JP2000109361A - Dielectric porcelain composition and laminated ceramic capacitor using the same - Google Patents

Dielectric porcelain composition and laminated ceramic capacitor using the same

Info

Publication number
JP2000109361A
JP2000109361A JP10280818A JP28081898A JP2000109361A JP 2000109361 A JP2000109361 A JP 2000109361A JP 10280818 A JP10280818 A JP 10280818A JP 28081898 A JP28081898 A JP 28081898A JP 2000109361 A JP2000109361 A JP 2000109361A
Authority
JP
Japan
Prior art keywords
composition
dielectric
range
ceramic capacitor
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10280818A
Other languages
Japanese (ja)
Other versions
JP3575294B2 (en
Inventor
Masafumi Nakayama
雅文 中山
Kazuhiro Komatsu
和博 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28081898A priority Critical patent/JP3575294B2/en
Publication of JP2000109361A publication Critical patent/JP2000109361A/en
Application granted granted Critical
Publication of JP3575294B2 publication Critical patent/JP3575294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric porcelain composition to be used for a laminated ceramic capacitor for temperature compensation, by which stable electric properties can be obtained even when it is fired under a non-oxidative atmosphere. SOLUTION: In a three-component composition expressed by formula, x(MgmCa1-m)O-y(TinZr1-n)O2-zLa2O3 (x+y+z=1), wherein x, y, m, n represent molar ratio, the composition but, m is in the range of 0.3-0.70 and n is in the range of 0.70-0.90} within the region surrounded by the points of a(x=0.49, y=0.50, z=0.01), b(x=0.25, y=0.50, z=0.25) and c(x=0.97, y=0.02, z=0.01) is added with at least one selected from the group of BaSiO3, MgSiO3 and CaSiO3 as an additive in amount of 0.05-3.00 wt.% and further, V2O5 in amount of 0.05-0.03 wt.%, based on 100 wt.% of the composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケルなどの卑金
属で内部電極を形成する温度補償用の積層セラミックコ
ンデンサに用いる誘電体磁器組成物およびこれを用いた
積層セラミックコンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition for use in a multilayer ceramic capacitor for temperature compensation in which an internal electrode is formed of a base metal such as nickel, and a multilayer ceramic capacitor using the same.

【0002】[0002]

【従来の技術】従来の積層セラミックコンデンサは、公
知の積層セラミックコンデンサの製造方法にしたがっ
て、誘電体粉末を主成分とするセラミック層グリーンシ
ートと内部電極層を交互に複数層積層したグリーン積層
体を、所定のグリーンチップ形状に決断した後、所定温
度で焼成を行い、得られた焼結体の端面に露出した内部
電極と電気的に接続するように焼結体の端面部に外部電
極を形成する方法が一般的に行われている。
2. Description of the Related Art A conventional multilayer ceramic capacitor is obtained by forming a green laminate in which a plurality of ceramic green sheets mainly composed of dielectric powder and internal electrode layers are alternately laminated in accordance with a known method of manufacturing a multilayer ceramic capacitor. After deciding into a predetermined green chip shape, baking is performed at a predetermined temperature, and an external electrode is formed on the end surface of the sintered body so as to be electrically connected to the internal electrode exposed on the end surface of the obtained sintered body. The way to do it is generally done.

【0003】しかしながら近年、積層セラミックコンデ
ンサの大容量、高積層化に伴い内部電極にニッケル等の
卑金属を用いたグリーンチップを非酸化性雰囲気中で焼
結を行う方法が主流となって来ている。
However, in recent years, the method of sintering a green chip using a base metal such as nickel for an internal electrode in a non-oxidizing atmosphere has become the mainstream with the increase in the capacity and the lamination of the multilayer ceramic capacitor. .

【0004】[0004]

【発明が解決しようとする課題】従来の積層セラミック
コンデンサを非酸化性雰囲気で焼成を行うのは、ニッケ
ル等の卑金属の内部電極の酸化を防ぐためである。しか
しながら積層セラミックコンデンサの内、温度補償用の
積層セラミックコンデンサに用いる誘電体磁器組成物
は、一般的に主成分のMgTiO3,CaTiO3に希土
類酸化物を添加した組成が多く、この材料は非酸化性雰
囲気で焼成すると主成分中の酸化チタンが還元され易
く、半導体化して絶縁抵抗が低くなると共に、所望の誘
電体特性が得られないという課題を有していた。
The reason why the conventional multilayer ceramic capacitor is fired in a non-oxidizing atmosphere is to prevent oxidation of internal electrodes of a base metal such as nickel. However, among the multilayer ceramic capacitors, the dielectric ceramic composition used for the multilayer ceramic capacitor for temperature compensation generally has a composition in which rare earth oxides are added to the main components MgTiO 3 and CaTiO 3 , and this material is non-oxidized. When sintering is performed in a neutral atmosphere, titanium oxide in the main component is easily reduced, the semiconductor is converted into a semiconductor, insulation resistance is reduced, and desired dielectric characteristics cannot be obtained.

【0005】本発明は非酸化性雰囲気中の焼成において
も、安定した電気特性の得られる誘電体磁器組成物を提
供することを目的とするものである。
[0005] It is an object of the present invention to provide a dielectric porcelain composition capable of obtaining stable electric characteristics even when fired in a non-oxidizing atmosphere.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
本発明は、一般式として、x(MgmCa1-m)O−y
(TinZr1-n)O2−zLa23(但しx+y+z=
1)で表される三成分系組成において、a(x=0.4
9,y=0.50,z=0.01)、b(x=0.2
5,y=0.50,z=0.25)、c(x=0.9
7,y=0.02,z=0.01)で囲まれた組成(但
し、mは0.30≦m≦0.70,nは0.70≦n≦
0.90の範囲)100wt%に対し、添加物としてB
aSiO3,MgSiO3,CaSiO3の群より選ばれ
た一つを0.05〜3.00wt%、更にV25を0.
05〜0.30wt%添加した組成としたものである。
The present invention for achieving the above object, according to an aspect of, as a general formula, x (Mg m Ca 1- m) O-y
(Ti n Zr 1-n) O 2 -zLa 2 O 3 ( where x + y + z =
In the ternary composition represented by 1), a (x = 0.4
9, y = 0.50, z = 0.01), b (x = 0.2
5, y = 0.50, z = 0.25), c (x = 0.9
7, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦
0.90 range) 100 wt%, B as an additive
a selected from the group consisting of aSiO 3 , MgSiO 3 and CaSiO 3 is 0.05 to 3.00 wt%, and V 2 O 5 is 0.1 wt%.
The composition is a composition in which the composition is added in the range of 0.5 to 0.30 wt%.

【0007】この構成により、非酸化性雰囲気中の焼成
においても、安定した電気的特性のものが得られること
になる。
With this configuration, stable electric characteristics can be obtained even when firing in a non-oxidizing atmosphere.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、一般式として、x(MgmCa1-m)O−y(Tin
Zr1-n)O2−zLa23で表される三成分系組成にお
いて、a(x=0.49,y=0.50,z=0.0
1)、b(x=0.25,y=0.50,z=0.2
5)、c(x=0.97,y=0.02,z=0.0
1)で囲まれた組成(但し、mは0.30≦m≦0.7
0,nは0.70≦n≦0.90の範囲)100wt%
に対し、添加物としてBaSiO3,MgSiO3,Ca
SiO3の群より選ばれた一つを0.05〜3.00w
t%、更にV25を0.05〜0.30wt%添加した
誘電体磁器組成物である。一般式が、x(Mgm
1-m)O−y(TinZr1-n)O2−zLa23で表さ
れ、しかもa(x=0.49,y=0.50,z=0.
01)、b(x=0.25,y=0.50,z=0.2
5)、c(x=0.97,y=0.02,z=0.0
1)で囲まれた本発明の三成分系材料組成は、MgO,
CaO,La23のモル比の和(x+z)が、常にTi
2,ZrO2のモル比の和(y)と等しいか、又は大き
くなるように組成範囲を規定したものである。この組成
にV25を0.05〜0.30wt%添加することによ
り、非酸化性雰囲気中で焼成を行ってもV25がTiO
2の還元を防止し、絶縁抵抗が大きく、しかも設計値通
りの容量温度係数の小さい焼結体が得られ、従ってニッ
ケル等の卑金属を内部電極に用いる温度補償用の積層セ
ラミックコンデンサの誘電体材料として好適なものとな
り、また更に、還元されやすいTiO2の一部をZrO2
で置換することで、更に耐還元性を向上させることがで
き、一方BaSiO3,MgSiO3,CaSiO3の群
より選ばれた一つを0.05〜0.30wt%添加する
ことにより、これらが焼結助材として焼結性を促進しQ
E、絶縁抵抗の高い優れた焼結体を得ることができるも
のである。
DETAILED DESCRIPTION OF THE INVENTION According to a first aspect of the present invention, as a general formula, x (Mg m Ca 1- m) O-y (Ti n
In a ternary composition represented by Zr 1 -n ) O 2 -zLa 2 O 3 , a (x = 0.49, y = 0.50, z = 0.0
1), b (x = 0.25, y = 0.50, z = 0.2
5), c (x = 0.97, y = 0.02, z = 0.0)
1) (where m is 0.30 ≦ m ≦ 0.7)
0 and n are in the range of 0.70 ≦ n ≦ 0.90) 100 wt%
On the other hand, BaSiO 3 , MgSiO 3 , Ca
One selected from the group of SiO 3 is 0.05 to 3.00 w
t%, a further dielectric ceramic composition obtained by adding 0.05~0.30Wt% of V 2 O 5. The general formula is x (Mg m C
a 1-m) O-y ( represented by Ti n Zr 1-n) O 2 -zLa 2 O 3, yet a (x = 0.49, y = 0.50, z = 0.
01), b (x = 0.25, y = 0.50, z = 0.2
5), c (x = 0.97, y = 0.02, z = 0.0)
The ternary material composition of the present invention surrounded by 1) is composed of MgO,
The sum (x + z) of the molar ratios of CaO and La 2 O 3 is always Ti
The composition range is defined so as to be equal to or greater than the sum (y) of the molar ratios of O 2 and ZrO 2 . By the V 2 O 5 added 0.05~0.30Wt% in this composition, non in an oxidizing atmosphere even if the firing V 2 O 5 TiO
(2) A sintered body having a high insulation resistance and a small capacity temperature coefficient according to the design value is obtained by preventing the reduction of 2 and therefore a dielectric material of a multilayer ceramic capacitor for temperature compensation using a base metal such as nickel for the internal electrode. And a portion of TiO 2 that is easily reduced is converted to ZrO 2
Can further improve the reduction resistance. On the other hand, by adding one selected from the group consisting of BaSiO 3 , MgSiO 3 , and CaSiO 3 by 0.05 to 0.30% by weight, As a sintering aid, promotes sinterability and Q
E. An excellent sintered body having high insulation resistance can be obtained.

【0009】本発明の請求項2に記載の発明は、請求項
1に記載の誘電体磁器組成物の主成分x(Mgm
1-m)O−y(TinZr1-n)O2−zLa23(但し
x+y+z=1)で表される三成分系組成において、a
(x=0.49,y=0.50,z=0.01)、b
(x=0.25,y=0.50,z=0.25)、c
(x=0.97,y=0.02,z=0.01)で囲ま
れた組成(但し、mは0.30≦m≦0.70,nは
0.70≦n≦0.90の範囲)100wt%に対し、
更にAl23を2.0wt%以下、及びMnO2を0.
5wt%以下(但し両方とも同時に0の場合は除く)を
添加した誘電体磁器組成物である(尚x,y,m,nは
モル比を表す)。前記組成に対しAl23及びMnO2
を添加することにより焼結性を更に向上させ、特にMn
2はTiO2の還元を防ぎ絶縁抵抗をより高いものとす
る効果がある。
According to a second aspect of the present invention, there is provided the dielectric ceramic composition according to the first aspect, wherein the main component x (Mg m C
In a 1-m) O-y (Ti n Zr 1-n) O 2 -zLa 2 O 3 ( where x + y + z = 1) ternary composition represented by, a
(X = 0.49, y = 0.50, z = 0.01), b
(X = 0.25, y = 0.50, z = 0.25), c
(X = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦ 0.90) Range) 100 wt%,
Further, Al 2 O 3 is 2.0 wt% or less, and MnO 2 is 0.1 wt%.
This is a dielectric porcelain composition to which 5 wt% or less (except when both are simultaneously 0) is added (where x, y, m, and n represent molar ratios). For the above composition, Al 2 O 3 and MnO 2
Sinterability is further improved by adding
O 2 has the effect of preventing the reduction of TiO 2 and increasing the insulation resistance.

【0010】本発明の請求項3に記載の発明は、請求項
1または請求項2に記載の誘電体磁器組成物からなるセ
ラミック層と、ニッケル等の卑金属の内部電極で構成し
た積層セラミックコンデンサである。請求項1または請
求項2に記載の耐還元性の誘電体磁器組成物でセラミッ
ク層を構成することによって、ニッケル等の卑金属を内
部電極に用いた積層セラミックコンデンサが非酸化性雰
囲気中での焼成が可能となり、QE、絶縁抵抗が共に高
く、しかも静電容量温度係数の小さい優れた温度補償用
の積層セラミックコンデンサを得ることができるもので
ある。
According to a third aspect of the present invention, there is provided a multilayer ceramic capacitor comprising a ceramic layer comprising the dielectric ceramic composition according to the first or second aspect and an internal electrode of a base metal such as nickel. is there. A multilayer ceramic capacitor using a base metal such as nickel for an internal electrode is fired in a non-oxidizing atmosphere by forming a ceramic layer with the reduction-resistant dielectric ceramic composition according to claim 1 or 2. This makes it possible to obtain an excellent multilayer ceramic capacitor for temperature compensation which has both a high Q E and a high insulation resistance and a small capacitance temperature coefficient.

【0011】(実施の形態1)先ず、出発原料として高
純度のMgO,CaO,TiO2,ZrO2,La23
25,BaSiO3の粉末を(表1)〜(表5)に示
す組成比になるように秤量し、湿式混合後、脱水乾燥を
行い、得られた混合材料を高純度アルミナ質の坩堝に入
れ、空気中1150℃の温度で2時間仮焼を行う。
[0011] (Embodiment 1) First, high purity of MgO as starting materials, CaO, TiO 2, ZrO 2 , La 2 O 3,
V 2 O 5 and BaSiO 3 powders were weighed so as to have the composition ratios shown in (Table 1) to (Table 5), wet-mixed, dehydrated and dried, and the obtained mixed material was converted to high-purity alumina. It is put in a crucible and calcined in air at a temperature of 1150 ° C. for 2 hours.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】[0016]

【表5】 [Table 5]

【0017】次に、仮焼材料をゴム内張りのボールミル
の中に純水とジルコニアボールと共に入れ、湿式粉砕
後、脱水乾燥を行い温度補償用誘電体材料を作製した。
得られた温度補償用誘電体材料に、有機バインダーを加
え造粒後、油圧プレスを用い成形圧力1ton/cm2
直径15mm、厚み0.4mmの円板を成形した。
Next, the calcined material was put together with pure water and zirconia balls in a rubber-lined ball mill, wet-pulverized, dehydrated and dried to prepare a temperature-compensating dielectric material.
An organic binder was added to the obtained dielectric material for temperature compensation, and after granulation, a disk having a diameter of 15 mm and a thickness of 0.4 mm was formed using a hydraulic press at a forming pressure of 1 ton / cm 2 .

【0018】次いで、成形した円板をアルミナ質のサヤ
に入れ、空気中にて700℃で2時間脱脂した後、非酸
化雰囲気中にて(表6)〜(表10)に示す温度で2時
間焼成し、焼結体を得た。
Next, the formed disk is placed in an alumina sheath, degreased in air at 700 ° C. for 2 hours, and then heated in a non-oxidizing atmosphere at a temperature shown in (Table 6) to (Table 10). After firing for a time, a sintered body was obtained.

【0019】得られた焼結体の両面に銅電極ペーストを
塗布した後、非酸化雰囲気において900℃の温度で焼
付けた後、誘電率、QE、絶縁抵抗、静電容量温度係数
の測定を行いその結果を(表6)〜(表10)に示し
た。尚、誘電率、QEの測定は温度20℃、測定温度
1.0Vrms、測定周波数1MHzで行い、絶縁抵抗は
電極間にDC50Vを1分間印加した後の抵抗値より、
また静電容量温度係数は20℃と125℃における静電
容量を測定し(数1)より求めた。
After applying a copper electrode paste to both surfaces of the obtained sintered body and baking it at 900 ° C. in a non-oxidizing atmosphere, the dielectric constant, Q E , insulation resistance and capacitance temperature coefficient were measured. The results are shown in (Table 6) to (Table 10). The dielectric constant and Q E were measured at a temperature of 20 ° C., a measurement temperature of 1.0 V rms , and a measurement frequency of 1 MHz. The insulation resistance was obtained from the resistance value after applying DC 50 V between the electrodes for 1 minute.
The capacitance temperature coefficient was determined by measuring the capacitance at 20 ° C. and 125 ° C. (Equation 1).

【0020】[0020]

【表6】 [Table 6]

【0021】[0021]

【表7】 [Table 7]

【0022】[0022]

【表8】 [Table 8]

【0023】[0023]

【表9】 [Table 9]

【0024】[0024]

【表10】 [Table 10]

【0025】[0025]

【数1】 (Equation 1)

【0026】(表6)〜(表10)に示すように、試料
2,4,18,22,23,26はTiO2が一部還元
され絶縁抵抗が極端に低下し、試料8,10,14,1
9は1350℃の温度で焼結不十分なためQE、絶縁抵
抗が共に低下し、試料5,7は1350℃の温度で焼結
しない。さらに、試料15は、静電容量温度係数がプラ
ス351ppm/℃と大きい。これに対し、試料1,3,
6,9,11,12,13,16,17,20,21,
24,25の本発明の組成範囲内は、QEが大きく、絶
縁抵抗も高く、さらに静電容量温度係数が小さい優れた
誘電体特性が得られることが明らかとなる。
As shown in Tables 6 to 10, in Samples 2, 4, 18, 22, 23, and 26, TiO 2 was partially reduced and the insulation resistance was extremely reduced. 14,1
Sample No. 9 has insufficient sintering at a temperature of 1350 ° C., so that both Q E and insulation resistance are reduced. Further, the sample 15 has a large capacitance temperature coefficient of plus 351 ppm / ° C. On the other hand, samples 1, 3,
6, 9, 11, 12, 13, 16, 17, 20, 21,
Within the composition range of the present invention 24 and 25, a large Q E, higher insulation resistance, it becomes apparent that further temperature coefficient of capacitance is small excellent dielectric characteristics.

【0027】以下、それぞれの組成範囲を限定した理由
について述べる。初めに、主成分のx,y,zの範囲を
限定した理由について述べる。(表1)の試料2,4の
ように、MgOとCaO及びLa23のモル比の和(x
+z)よりも、TiO2とZrO2のモル比の和(y)が
大きい範囲、即ちy>0.50の組成は非還元雰囲気で
焼成すると、主成分のTiO2が還元され絶縁抵抗が低
く、安定した誘電体特性が得られず実用的でなくなる。
また、試料8のように、TiO2とZrO2のモル比の和
(y)が0.01の組成は1350℃の焼成では焼結が
不十分でQE、絶縁抵抗共が低くなる。従って、yの範
囲は0.02≦y≦0.50とする必要がある。
The reasons for limiting the respective composition ranges will be described below. First, the reason for limiting the ranges of x, y, and z of the main components will be described. As shown in Samples 2 and 4 in Table 1, the sum of the molar ratios of MgO, CaO, and La 2 O 3 (x
+ Z), the range in which the sum (y) of the molar ratios of TiO 2 and ZrO 2 is larger, that is, the composition where y> 0.50, when fired in a non-reducing atmosphere, reduces the main component TiO 2 and lowers the insulation resistance. In addition, stable dielectric properties cannot be obtained, which is not practical.
Further, as in Sample 8, a composition having a molar ratio (y) of TiO 2 and ZrO 2 of 0.01 has insufficient sintering when fired at 1350 ° C., resulting in low Q E and low insulation resistance. Therefore, the range of y needs to be 0.02 ≦ y ≦ 0.50.

【0028】また、試料5,7,8のように、zのモル
数の2倍の値がyのモル数と等しいか又は大きくなる
と、焼結不十分か焼結が困難となり、QE、絶縁抵抗が
低下することがわかる。即ち、y(Ti,Zr)O2
zLa23との関係において、La23のモル数zの2
倍が(Ti,Zr)O2のモル数yより大きくなると焼
結が困難になることから、y≧2zとする必要がある。
但し、yの範囲は0.02≦y≦0.50とする。従っ
て、yの値が0.02から0.50の範囲で変化する
と、zの値は常にy≧2zを満たし0.01〜0.25
の範囲で変化することになる。また、x+y+z=1の
関係からxの範囲はy,zの値より必然的に決定され、
本発明の主成分のx,y,zの範囲は図1に示す点a,
b,cを直線で囲まれたモル比の範囲に限定される。
Further, when the value twice the number of moles of z is equal to or larger than the number of moles of y as in samples 5, 7, and 8, sintering is insufficient or sintering becomes difficult, and Q E , It can be seen that the insulation resistance decreases. That is, in the relationship between y (Ti, Zr) O 2 and zLa 2 O 3 , the number of moles z of La 2 O 3 is 2
Since the sintering becomes difficult when the number of times becomes larger than the number of moles y of (Ti, Zr) O 2 , it is necessary to satisfy y ≧ 2z.
However, the range of y is set to 0.02 ≦ y ≦ 0.50. Therefore, when the value of y changes in the range of 0.02 to 0.50, the value of z always satisfies y ≧ 2z and is 0.01 to 0.25.
In the range. Also, from the relation x + y + z = 1, the range of x is inevitably determined from the values of y and z,
The range of x, y, z of the main component of the present invention is represented by points a,
b and c are limited to the range of the molar ratio enclosed by a straight line.

【0029】次にMgのモル比mの範囲を限定した理由
は、(表2)(表7)に示すようにmの値が0.30よ
り小さいか、または0.70より大きい組成、試料1
0,14は1350℃の焼成でも焼結不十分なために、
E、絶縁抵抗が共に低下し実用的でなくなる。従っ
て、mの範囲は0.30≦m≦0.70に限定する必要
がある。
Next, the reason for limiting the range of the molar ratio m of Mg is as shown in (Table 2) and (Table 7) that the value of m is smaller than 0.30 or larger than 0.70. 1
For 0,14, sintering was insufficient even at 1350 ° C.
Both Q E and insulation resistance are reduced, making them impractical. Therefore, the range of m needs to be limited to 0.30 ≦ m ≦ 0.70.

【0030】また、Tiのモル比nの範囲を限定した理
由は、(表3),(表8)に示す試料15のように、n
の値が0.60の場合は静電容量温度係数がプラス方向
に極めて大きくなり、温度補償用誘電体材料として実用
的でなく、試料18のようにnの値が1.00、即ちT
iO2100%の場合は、非酸化雰囲気中の焼成でTi
2が還元され、絶縁抵抗が低くなると共に安定した誘
電特性が得られなくなる。従って、nの値は0.70≦
n≦0.90の範囲に限定する必要がある。
The reason for limiting the range of the molar ratio n of Ti is that, as in Sample 15 shown in (Table 3) and (Table 8), n
Is 0.60, the temperature coefficient of capacitance becomes extremely large in the positive direction, which is not practical as a temperature compensating dielectric material, and the value of n is 1.00, ie, T
In the case of 100% of iO 2 , firing in a non-oxidizing atmosphere
O 2 is reduced, the insulation resistance is reduced, and stable dielectric properties cannot be obtained. Therefore, the value of n is 0.70 ≦
It is necessary to limit the range to n ≦ 0.90.

【0031】一方、添加物のBaSiO3の添加量を限
定した理由は(表4),(表9)に示す試料19のよう
に添加量が零の組成は、1350℃の焼成においても焼
結不十分なためにQE、絶縁抵抗が共に低下し、また、
試料22のように添加量が3.0を超えると焼成温度を
低下する効果があるが、添加したBaSiO3のSi成
分の一部がTi位置に入り込み、置換されたTiが還元
されてQEと絶縁抵抗を低下させる。従って、BaSi
3の添加範囲は、0.2〜3.0wt%の範囲に限定
する必要がある。
On the other hand, the reason for limiting the amount of BaSiO 3 to be added is that the composition having no added amount such as Sample 19 shown in (Table 4) and (Table 9) is sintered even at 1350 ° C. Insufficiently reduces both Q E and insulation resistance.
When the addition amount exceeds 3.0 as in Sample 22, the firing temperature is lowered, but a part of the added Si component of BaSiO 3 enters the Ti position, and the substituted Ti is reduced to Q E. And lower the insulation resistance. Therefore, BaSi
It is necessary to limit the addition range of O 3 to the range of 0.2 to 3.0 wt%.

【0032】更に、V25の添加量を限定した理由は、
(表5),(表10)に示す試料23のように添加量が
零の組成は、主成分のTiO2の還元を防御することが
できず、非酸化性雰囲気中の焼成でTiO2が還元され
絶縁抵抗が低下すると共に、安定した誘電特性が得られ
なくなる。また、試料26のように添加量が0.3wt
%を超えると逆にTiO2を還元させ、QEと絶縁抵抗を
低下させるため好ましくない。この原因は定かではない
が、V25がTiO2を原子価制御し半導体価するため
と思われる。従って、V25の添加量は、0.05〜
0.3wt%の範囲に限定する必要がある。
Further, the reason for limiting the amount of V 2 O 5 added is as follows.
(Table 5), the composition amount added is zero as in Sample 23 shown in Table 10 can not protect the reduction of TiO 2 of the main component, TiO 2 is in the firing in a non-oxidizing atmosphere As a result, the insulation resistance is reduced and stable dielectric properties cannot be obtained. Also, as in Sample 26, the addition amount was 0.3 wt.
%, It is not preferable because TiO 2 is reduced and Q E and insulation resistance are reduced. The reason for this is not clear, but it is considered that V 2 O 5 controls the valence of TiO 2 to make it semiconductor. Therefore, the added amount of V 2 O 5 is 0.05 to
It is necessary to limit the range to 0.3 wt%.

【0033】(実施の形態2)実施の形態1の試料12
の組成のBaSiO3に替えてMgSiO3またはCaS
iO3を(表11)の示す組成比になるように秤量した
後、以降の工程を実施の形態1と同条件で処理し、作製
した試料について実施の形態1と同様に評価しその結果
を(表12)に示した。
(Embodiment 2) Sample 12 of Embodiment 1
MgSiO 3 or CaS in place of BaSiO 3
After weighing iO 3 so as to have the composition ratio shown in (Table 11), the subsequent steps were processed under the same conditions as in Embodiment 1, and the prepared samples were evaluated in the same manner as in Embodiment 1 and the results were evaluated. The results are shown in (Table 12).

【0034】[0034]

【表11】 [Table 11]

【0035】[0035]

【表12】 [Table 12]

【0036】(表12)に示すように、BaSiO3
替えてMgSiO3を添加した試料27〜29、または
CaSiO3を添加した試料31〜33は、BaSiO3
添加の場合と同様にQE、絶縁抵抗共に高く、しかも静
電容量温度係数が小さい優れた誘電体特性が得られるこ
とが分かる。また、MgSiO3を添加した場合、Ba
SiO3の添加に比べより絶縁抵抗が高く、CaSiO3
の添加はBaSiO3の添加に比べよりQEの大きい誘電
体磁器組成物が得られることが分かる。しかしながら何
れの場合とも添加量が3wt%を超えると、焼成温度を
低下させる効果があるもののBaSiO3と同様に絶縁
抵抗を低下させるために好ましくない。
As shown in Table 12, Samples 27 to 29 to which MgSiO 3 was added instead of BaSiO 3 or Samples 31 to 33 to which CaSiO 3 was added were BaSiO 3.
As in the case of the addition, it can be seen that excellent dielectric characteristics with high Q E and high insulation resistance and a small capacitance temperature coefficient can be obtained. When MgSiO 3 is added, Ba
The insulation resistance is higher than the addition of SiO 3 , and CaSiO 3
The addition of it can be seen that the larger the dielectric ceramic composition of Q E than compared to the addition of BaSiO 3 is obtained. However, in any case, when the addition amount exceeds 3 wt%, although the effect of lowering the firing temperature is obtained, it is not preferable because the insulation resistance is reduced similarly to BaSiO 3 .

【0037】(実施の形態3)実施の形態1の試料12
の組成に、更にAl23及びMnO2を(表13)に示
す組成となるように秤量し、以降の工程条件を実施の形
態1と同条件で処理し、作製した試料について実施の形
態1と同様に評価しその結果を(表14)に示した。
(Embodiment 3) Sample 12 of Embodiment 1
In addition, Al 2 O 3 and MnO 2 were further weighed to the composition shown in (Table 13), and the subsequent process conditions were processed under the same conditions as in Embodiment 1 to prepare a sample. The results were evaluated in the same manner as in Example 1, and the results are shown in (Table 14).

【0038】[0038]

【表13】 [Table 13]

【0039】[0039]

【表14】 [Table 14]

【0040】(表14)に示すように、本発明のAl2
3及びMnO2を添加した試料35〜38、と40,4
1,43は、QE、絶縁抵抗共に更に高くなり、しかも
静電容量温度係が小さい優れた誘電体特性が得られるこ
とが分かる。これに対しAl 23の添加量が2.0wt
%を超える試料39は焼結温度を低下させる効果はある
もののQEが低下し、またMnO2の添加量が0.5wt
%を超える試料42は焼結体8μm以上の異常成長粒子
が認められ実用上好ましくない。従ってAl23及びM
nO2の添加は夫々2.0wt%、0.5wt%以下
(但し、両方とも同時に0は除く)に限定する必要があ
ることが分かる。
As shown in (Table 14), the Al of the present inventionTwo
OThreeAnd MnOTwo35-38 and 40,4
1,43 is QE, The insulation resistance is higher, and
Excellent dielectric characteristics with small capacitance temperature
I understand. On the other hand, Al TwoOThree2.0 wt.
% Has an effect of lowering the sintering temperature.
Q of thingEAnd MnOTwo0.5wt
% Of the sample 42 is more than 8 μm
Is not preferred in practice. Therefore, AlTwoOThreeAnd M
nOTwo2.0wt%, 0.5wt% or less respectively
(However, it is necessary to limit both to 0 at the same time)
You can see that

【0041】(実施の形態4)実施の形態1から実施の
形態3で作製した本発明の誘電体磁器組成物の試料1
2,28,32,43の各誘電体粉末に酢酸ブチル、ポ
リビニルブチラール、可塑材からなるビヒクルを加え
て、公知のドクターブレード法により厚さ30μmのセ
ラミックグリーンシートを作製した。
(Embodiment 4) Sample 1 of the dielectric ceramic composition of the present invention produced in Embodiments 1 to 3
A vehicle made of butyl acetate, polyvinyl butyral, and a plasticizer was added to each of the dielectric powders 2, 28, 32, and 43, and a 30-μm-thick ceramic green sheet was prepared by a known doctor blade method.

【0042】次に、得られたそれぞれ組成のセラミック
グリーンシートを用い、公知の積層セラミックコンデン
サの製造方法に従い、内部電極とセラミックグリーンシ
ートを交互に15層したグリーン積層体を600kg/
cm2の圧力で加圧圧着した後、1608タイプの積層セ
ラミックコンデンサのグリーンチップ形状に切断を行っ
た。尚、内部電極にはニッケル電極ペーストを用いた。
Next, using the obtained ceramic green sheets of the respective compositions, according to a known method of manufacturing a laminated ceramic capacitor, a green laminate in which 15 internal electrodes and ceramic green sheets were alternately laminated was 600 kg / kg.
After pressure-compression bonding with a pressure of cm 2, the resultant was cut into a green chip shape of a 1608 type multilayer ceramic capacitor. Note that a nickel electrode paste was used for the internal electrodes.

【0043】次いで、グリーンチップを空気中にて35
0℃の温度で2時間脱脂した後、非酸化雰囲気中の13
50℃で2時間焼成を行った。
Next, the green chip was placed in the air for 35 minutes.
After degreasing at a temperature of 0 ° C. for 2 hours, 13 g in a non-oxidizing atmosphere
The firing was performed at 50 ° C. for 2 hours.

【0044】その後、得られた焼結体の内部電極が露出
した端面に外部電極を設けてそれぞれ積層セラミックコ
ンデンサを完成させた。
Thereafter, external electrodes were provided on the end faces of the obtained sintered body where the internal electrodes were exposed, thereby completing a multilayer ceramic capacitor.

【0045】得られた各積層セラミックコンデンサにつ
いて静電容量、QE、静電容量温度係数、絶縁抵抗を、
実施の形態1と同様の方法で測定を行った。また、寿命
試験として125℃の恒温槽中で50Vの直流電圧を積
層セラミックコンデンサの外部電極間に1000時間連
続印加を行い、その結果を(表15)に示した。
The capacitance, Q E , temperature coefficient of capacitance, and insulation resistance of each of the obtained multilayer ceramic capacitors were calculated as follows:
The measurement was performed in the same manner as in the first embodiment. Further, as a life test, a DC voltage of 50 V was continuously applied between external electrodes of the multilayer ceramic capacitor for 1000 hours in a thermostat at 125 ° C., and the results are shown in (Table 15).

【0046】[0046]

【表15】 [Table 15]

【0047】(表15)から明らかなように、本発明の
範囲内の誘電体組成12,28,32,43を用い作製
した積層セラミックコンデンサは、QE、絶縁抵抗が共
に高く、寿命試験においても特性劣化が認められないの
に対し、本発明の範囲外の誘電体粉末の試料19,42
で作製した積層セラミックコンデンサは絶縁抵抗が低
く、しかも寿命試験においても特性劣化が認められた。
尚、特性劣化は試験件後の絶縁抵抗値が1×10
10(Ω)以下に低下したものを不良としてカウントし
た。
As is clear from Table 15, the multilayer ceramic capacitors manufactured using the dielectric compositions 12, 28, 32, and 43 within the scope of the present invention have high Q E and high insulation resistance, and have been subjected to a life test. No deterioration of the characteristics was observed, but samples 19 and 42 of the dielectric powder outside the scope of the present invention were used.
The multilayer ceramic capacitor produced in Example 2 had a low insulation resistance, and the characteristics were also deteriorated in a life test.
In addition, the characteristic deterioration is that the insulation resistance value after the test is 1 × 10
Those which fell to 10 (Ω) or less were counted as defective.

【0048】以上本発明の誘電体磁器組成物は、内部電
極にニッケル等の非金属を用い積層セラミックコンデン
サ用グリーンチップを作製し、これを非酸化性雰囲気中
で焼成を行っても、QE、絶縁抵抗が共に高く、また静
電容量温度変化率の小さい、しかも寿命試験においても
特性劣化が発生しない優れた温度補償用の積層セラミッ
クコンデンサが得られることが明らかである。
The above dielectric ceramic composition of the present invention is to prepare a green chip multilayer ceramic capacitor using a non-metal such as nickel internal electrodes, even when the baking it in a non-oxidizing atmosphere, Q E It is apparent that an excellent multilayer ceramic capacitor for temperature compensation can be obtained which has both a high insulation resistance and a small rate of change in capacitance with temperature and does not cause deterioration in characteristics even in a life test.

【0049】また、実施の形態1から3で誘電体材料の
作製にMgO,CaO,TiO2,ZrO2,La23
BaSiO3,MgOSiO3,CaSiO3,V25
Al 23,MnO2の粉末を使用したが、Mg−Ca−
Ti−Zr−Oの化合物あるいはMg,Ca,Ti,Z
r,Laの炭酸塩、水酸化物等を本発明の組成となるよ
うに用いても、また、主成分をあらかじめ仮焼した後、
添加物を添加しても実施の形態と同程度の特性を得るこ
とができる。
In the first to third embodiments, the dielectric material
MgO, CaO, TiO for fabricationTwo, ZrOTwo, LaTwoOThree,
BaSiOThree, MgOSiOThree, CaSiOThree, VTwoOFive,
Al TwoOThree, MnOTwoWas used, but Mg-Ca-
Ti-Zr-O compound or Mg, Ca, Ti, Z
r, La carbonates, hydroxides, etc. are used in the composition of the present invention.
After calcining the main component in advance,
Even if additives are added, characteristics similar to those of the embodiment can be obtained.
Can be.

【0050】[0050]

【発明の効果】以上の結果に示すように、本発明の誘電
体磁器組成物は非酸化雰囲気中で焼成してもQE及び絶
縁抵抗が共に高く、しかも静電容量温度係数の小さい優
れた誘電体特性を有する焼結体が得られ、ニッケル等の
卑金属を内部電極に用いる積層セラミックコンデンサ用
誘電体材料として使用が可能である。特に、QE特性が
優れ、静電容量温度係数が小さいため高周波回路などで
使用する温度補償用の積層セラミックコンデンサ材料と
して実用性が高いものである。
As shown in the above results, according to the present invention, the dielectric ceramic composition of the present invention is also Q E and insulation resistance are both high and fired in a non-oxidizing atmosphere, yet excellent small temperature coefficient of capacitance A sintered body having dielectric properties is obtained, and can be used as a dielectric material for a multilayer ceramic capacitor using a base metal such as nickel for the internal electrodes. In particular, since it has excellent QE characteristics and a small capacitance temperature coefficient, it is highly practical as a multilayer ceramic capacitor material for temperature compensation used in high-frequency circuits and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体磁器組成範囲を示す三成分系図FIG. 1 is a three-component diagram showing a composition range of a dielectric ceramic according to the present invention.

フロントページの続き Fターム(参考) 4G031 AA03 AA04 AA06 AA09 AA11 AA12 AA13 AA19 AA29 AA30 AA39 BA09 CA03 5E001 AB03 AC09 AE00 AE03 AE04 AF06 AH01 AH05 AH08 AH09 AJ01 AJ02 Continued on front page F-term (reference) 4G031 AA03 AA04 AA06 AA09 AA11 AA12 AA13 AA19 AA29 AA30 AA39 BA09 CA03 5E001 AB03 AC09 AE00 AE03 AE04 AF06 AH01 AH05 AH08 AH09 AJ01 AJ02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式として、x(MgmCa1-m)O−
y(TinZr1-n)O 2−zLa23(但しx+y+z
=1)で表される三成分系組成において、a(x=0.
49,y=0.50,z=0.01)、b(x=0.2
5,y=0.50,z=0.25)、c(x=0.9
7,y=0.02,z=0.01)で囲まれた組成(但
し、mは0.30≦m≦0.70,nは0.70≦n≦
0.90の範囲)100wt%に対し、添加物としてB
aSiO3,MgSiO3,CaSiO3の群より選ばれ
た一つを0.05〜3.00wt%、更にV25を0.
05〜0.30wt%添加した誘電体磁器組成物(尚
x,y,m,nはモル比を表す)。
1. The general formula x (MgmCa1-m) O-
y (TinZr1-n) O Two-ZLaTwoOThree(However, x + y + z
= 1) in the ternary composition represented by a (x = 0.
49, y = 0.50, z = 0.01), b (x = 0.2
5, y = 0.50, z = 0.25), c (x = 0.9
7, y = 0.02, z = 0.01)
M is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦
0.90 range) 100 wt%, B as an additive
aSiOThree, MgSiOThree, CaSiOThreeFrom the group of
The other one is 0.05 to 3.00 wt%, and VTwoOFiveTo 0.
The dielectric porcelain composition added with 0.5 to 0.30 wt% (note that
x, y, m, and n represent molar ratios).
【請求項2】 請求項1に記載の誘電体磁器組成物の主
成分x(MgmCa1-m)O−y(TinZr1-n)O2
zLa23(但しx+y+z=1)で表される三成分系
組成において、a(x=0.49,y=0.50,z=
0.01)、b(x=0.25,y=0.50,z=
0.25)、c(x=0.97,y=0.02,z=
0.01)で囲まれた組成(但し、mは0.30≦m≦
0.70,nは0.70≦n≦0.90の範囲)100
wt%に対し、更にAl23を2.0wt%以下、及び
MnO2を0.5wt%以下(但し両方とも同時に0の
場合は除く)を添加した誘電体磁器組成物(x,y,
m,nはモル比を表す)。
2. A main component x (Mg m Ca 1-m ) of the dielectric ceramic composition according to claim 1 O-y (Ti n Zr 1-n) O 2 -
In a ternary composition represented by zLa 2 O 3 (where x + y + z = 1), a (x = 0.49, y = 0.50, z =
0.01), b (x = 0.25, y = 0.50, z =
0.25), c (x = 0.97, y = 0.02, z =
0.01) (where m is 0.30 ≦ m ≦
0.70, n is in the range of 0.70 ≦ n ≦ 0.90) 100
The dielectric porcelain composition (x, y, and y) containing 2.0 wt% or less of Al 2 O 3 and 0.5 wt% or less of MnO 2 (except when both are 0 at the same time).
m and n represent a molar ratio).
【請求項3】 請求項1または請求項2に記載の誘電体
磁器組成物からなるセラミック層と、ニッケル等の卑金
属の内部電極で構成した積層セラミックコンデンサ。
3. A multilayer ceramic capacitor comprising a ceramic layer made of the dielectric ceramic composition according to claim 1 and an internal electrode of a base metal such as nickel.
JP28081898A 1998-10-02 1998-10-02 Dielectric ceramic composition and multilayer ceramic capacitor using the same Expired - Lifetime JP3575294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28081898A JP3575294B2 (en) 1998-10-02 1998-10-02 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28081898A JP3575294B2 (en) 1998-10-02 1998-10-02 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2000109361A true JP2000109361A (en) 2000-04-18
JP3575294B2 JP3575294B2 (en) 2004-10-13

Family

ID=17630415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28081898A Expired - Lifetime JP3575294B2 (en) 1998-10-02 1998-10-02 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Country Status (1)

Country Link
JP (1) JP3575294B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962888B2 (en) * 2000-06-29 2005-11-08 Tdk Corporation Dielectric ceramic composition and electronic device
CN111925199A (en) * 2020-07-03 2020-11-13 成都宏科电子科技有限公司 Low-temperature sintered microwave dielectric ceramic material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962888B2 (en) * 2000-06-29 2005-11-08 Tdk Corporation Dielectric ceramic composition and electronic device
CN111925199A (en) * 2020-07-03 2020-11-13 成都宏科电子科技有限公司 Low-temperature sintered microwave dielectric ceramic material and preparation method thereof
CN111925199B (en) * 2020-07-03 2022-07-01 成都宏科电子科技有限公司 Low-temperature sintered microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP3575294B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
KR100313232B1 (en) Dielectric Ceramic Composition and Laminated Ceramic Capacitor
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100444230B1 (en) Nonreducible dielectric ceramic composition
JP4967965B2 (en) Dielectric porcelain composition and electronic component
KR100444229B1 (en) Nonreducible dielectric ceramic composition
JP2005129802A (en) Laminated ceramic capacitor
JPH06206765A (en) Nonreducing dielectric ceramic composition
KR20050048522A (en) Electronic device, dielectric ceramic composition and the production method
KR19990014102A (en) Dielectric Ceramic Composition and Multilayer Ceramic Capacitor Using the Same
KR101272286B1 (en) Dielectric ceramic composition and electronic device
JP2001089231A (en) Dielectric porcelain composition and electronic parts
JP3642282B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP5668572B2 (en) Dielectric ceramic composition and ceramic electronic component
JP4863005B2 (en) Dielectric porcelain composition and electronic component
KR100497754B1 (en) Dielectrics porcelain composition and electronic parts
JP3924286B2 (en) Manufacturing method of multilayer ceramic electronic component
KR20050093799A (en) Dielectric porcelain composition, electronic device and methods for producing these
JP4863007B2 (en) Dielectric porcelain composition and electronic component
US4809131A (en) Low temperature sintered ceramic capacitor having a high resistivity and bending strength, and method of manufacture
JP2008162862A (en) Dielectric porcelain composition and electronic component
JP3389220B2 (en) Dielectric porcelain composition, electronic component and method for producing electronic component
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP2008174434A (en) Dielectric porcelain composition and electronic component
JP2000109361A (en) Dielectric porcelain composition and laminated ceramic capacitor using the same
JP3287980B2 (en) Multilayer capacitors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term