is an X-ray diffraction spectrum of a two-layer sample in which YBCO and CeO 2 are sequentially formed by the Raman shift pulse laser deposition method. In addition to the (h00) of the STO crystal used for the substrate;
(001) of CO superconducting crystal; l = 1-11 and CeO 2
Since only the diffraction spectrum of (h00); h = 2, 4 of the crystal is obtained, it indicates that a high-quality crystal layered thin film of YBCO / CeO 2 has been produced.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係わる薄
膜と積層薄膜の作製方法と装置は、ラマン効果による真
空紫外線を含むラマンシフトパルスレーザ光の発生系
と、ターゲット上でのその集光の程度を変えて照射する
集光可変照射系と、真空チャンバー系とを有機的に結合
して、従来のYAG第4高調波などでは作製不可能であ
った、不純物表面粒子の発生の抑制を可能にして、高品
質のYBCOなどの材料の結晶薄膜の作製を可能とす
る。
As described above, the method and apparatus for producing a thin film and a laminated thin film according to the present invention include a system for generating a Raman shift pulsed laser beam including vacuum ultraviolet rays by the Raman effect and a method for condensing the laser beam on a target. The variable condensing irradiation system that irradiates with varying degrees of irradiation and the vacuum chamber system are organically combined to suppress the generation of impurity surface particles that could not be produced with the conventional YAG fourth harmonic. As a result, it is possible to produce a crystalline thin film of a high quality material such as YBCO.

【0029】しかも、本発明のレーザ蒸着方法は、作製
しようとする薄膜の材料や物質の種類に依存しない。即
ち、ターゲットさえ作製できれば、無機材料か有機材料
かに依存せずに、また、半導体、誘電体、超伝導体、磁
性体、伝導体、絶縁体などの金属酸化物系、金属系や化
合物系のいずれをも対象にしてその結晶薄膜を作製で
き、また、ターゲット位置を順次に変えさえすれば高品
質の多層積層薄膜を作製することが可能である。
Moreover, the laser deposition method of the present invention does not depend on the type of material or substance of the thin film to be formed. In other words, as long as the target can be produced, it does not depend on whether it is an inorganic material or an organic material, and also a metal oxide, a metal or a compound such as a semiconductor, a dielectric, a superconductor, a magnetic, a conductor, or an insulator. The crystalline thin film can be manufactured for any of the above, and a high-quality multilayer laminated thin film can be manufactured only by sequentially changing the target position.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ラマンシフトパルスレーザ蒸着方法による薄膜
と積層薄膜の作製装置1の概略図である。
FIG. 1 is a schematic view of an apparatus 1 for producing a thin film and a laminated thin film by a Raman shift pulse laser deposition method.

【図2】a)とb)はそれぞれ、ラマンシフトパルスレ
ーザ蒸着方法と、Nd:YAGパルスレーザの第4高調
波を用いたパルスレーザ蒸着方法により作製したYBC
O超伝導結晶薄膜の電気抵抗の温度依存性を示す特性曲
線図である。
FIGS. 2A and 2B are respectively a Raman shift pulse laser deposition method and a YBC produced by a pulse laser deposition method using a fourth harmonic of a Nd: YAG pulse laser.
It is a characteristic curve figure which shows the temperature dependence of the electric resistance of O superconducting crystal thin film.

【図3】a)とb)はそれぞれ、ラマンシフトパルスレ
ーザ蒸着方法と、Nd:YAGパルスレーザの第4高調
波を用いたパルスレーザ蒸着方法により作製したYBC
O超伝導結晶薄膜のX線回折スペクトルである。
FIGS. 3A and 3B respectively show a Raman shift pulse laser deposition method and a YBC produced by a pulse laser deposition method using the fourth harmonic of a Nd: YAG pulse laser.
3 is an X-ray diffraction spectrum of an O superconducting crystal thin film.

【図4】ラマンシフトパルスレーザ蒸着方法により作製
したYBCO超伝導結晶薄膜の表面の走査型電子顕微鏡
(SEM) 写真である。
FIG. 4 is a scanning electron microscope (SEM) photograph of the surface of a YBCO superconducting crystal thin film produced by a Raman shift pulse laser deposition method.

【図5】Nd:YAGパルスレーザの第4高調波を用い
たパルスレーザ蒸着方法により作製したYBCO超伝導
結晶薄膜の表面の走査型電子顕微鏡(SEM) 写真であ
る。
FIG. 5 is a scanning electron microscope (SEM) photograph of the surface of a YBCO superconducting crystal thin film produced by a pulsed laser deposition method using the fourth harmonic of a Nd: YAG pulsed laser.

【図6】該ラマンシフトパルスレーザ蒸着方法で作製し
たYBCO/CeO2 の2層積層薄膜のX線回折スペク
トルである。
FIG. 6 is an X-ray diffraction spectrum of a YBCO / CeO 2 two-layer laminated thin film produced by the Raman shift pulse laser deposition method.

【符号の説明】[Explanation of symbols]

1 薄膜と積層薄膜の作製装置 2 紫外線パルスレーザ発生部 3 ラマンシフトパルスレーザ光発生用の高圧ガス封入
管 4 集光可変用レンズ 5 集光可変照射手段 6 ヒータ付きの基板ホルダー 7 ターゲットホルダー 8 真空ポンプ 9 真空チャンバー 10 直線導入機構(端子) 11 ターゲット位置移動機構 12 ターゲットの自転機構などの均一蒸発機構
REFERENCE SIGNS LIST 1 thin film and laminated thin film manufacturing apparatus 2 ultraviolet pulse laser generating unit 3 high pressure gas sealed tube for generating Raman shift pulse laser light 4 variable focusing lens 5 variable focusing irradiation means 6 substrate holder with heater 7 target holder 8 vacuum Pump 9 Vacuum chamber 10 Linear introduction mechanism (terminal) 11 Target position moving mechanism 12 Uniform evaporation mechanism such as target rotation mechanism

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高い基準分子振動数を持つ物質に紫外線
パルスレーザ光を照射して該レーザ光の短波長化を行
い、真空紫外線を含み蒸着に充分な出力エネルギーと安
定度とを持つラマンシフト化したパルスレーザ光を発生
させ、該ラマンシフト真空紫外線を含むパルスレーザ蒸
着により、ターゲット物質を蒸発させて基板上に該物質
の薄膜を作製する方法。
1. A material having a high reference molecular frequency is irradiated with an ultraviolet pulse laser beam to shorten the wavelength of the laser beam, and contains Raman shift having sufficient output energy and stability for vapor deposition including vacuum ultraviolet rays. A method of generating a pulsed laser beam, and evaporating a target material by pulsed laser deposition including the Raman-shifted vacuum ultraviolet light to form a thin film of the material on a substrate.
【請求項2】 以下の行程; (1)光を透過し得る光学窓を両端に有する高圧ガス封
入管の中に水素や重水素分子などの高い基準分子振動数
νf を持つガスをあらかじめ数気圧から数十気圧の所定
の圧まで封入しておき、一方の窓から振動数ν0 を持つ
紫外線パルスレーザ光をレンズなどを用いて封入ガス中
に集光し照射してν0 ±n νf ( nは整数) の振動数を
持ち真空紫外線も含むラマンシフト光を他方の窓に向か
って効率よく発生させる第1行程、(2)無機単結晶基
板やガラス基板などの基板をセットしその温度を制御で
きるヒータ付きの基板ホルダーと薄膜を作製しようとす
る無機材料や有機材料のタ−ゲット(標的物質)をセッ
トできるターゲットホルダーとを具備しかつ低圧や真空
まで排気できる真空チャンバーの中にあらかじめターゲ
ットをセットしておき、ラマンシフトしたパルスレーザ
光又はそれを分光した光をレンズを使いターゲット上に
集光し照射して、ターゲット物質をパルス的に分解し蒸
発させて基板上に衝突させる第2行程、を所定のパルス
の回数だけ行い、その物質の結晶性や非晶性の薄膜を作
製するようにしたことを特徴とするレーザ蒸着による薄
膜の作製方法。
Wherein following step: (1) the number previously gases with high standards molecular vibration frequency [nu f such as hydrogen and deuterium molecules in the high-pressure gas-filled tube having at both ends an optical window that can transmit light A predetermined pressure of from atmospheric pressure to several tens of atmospheric pressure is sealed, and an ultraviolet pulse laser beam having a frequency of ν 0 is condensed into a sealed gas using a lens or the like from one of the windows to irradiate ν 0 ± n ν a first step of efficiently generating Raman shift light having a frequency of f (n is an integer) and including vacuum ultraviolet rays toward the other window; (2) setting a substrate such as an inorganic single crystal substrate or a glass substrate, In a vacuum chamber that has a substrate holder with a heater that can control the temperature and a target holder that can set a target (target substance) made of an inorganic or organic material for forming a thin film and that can evacuate to a low pressure or vacuum. Beforehand A target is set, and Raman-shifted pulsed laser light or light obtained by dispersing the Raman-shifted light is focused and irradiated on a target using a lens to decompose and evaporate the target material in a pulsed manner and collide with a substrate. 2. A method for producing a thin film by laser vapor deposition, wherein the two steps are performed a predetermined number of times to produce a crystalline or amorphous thin film of the substance.
【請求項3】 複数個のタ−ゲットをセットできるター
ゲットホルダーと、基板ホルダーとを具備する真空チャ
ンバーの中にあらかじめ複数個のターゲットをセットし
ておき、第1行程と、第2行程とを所定のパルスの回数
だけ行う過程を各ターゲットについて順次に行い、基板
上にそれらの物質の薄膜を順次に積層するようにしたこ
とを特徴とする請求項2記載の薄膜の作製方法。
3. A plurality of targets are set in advance in a vacuum chamber having a target holder on which a plurality of targets can be set and a substrate holder, and a first step and a second step are performed. 3. The method for producing a thin film according to claim 2, wherein the step of performing the predetermined number of pulses is sequentially performed for each target, and the thin films of those substances are sequentially laminated on the substrate.
【請求項4】 請求項2記載の薄膜を作製する装置であ
って、パルスレーザ光を照射して短波長の真空紫外線を
含むラマンシフトパルスレーザ光を発生させ得るラマン
シフト用高圧ガス封入管と、ラマンシフトしたパルスレ
ーザ光又はそれを分光した光を真空紫外線をも透過可能
なレンズなどにより集光の程度を変えてタ−ゲットに照
射するラマンシフト光の集光可変照射手段と、無機単結
晶基板やガラス基板などの基板をセットし高温までその
温度制御が可能なヒータ付きの基板ホルダーとタ−ゲッ
トをセットできかつ均一にターゲットを蒸発させるため
のターゲット回転機構などのターゲット均一蒸発手段と
を具備する真空チャンバーと、を有してなることを特徴
とする蒸着による薄膜作製装置。
4. An apparatus for producing a thin film according to claim 2, wherein said high-pressure gas filling tube for Raman shift is capable of generating a Raman shift pulse laser beam containing vacuum ultraviolet light having a short wavelength by irradiating a pulse laser beam. Means for irradiating a target with Raman-shifted pulsed laser light or light obtained by dispersing the pulsed laser light by changing the degree of light collection by a lens or the like that can also transmit vacuum ultraviolet light, and an inorganic unit. A substrate holder with a heater capable of setting a substrate such as a crystal substrate or a glass substrate and controlling the temperature to a high temperature; a target uniform evaporating means such as a target rotating mechanism for setting a target and uniformly evaporating the target; And a vacuum chamber comprising: a thin film production apparatus by vapor deposition.
【請求項5】 請求項3記載の薄膜を作製する装置であ
って、パルスレーザ光を照射して短波長の真空紫外線を
含むラマンシフトパルスレーザ光を発生させ得るラマン
シフト用高圧ガス封入管と、ラマンシフトしたパルスレ
ーザ光又はそれを分光した光を真空紫外線をも透過可能
なレンズなどにより集光の程度を変えてタ−ゲットに照
射するラマンシフトパルス光の集光可変照射手段と、ヒ
ータ付きの基板ホルダーとタ−ゲットをセットできかつ
均一にターゲットを蒸発させるためのターゲット回転機
構などのターゲット均一蒸発機構と、種々の物質や材料
の複数個のタ−ゲットをセットできかつ各ターゲットを
レーザ光の集光照射位置へ順次に移動できるターゲット
位置移動機構と、を具備する真空チャンバーと、を有し
てなることを特徴とする薄膜の作製装置。
5. An apparatus for producing a thin film according to claim 3, wherein said high-pressure gas filling tube for Raman shift is capable of generating a Raman shift pulse laser beam containing vacuum ultraviolet light having a short wavelength by irradiating a pulse laser beam. Means for irradiating Raman-shifted pulsed laser light or a light obtained by dispersing the same with a lens or the like capable of transmitting vacuum ultraviolet rays with a different degree of light collection and irradiating the target with Raman-shifted pulsed light; A target uniform evaporation mechanism such as a target rotation mechanism for uniformly setting and evaporating a target, and a plurality of targets of various substances and materials can be set and each target can be set. And a target position moving mechanism capable of sequentially moving to a laser beam condensing irradiation position, and a vacuum chamber having a Thin film production equipment.
JP29614598A 1998-10-02 1998-10-02 Method and apparatus for producing thin film by Raman shift pulse laser deposition Expired - Lifetime JP3790809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29614598A JP3790809B2 (en) 1998-10-02 1998-10-02 Method and apparatus for producing thin film by Raman shift pulse laser deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29614598A JP3790809B2 (en) 1998-10-02 1998-10-02 Method and apparatus for producing thin film by Raman shift pulse laser deposition

Publications (2)

Publication Number Publication Date
JP2000109971A true JP2000109971A (en) 2000-04-18
JP3790809B2 JP3790809B2 (en) 2006-06-28

Family

ID=17829740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29614598A Expired - Lifetime JP3790809B2 (en) 1998-10-02 1998-10-02 Method and apparatus for producing thin film by Raman shift pulse laser deposition

Country Status (1)

Country Link
JP (1) JP3790809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012349A (en) * 2010-10-01 2011-01-20 Hochiki Corp Thin film deposition apparatus and thin film deposition method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012349A (en) * 2010-10-01 2011-01-20 Hochiki Corp Thin film deposition apparatus and thin film deposition method using the same

Also Published As

Publication number Publication date
JP3790809B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
DE4340752C2 (en) Device for producing a uniform thin film on a large substrate area using a laser
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
US4629859A (en) Enhanced evaporation from a laser-heated target
JP4406730B2 (en) Extreme ultraviolet light source and target for extreme ultraviolet light source
US6489587B2 (en) Fabrication method of erbium-doped silicon nano-size dots
JP3790809B2 (en) Method and apparatus for producing thin film by Raman shift pulse laser deposition
US5356872A (en) "Method of making high Tc superconducting thin films with fullerenes by evaporation"
JPH1186647A (en) Oxide superconducting conductor
JP3465041B2 (en) YAG fifth harmonic pulse laser vapor deposition method and apparatus
JP4397451B2 (en) Transparent conductive thin film and method for producing the same
JPH01224297A (en) Production of metal oxide superconductor material layer
JPH04182317A (en) Formation of oxide superconducting thin film
CN108774749A (en) The preparation method of strontium titanate monocrystal surface metalation
JPH07133189A (en) Production of oxide thin film
JP2001059162A (en) FORMATION OF Si THIN FILM BY LASER VAPOR DEPOSITION METHOD AND PHOTOELECTRIC TRANSDUCER CONTAINING THE THIN FILM AS COMPONENT
JP2001244511A (en) Method of manufacturing josephson device having ramp edge structure and film-forming device
KR970009739B1 (en) Method of manufacture for superconductor thin film
Ogale et al. Recent advances in the deposition of multi-component oxide films by pulsed energy deposition
Molian Laser physico-chemical vapour deposition of cubic boron nitride thin films
TW202316689A (en) Method for producing a solid-state component, solid-state component, quantum component and apparatus for producing a solid-state component
JPH05267570A (en) Manufacture of dielectric thin film and device thereof
JP4917635B2 (en) Two-layer thin film structure, superconducting substance three-layer thin film structure, and manufacturing method thereof
JPH029793A (en) Thin single crystal film of lna2cu3o7-x having three-layered perovskite structure and production of thin lna2cu3o7-x film
JPH05194095A (en) Production of thin-film electric conductor
JPH05148621A (en) Method of forming thin oriented film on metallic substrate according to laser abrasion technique

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term