JP2000106191A - Electrode for alkaline storage battery and the alkaline storage battery - Google Patents

Electrode for alkaline storage battery and the alkaline storage battery

Info

Publication number
JP2000106191A
JP2000106191A JP10275851A JP27585198A JP2000106191A JP 2000106191 A JP2000106191 A JP 2000106191A JP 10275851 A JP10275851 A JP 10275851A JP 27585198 A JP27585198 A JP 27585198A JP 2000106191 A JP2000106191 A JP 2000106191A
Authority
JP
Japan
Prior art keywords
density
battery
capacity
porous body
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10275851A
Other languages
Japanese (ja)
Other versions
JP4251688B2 (en
Inventor
Kazuhiro Kitaoka
和洋 北岡
Shigeto Tamezane
茂人 為実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27585198A priority Critical patent/JP4251688B2/en
Publication of JP2000106191A publication Critical patent/JP2000106191A/en
Application granted granted Critical
Publication of JP4251688B2 publication Critical patent/JP4251688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep high discharge capacity and high operating voltage, even at high- current discharge, and to prevent running down earlier with the capacity remaining, by limiting the three-dimensional nickel porous body density and the number of vacancies within a unit distance in an electrode formed by filling an active material into a base of the three-dimensional nickel porous body, within the specific ranges. SOLUTION: This battery with a positive electrode plate having a three-dimensional nickel porous body density of 1.25 g/cc or more maintains the battery voltage of more 1 V, even at the discharge depth of 80%. Consequently, the porous body density is set to more than 1.25 g/cc, in order to secure the capacity of more 80% of nominal capacity of high-current discharge. As the density rises, the voltage rises also, and when rising beyond a certain point, the battery weight is enlarged for maintaining the discharge capacity, and the battery output energy density is lowered. Also, filling of an active material becomes difficult, and from the order beyond the density of 1.8 g/cc, cracks and exfoliation, etc., occur in the electrode plate. Consequently, the density is set at 1.75 g/cc. Furthermore, the number of vacancies within unit distance indicating fineness of grain of the vacancies is set at 45-55 pieces/inch, to prevent cracks, exfoliation, and lowering of the capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電動工具や電気自
動車等の大電流放電を必要とする用途に適したアルカリ
蓄電池用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an alkaline storage battery suitable for applications requiring large current discharge, such as electric power tools and electric vehicles.

【0002】[0002]

【従来の技術】アルカリ蓄電池に使用される電極として
はパンチングメタル等の芯体にニッケル粉末を焼結して
形成した多孔性基板に含浸により活物質、例えば水酸化
ニッケルよりなる活物質を含浸充填させる、いわゆる焼
結式ニッケル電極と、三次元ニッケル多孔体からなる基
体に正極活物質である水酸化ニッケル粉末を直接充填し
た、いわゆる非焼結式ニッケル電極がある。
2. Description of the Related Art As an electrode used in an alkaline storage battery, a porous substrate formed by sintering nickel powder on a core body such as a punching metal is impregnated with an active material, for example, an active material made of nickel hydroxide by impregnation. There is a so-called sintered nickel electrode, and a so-called non-sintered nickel electrode in which a nickel hydroxide powder as a positive electrode active material is directly filled in a base made of a three-dimensional nickel porous body.

【0003】前者の焼結式ニッケル電極は、高率放電特
性に優れる特徴を有する反面、エネルギー密度が低い、
活物質の充填工程を何度も繰り返す必要があり、生産工
程が煩雑等の問題点を有していた。
[0003] The former sintered nickel electrode has a feature of being excellent in high-rate discharge characteristics, but has a low energy density.
It is necessary to repeat the step of filling the active material many times, and there has been a problem that the production step is complicated.

【0004】一方、後者の非焼結式ニッケル電極は、焼
結式基体に比べて基体の多孔度が高い発泡ニッケル等の
3次元金属多孔体を使用しているため、エネルギー密度
が高く、活物質充填工程も水酸化ニッケル粉末を直接充
填するために生産工程が簡素化できる利点がある反面、
導電性を担う基体の密度が低いために高率放電特性に劣
るという欠点を有していた。
On the other hand, the latter non-sintered nickel electrode uses a three-dimensional metal porous body such as foamed nickel which has a higher porosity of the substrate than a sintered substrate, and therefore has a high energy density and a high active density. The material filling process also has the advantage that the production process can be simplified by directly filling the nickel hydroxide powder,
There was a drawback that the high-rate discharge characteristics were inferior due to the low density of the substrate that took charge of conductivity.

【0005】特に、電池の大型化に伴い極板面積が広く
なっていくと、極板端部に配置する正極端子に接続する
ための集電体との距離が遠い部分の活物質との間での分
極が大きくなり、電池電圧が低下する。 更に、電気自
動車等に使用される大型電池では、大電流放電が要求さ
れるために、前記のような極板内の分極が顕著になり、
電池としての電圧低下が著しいという問題点を有してい
た。
[0005] In particular, as the area of the electrode plate increases with an increase in the size of the battery, the distance between the active material and the current collector for connection to the positive electrode terminal disposed at the end of the electrode plate is increased. Polarization increases, and the battery voltage decreases. Furthermore, in large batteries used in electric vehicles and the like, large current discharge is required, so that the above-described polarization in the electrode plate becomes remarkable,
There is a problem that the voltage drop as a battery is remarkable.

【0006】その結果、一定電圧で放電を終了させてし
まうような制御を行った場合、十分に放電しきる前に放
電終止電圧に達し、放電を終了してしまういわゆる早切
れになる場合が多くなる。また、定電力で放電する場合
などでは、電圧が低くなる分、電流値を大きく取るよう
になり、電流値が大きくなるとさらに電池電圧が低下す
るというような悪循環に陥る。
As a result, when control is performed so as to end discharge at a constant voltage, the discharge end voltage is reached before the discharge is sufficiently completed, and the discharge ends in a so-called premature cutoff. . Further, in the case of discharging with a constant power, for example, the current value is increased as much as the voltage decreases, and a vicious circle occurs in which the battery voltage further decreases as the current value increases.

【0007】また、極板内での分極が大きいということ
は集電部に近い部分の極板の活物質は遠い部分の極板の
活物質に比較して深い放電を受けることになり、局地的
に劣化が進行していく。
[0007] Further, the fact that the polarization in the electrode plate is large means that the active material of the electrode plate near the current collector receives a deeper discharge than the active material of the electrode plate far from the current collector. Deterioration progresses geographically.

【0008】例えば電気自動車等の大型の動力源として
使用する場合、数百A程度の大電流が流れることにな
る。そういった場合、電池の放電終了の目安となる放電
深度80%時点で数百A程度の電流を流せることが必要で
ある。
For example, when used as a large power source for an electric vehicle or the like, a large current of about several hundred A flows. In such a case, it is necessary to allow a current of about several hundreds A to flow at a discharge depth of 80%, which is a measure of the end of battery discharge.

【0009】一般に電池の放電終了制御はニッケル水素
蓄電池やニッケルカドミウム蓄電池の場合、各々のセル
が1V以下に達した時点で放電終了となる。それ以下に
なると、過放電に陥るおそれがあるからである。
Generally, in the case of a nickel-metal hydride storage battery or a nickel cadmium storage battery, the discharge end control of the battery is completed when each cell reaches 1 V or less. If it is less than this, there is a risk of overdischarging.

【0010】以上のことから、動力用に使用される大型
電池は放電深度80%の時点で数百Aの大電流を通電し
ても1V以上の電池電圧を有することが望ましいことと
なる。
From the above, it is desirable that a large-sized battery used for power supply has a battery voltage of 1 V or more even when a large current of several hundred A is applied at a discharge depth of 80%.

【0011】従来、非焼結式ニッケル正極板中の3次元
ニッケル多孔体の占める密度は特開昭61-133563号公報
にあるような0.6〜1.2g/cc程度の密度のものが利用され
ていた。
Conventionally, the density occupied by the three-dimensional porous nickel material in the non-sintered nickel positive electrode plate has a density of about 0.6 to 1.2 g / cc as disclosed in JP-A-61-133563. Was.

【0012】しかしながら、このような正極板では数百
A程度の電流を通電した場合、放電深度が0〜80%にわた
って、1V以上の電池電圧を保つことができず、容量を
残して早切れの状態となった。
However, when a current of about several hundred A is applied to such a positive electrode plate, a battery voltage of 1 V or more cannot be maintained over a discharge depth of 0 to 80%, and the battery is quickly cut off while retaining the capacity. It became a state.

【0013】[0013]

【発明が解決しようとする課題】本発明は、前記問題点
に鑑みてなされたものであり、大電流で放電した時であ
っても、放電容量及び作動電圧が高く、容量を残して早
切れの状態となりにくいアルカリ蓄電池用電極及びその
電極を備えたアルカリ蓄電池を提供しようとすることを
本発明の課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a high discharge capacity and an operating voltage even when discharged with a large current, so that the capacity is quickly cut off. It is an object of the present invention to provide an electrode for an alkaline storage battery which is unlikely to be in a state of the above and an alkaline storage battery provided with the electrode.

【0014】[0014]

【課題を解決するための手段】本発明のアルカリ蓄電池
用電極は、3次元ニッケル多孔体から成る基体に活物質
を充填した電極であって、前記電極中における3次元ニ
ッケル多孔体の密度が1.25〜1.75g/ccであって、3次元
ニッケル多孔体の単位距離内における空孔の数が45〜55
ケ/inchであることを特徴とする。
An electrode for an alkaline storage battery according to the present invention is an electrode in which a base made of a three-dimensional porous nickel material is filled with an active material, wherein the density of the three-dimensional porous nickel material in the electrode is 1.25. 1.71.75 g / cc, and the number of vacancies within a unit distance of the three-dimensional nickel porous body is 45 to 55
K / inch.

【0015】また、本発明のアルカリ蓄電池用電極は、
3次元ニッケル多孔体から成る基体に活物質を充填した
アルカリ蓄電池用電極であって、前記電極中における3
次元ニッケル多孔体の密度が1.40〜1.60g/ccであって、
3次元ニッケル多孔体の単位距離内における空孔の数が
45〜60ケ/inchであることを特徴とする。
Further, the electrode for an alkaline storage battery of the present invention comprises:
An electrode for an alkaline storage battery in which an active material is filled in a substrate made of a three-dimensional nickel porous body,
The density of the one-dimensional nickel porous body is 1.40 to 1.60 g / cc,
The number of vacancies within a unit distance of the three-dimensional nickel porous body is
It is 45-60 pieces / inch.

【0016】[0016]

【発明の実施の形態】[実験1]厚み1.5mmで単位面積あ
たりの重量を示す目付が1200g/m2で空孔密度が50ケ/in
chの3次元ニッケル多孔体に水酸化ニッケル活物質を充
填し、乾燥後、圧延を行って厚さ0.63mm、3次元ニッケ
ル多孔体密度1.90g/ccの正極板aを作製した。同様に厚
み1.5mmで単位面積あたりの重量を示す目付が1100g/m2,
900g/m2, 800g/m2, 700g/m2, 600g/m2の各3次元ニッ
ケル多孔体に水酸化ニッケル活物質を充填し、乾燥後、
圧延を行って厚さ0.63mm,3次元ニッケル多孔体密度
が、1.75g/cc, 1.43g/cc, 1.26g/cc,1.11g/cc, 0.91g/c
cである各正極板b,c,d,e,fを作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Experiment 1] A thickness of 1.5 mm, a weight per unit area of 1200 g / m 2 and a pore density of 50 / in.
The three-dimensional nickel porous body of ch was filled with a nickel hydroxide active material, dried, and then rolled to produce a positive electrode plate a having a thickness of 0.63 mm and a three-dimensional nickel porous body density of 1.90 g / cc. Similarly, the basis weight indicating the weight per unit area at a thickness of 1.5 mm is 1100 g / m 2 ,
900g / m 2 , 800g / m 2 , 700g / m 2 , 600g / m 2 each three-dimensional nickel porous material is filled with nickel hydroxide active material, dried,
Rolled to a thickness of 0.63mm, 3D nickel porous material density 1.75g / cc, 1.43g / cc, 1.26g / cc, 1.11g / cc, 0.91g / c
Each positive electrode plate b, c, d, e, and f, which was c, was produced.

【0017】前記のように作製した正極板a〜fを100×1
20mmの大きさに切断し、集電タブを抵抗溶接にて溶接し
たもの20枚と同サイズのパンチングメタルからなる集
電体に水素吸蔵合金を塗布して制作した水素吸蔵合金負
極21枚とをポリオレフィン不織布を介して積層し、プ
ラスチックケースに挿入後、31重量%の水酸化カリウム
電解液を150g注液した後、封口して、公称容量85Ahの角
形ニッケル水素蓄電池A〜Fを試作した。
The positive electrodes a to f produced as described above are 100 × 1
Cut to a size of 20 mm, current collector tabs were welded by resistance welding, and 20 sheets of a hydrogen storage alloy negative electrode produced by applying a hydrogen storage alloy to a current collector made of punching metal of the same size After laminating via a polyolefin nonwoven fabric, inserting it into a plastic case, injecting 150 g of 31% by weight potassium hydroxide electrolyte, sealing it, and producing prototype nickel-metal hydride storage batteries A to F having a nominal capacity of 85 Ah.

【0018】この時、電池Aの重量は1.63kg、電池Bの
重量は1.57kg、電池Cの重量は1.53kg、電池Dの重量は
1.52kg、電池Eの重量は1.51kg、電池Fの重量は1.49kg
であった。
At this time, the weight of the battery A is 1.63 kg, the weight of the battery B is 1.57 kg, the weight of the battery C is 1.53 kg, and the weight of the battery D is
1.52kg, Battery E weighs 1.51kg, Battery F weighs 1.49kg
Met.

【0019】前記のように作製した角形ニッケル水素蓄
電池各々を、8.5Aで16時間充電し、1時間の休止後、28.
3Aで電池電圧が0.8Vになるまで放電するというサイクル
を10サイクル繰り返すことにより活性化処理を行った。
Each of the prismatic nickel-metal hydride storage batteries produced as described above was charged at 8.5 A for 16 hours, and after a one-hour pause, 28.
The activation process was performed by repeating 10 cycles of discharging at 3 A until the battery voltage reached 0.8 V.

【0020】次に、活性化処理を終了した電池を25℃雰
囲気下で8.5Aで12時間充電し、1時間の休止後、放電深
度0%から90%までの間で10%毎に30秒間255Aで放電したと
きの10秒目の電池電圧を測定した。
Next, the battery after the activation treatment is charged at 8.5 A for 12 hours in an atmosphere of 25 ° C., and after a pause of 1 hour, a discharge depth of 0% to 90% for 30 seconds every 10%. The battery voltage at 10 seconds after discharging at 255 A was measured.

【0021】その結果を図1に示す。FIG. 1 shows the results.

【0022】図1から明らかなように、3次元ニッケル
多孔体密度が0.91g/ccである正極板fを備えた電池Fは
放電深度約65%、1.11g/ccである正極板eを使用した電池
は放電深度約75%程度で電池電圧が1Vを割っている。
これは、これらの電池は公称容量は85Ahを有するが、実
用上はその65%や75%程度までしか使用できないことを意
味し、いわゆる電池の早切れ状態となる。
As is apparent from FIG. 1, the battery F provided with the positive electrode plate f having a three-dimensional nickel porous material density of 0.91 g / cc uses the positive electrode plate e having a discharge depth of about 65% and 1.11 g / cc. The battery voltage falls below 1 V at a discharge depth of about 75%.
This means that these batteries have a nominal capacity of 85 Ah, but in practice they can only be used up to about 65% or 75% of them, which is a so-called premature battery shutdown.

【0023】一方、3次元ニッケル多孔体密度が1.25g/
cc以上である正極板を備えた電池A〜Dは放電深度80%
であっても、電池電圧が1.0V以上維持していることがわ
かる。
On the other hand, the three-dimensional nickel porous body density is 1.25 g /
Batteries A to D with a positive electrode plate of cc or more have a discharge depth of 80%
However, it can be seen that the battery voltage is maintained at 1.0 V or more.

【0024】従って、公称容量の80%以上の容量を大電
流放電した際に確保するためには、3次元ニッケル多孔
体密度を1.25g/cc以上にすることが必要である。
Therefore, in order to secure a capacity of 80% or more of the nominal capacity when a large current is discharged, it is necessary to make the three-dimensional nickel porous body density 1.25 g / cc or more.

【0025】[実験2]前記実験1と同様の実験条件で、
即ち、各電池の放電深度80%時において、255Aで30秒
間放電したときの10秒後の電池電圧と、その電池電圧
に電流値255Aをかけたものを電池重量で割った出力エネ
ルギー密度をプロットしたものを図2に示す。
[Experiment 2] Under the same experimental conditions as in Experiment 1,
That is, at a discharge depth of 80% for each battery, the battery voltage at 10 seconds after discharge at 255 A for 30 seconds and the output energy density obtained by multiplying the battery voltage by the current value of 255 A and dividing by the battery weight are plotted. The result is shown in FIG.

【0026】この図2から明らかなように、ニッケル多
孔体密度を上げていくと、電圧が上がっていく反面、あ
る程度以上を超えると、同じ放電容量を維持するために
は電池重量が大きくなっていき、電池の出力エネルギー
密度は低下していく。また、活物質の充填も困難にな
り、ニッケル多孔体密度が1.8g/ccを越えるあたりから
製造工程での極板のひび割れや剥離などの不良が発生し
てくる。
As is apparent from FIG. 2, as the density of the nickel porous body increases, the voltage increases, but when the density exceeds a certain level, the battery weight increases to maintain the same discharge capacity. As a result, the output energy density of the battery decreases. Also, it becomes difficult to fill the active material, and when the density of the nickel porous body exceeds 1.8 g / cc, defects such as cracking and peeling of the electrode plate in the manufacturing process occur.

【0027】以上のことから、ニッケル多孔体密度が1.
75g/cc以下であることが好ましい。
From the above, the nickel porous body density was 1.
It is preferably 75 g / cc or less.

【0028】[実験3]この実験では、3次元ニッケル多
孔体の単位距離内における空孔の数と極板中の3次元多
孔体の密度を種々変化させた極板を作製し、その極板を
所定値に圧延したときにおける極板のひび割れと剥離及
び活物質利用率を測定した。その結果を図3に示す。
[Experiment 3] In this experiment, an electrode plate was prepared in which the number of holes in the unit distance of the three-dimensional porous nickel body and the density of the three-dimensional porous body in the electrode plate were variously changed, and the electrode plate was manufactured. Was rolled to a predetermined value, and the cracks and peeling of the electrode plate and the active material utilization were measured. The result is shown in FIG.

【0029】この図3より明らかなように、3次元ニッ
ケル多孔体密度が約1.8g/cc以下で、空孔のきめの細か
さを示す値である単位距離内における空孔の数が55ケ/
inch程度以下である発泡ニッケルを備えた極板がひび割
れ、剥離、容量低下などの製造不良等の問題を起こさな
いことがわかる。また、活物質利用率の観点から、即
ち、活物質利用率を70%以上にするためには単位距離内
における空孔の数が45ケ/inch以上であることが好まし
い。
As is apparent from FIG. 3, when the three-dimensional nickel porous material density is about 1.8 g / cc or less and the number of holes in a unit distance, which is a value indicating the fineness of the holes, is 55. /
It can be seen that the electrode plate provided with nickel foam of about inch or less does not cause problems such as manufacturing defects such as cracking, peeling and capacity reduction. Further, from the viewpoint of the active material utilization rate, that is, in order to make the active material utilization rate 70% or more, it is preferable that the number of holes in a unit distance is 45 holes / inch or more.

【0030】尚、前記実験2における図2より、出力エ
ネルギー密度の最も好ましいニッケル多孔体密度の範囲
は、1.4g/cc〜1.6g/ccであり、この範囲で、極板のひび
割れ、剥離、容量低下などの製造不良を起こさないため
には、実験3における図3より、3次元ニッケル多孔体
の単位距離内における空孔の数が45〜60ケ/inchである
ことが必要である。
According to FIG. 2 in Experiment 2, the most preferable range of the nickel porous body density of the output energy density is 1.4 g / cc to 1.6 g / cc. From FIG. 3 in Experiment 3, it is necessary that the number of holes within a unit distance of the three-dimensional nickel porous body be 45 to 60 holes / inch in order to prevent production defects such as a reduction in capacity.

【0031】[0031]

【発明の効果】3次元ニッケル多孔体から成る基体に活
物質を充填した電極であって、電極中における3次元ニ
ッケル多孔体の密度を1.25〜1.75g/ccにすることで、電
極内の電流経路が拡大され、分極を抑制することがで
き、電池の作動電圧を上げることができる。
According to the present invention, an electrode in which a base made of a three-dimensional nickel porous body is filled with an active material and the density of the three-dimensional nickel porous body in the electrode is 1.25 to 1.75 g / cc, the The path is enlarged, polarization can be suppressed, and the operating voltage of the battery can be increased.

【0032】その結果、数百Aの大電流放電時において
も電池電圧が1V以下の電圧まで低下して、実際の放電
容量を残して放電を終了してしまう早切れになることを
抑制することができる。
As a result, it is possible to prevent the battery voltage from dropping to a voltage of 1 V or less even at the time of discharging a large current of several hundred amperes, thereby preventing the discharge from being terminated immediately without leaving the actual discharge capacity. Can be.

【0033】また、単位距離内における空孔の数が45〜
55ケ/inchとすることにより、電極中における3次元ニッ
ケル多孔体の密度が1.25〜1.75g/ccの範囲内において、
放電容量を低下させずに、製造時の極板のひび割れや剥
離等の発生を抑制することができ、その工業的価値は極
めて高い。
The number of vacancies within a unit distance is 45 to
By setting to 55 pieces / inch, the density of the three-dimensional nickel porous body in the electrode is within a range of 1.25 to 1.75 g / cc,
Without reducing the discharge capacity, it is possible to suppress the occurrence of cracking, peeling, and the like of the electrode plate during production, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】3次元ニッケル多孔体密度を種々変化させて作
製した電極を備えた電池について、放電深度10%毎に255
Aで30秒間放電したときの10秒後の電池電圧をプロット
したものである。
FIG. 1 shows that a battery provided with an electrode manufactured by varying the density of a three-dimensional nickel porous material has a 255
10 is a plot of the battery voltage after 10 seconds when discharging at A for 30 seconds.

【図2】3次元ニッケル多孔体密度を種々変化させて作
製した各電池について、各電池の放電深度80%時におけ
る電池電圧と、出力エネルギー密度の関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between a battery voltage and an output energy density at a discharge depth of 80% for each battery manufactured by changing the three-dimensional nickel porous body density in various ways.

【図3】3次元ニッケル多孔体の極板密度と単位距離内
における空孔の数(多孔度)を種々変化させて作製した
電極の良品領域及び不良品領域の範囲を示した図であ
る。
FIG. 3 is a diagram showing ranges of a non-defective area and a defective area of an electrode manufactured by variously changing the electrode plate density of a three-dimensional nickel porous body and the number of holes (porosity) within a unit distance.

フロントページの続き Fターム(参考) 5H016 AA06 BB09 CC03 EE01 HH02 HH08 5H017 AA02 AS05 BB06 BB08 BB11 BB14 CC25 DD03 EE04 HH02 HH06 5H028 AA01 BB03 CC05 CC20 EE01 HH03 Continued on the front page F-term (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 3次元ニッケル多孔体から成る基体に活
物質を充填したアルカリ蓄電池用電極であって、前記電
極中における3次元ニッケル多孔体の密度が1.25〜1.75
g/ccであって、3次元ニッケル多孔体の単位距離内にお
ける空孔の数が45〜55ケ/inchであることを特徴とする
アルカリ蓄電池用電極。
1. An electrode for an alkaline storage battery in which an active material is filled in a base made of a three-dimensional nickel porous body, wherein the density of the three-dimensional nickel porous body in the electrode is 1.25 to 1.75.
An electrode for an alkaline storage battery, wherein the number of pores per unit distance of the three-dimensional porous nickel body is 45 to 55 / g in g / cc.
【請求項2】 3次元ニッケル多孔体から成る基体に活
物質を充填したアルカリ蓄電池用電極であって、前記電
極中における3次元ニッケル多孔体の密度が1.40〜1.60
g/ccであって、3次元ニッケル多孔体の単位距離内にお
ける空孔の数が45〜60ケ/inchであることを特徴とする
アルカリ蓄電池用電極。
2. An electrode for an alkaline storage battery in which a base made of a three-dimensional porous nickel body is filled with an active material, wherein the density of the three-dimensional porous nickel body in the electrode is 1.40 to 1.60.
g / cc, wherein the number of pores per unit distance of the three-dimensional porous nickel body is 45 to 60 pores / inch.
【請求項3】 請求項1または請求項2に記載されたア
ルカリ蓄電池用電極を備えたアルカリ蓄電池。
3. An alkaline storage battery comprising the electrode for an alkaline storage battery according to claim 1.
JP27585198A 1998-09-29 1998-09-29 Electrode for alkaline storage battery and alkaline storage battery Expired - Fee Related JP4251688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27585198A JP4251688B2 (en) 1998-09-29 1998-09-29 Electrode for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27585198A JP4251688B2 (en) 1998-09-29 1998-09-29 Electrode for alkaline storage battery and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2000106191A true JP2000106191A (en) 2000-04-11
JP4251688B2 JP4251688B2 (en) 2009-04-08

Family

ID=17561329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27585198A Expired - Fee Related JP4251688B2 (en) 1998-09-29 1998-09-29 Electrode for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4251688B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265631A (en) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd Alkaline battery and manufacturing method of cathode used for it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265631A (en) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd Alkaline battery and manufacturing method of cathode used for it

Also Published As

Publication number Publication date
JP4251688B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4359100B2 (en) Cylindrical alkaline storage battery
JP2009087632A (en) Alkaline storage battery system
JP2002134161A (en) Spiral electrode group for battery and battery
KR100545954B1 (en) Alkaline Storage Battery and Process for the Production thereof
CN106463786B (en) Nickel-hydrogen secondary battery
EP1215741B1 (en) Method for manufacturing a positive electrode plate
EP1037297B1 (en) Alkaline storage battery with group of spiral electrodes
JP3383210B2 (en) Open industrial storage battery with maintenance-free alkaline electrolyte
JP2000106191A (en) Electrode for alkaline storage battery and the alkaline storage battery
JP2007294219A (en) Alkaline storage battery, its manufacturing method, and packed battery system
JP5774647B2 (en) Nickel metal hydride storage battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3505269B2 (en) Non-sintered positive electrode for alkaline storage battery and method for manufacturing alkaline storage battery
JPH0758614B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP7324786B2 (en) Manufacturing method of alkaline secondary battery
JP2009170284A (en) Secondary battery
JP4626130B2 (en) Nickel-hydrogen storage battery
JP5334498B2 (en) Alkaline storage battery
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2013051107A (en) Alkaline storage battery and alkaline storage battery system using alkaline storage battery
JP2001351673A (en) Alkali storage battery
JP2005056680A (en) Cylindrical alkaline storage battery
JP2001266860A (en) Nickel hydrogen storage battery
JP3625663B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JP2005056679A (en) Cylindrical alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350