JP2000107594A - Three-dimensional arrangement method for minute substance - Google Patents

Three-dimensional arrangement method for minute substance

Info

Publication number
JP2000107594A
JP2000107594A JP10281778A JP28177898A JP2000107594A JP 2000107594 A JP2000107594 A JP 2000107594A JP 10281778 A JP10281778 A JP 10281778A JP 28177898 A JP28177898 A JP 28177898A JP 2000107594 A JP2000107594 A JP 2000107594A
Authority
JP
Japan
Prior art keywords
electrode
electric field
projection
chain
field concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10281778A
Other languages
Japanese (ja)
Other versions
JP2967198B1 (en
Inventor
Masaji Hase
正司 長谷
Mitsuru Egashira
満 江頭
Norio Shintani
紀雄 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP28177898A priority Critical patent/JP2967198B1/en
Application granted granted Critical
Publication of JP2967198B1 publication Critical patent/JP2967198B1/en
Publication of JP2000107594A publication Critical patent/JP2000107594A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the manufacture of optical devices, sensors, and others by forming a projection in an electrode, filling the space between the electrodes with a solvent in which minute substances are dispersed, and forming a chain-shaped body comprising the substances only at the position of the projection by applying an electric field so that the longitudinal direction of the chain-shaped body coincides with the direction of the electric field. SOLUTION: When applied to the manufacture of an optical device, a magnetic device, and others, a conductive projection 1 is formed at an optional position of an electrode 2, a counter electrode 3 is disposed, and the space between the electrodes 2, 3 is filled with a solution in which granular or fibrous minute substances 4 comprising an oxide such as glass, a nitride, ceramic, and others are dispersed in a solvent such as a liquid polymer and others. By applying an electric field between the electrodes 2, 3, a chain-shaped body 7 comprising the substances 4 is disposed only at the position of the projection so that the longitudinal direction of the body 7 coincides with the direction of the electric field. After the arrangement of the body 7, the liquid polymer 5 is cured by heating or light irradiation to fix the arrangement of the chain-shaped body 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、光学デバ
イス、磁気デバイス、半導体デバイス、マイクロマシ
ン、センサー等の作製に有用な、微小物の3次元精密配
列方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for precisely arranging three-dimensional objects, which is useful for manufacturing optical devices, magnetic devices, semiconductor devices, micromachines, sensors, and the like.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】産業上用
いられている技術の中で最も微細な加工が出来る集積回
路等の作製技術では、強い光源や電子線源などの大がか
りな装置が必要で、高真空下で作製を行わなければなら
ず、作製の工程数が多いという問題がある。また、使用
後のレジスト材などの廃棄物が大量に発生をするという
問題もある。そして、これらのことから当然にも費用と
時間がかかるという問題点がある。また、対象とする材
料も実質的にはシリコン等の特定のものに限定されて、
高いアスペクト比を持つ構造の作製が難しく、作製後に
保護層を作らなければならない、などの問題点もある。
2. Description of the Related Art In the manufacturing technology of an integrated circuit or the like which can process the finest of the technologies used in the industry, a large-scale device such as a strong light source or an electron beam source is required. Therefore, there is a problem that the fabrication must be performed under a high vacuum and the number of fabrication steps is large. There is also a problem that a large amount of waste such as a resist material after use is generated. And there is a problem that it costs and time naturally from these things. In addition, the target material is also substantially limited to a specific material such as silicon,
It is difficult to produce a structure having a high aspect ratio, and there is a problem that a protective layer must be formed after the production.

【0003】そこで、この出願の発明は、上記したとお
りの従来の集積回路等の作製技術の問題点を解決して微
細加工を可能とする、新しい微小物の3次元精密配列法
を提供することを目的とする。
Accordingly, the invention of the present application is to provide a new three-dimensional precision arrangement method of minute objects, which can solve the problems of the above-described conventional fabrication techniques of integrated circuits and the like and enables fine processing. With the goal.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、この出願の発明は、まず第1には、電極の任意の位
置に導体製の突起を作り、対向電極を配置して、電極間
を、溶媒中に粒子状あるいは繊維状の微小物が分散して
いる溶液で満たし、電界を加えて、微小物からなる鎖状
体を、電界集中部となる突起の位置にのみ、鎖状体の長
軸方向が電界方向に一致するように形成することを特徴
とする微小物の3次元精密配列方法を提供する。
Means for Solving the Problems In order to solve the above problems, the invention of this application firstly forms a projection made of a conductor at an arbitrary position of an electrode, arranges a counter electrode, and arranges a space between the electrodes. Is filled with a solution in which particulate matter or fibrous fine particles are dispersed in a solvent, and an electric field is applied. A method for three-dimensionally arranging minute objects, characterized in that the long axis direction is formed so as to coincide with the electric field direction.

【0005】また、この出願の発明は、第2には、溶媒
として液状高分子を用いて、鎖状体の形成配列後、温度
上昇あるいは光照射により液状高分子を硬化させて、配
列を固定する微小物の3次元精密配列方法を提供する。
以上の第1および第2の方法によれば、微細加工が可能
であって、たとえば前記の硬化させた高分子を取り外せ
ば、電極は何度でも使用可能である。大がかりな装置が
不要で、大気圧下での作製が可能で、作製の工程数が少
なく、また、廃棄物がほとんどで出ないことからも、費
用と時間が縮小できるという利点がある。また、ほとん
どの対象材料の微細加工が可能で、材料の種類が特定の
ものに限られることもない。さらに、微小物からなる鎖
状体を配列することになるので高いアスペクト比を持つ
構造を簡単に作成することができる。鎖状配列を高分子
で固める場合には、同時に保護層が形成される、などの
利点もある。
Secondly, the invention of this application is to fix the arrangement by using a liquid polymer as a solvent, forming and arranging the chain, and then raising the temperature or irradiating light to cure the liquid polymer. The present invention provides a three-dimensional precise arrangement method of minute objects to be arranged.
According to the first and second methods, fine processing is possible. For example, if the cured polymer is removed, the electrode can be used any number of times. There is an advantage that a large-scale apparatus is not required, manufacturing can be performed under atmospheric pressure, the number of manufacturing steps is small, and cost and time can be reduced because little waste is generated. In addition, most target materials can be finely processed, and the types of materials are not limited to specific ones. In addition, since the chains composed of minute objects are arranged, a structure having a high aspect ratio can be easily formed. When the chain arrangement is solidified with a polymer, there is an advantage that a protective layer is formed at the same time.

【0006】そして、この出願の発明は、第3には、前
記の微小物の3次元精密配列方法において、光、イオン
ビームあるいは電子線を用いて、電極の一部分を削り、
削った部分の縁にできる盛り上がり部分を突起として電
界集中部を形成する電極作製方法を、第4には、レーザ
ー光の照射により電極の一部分を削り、残った部分を突
起として電界集中部を形成する電極作製方法を、第5に
は、蒸着法により、あるいは導電性プローブを用いて、
電極の一部分に導体を付着させ、その導体を突起として
電界集中部を形成する電極作製方法を、第6には、鋳型
に、液体状の金属を流し込み、あるいは金属をメッキし
て、その後、固体化した金属を鋳型から取り出して、電
界集中部となる突起を形成する電極作製方法を提供す
る。
The invention of the present application is, in the third aspect, in the above-mentioned three-dimensional precise arrangement method of minute objects, in which a part of an electrode is cut using light, an ion beam or an electron beam,
The fourth method is to form an electric field concentrated portion by using a raised portion formed at the edge of the shaved portion as a projection to form an electric field concentrated portion. Fourth, a portion of the electrode is cut by laser beam irradiation, and the remaining portion is formed as a projected portion by forming an electric field concentrated portion. Fifth, an electrode manufacturing method is performed by a vapor deposition method or by using a conductive probe.
A method of manufacturing an electrode in which a conductor is attached to a part of an electrode and an electric field concentrating portion is formed using the conductor as a protrusion. Sixth, a liquid metal is poured into a mold or the metal is plated, and then the solid is formed. Provided is an electrode manufacturing method for removing a converted metal from a mold and forming a projection serving as an electric field concentration portion.

【0007】以上の第3から第6の発明の方法で、任意
の大きさの電界集中部を、電極の任意の位置に形成する
ことができる。このようにして作成した電極を用いて、
微小物の3次元精密配列が可能となる。
With the above-described third to sixth invention methods, an electric field concentrating portion of any size can be formed at any position of the electrode. Using the electrode created in this way,
A three-dimensional precise arrangement of minute objects becomes possible.

【0008】[0008]

【発明の実施の形態】この出願の発明は以上のとおりの
特徴を有するものであるが、さらにその実施の形態につ
いて説明する。まず、この発明の3次元精密配列方法に
おいては、電極の任意の位置に導体製の突起を作ってお
く。突起の大きさは、微小物としての粒子の大きさある
いは繊維の直径と比較して、同等あるいはより小さいも
のとする。対向電極を配置後、電極間を溶媒中に微小物
が分散している溶液で満たし、電界を加える。そうする
と微小物内には電界によって電気双極子が誘起される。
突起の位置では電界集中が起こり電界が強くなるので、
誘電泳動力などの静電気力によって、微小物は突起の位
置に集まることになる。しかも、電気双極子間の相互作
用のため、微小物は鎖状(1次元的)に凝集し、鎖状体
の長軸方向が電界方向に一致する。つまり、突起の位置
に微小物の鎖状体が電界方向に従って並ぶことになる。
この際、溶液中の微小物の体積分率を調節することで、
突起の位置以外には鎖状体が形成されないようにするこ
とができる。結果として、複数の突起の位置を決めるこ
とで、微小物の色々な3次元精密配列をする。この際
に、溶媒として液状高分子を用い、目的とする配列が形
成された後、温度上昇あるいは光照射によって液状高分
子を硬化させることで、配列を固定することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and the embodiment will be further described. First, in the three-dimensional precision arrangement method of the present invention, a conductor-made projection is formed at an arbitrary position on an electrode. The size of the protrusion is equal to or smaller than the size of the particle as a minute substance or the diameter of the fiber. After disposing the counter electrode, the space between the electrodes is filled with a solution in which fine particles are dispersed in a solvent, and an electric field is applied. Then, an electric dipole is induced in the minute object by the electric field.
Electric field concentration occurs at the position of the protrusion and the electric field becomes stronger,
The minute objects gather at the positions of the protrusions due to electrostatic force such as dielectrophoretic force. Moreover, due to the interaction between the electric dipoles, the minute objects aggregate in a chain (one-dimensionally), and the major axis direction of the chain coincides with the direction of the electric field. That is, the chain of minute objects is arranged at the position of the protrusion in the direction of the electric field.
At this time, by adjusting the volume fraction of the minute substance in the solution,
A chain body can be prevented from being formed except for the position of the projection. As a result, by determining the positions of the plurality of protrusions, various three-dimensional precise arrangements of minute objects are performed. At this time, the liquid polymer is used as a solvent, and after the target sequence is formed, the sequence can be fixed by curing the liquid polymer by increasing the temperature or irradiating light.

【0009】以下に実施例を示し、さらに詳しくこの発
明の実施の形態について説明する。
Examples will be shown below, and embodiments of the present invention will be described in more detail.

【0010】[0010]

【実施例】(実施例1)図1(a)(b)は微小物の3
次元精密配列法の例を示したものである。図中の1は突
起を、2は突起1を持つ電極を、3は対向電極を、4は
微小物を示し、この微小物4は、液状高分子5中に分散
しているものとする。また、6は電源を、7は微小物4
からなる鎖状体である。図1(a)は電界を加えていな
い場合の、図1(b)は電界を加えている場合の状態を
例示している。図1(b)のように、電界を加えている
場合には、微小物4からなる鎖状体7が、突起1の位置
にのみ、鎖状体7の長軸方向が電界方向に一致するよう
に形成され、結果として、微小物4の3次元精密配列が
可能となる。また、配列後、温度上昇で液状高分子5を
硬化させて、この配列を固定することも可能となる。
(Embodiment 1) FIGS. 1 (a) and 1 (b) show minute 3
It shows an example of the dimensional precision array method. In the figure, reference numeral 1 denotes a protrusion, 2 denotes an electrode having a protrusion 1, 3 denotes a counter electrode, and 4 denotes a minute substance. The minute substance 4 is assumed to be dispersed in a liquid polymer 5. 6 is a power supply, 7 is a minute object 4
It is a chain consisting of FIG. 1A illustrates a state where no electric field is applied, and FIG. 1B illustrates a state where an electric field is applied. As shown in FIG. 1B, when an electric field is applied, the long axis of the chain 7 composed of the minute objects 4 coincides with the direction of the electric field only at the position of the protrusion 1. As a result, a three-dimensional precise arrangement of the minute objects 4 becomes possible. After the arrangement, the liquid polymer 5 can be cured by increasing the temperature to fix the arrangement.

【0011】電極2の表面の突起1の高さについては特
に限定はないが、微小物の3次元鎖状配列の目的、用
途、その機能に応じて、前記のとおり微小物4の大きさ
をも考慮して定めればよい。微細加工を可能とするとの
観点からは、この突起1は、たとえば100μm以下、
さらには60μm以下とすることができる。複数の突起
1を設ける場合には、その相互の間隔も適宜に定められ
ることになる。
The height of the projections 1 on the surface of the electrode 2 is not particularly limited. However, as described above, the size of the minute object 4 is determined according to the purpose, application, and function of the three-dimensional chain arrangement of the minute objects. May be determined in consideration of the above. From the viewpoint of enabling microfabrication, the protrusion 1 is, for example, 100 μm or less,
Furthermore, it can be 60 μm or less. When a plurality of projections 1 are provided, their mutual intervals are also determined appropriately.

【0012】液状高分子を用いる場合、この高分子は熱
硬化性または光硬化性の高分子とすることが好ましい。
たとえばアクリル系、不飽和ポリエステル系、シリコー
ン系、エポキシ系等のうちの高分子である。また、微小
物は、たとえば、ガラス、SiO2 等の酸化物や窒化
物、セラミックス、樹脂、ポリペプチド蛋白質、鉱物そ
の他各種であってよい。これらの微小物の大きさは、一
般的には1mm以下、より適当には100μm以下であ
る。
When a liquid polymer is used, the polymer is preferably a thermosetting or photocurable polymer.
For example, it is a polymer of acrylic type, unsaturated polyester type, silicone type, epoxy type and the like. The minute substance may be, for example, glass, oxides or nitrides such as SiO 2 , ceramics, resins, polypeptide proteins, minerals, and other various kinds. The size of these minute objects is generally 1 mm or less, more suitably 100 μm or less.

【0013】図2(a)は電界集中部を持つ電極の例を
示した光学顕微鏡写真である。銅の電極表面を、YAG
レーザーの高調波(波長は266nm)を用いて、円状
に削った状態として形成されたものである。円の直径は
28μmで、縁に出来る盛り上がり部分の高さは電極表
面から40μmである。最隣接の円間距離は200μm
である。作製は大気圧下で行ない、レーザー照射部分の
銅の表面に出来る薄い酸化銅の膜は、硫酸洗浄で除去し
た。このようにレーザーを用いて、電極の一部分を削
り、削った部分の縁にできる盛り上がり部分を電界集中
部とする電極を作製することが出来る。図2(b)は、
電極に垂直に切った際の電界集中部の断面の模式図を示
し、8は突起を、9は突起8を持つ電極を示している。
図2(c)は、図2(b)の電界集中部での微小物の鎖
状体形成を表す模式図で、10は微小物からなる鎖状体
である。また、レーザー以外の光あるいはイオンビーム
あるいは電子線を用いても、電界集中部を持つ電極を作
成することもできる。
FIG. 2A is an optical microscope photograph showing an example of an electrode having an electric field concentration portion. The copper electrode surface is YAG
It is formed as a circularly cut state using a harmonic of a laser (having a wavelength of 266 nm). The diameter of the circle is 28 μm, and the height of the raised portion at the edge is 40 μm from the electrode surface. The distance between the nearest circles is 200 μm
It is. Fabrication was carried out under atmospheric pressure, and a thin copper oxide film formed on the surface of the copper irradiated with the laser was removed by washing with sulfuric acid. As described above, a part of the electrode can be shaved by using a laser, and an electrode can be manufactured in which a raised portion formed at the edge of the shaved portion is used as an electric field concentration portion. FIG. 2 (b)
A schematic view of a cross section of an electric field concentration portion when cut perpendicular to an electrode is shown, where 8 denotes a projection and 9 denotes an electrode having a projection 8.
FIG. 2C is a schematic view showing the formation of a chain of minute objects in the electric field concentration portion of FIG. 2B, and reference numeral 10 denotes a chain of minute objects. Also, an electrode having an electric field concentration portion can be formed by using light other than a laser, an ion beam, or an electron beam.

【0014】図3は図2(a)(b)の電極を用いて作
成した図2(c)の状態の配列の例を示し、硬化させた
高分子を電極から取り外し、電極に垂直に切った断面の
光学顕微鏡写真である。微小物は直径30μmのガラス
球で、高分子は透明なシリコーンラバーである。ガラス
球からなる鎖状体が、200μm間隔で作った電界集中
部にのみ形成されているのが確認された。微小物の3次
元精密配列が可能であることがわかる。この例の実験条
件は以下の通りである。すなわち、電極は銅で大きさは
40mm×40mmで厚みは1mm、電極間距離は1.
4mm、高分子溶液中のガラス球の体積分率は1.3
%、交流電界は、方向が重力方向と平行で、大きさ(の
最大値)が7.1kV/mmで、周波数は10Hzであ
る。また、高分子の硬化は100℃、1時間で行った。 (実施例2)図4は鎖状体形成の例を示し、硬化させた
高分子を電極から取り外し、電極に垂直に切った断面の
光学顕微鏡写真である。微小物は直径5μmの二酸化シ
リコン球、高分子は透明なシリコーンラバーである。二
酸化シリコン球からなる鎖状体が電界方向(写真のほぼ
縦方向)に形成されているのが確認される。これによっ
て、5μm程度の大きさの微小物も、3次元精密配列が
可能であることがわかる。この例の実験条件は以下の通
りである。すなわち、電極は銅で大きさは40mm×4
0mmで厚みは1mm(電極の電界集中部はない)、電
極間距離は1.4mm、溶液中の二酸化シリコン球の体
積分率は6.8%、交流電界は、方向が重力方向と平行
で、大きさ(の最大値)が1.4kV/mmで、周波数
は10Hzである。また、高分子の硬化は100℃、1
時間で行った。 (実施例3)図5は電界集中部を持つ電極を例を示した
光学顕微鏡写真である。銅の電極表面をYAGレーザー
の高調波(波長は266nm)を用いて、80μm間隔
の格子パターン状に削ったものである。削られた部分
(溝)の幅は28μmで、表面から測った深さは8μm
である。作成は大気圧下で行い、レーザー照射部分の縁
にできる盛り上がり部分とレーザー照射部分の銅の表面
にできる薄い酸化銅の膜は、硝酸洗浄で除去した。この
ようにレーザー加工を用いて、電極の一部分を削り、残
った部分を電界集中部とする電極を作製することができ
る。また、エッチング技術を用いても、電界集中部を持
つ電極を作製することができる。 (実施例4)図6は電界集中部を持つ電極作製方法の例
を示している。電極11を、タングステンヘキサカルボ
ニルなどの金属化合物の気体12の雰囲気内に配置し、
集束イオンビーム13を突起14を形成したい場所に照
射する。イオンビーム13によって、気体12から金属
が遊離し、電極11上の集束イオンビーム13が照射さ
れる位置に金属が選択的に蒸着され、電界集中部となる
突起14が形成される。したがって電界集中部を持つ電
極を作製することができる。また、他の蒸着法を用いて
電極の一部分に導体を蒸着させたり、あるいは導電性プ
ローブを用いて導体を電極上に運び、付着させることで
も、電界集中部を持つ電極を作製することができる。 (実施例5)図7は電界集中部を持つ電極作製方法の例
を示している。図7(a)は、鋳型15に液体状の金属
16を流し込んだ状態の断面を示す模式図である。図7
(b)は、金属を冷却して固体化した後、鋳型15から
取り出した突起17を持つ電極18の断面を示す模式図
である。この方法によって、電界集中部となる突起を持
つ電極を作製することができる。また、液体状の金属1
6を流し込む代わりに、鋳型15に金属メッキすること
によっても、電界集中部となる突起を持つ電極を作製す
ることができる。
FIG. 3 shows an example of an arrangement in the state of FIG. 2 (c) prepared using the electrodes of FIGS. 2 (a) and 2 (b). The cured polymer is removed from the electrode and cut perpendicular to the electrode. It is an optical microscope photograph of the cross section. The minute object is a glass sphere having a diameter of 30 μm, and the polymer is a transparent silicone rubber. It was confirmed that chain-like bodies composed of glass spheres were formed only in the electric field concentrated portions formed at intervals of 200 μm. It can be seen that three-dimensional precise arrangement of minute objects is possible. The experimental conditions in this example are as follows. That is, the electrodes are made of copper, the size is 40 mm × 40 mm, the thickness is 1 mm, and the distance between the electrodes is 1.
4 mm, the volume fraction of glass spheres in the polymer solution is 1.3
%, The direction of the AC electric field is parallel to the direction of gravity, the magnitude (maximum value) is 7.1 kV / mm, and the frequency is 10 Hz. The curing of the polymer was performed at 100 ° C. for 1 hour. (Example 2) FIG. 4 shows an example of the formation of a chain, and is an optical microscope photograph of a cross section taken perpendicular to the electrode by removing the cured polymer from the electrode. The minute object is a silicon dioxide sphere having a diameter of 5 μm, and the polymer is a transparent silicone rubber. It is confirmed that a chain of silicon dioxide spheres is formed in the direction of the electric field (almost in the vertical direction in the photograph). Thus, it can be understood that a minute object having a size of about 5 μm can be three-dimensionally precisely arranged. The experimental conditions in this example are as follows. That is, the electrode is copper and the size is 40 mm × 4
0 mm, thickness 1 mm (there is no electric field concentrated part of the electrode), distance between the electrodes is 1.4 mm, volume fraction of silicon dioxide sphere in the solution is 6.8%, and the direction of the alternating electric field is parallel to the direction of gravity. , The magnitude (maximum value) is 1.4 kV / mm, and the frequency is 10 Hz. In addition, curing of the polymer is performed at 100 ° C., 1
Went on time. (Embodiment 3) FIG. 5 is an optical microscope photograph showing an example of an electrode having an electric field concentration portion. The copper electrode surface is shaved in a lattice pattern at intervals of 80 μm using a harmonic (wavelength: 266 nm) of a YAG laser. The width of the shaved portion (groove) is 28 μm and the depth measured from the surface is 8 μm
It is. Fabrication was performed under atmospheric pressure, and a swelling portion formed on an edge of a laser irradiation portion and a thin copper oxide film formed on a copper surface of the laser irradiation portion were removed by nitric acid cleaning. In this manner, an electrode can be manufactured by shaving a part of an electrode and making the remaining part an electric field concentration part by using laser processing. Also, an electrode having an electric field concentration portion can be manufactured by using an etching technique. (Embodiment 4) FIG. 6 shows an example of a method for producing an electrode having an electric field concentration portion. The electrode 11 is disposed in an atmosphere of a gas 12 of a metal compound such as tungsten hexacarbonyl,
The focused ion beam 13 is applied to a place where the projection 14 is to be formed. The metal is liberated from the gas 12 by the ion beam 13, and the metal is selectively deposited on the electrode 11 at a position irradiated with the focused ion beam 13, thereby forming a projection 14 serving as an electric field concentration portion. Therefore, an electrode having an electric field concentration portion can be manufactured. Alternatively, an electrode having an electric field concentration portion can be manufactured by depositing a conductor on a part of the electrode by using another evaporation method, or by carrying and attaching the conductor onto the electrode using a conductive probe. . (Embodiment 5) FIG. 7 shows an example of a method for manufacturing an electrode having an electric field concentration portion. FIG. 7A is a schematic diagram showing a cross section in a state where the liquid metal 16 is poured into the mold 15. FIG.
(B) is a schematic view showing a cross section of an electrode 18 having a projection 17 taken out of the mold 15 after cooling and solidifying the metal. By this method, an electrode having a projection serving as an electric field concentration portion can be manufactured. In addition, liquid metal 1
Alternatively, an electrode having a projection serving as an electric field concentration portion can be manufactured by plating the mold 15 with metal instead of pouring 6.

【0015】[0015]

【発明の効果】上記のように、この発明の方法によっ
て、狙った位置(突起の位置)に、微小物からなる鎖状
体を配列させることができ、微小物の色々な3次元精密
配列が可能とされる。この発明の方法は、光学デバイ
ス、磁気デバイス、半導体デバイス、マイクロマシン、
センサーの作製に利用可能である。たとえば、光学デバ
イスに関しては、鎖状体を周期的に配置することで、特
定の波長の光のみを反射させる鏡や透過させる光フィル
ター、広い波長範囲の光に適用可能なモノクロメーター
が作製できる。また、鎖状体を周期的に配置して、か
つ、任意の線欠陥を導入する(特定の部分には鎖状体を
配置しない)ことで、特定の波長の光のみが線欠陥の部
分を透過できるような光導波路を作製することができ
る。また、磁気デバイスに関しては、強磁性体の微小物
を使用することで、垂直磁気記録媒体を作製することが
できる。更に、溶媒として硬化しないものを使用すれ
ば、電界のオンとオフで特性が可逆的に変化する光学デ
バイスの作製も可能である。
As described above, according to the method of the present invention, a chain of small objects can be arranged at a target position (projection position), and various three-dimensional precision arrangements of small objects can be achieved. It is possible. The method of the present invention includes an optical device, a magnetic device, a semiconductor device, a micromachine,
It can be used to make sensors. For example, as for an optical device, a mirror that reflects only light of a specific wavelength, a light filter that transmits light, and a monochromator that can be applied to light in a wide wavelength range can be manufactured by periodically arranging the chains. In addition, by periodically arranging the chain-like body and introducing an arbitrary line defect (not arranging the chain-like body in a specific part), only light of a specific wavelength can remove the line defect part. An optical waveguide that can transmit light can be manufactured. As for the magnetic device, a perpendicular magnetic recording medium can be manufactured by using a ferromagnetic fine substance. Furthermore, if a non-curable solvent is used, it is possible to produce an optical device whose characteristics are reversibly changed when an electric field is turned on and off.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微小物の3次元精密配列法の概念図である。FIG. 1 is a conceptual diagram of a three-dimensional precise arrangement method of minute objects.

【図2】レーザーを用いて作製した電界集中部を持つ電
極例を示した図である。 (a)光学顕微鏡写真 (b)電極に垂直に切った際の電界集中部の断面の模式
図。 (c)電界集中部での鎖状体形成を表す模式図。
FIG. 2 is a diagram showing an example of an electrode having an electric field concentration portion manufactured using a laser. (A) Optical microscope photograph (b) Schematic drawing of the cross section of the electric field concentration part when cut | disconnected perpendicularly to an electrode. (C) Schematic view showing the formation of a chain in the electric field concentration portion.

【図3】直径30μmのガラス球の配列を示す光学顕微
鏡写真である。
FIG. 3 is an optical micrograph showing an arrangement of glass spheres having a diameter of 30 μm.

【図4】直径5μmの二酸化シリコン球の鎖状体形成を
示す光学顕微鏡写真である。
FIG. 4 is an optical micrograph showing the formation of a chain of silicon dioxide spheres having a diameter of 5 μm.

【図5】レーザー加工を用いて作製した電界集中部を持
つ電極の光学顕微鏡写真である。
FIG. 5 is an optical microscope photograph of an electrode having an electric field concentration portion manufactured using laser processing.

【図6】蒸着法を用いた電界集中部を持つ電極作製方法
の概念図である。
FIG. 6 is a conceptual diagram of a method for manufacturing an electrode having an electric field concentration portion using a vapor deposition method.

【図7】鋳型を用いた電界集中部を持つ電極作製方法の
概念図である。
FIG. 7 is a conceptual diagram of a method for manufacturing an electrode having an electric field concentration portion using a mold.

【符号の説明】[Explanation of symbols]

1 突起 2 電極 3 対向電極 4 微小物 5 液状高分子 6 電源 7 微小物鎖状体 8 突起 9 電極 10 微小物鎖状体 DESCRIPTION OF SYMBOLS 1 Protrusion 2 Electrode 3 Counter electrode 4 Micro object 5 Liquid polymer 6 Power supply 7 Micro object chain 8 Projection 9 Electrode 10 Micro object chain

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電極の任意の位置に導体製の突起を作
り、対向電極を配置して、電極間を、溶媒中に粒子状あ
るいは繊維状の微小物が分散している溶液で満たし、電
界を加えて、微小物からなる鎖状体を、電界集中部とな
る突起の位置にのみ、鎖状体の長軸方向が電界方向に一
致するように形成することを特徴とする微小物の3次元
精密配列方法。
A projection made of a conductor is formed at an arbitrary position on an electrode, an opposing electrode is arranged, and a space between the electrodes is filled with a solution in which particulate matter or fibrous fine particles are dispersed in a solvent. Wherein the long axis direction of the chain body is formed so that the long axis direction of the chain body coincides with the direction of the electric field only at the position of the projection serving as the electric field concentration portion. Dimensional precision array method.
【請求項2】 請求項1の方法において、溶媒として液
状高分子を用い、鎖状体の形成配列後に、温度上昇ある
いは光照射により液状高分子を硬化させて配列を固定す
る微小物の3次元精密配列方法。
2. The method according to claim 1, wherein a liquid polymer is used as a solvent, and after the formation of the chain, the liquid polymer is cured by increasing the temperature or irradiating light to fix the arrangement. Precise array method.
【請求項3】 請求項1または2の微小物の3次元精密
配列方法において、光、イオンビームおよび電子線の少
くとも1種を用いて電極の一部分を削り、削った部分の
縁にできる盛り上がり部分を突起として電界集中部を形
成する電極作製方法。
3. The method according to claim 1, wherein at least one of light, an ion beam and an electron beam is used to cut off a part of the electrode, and a bulge is formed at an edge of the cut-off part. An electrode manufacturing method in which an electric field concentration portion is formed using a portion as a protrusion.
【請求項4】 レーザー光の照射により電極の一部分を
削り、残った部分を突起として電界集中部を形成する請
求項3の電極作製方法。
4. The electrode manufacturing method according to claim 3, wherein a part of the electrode is shaved by irradiating a laser beam, and the remaining part is formed as a projection to form an electric field concentration part.
【請求項5】 請求項1または2の微小物の3次元精密
配列方法において、蒸着法により、あるいは導電性プロ
ーブを用いて電極の一部分に導体を付着させてその導体
を突起として電界集中部を形成する電極作製方法。
5. The method of claim 1, wherein a conductor is attached to a part of the electrode by vapor deposition or by using a conductive probe, and the electric field concentrating portion is formed by using the conductor as a protrusion. The method of manufacturing the electrode to be formed.
【請求項6】 請求項1または2の微小物の3次元精密
配列方法において、鋳型に、液体状の金属を流し込み、
あるいは金属をメッキして、その後、固体化した金属を
鋳型から取り出して電界集中部となる突起を形成する電
極作製方法。
6. The method according to claim 1, wherein a liquid metal is poured into the mold.
Alternatively, an electrode manufacturing method in which a metal is plated, and then the solidified metal is removed from the mold to form a projection serving as an electric field concentration portion.
JP28177898A 1998-10-02 1998-10-02 Three-dimensional precision arrangement method of minute objects Expired - Lifetime JP2967198B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28177898A JP2967198B1 (en) 1998-10-02 1998-10-02 Three-dimensional precision arrangement method of minute objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28177898A JP2967198B1 (en) 1998-10-02 1998-10-02 Three-dimensional precision arrangement method of minute objects

Publications (2)

Publication Number Publication Date
JP2967198B1 JP2967198B1 (en) 1999-10-25
JP2000107594A true JP2000107594A (en) 2000-04-18

Family

ID=17643854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28177898A Expired - Lifetime JP2967198B1 (en) 1998-10-02 1998-10-02 Three-dimensional precision arrangement method of minute objects

Country Status (1)

Country Link
JP (1) JP2967198B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059001A (en) * 2003-07-31 2005-03-10 Cluster Technology Co Ltd Method for deposition
JP2005177971A (en) * 2003-11-26 2005-07-07 Ricoh Co Ltd Method and device for manufacturing plastic molded product, and plastic molded product manufactured by manufacturing method
KR20210108069A (en) * 2020-02-25 2021-09-02 연세대학교 산학협력단 Electric field shaping apparatus and target processing device using electric field

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4199440B2 (en) * 2001-06-29 2008-12-17 日本電気株式会社 Method for forming ultra-strength elastic diamond-like carbon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059001A (en) * 2003-07-31 2005-03-10 Cluster Technology Co Ltd Method for deposition
JP2005177971A (en) * 2003-11-26 2005-07-07 Ricoh Co Ltd Method and device for manufacturing plastic molded product, and plastic molded product manufactured by manufacturing method
JP4545484B2 (en) * 2003-11-26 2010-09-15 株式会社リコー Manufacturing method of plastic molded products
KR20210108069A (en) * 2020-02-25 2021-09-02 연세대학교 산학협력단 Electric field shaping apparatus and target processing device using electric field
KR102323438B1 (en) 2020-02-25 2021-11-05 연세대학교 산학협력단 Electric field shaping apparatus and target processing device using electric field

Also Published As

Publication number Publication date
JP2967198B1 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
KR100313048B1 (en) Microstructural member and its manufacturing method
US5894058A (en) Ultra-fine microfabrication method using a fast atomic energy beam
Bergmair et al. Single and multilayer metamaterials fabricated by nanoimprint lithography
KR100858137B1 (en) A method of manufacturing fine metal pattern
US8999105B2 (en) Small-scale fabrication systems and methods
US20090269505A1 (en) Method for manufacturing a substrate with surface structure by employing photothermal effect
WO2006093056A1 (en) Electromagnetic wave resonator and its manufacturing method, and electromagnetic wave resonance method
WO2000021689A1 (en) Microscale patterning and articles formed thereby
Zhang et al. Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres
CN111220821A (en) Diamond AFM probe system and manufacturing method
JPWO2012014723A1 (en) Manufacturing method of light absorbing substrate and manufacturing method of mold for manufacturing the same
JP2967198B1 (en) Three-dimensional precision arrangement method of minute objects
WO1999064642A1 (en) Method for fabricating metal nanostructures
CN102320132B (en) Process for micro replicating lyosol by induction of electric field
US8163656B2 (en) Process for adjusting the size and shape of nanostructures
US20100081282A1 (en) Process for adjusting the size and shape of nanostructures
JP3069504B2 (en) Energy beam processing method
KR101391010B1 (en) Process for producing 3-dimensional nanoparticle structure
WO2006048015A1 (en) Soft lift-off of organic nanofibres
WO2005015596B1 (en) Method for the localized growth of nanothreads or nanotubes
JP2002501468A (en) Etching method
JP4147772B2 (en) Periodic structure control method and optical element
KR20100010558A (en) Manufacturing method of photonic crystal passive device using wet etching
KR101163638B1 (en) Manufacturing mehtod of nano metal structure using dot size control method for nano metal structure
KR100407601B1 (en) Method for forming micro pattern in thermoset polymer film by using thermal treatment and capillary force

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term