JP2000103747A - Production of liquid organic fluoride and apparatus for producing the same - Google Patents

Production of liquid organic fluoride and apparatus for producing the same

Info

Publication number
JP2000103747A
JP2000103747A JP10278551A JP27855198A JP2000103747A JP 2000103747 A JP2000103747 A JP 2000103747A JP 10278551 A JP10278551 A JP 10278551A JP 27855198 A JP27855198 A JP 27855198A JP 2000103747 A JP2000103747 A JP 2000103747A
Authority
JP
Japan
Prior art keywords
reaction zone
liquid
tank
fluorinated
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10278551A
Other languages
Japanese (ja)
Inventor
Naoya Okada
尚哉 岡田
Hisashi Yoshimatsu
久之 吉松
Shuichi Nakada
修一 中田
Masaki Yoshinaga
雅樹 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP10278551A priority Critical patent/JP2000103747A/en
Publication of JP2000103747A publication Critical patent/JP2000103747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means for efficiently producing a desired fluoride, especially a perfluoro compound in high yield by fluorinating a partially fluorinated organic compound and to provide a reactional apparatus therefor. SOLUTION: A fluorine-containing gas is fed from the bottom of a reactional apparatus having a structure in which a tank-shaped reactional zone is connected to the top of a columnar reactional zone so that gas and liquid flow can be carried out and the internal pressure of the tank-shaped reactional zone is weighted to the internal pressure of the columnar reactional zone and the ratio (V2/V1) of the internal volume (V2) of the tank-shaped reactional zone to the internal volume (V1) of the columnar reactional zone has a relationship of 0.2-2. A liquid organic compound having carbon-hydrogen bonds is fed to the tank-shaped reactional zone at the top and the liquid is kept in a uniformly mixed state in the tank-shaped reactional zone. The liquid flowing down to the columnar reactional zone flows down as a piston flow in the column while being brought into contact with the fluorine-containing gas and then discharged from the bottom of the columnar reactional zone.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液状有機化合物フ
ッ素化物を製造する方法およびそれに用いられる装置に
関する発明である。好適にはパーフルオロ化合物の製造
方法および装置に関する発明である。
The present invention relates to a method for producing a fluorinated liquid organic compound and an apparatus used for the method. Preferably, the invention relates to a method and an apparatus for producing a perfluoro compound.

【0002】[0002]

【従来の技術】従来、有機化合物のフッ素化、すなわち
炭素に結合している水素や塩素等の原子をフッ素原子で
置換する反応、あるいは炭素間不飽和結合にフッ素原子
を付加させる反応を用いて有機化合物のフッ素化物を製
造する方法は、種々知られている。それらを大別する
と、フッ素ガスによる直接フッ素化、高原子価金属フッ
化物によるフッ素化および電解フッ素化である。
2. Description of the Related Art Conventionally, fluorination of an organic compound, that is, a reaction of replacing an atom such as hydrogen or chlorine bonded to carbon with a fluorine atom or a reaction of adding a fluorine atom to an unsaturated bond between carbon atoms has been used. Various methods for producing fluorinated organic compounds are known. These are roughly classified into direct fluorination with fluorine gas, fluorination with high valent metal fluoride, and electrolytic fluorination.

【0003】これらの内、フッ素ガスを用いる直接フッ
素化は、激しい発熱反応であり、フッ素の置換または付
加に止まらず、炭素―炭素結合の切断を伴う。これらの
副反応を抑制するためには、反応熱を速やかに除去し、
反応をコントロールする必要があり、低温下での反応や
不活性希釈剤を用いるなどが試みられているが、十分な
効果は得られていない。高原子価金属フッ化物をフッ素
化剤として用いる場合には、反応は比較的穏やかに進行
するが、該フッ素化剤を得るための工程を必要とし、そ
こではフッ素ガスを用いねばならず全体として工程は複
雑になる。また、電解フッ素化は工業的に比較的入手の
容易な無水フッ化水素を用いることおよび分子中に官能
基を有する有機化合物に対してもそれらを害することな
く水素原子をフッ素原子に置換することが可能である
が、生成した有機フッ素化物中に未反応有機化合物およ
び部分的にフッ素化された有機化合物が溶解し、フッ素
化を妨げるため、完全フッ素化物(パーフルオロ化合
物)と部分フッ素化物の混合物が得られることになり、
一般に収率が低くなる。また、収率を上げようとする
と、電流効率が低下する。さらに陽極として用いられる
ニッケルまたはニッケル合金の消耗も無視し得ない。
[0003] Of these, direct fluorination using fluorine gas is a violent exothermic reaction and involves not only substitution or addition of fluorine but also cleavage of carbon-carbon bonds. In order to suppress these side reactions, the reaction heat is quickly removed,
It is necessary to control the reaction, and attempts have been made to conduct the reaction at a low temperature or to use an inert diluent, but no sufficient effect has been obtained. When a high valent metal fluoride is used as a fluorinating agent, the reaction proceeds relatively slowly, but requires a process for obtaining the fluorinating agent, and in which a fluorine gas must be used, and The process becomes complicated. Electrolytic fluorination involves the use of anhydrous hydrogen fluoride, which is relatively easily available industrially, and the replacement of hydrogen atoms by fluorine atoms without harming organic compounds having a functional group in the molecule. Is possible, but the unreacted organic compound and the partially fluorinated organic compound dissolve in the produced organic fluorinated compound and hinder fluorination, so that the completely fluorinated compound (perfluoro compound) and the partially fluorinated compound A mixture will be obtained,
Generally, the yield is low. In addition, an attempt to increase the yield lowers the current efficiency. Furthermore, the consumption of nickel or nickel alloy used as the anode cannot be ignored.

【0004】以上、いずれの方法にあっても、目的のフ
ッ素化物の収率は高いとは言えず、一般に反応生成物は
種々の部分フッ素化物を含む混合物あるいは炭素−炭素
結合が切断されて生じたより分子量の小さい有機フッ素
化物をも含有する混合物となっている。
In any of the above methods, the yield of the desired fluorinated product cannot be said to be high, and the reaction product is generally formed by a mixture containing various partially fluorinated products or by cleavage of carbon-carbon bonds. The mixture also contains an organic fluorinated substance having a small molecular weight.

【0005】上記の欠点を改良する方法として、特にパ
ーフルオロ化合物を得る目的でフッ素化反応を2段で行
う提案も多くなされている。例えば、電解フッ素化を2
段に分割し、中間に分離・精製工程を設けるものとし
て、米国特許第3840445号、同第4035250
号等が、またフッ素ガスを用いる2段反応として、第1
段は冷却下で予備反応を行い、第2段は加熱下でフッ素
化反応を完結させる方法として、米国特許第28310
35号などが提案されている。
[0005] As a method for improving the above-mentioned drawbacks, many proposals have been made to carry out a fluorination reaction in two steps, particularly for the purpose of obtaining a perfluoro compound. For example, electrolytic fluorination
U.S. Pat. Nos. 3,840,445 and 4,035,250 disclose a separation step and a separation / purification step in the middle.
And the like, as a two-stage reaction using fluorine gas,
The stage performs a pre-reaction under cooling, and the second stage is a method of completing the fluorination reaction under heating.
No. 35 has been proposed.

【0006】さらに、第1段目で電解フッ素化を行い、
比較的フッ素置換率の大きい(化合物中のF/Hが大き
い)化合物を分離し、これを化学的フッ素化(フッ素ガ
ス、高原子価金属フッ化物、三フッ化塩素等を用いる化
学処理によるフッ素化)により、パーフルオロ化する方
法(米国特許第3709800号など)あるいは第1段
目を電解フッ素化により処理し、得られる反応混合物の
全量をフッ素ガスと混合して、該反応混合物である有機
化合物中に残存する水素原子をフッ素で置換する方法
(特開昭62−54093号)などが提案されている。
これら2段フッ素化法は要するにまず第1段反応におい
て、有機化合物中の置換すべき水素の一部、一般に50
%以上をフッ素で置換する。ここで生じた反応熱を取り
除いた後、部分フッ素化された有機化合物の残余の水素
を完全にフッ素で置換するものである。
Further, in the first stage, electrolytic fluorination is performed,
A compound having a relatively high fluorine substitution rate (F / H in the compound is large) is separated, and this is chemically fluorinated (fluorine by chemical treatment using fluorine gas, high valent metal fluoride, chlorine trifluoride, etc.). (US Pat. No. 3,709,800) or the first stage is treated by electrolytic fluorination, and the entire reaction mixture obtained is mixed with fluorine gas, and the reaction mixture is treated as an organic compound. A method has been proposed in which a hydrogen atom remaining in a compound is replaced with fluorine (JP-A-62-54093).
In the two-stage fluorination method, first, in the first-stage reaction, part of hydrogen to be replaced in an organic compound, generally 50
% Or more is replaced with fluorine. After removing the reaction heat generated here, the remaining hydrogen of the partially fluorinated organic compound is completely replaced with fluorine.

【0007】[0007]

【発明が解決しようとする課題】上記の2段フッ素化法
は合理的な方法ではあるが、なお、第2段反応において
所望のフッ素化物、例えばパーフルオロ化合物を高い収
率で効率良く得ることは容易ではない。
Although the above two-stage fluorination method is a reasonable method, it is necessary to efficiently obtain a desired fluorinated compound such as a perfluoro compound in the second stage reaction in a high yield. Is not easy.

【0008】すなわち、第2段目を電解フッ素化による
場合は、所望のフッ素化物、例えばパーフルオロ化合物
中により低次の部分フッ素化物の混入率が比較的高く、
なお、アルカリ洗浄等の精製手段を必要とし、原料有機
化合物に対する目的フッ素化物の収率は十分とはいえな
い。
That is, when the second stage is carried out by electrolytic fluorination, the mixing ratio of a desired fluorinated compound, for example, a lower-order partially fluorinated compound in a perfluoro compound is relatively high,
In addition, purification means such as alkali washing is required, and the yield of the target fluorinated compound with respect to the starting organic compound cannot be said to be sufficient.

【0009】また、第2段目を化学的フッ素化手段によ
る場合であっても、例えば、米国特許第2496115
号明細書に記載されているごとく、管状反応器中に部分
フッ素化物を満たし、フッ素ガスを吹き込む等の従来考
えうる手段を用いた場合には、やはり反応熱の影響によ
り分子鎖の開裂が生じたり、あるいは未反応分が多くな
るなど反応を十分にコントロールし、高収率で所望のフ
ッ素化物、例えばパーフルオロ化合物を得ることが困難
であることを知った。
Further, even when the second stage is performed by means of chemical fluorination, for example, US Pat. No. 2,496,115
As described in the specification, when a tube reactor is filled with partially fluorinated substances and a conventionally conceivable means such as blowing of fluorine gas is used, the molecular chain is also cleaved due to the influence of heat of reaction. It has been found that it is difficult to obtain a desired fluorinated compound, for example, a perfluoro compound in a high yield by sufficiently controlling the reaction, for example, or increasing the amount of unreacted components.

【0010】そこで、本発明の目的は、部分フッ素化さ
れた有機化合物をフッ素化し、高収率で効率良く所望の
フッ素化物、特にパーフルオロ化合物を得る手段を提供
するものであり、またそのための反応装置を提供する。
Accordingly, an object of the present invention is to provide a means for fluorinating a partially fluorinated organic compound to obtain a desired fluorinated compound, particularly a perfluoro compound, with high yield and high efficiency. A reactor is provided.

【0011】さらに本発明の好適な態様として有機化合
物を電解フッ素化し、得られた反応混合物を用いて、フ
ッ素ガスによりパーフルオロ化合物を効率よく製造する
方法をも提供する。
Further, as a preferred embodiment of the present invention, there is provided a method for efficiently producing a perfluoro compound by fluorine gas using an obtained reaction mixture by electrolytically fluorinating an organic compound.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するために、鋭意検討を重ねた結果、部分フッ素化され
た有機化合物をフッ素ガスによりフッ素化するにあた
り、その反応の初期において極めて大きい発熱が生じ、
後半域においてはむしろ反応促進の為に加熱を要すると
いう知見を得た。そこで、反応の前半は、部分フッ素化
有機化合物を強力な乱流状態とし、これに希薄なフッ素
を反応させ、或る程度発熱量を抑制すると共に、反応熱
の拡散を促進する。また必要に応じて、冷却装置を付設
して、反応熱を除去するのも好ましい。後半は穏やかな
液流のもとで、反応を完結させるという2種類の反応形
式を連続して行い得る方法を模索し、本発明を完成する
に至った。
Means for Solving the Problems In order to achieve the above object, the present invention has made intensive studies. As a result, when fluorinating a partially fluorinated organic compound with fluorine gas, it is extremely large in the early stage of the reaction. Fever occurs,
It was found that heating was required in the latter half region to promote the reaction. Therefore, in the first half of the reaction, the partially fluorinated organic compound is brought into a strong turbulent state, which is reacted with dilute fluorine to suppress a certain amount of heat generation and promote the diffusion of heat of reaction. It is also preferable to provide a cooling device as needed to remove heat of reaction. In the latter half, the present inventors searched for a method capable of continuously performing two types of reaction, that is, completing the reaction under a gentle liquid flow, and completed the present invention.

【0013】すなわち、本発明は塔状反応域の上端部に
槽状反応域が気液流通可能に連結され、該槽状反応域の
内圧が塔状反応域の内圧に加重される構造であって、前
記槽状反応域の内容積(V2)と塔状反応域の内容積
(V1)の比(V2/V1)が0.2〜2の関係を有す
る反応装置の底部より、フッ素含有ガスが供給され、槽
状反応域には液状有機化合物が供給され、該槽状反応域
内では液は均一混合状態であり、塔状反応域に流下した
液はフッ素含有ガスと向流接触しつつ該塔内をピストン
流として流下し、塔状反応域底部より排出されることを
特徴とする液状有機フッ素化物の製造方法である。
That is, the present invention has a structure in which a tank-like reaction zone is connected to the upper end of the tower-like reaction zone so as to allow gas-liquid flow, and the internal pressure of the tank-like reaction zone is added to the internal pressure of the tower-like reaction zone. The ratio of the internal volume (V2) of the tank-shaped reaction zone to the internal volume (V1) of the column-shaped reaction zone (V2 / V1) is 0.2 to 2. Is supplied to the tank-like reaction zone, and the liquid organic compound is supplied.The liquid is uniformly mixed in the tank-like reaction zone. A process for producing a liquid organic fluorinated product characterized by flowing down in a tower as a piston stream and discharging from a bottom of a tower-like reaction zone.

【0014】さらに本発明の好ましい態様は、液状有機
化合物のフッ素化されるサイトの内、20〜80%が槽
状反応域でフッ素化されることにある。
Further, a preferred embodiment of the present invention is that 20 to 80% of the fluorinated sites of the liquid organic compound are fluorinated in the tank-like reaction zone.

【0015】さらに、本発明の別の好ましい態様とし
て、塔状反応域が段塔であり、各段は液を流下するため
のダウンカマーを有し、かつ各段下面には少なくとも部
分的に気相部を形成させることにより、流下液が上方へ
逆流することを防止しつつフッ素含有ガスと接触させる
ことを特徴とする液状有機フッ素化物の製造方法をも提
案する。
Further, as another preferred embodiment of the present invention, the column-like reaction zone is a step column, each step has a downcomer for flowing down a liquid, and the bottom surface of each step is at least partially vaporized. The present invention also proposes a method for producing a liquid organic fluorinated compound, characterized in that a phase portion is formed to prevent a flowing liquid from flowing back upward and to be brought into contact with a fluorine-containing gas.

【0016】さらにまた本発明の別の好ましい態様は、
液状有機化合物が炭素―水素結合を有する化合物の部分
フッ素化物である。この場合、全体として部分フッ素化
有機化合物中のフッ素原子(F)と水素原子(H)との
比H/Fが1以下、好ましくは0.5以下、特に0.25
以下であることが好ましい。
Still another preferred embodiment of the present invention is:
The liquid organic compound is a partially fluorinated compound of a compound having a carbon-hydrogen bond. In this case, the ratio H / F of the fluorine atom (F) to the hydrogen atom (H) in the partially fluorinated organic compound as a whole is 1 or less, preferably 0.5 or less, particularly 0.25 or less.
The following is preferred.

【0017】さらに上記部分フッ素化有機化合物が有機
化合物の電解フッ素化によりフッ素化されたパーフルオ
ロ化合物と部分フッ素化物との混合物であり、特定の反
応装置および反応条件下に液状パーフルオロ有機化合物
を得ることを目的とする液状有機フッ素化物の製造方法
である。
Further, the partially fluorinated organic compound is a mixture of a perfluoro compound fluorinated by electrolytic fluorination of the organic compound and a partially fluorinated compound, and the liquid perfluoro organic compound is converted into a specific compound under a specific reaction apparatus and reaction conditions. This is a method for producing a liquid organic fluorinated product to be obtained.

【0018】したがって、本発明にあっては、有機化合
物の電解フッ素化工程と上記説明のフッ素ガスによるフ
ッ素化工程とを連結し、電解フッ素化工程より排出され
た反応混合物をそのままあるいは未反応物およびまたは
低次フッ素化物を蒸留等の分離手段で分離除去した後の
混合物全体におけるH/Fが1以下、好ましくは0.5以
下、特に好ましくは0.25以下になった混合物をフッ
素ガスによるフッ素化工程へ原料として供給する態様が
包含される。
Therefore, in the present invention, the electrolytic fluorination step of the organic compound and the fluorination step using fluorine gas described above are connected, and the reaction mixture discharged from the electrolytic fluorination step can be used as it is or as an unreacted substance. And / or a mixture having a H / F of 1 or less, preferably 0.5 or less, particularly preferably 0.25 or less, obtained by separating and removing low-order fluorinated substances by a separation means such as distillation with fluorine gas. An embodiment in which the raw material is supplied as a raw material to the fluorination step is included.

【0019】さらに本発明は塔状反応域の上端部に槽状
反応域が気液流通可能に連結され、該槽状反応域の内圧
が塔状反応域の内圧に加重される構造であって、前記槽
状反応域の内容積(V2)と塔状反応域の内容積(V
1)の比(V2/V1)が0.2〜2の関係にあり、か
つ槽状反応域は液状有機化合物供給口、ガス排出口およ
び撹拌手段を有し、塔状反応域下部には液状有機フッ素
化物排出口、フッ素含有ガス供給口および加熱手段を有
する液状有機化合物のフッ素化反応装置をも提供する。
Further, the present invention has a structure in which a tank-like reaction zone is connected to the upper end of the tower-like reaction zone so as to allow gas-liquid flow, and the internal pressure of the tank-like reaction zone is added to the internal pressure of the tower-like reaction zone. , The internal volume (V2) of the tank-like reaction zone and the internal volume (V
The ratio (V2 / V1) of 1) has a relationship of 0.2 to 2, and the tank-like reaction zone has a liquid organic compound supply port, a gas discharge port, and a stirring means, and a liquid-state is provided below the tower-like reaction zone. There is also provided a fluorination reaction apparatus for a liquid organic compound having an organic fluoride discharge port, a fluorine-containing gas supply port and a heating means.

【0020】[0020]

【発明の実施の形態】本発明の最大の特徴は、液状有機
化合物を出発物質とし、フッ素化して目的とする液状有
機フッ素化物を高収率で得るに当たり、塔状反応域の上
端部に槽状反応域が気液流通可能に連結され、該槽状反
応域の内圧が塔状反応域の内圧に加重される構造であっ
て、且つ前記槽状反応域の内容積(V2)と塔状反応域
の内容積(V1)の比(V2/V1)が0.2〜2、好
ましくは0.5〜1の反応装置を用いることにある。
BEST MODE FOR CARRYING OUT THE INVENTION The most characteristic feature of the present invention is that a liquid organic compound is used as a starting material, and a fluorinated liquid organic fluorinated product is obtained at a high yield. The tank-shaped reaction zone is connected so as to allow gas-liquid flow, the internal pressure of the tank-shaped reaction zone is added to the internal pressure of the tower-shaped reaction zone, and the internal volume (V2) of the tank-shaped reaction zone is It is to use a reactor in which the ratio (V2 / V1) of the internal volume (V1) of the reaction zone is 0.2 to 2, preferably 0.5 to 1.

【0021】ここで、槽状反応域とは、その内容物すな
わち反応に供される原料である液状有機化合物およびそ
のフッ素化反応生成物(反応中間生成物を含む:以下総
称して反応液ともいう)およびフッ素含有ガスが均一に
混合された状態を形成する反応域である。
Here, the tank-like reaction zone means the contents, that is, the liquid organic compound as a raw material to be subjected to the reaction and its fluorination reaction product (including a reaction intermediate product; hereinafter, collectively referred to as a reaction solution). And a fluorine-containing gas are uniformly mixed.

【0022】槽状反応域において、均一混合を達成する
手段としては、一般に反応に供する液の供給速度や位置
を考慮するか、さらに槽内に撹拌装置を設ける。撹拌装
置は、通常用いられる櫂型撹拌機で良い。また、好まし
い撹拌手段の1つは、後述する如く、槽内に邪魔板とし
て内筒を設け、反応液が内筒内を上昇し、槽壁と内筒の
間を下降する循環流を形成するよう構成する。この場
合、反応液循環の推進力は内筒内を上昇する液と共に上
昇するフッ素含有ガスで十分であるが、供給液を槽内液
の循環方向に噴射するよう供給液口を設置することも好
ましい形態になる。また、窒素ガスなどの不活性ガスを
用いてガスによるバブリング混合を行っても良い。この
場合、一般的には槽状反応域の下部より不活性ガスを導
入すれば良い。以上要するに、槽状反応域においては、
被処理液が十分に混合され、それによって反応熱を速や
かに拡散されるような混合を達成すれば良い。
As means for achieving uniform mixing in the tank-like reaction zone, generally the supply speed and position of the liquid to be used for the reaction are taken into consideration, or a stirrer is provided in the tank. The stirrer may be a commonly used paddle stirrer. In addition, one of preferred stirring means is to provide an inner cylinder as a baffle plate in the tank, as described later, to form a circulating flow in which the reaction liquid rises in the inner cylinder and descends between the tank wall and the inner cylinder. The configuration is as follows. In this case, the driving force of the reaction liquid circulation is sufficient with the fluorine-containing gas rising together with the liquid rising in the inner cylinder, but the supply liquid port may be provided so as to inject the supply liquid in the circulation direction of the liquid in the tank. It becomes a preferred form. Alternatively, bubbling mixing using an inert gas such as a nitrogen gas may be performed. In this case, generally, an inert gas may be introduced from the lower part of the tank-like reaction zone. In short, in the tank-like reaction zone,
What is necessary is just to achieve the mixing in which the liquids to be treated are sufficiently mixed, whereby the reaction heat is quickly diffused.

【0023】さらに槽状反応域では、部分フッ素化有機
化合物の有するフッ素化されうる反応サイト(例えば水
素原子)の20〜80%、好ましくは40〜70%、さ
らには50〜70%をフッ素原子と置換する形態が好ま
しく、この時多くの反応熱が発生する。このため、十分
な液の撹拌を行うことが特に好ましく、一般にレイノル
ズ数で10,000〜1,000,000程度、より好
ましくは100,000〜500,000の範囲とする
ことにより部分的加熱を回避し、反応器からの自然放熱
で温度調節を行うか、好ましくは供給液を冷却して供給
するか、または槽状域にジャケットを付設する。この場
合、ジャケットは外部冷却または内部冷却のいずれでも
良いが、内筒を兼ねた内部冷却方式とするのも好ましい
一態様となる。
Further, in the tank-like reaction zone, 20 to 80%, preferably 40 to 70%, and more preferably 50 to 70% of the fluorinated reaction sites (for example, hydrogen atoms) of the partially fluorinated organic compound have fluorine atoms. Is preferable, and at this time, a large amount of reaction heat is generated. For this reason, it is particularly preferable to perform sufficient stirring of the liquid, and the partial heating is generally performed by adjusting the Reynolds number to about 10,000 to 1,000,000, more preferably 100,000 to 500,000. To avoid this, the temperature is adjusted by natural heat radiation from the reactor, preferably the supply liquid is cooled and supplied, or a jacket is provided in the tank-like area. In this case, the jacket may be either externally cooled or internally cooled, but it is also a preferable embodiment to employ an internal cooling system that also serves as an inner cylinder.

【0024】また、塔状反応域とは、反応液が一方(一
般に上方)から他方(一般に下方)へ向かって、一方的
に流れるいわゆるピストン流の反応域である。ただし、
部分的に液溜りを形成し、その中での均一混合を生ずる
ことは妨げない。例えば、小さい反応帯域がカスケード
状に連なっている場合等も含まれる。一般には直立した
塔であり、内部に気泡の分散を助けるべく充填物やトレ
イを配する。
The column-like reaction zone is a so-called piston flow reaction zone in which the reaction liquid flows unilaterally from one (generally above) to the other (generally below). However,
It does not prevent the formation of a partial pool and the occurrence of uniform mixing therein. For example, a case where small reaction zones are connected in a cascade is also included. It is generally an upright tower, inside which packings and trays are arranged to help disperse the bubbles.

【0025】これらの塔にあっては、棚段塔を用いるの
が好ましい。棚の形式は特に限定されず、泡鐘塔、多孔
板塔、バルブトレイ、ターボグリッドトレイ、リップル
トレイなどが採用されるが、好適には、トレイ上で上昇
するフッ素含有ガスと十字流を形成する形式のトレイ、
すなわちいわゆるダウンカマーを有する段塔である。こ
のような段塔を用いることにより、塔内に液が満たされ
ていても、各トレイの下面には、少なくとも部分的に気
相域を形成させることができ、ダウンカマーを流下した
液は、再度上段に上昇することはできず、結果として全
体として下降流となるのである。
In these towers, a tray tower is preferably used. The type of the shelf is not particularly limited, and a bubble bell tower, a perforated plate tower, a valve tray, a turbo grid tray, a ripple tray, and the like are preferably used. Preferably, a cross-flow is formed with the fluorine-containing gas rising on the tray. Type tray,
That is, it is a stage column having a so-called downcomer. By using such a column tower, even if the column is filled with liquid, the lower surface of each tray can at least partially form a gas phase region, and the liquid flowing down the downcomer is It is not possible to ascend to the upper stage again, and as a result, it becomes a downward flow as a whole.

【0026】これらの塔状反応域の下部には、反応液の
排出口およびフッ素含有ガスの供給口が設けられてい
る。
An outlet for the reaction liquid and a supply port for the fluorine-containing gas are provided below these tower-like reaction zones.

【0027】本発明にあっては、槽状反応域の内圧が塔
状反応域の内圧に加重される構造であることも重要であ
る。かくすることにより、フッ素含有ガス中のフッ素ガ
スは塔状反応域で十分に反応液中に吸収される。さらに
今一つ重要な点は、槽状反応域の内容積(V2)と塔状
反応域の内容積(V1)の比(V2/V1)を0.2〜
2、好ましくは0.5〜1とする点である。かくするこ
とにより、反応熱の多くを容易に取り除き、局所加熱に
よる炭素鎖の切断を可及的に防止し、かつ所望のフッ素
化物を得ることができるのである。ちなみに、前記内容
積の比が0.2より小さい場合には、本発明において槽
状反応域を設ける効果が乏しく、パーフルオロ化を期待
して反応温度を上げると、炭素鎖の切断が生じるし、マ
イルドな反応条件を用いると、十分に目的とするフッ素
化物を得られなくなる。また逆に前記内容積比を大きく
しすぎるとフッ素ガスの吸収が十分行われ難くなり、同
様に目的とするフッ素化物の収率を低下させる。
In the present invention, it is also important that the internal pressure of the tank-like reaction zone is added to the internal pressure of the column-like reaction zone. By doing so, the fluorine gas in the fluorine-containing gas is sufficiently absorbed in the reaction solution in the tower-like reaction zone. Another important point is that the ratio (V2 / V1) of the inner volume (V2) of the tank-shaped reaction zone to the inner volume (V1) of the tower-shaped reaction zone is 0.2 to 0.2.
2, preferably 0.5 to 1. By doing so, much of the heat of reaction can be easily removed, the breaking of the carbon chain by local heating can be prevented as much as possible, and the desired fluorinated product can be obtained. By the way, when the ratio of the internal volumes is smaller than 0.2, the effect of providing the tank-like reaction zone in the present invention is poor, and if the reaction temperature is raised in anticipation of perfluorination, the carbon chain may be cut. If mild reaction conditions are used, the desired fluorinated product cannot be obtained sufficiently. Conversely, if the internal volume ratio is too large, it becomes difficult to absorb fluorine gas sufficiently, and similarly, the yield of the desired fluorinated product is reduced.

【0028】かくして、液状有機化合物における結合水
素原子をフッ素原子で置換する反応の場合の水素原子、
あるいはフッ素原子を付加する場合の二重結合、あるい
はその他フッ素と反応し得る官能基等該液状有機化合物
が有するフッ素化されるサイトのうち20〜80%、好
ましくは40〜70%、更には50〜70%を槽状反応
域でフッ素化され、その後、反応液は塔状反応域に移動
する。塔状反応域では、反応液は緩やかに流下し、フッ
素含有ガスと十分に接触し、残存するフッ素化サイトは
所望通りフッ素化される。このため、塔状反応域におけ
る液流は全体的には緩やかな層流であり、レイノルズ数
として0.1〜1,000好ましくは1〜100程度と
する。
Thus, a hydrogen atom in the case of a reaction in which a bonded hydrogen atom in a liquid organic compound is replaced with a fluorine atom,
Alternatively, 20 to 80%, preferably 40 to 70%, and more preferably 50 to 80% of the fluorinated sites of the liquid organic compound such as a double bond when a fluorine atom is added, or other functional groups capable of reacting with fluorine. About 70% is fluorinated in a tank-like reaction zone, after which the reaction liquid moves to a tower-like reaction zone. In the tower-like reaction zone, the reaction solution flows down slowly, comes into sufficient contact with the fluorine-containing gas, and the remaining fluorination sites are fluorinated as desired. Therefore, the liquid flow in the tower-like reaction zone is a gentle laminar flow as a whole, and the Reynolds number is about 0.1 to 1,000, preferably about 1 to 100.

【0029】次に、本発明において、フッ素化される有
機化合物は反応系内で液状を保持し得る有機化合物であ
って、かつフッ素化されるサイトを有するのであれば、
何ら制限されない。これらの有機化合物の例は、ブタ
ン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナ
ン、デカン、ドデカン、オクタデカンなど炭素数4〜2
0、好ましくは5〜12の飽和脂肪族炭化水素、ブテ
ン、ペンテン、ヘキセン、ヘプテン、ドデセン等の炭素
数4〜20の不飽和脂肪族炭化水素、ベンゼン、トルエ
ン、キシレン、インデン、アセナフチレンなどの芳香族
炭化水素、二塩化エタン、二塩化プロパン、クロルベン
ゼンなどの含ハロゲン炭化水素、プロピルアルコール、
ブチルアルコール、アミルアルコール、ペンチルアルコ
ール、シクロヘキシルアルコールなどのアルコール類、
ジブチルエーテル、ジフェニルエーテル、アニソール、
テトラヒドロフラン、ジオキサンなどのエーテル類、プ
ロピオンアルデヒド、ブチルアルデヒドなどのアルデヒ
ド類、イソプロピルメチルケトン、メチルフェニルケト
ン、シクロヘキサノンなどのケトン類、β−プロピオラ
クトンなどのラクトン類、酢酸、プロピオン酸、酪酸、
アクリル酸、カプリル酸などのカルボン酸類、無水酢
酸、無水酪酸などの酸無水物、メチルスルホン酸、エチ
ルスルホン酸、ブチルスルホン酸、オクチルスルホン酸
などのスルホン酸類、臭化アセチル、塩化プロピオニ
ル、塩化ブチリルなどの酸ハライド類、オクチルアミ
ン、ジペンチルアミン、トリエチルアミン、トリプロピ
ルアミン、トリブチルアミン、トリペンチルアミン、ト
リヘキシルアミン、アニリン、ピリジン、ピペリジンな
どのアミン類、ジメチルホルムアミドなどのアミド類、
プロピオニトリルなどのニトリル類、チオフェン、メル
カプタン、フェニルメルカプタン、ジブチルスルフィ
ド、ジメチルスルフォンなどの含硫化合物類、モルホリ
ン、メチルモルホリン、エチルモルホリン、プロピルモ
ルホリン、ブチルモルホリンなどのモルホリン誘導体、
アミノ酸、カルバミン酸、ニトロベンゼン、フェノー
ル、尿素などの窒素および酸素を含有する化合物類など
が挙げられるが、一般に分子内に少なくとも1個の酸素
原子、硫黄原子および/または窒素原子を有し、且つフ
ッ素化されるサイトを有する有機化合物が好適に用いら
れる。中でも窒素含有化合物とりわけ第三級アミン化合
物が好ましい。
Next, in the present invention, if the organic compound to be fluorinated is an organic compound capable of maintaining a liquid state in the reaction system and has a site to be fluorinated,
There is no restriction. Examples of these organic compounds include those having 4 to 2 carbon atoms such as butane, pentane, hexane, heptane, octane, nonane, decane, dodecane, and octadecane.
0, preferably 5 to 12 saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons having 4 to 20 carbon atoms such as butene, pentene, hexene, heptene and dodecene; and aromatics such as benzene, toluene, xylene, indene and acenaphthylene Halogenated hydrocarbons such as aromatic hydrocarbons, ethane dichloride, propane dichloride, and chlorobenzene, propyl alcohol,
Alcohols such as butyl alcohol, amyl alcohol, pentyl alcohol, and cyclohexyl alcohol;
Dibutyl ether, diphenyl ether, anisole,
Tetrahydrofuran, ethers such as dioxane, propionaldehyde, aldehydes such as butyraldehyde, isopropyl methyl ketone, methylphenyl ketone, ketones such as cyclohexanone, lactones such as β-propiolactone, acetic acid, propionic acid, butyric acid,
Carboxylic acids such as acrylic acid and caprylic acid, acid anhydrides such as acetic anhydride and butyric acid, sulfonic acids such as methylsulfonic acid, ethylsulfonic acid, butylsulfonic acid and octylsulfonic acid, acetyl bromide, propionyl chloride, butyryl chloride Acid halides such as, octylamine, dipentylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, aniline, pyridine, amines such as piperidine, amides such as dimethylformamide,
Nitriles such as propionitrile, thiophene, mercaptan, phenylmercaptan, dibutyl sulfide, sulfur-containing compounds such as dimethyl sulfone, morpholine, methyl morpholine, ethyl morpholine, propyl morpholine, morpholine derivatives such as butyl morpholine,
Examples thereof include compounds containing nitrogen and oxygen such as amino acids, carbamic acid, nitrobenzene, phenol, and urea, and generally have at least one oxygen atom, sulfur atom and / or nitrogen atom in the molecule, and An organic compound having a site to be converted is suitably used. Among them, nitrogen-containing compounds, particularly tertiary amine compounds, are preferred.

【0030】本発明は、上述した通り、フッ素化される
活性サイトを持つ有機化合物が対象となるが、一分子中
にあまり多くの活性サイトのある化合物の場合、フッ素
化反応時の発熱をコントロールし難い場合がある。そこ
で、一分子中に複数個の活性サイトがある場合には、あ
らかじめ電解フッ素化や三フッ化コバルト、二フッ化銀
などの高原子価金属フッ化物その他フッ素化剤を用い
て、部分フッ素化すると、本発明を一層確実に実施し得
るので好ましい。この場合の部分フッ素化は、全活性サ
イトの50%以上、好ましくは66%以上、特に好まし
くは80〜99%程度フッ素化されたものを用いるのが
好ましい。ここで、活性サイトが水素原子である場合、
部分フッ素化された有機化合物とは被処理混合物中の置
換されたフッ素原子と未置換の水素原子の原子比H/F
が1以下、好ましくは0.5以下、さらに特に好ましく
は0.25〜0.01の範囲である。
As described above, the present invention is directed to an organic compound having an active site to be fluorinated. In the case of a compound having too many active sites in one molecule, the heat generated during the fluorination reaction is controlled. It may be difficult to do. Therefore, when there are multiple active sites in one molecule, partial fluorination is performed in advance using electrolytic fluorination or a high valent metal fluoride such as cobalt trifluoride or silver difluoride or other fluorinating agents. Then, it is preferable because the present invention can be carried out more reliably. In this case, the partial fluorination is preferably performed by fluorinating 50% or more of all active sites, preferably 66% or more, particularly preferably about 80 to 99%. Here, when the active site is a hydrogen atom,
The partially fluorinated organic compound refers to an atomic ratio H / F between substituted fluorine atoms and unsubstituted hydrogen atoms in the mixture to be treated.
Is 1 or less, preferably 0.5 or less, and more preferably 0.25 to 0.01.

【0031】この場合、混合物中に含まれる各分子がそ
れぞれ水素原子とフッ素原子とを有している必要はな
く、パーフルオロ化された分子と未反応の水素原子を部
分的に有する分子との混合物であることが一般的であ
る。
In this case, it is not necessary that each molecule contained in the mixture has a hydrogen atom and a fluorine atom, and it is not necessary that each molecule contained in the mixture be a perfluorinated molecule and a molecule partially having an unreacted hydrogen atom. It is generally a mixture.

【0032】本発明を工業的に実施する場合には、部分
フッ素化有機化合物を得る方法として、有機化合物をま
ず電解フッ素化し、得られたフッ素化反応混合物をその
ままフッ素化原料として用いる二段フッ素化工程とする
のが特に好ましい。この場合の電解フッ素化工程は既に
公知の方法、例えば米国特許第3840445号、同第
4035250号、同第3709800号各明細書に記
載されている第1段目の電解フッ素化手段等が何ら制限
なく使用される。
When the present invention is carried out industrially, as a method of obtaining a partially fluorinated organic compound, first, an organic compound is electrolytically fluorinated, and the obtained fluorination reaction mixture is directly used as a fluorination raw material in a two-stage fluorination reaction. It is particularly preferable to use a chemical conversion step. In this case, the electrolytic fluorination step is limited by any known method, for example, the first-stage electrolytic fluorination means described in US Pat. Nos. 3,840,445, 4,035,250 and 3,709,800. Used without.

【0033】本発明における液状有機化合物のフッ素化
反応条件は対象である有機化合物の種類およびフッ素化
反応時の反応熱の大きさによって異なり、予備実験等に
より、最適条件を把握すべきであるが、一般には槽状反
応域にあっては−10〜150℃、好ましくは50〜1
20℃、さらには70〜100℃の範囲で適宜選択する
のが良い。150℃を超えてももちろん反応させること
はできるが、次第に分解反応が増大し、目的物の収率の
低下を来たす。また−10℃より低い温度では反応速度
が低下し、次の塔状反応域での反応コントロールを難し
くする。また、反応圧力は常圧0.05〜1MPa・G
好ましくは0.1〜0.5MPa・G程度が採用され
る。もちろん、圧力は高いほどフッ素ガスの溶解に有利
であるが、装置の製造コストおよび液状有機化合物の部
分フッ素化有機物中へのフッ素ガスの溶解速度および反
応速度を考慮し、前記範囲内から選択すれば良い。
The conditions for the fluorination reaction of the liquid organic compound in the present invention differ depending on the type of the target organic compound and the magnitude of the heat of reaction during the fluorination reaction, and the optimum conditions should be determined by preliminary experiments and the like. Generally, in a tank-like reaction zone, -10 to 150C, preferably 50 to 1C.
It is preferable to select an appropriate temperature in the range of 20 ° C, more preferably 70 to 100 ° C. Even if the temperature exceeds 150 ° C., the reaction can of course be carried out, but the decomposition reaction gradually increases and the yield of the desired product decreases. At a temperature lower than -10 ° C, the reaction rate decreases, and it becomes difficult to control the reaction in the next column-shaped reaction zone. Further, the reaction pressure is 0.05 to 1 MPa · G at normal pressure.
Preferably, about 0.1 to 0.5 MPa · G is employed. Of course, the higher the pressure, the more advantageous is the dissolution of fluorine gas.However, in consideration of the production cost of the apparatus and the dissolution rate and reaction rate of fluorine gas in the partially fluorinated organic substance of the liquid organic compound, the pressure can be selected from the above range. Good.

【0034】槽状反応域において、目的とする有機フッ
素化反応の20〜80%を行わせた後、部分フッ素化さ
れた有機化合物は通常塔状反応域の塔頂部に連続的に移
動させ、塔内を流下させる。もちろん、間欠的に塔状反
応域の塔頂部に移動させることもできる。塔状反応域は
通常複数に区分された加熱器によって塔底部をもっとも
高温とし、塔頂部は最も低い温度とするように温度傾斜
をつけることが特に好ましい。一般に塔底部を100〜
200℃、好ましくは130〜170℃程度とし、塔頂
部は70〜170℃、好ましくは100〜140℃程度
の範囲から反応する有機化合物の種類および目的とする
フッ素化の程度によって適宜選択する。
After allowing 20 to 80% of the desired organic fluorination reaction to take place in the tank-like reaction zone, the partially fluorinated organic compound is usually continuously moved to the top of the tower-like reaction zone, Let the tower flow down. Of course, it can also be intermittently moved to the top of the tower-like reaction zone. It is particularly preferable that the temperature of the tower-like reaction zone is usually set to be the highest by using a plurality of divided heaters, and the top of the tower be at the lowest temperature. Generally, the bottom of the tower is 100 ~
The temperature is set to 200 ° C., preferably about 130 to 170 ° C., and the top of the tower is appropriately selected from the range of about 70 to 170 ° C., preferably about 100 to 140 ° C. depending on the type of the organic compound to be reacted and the desired degree of fluorination.

【0035】塔状反応域内は、一般に液が実質的に充満
しているため、塔頂部内圧は実質的に槽状反応域内圧と
なり、塔底部では槽状反応域内圧に加えて、塔状反応域
の液圧がかかることになる。
Since the liquid in the tower-like reaction zone is generally substantially full of liquid, the pressure in the top of the tower is substantially equal to the pressure in the tank-like reaction zone. The area hydraulic pressure will be applied.

【0036】塔状反応域は、ラッシヒリング等を詰めた
充填塔か段塔であり、少なくとも2段以上に相当する段
数を有する。
The column-like reaction zone is a packed column or a column packed with Raschig rings or the like, and has at least two or more stages.

【0037】塔状反応域下部には、フッ素含有ガスの供
給口が存在し、通常フッ素ガス単体か、あるいは不活性
ガス(例えば窒素ガス等)で希釈されたフッ素ガスが供
給される。また、フッ化水素を含んだフッ素ガスを用い
ることも好ましい。塔状反応域下部から導入されるフッ
素ガス含有ガス中のフッ素ガス濃度は、通常70〜10
0体積%である。フッ素ガス濃度が、70体積%を下回
ると目的とする反応完結が困難となる場合がある。ま
た、フッ素含有ガスまたは不活性ガスは塔底のみなら
ず、反応器の任意の場所に補助的に導入することも必要
に応じて任意に行える。なかでも、槽状反応域や塔状反
応域の中央部から塔頂部に不活性ガスを導入し、反応器
の上部に向かうほどフッ素ガスの濃度を希釈させる方法
が特に好ましい形態である。この時の不活性ガス量は、
フッ素含有ガスに含まれるフッ素ガス量の当量から4倍
量、特に1.5当量から3倍量を導入することで、反応
を効率よく実施することができる。
At the lower part of the tower-like reaction zone, there is a supply port of a fluorine-containing gas, and usually a fluorine gas alone or a fluorine gas diluted with an inert gas (for example, nitrogen gas or the like) is supplied. It is also preferable to use a fluorine gas containing hydrogen fluoride. The fluorine gas concentration in the fluorine gas-containing gas introduced from the lower part of the tower-like reaction zone is usually 70 to 10
0% by volume. If the fluorine gas concentration is lower than 70% by volume, it may be difficult to complete the target reaction. In addition, the fluorine-containing gas or the inert gas can be arbitrarily introduced not only in the bottom of the column but also in any place of the reactor as needed. Among them, a method in which an inert gas is introduced from the center of the tank-like reaction zone or the tower-like reaction zone to the top of the tower and the concentration of the fluorine gas is reduced toward the upper part of the reactor is a particularly preferred embodiment. At this time, the amount of inert gas is
The reaction can be efficiently carried out by introducing an equivalent to 4 times, particularly 1.5 equivalent to 3 times the amount of the fluorine gas contained in the fluorine-containing gas.

【0038】以下、本発明の具体的一例を図面を用いて
説明する。
Hereinafter, a specific example of the present invention will be described with reference to the drawings.

【0039】図1は、本発明のフッ素化物の製造工程お
よびそれに用いる反応装置の説明図である。図中1は液
状有機化合物の貯槽であり、一般には部分フッ素化物が
貯蔵されている。2は本発明に用いる反応装置であり、
塔状反応域3の上部に槽状反応域4が気液流通可能に連
結されている。また、槽状反応域の下端は塔状反応域の
上端に開口しているので、槽状反応域の内圧は全て塔状
反応域に加重される。図1には、正確に示されていない
が、槽状反応域の内容積(V2)と塔状反応域の内容積
(V1)との比V2/V1は0.2〜2好ましくは0.
5〜1となるように構成されている。また、槽状反応域
には内筒5が設けられ、液の上昇流域uと下降流域dと
が形成されている。このため、反応液は矢印で示すよう
な循環流を形成する。この循環流は乱流であり、内筒内
部の上昇流域uでレイノズル数100,000以上とす
ることが好ましい。
FIG. 1 is an explanatory view of a process for producing a fluorinated product of the present invention and a reaction apparatus used for the process. In the figure, reference numeral 1 denotes a storage tank for a liquid organic compound, which generally stores partially fluorinated compounds. 2 is a reactor used in the present invention,
A tank-shaped reaction zone 4 is connected to the upper part of the tower-shaped reaction zone 3 so as to allow gas-liquid flow. Further, since the lower end of the tank-shaped reaction zone is open at the upper end of the tower-shaped reaction zone, all the internal pressure of the tank-shaped reaction zone is weighted to the tower-shaped reaction zone. Although not shown exactly in FIG. 1, the ratio V2 / V1 between the inner volume (V2) of the tank-shaped reaction zone and the inner volume (V1) of the column-shaped reaction zone is 0.2 to 2, preferably 0.1 to 0.2.
It is configured to be 5 to 1. Further, an inner cylinder 5 is provided in the tank-like reaction zone, and an upward flow region u and a downward flow region d of the liquid are formed. For this reason, the reaction solution forms a circulating flow as indicated by the arrow. This circulating flow is a turbulent flow, and it is preferable that the number of Reynold nozzles be 100,000 or more in the upward flow region u inside the inner cylinder.

【0040】原料である有機化合物は貯槽1からライン
11を通って、槽状反応域4に導入される。図1では循
環液が上昇流に変わる位置に供給することによって、上
昇流に推進力を付加させている。しかし、別の態様とし
て、槽状反応域の下降流部分に上部から液を供給して、
下降速度を増大させるなど種々の態様が採り得る。
The organic compound as a raw material is introduced into the tank-like reaction zone 4 from the storage tank 1 through the line 11. In FIG. 1, the propulsive force is added to the upward flow by supplying the circulating liquid to a position where the upward flow changes. However, as another aspect, the liquid is supplied from above to the downward flow portion of the tank-like reaction zone,
Various modes such as increasing the descending speed can be adopted.

【0041】フッ素ガスはパイプライン12を通り、必
要に応じて不活性ガスである窒素ガスライン13から供
給される窒素と混合され、パイプライン14より塔状反
応域3の下部に導入される。さらに必要に応じてライン
15、16より窒素ガスを塔状反応域の適当な位置に導
入し、フッ素ガス濃度を調整して、フッ素化を行う。フ
ッ素ガス量は、本発明に従えばフッ素化が効率良く完了
するため、供給されるフッ素ガス流量が一定しておれば
実質的に有機化合物のフッ素化の理論量のみで良い。例
えば完全フッ素化を目的とする場合には、理論量の10
0〜110%好ましくは100〜105%となる範囲を
用いれば良い。
The fluorine gas passes through the pipeline 12, is mixed with nitrogen supplied from a nitrogen gas line 13 as an inert gas, if necessary, and is introduced into the lower part of the tower-like reaction zone 3 through the pipeline 14. Further, if necessary, nitrogen gas is introduced from lines 15 and 16 to an appropriate position in the tower-like reaction zone, and the fluorination is performed by adjusting the concentration of fluorine gas. Since the fluorination is efficiently completed according to the present invention, the fluorine gas amount may be substantially only the theoretical amount of fluorination of the organic compound if the flow rate of the supplied fluorine gas is constant. For example, when the purpose is complete fluorination, the theoretical amount of 10
A range of 0 to 110%, preferably 100 to 105% may be used.

【0042】また、槽状反応域にフッ素含有ガスとして
供給されたフッ素ガスは、槽状反応域で実質的に使い果
たされる。槽状反応域上部からは、極わずかに残存した
フッ素ガス、窒素などの不活性ガス、反応によって生成
したフッ化水素および槽状反応域内温度における有機物
の蒸気圧に相当する有機物混合蒸気がライン17を通っ
て、凝縮槽6に導かれ、設定温度で凝縮する有機物のみ
実質的に凝縮し、槽状反応域に循環される。凝縮槽6で
凝縮しない不活性ガス、フッ化水素およびわずかに残存
するフッ素ガスと有機物はライン19を通って排出され
る。排出ガスは、必要に応じてさらに深冷分離またはア
ルカリ洗浄等の除害を施し、廃棄される。
The fluorine gas supplied as the fluorine-containing gas to the tank-like reaction zone is substantially exhausted in the tank-like reaction zone. From the upper part of the tank-shaped reaction zone, a very small amount of an inert gas such as fluorine gas and nitrogen, hydrogen fluoride generated by the reaction, and an organic substance mixed vapor corresponding to the vapor pressure of the organic substance at the temperature in the tank-shaped reaction zone are supplied to a line 17. Then, only the organic matter which is led to the condensation tank 6 and condensed at the set temperature is substantially condensed and circulated to the tank-like reaction zone. Inert gas, hydrogen fluoride and a small amount of fluorine gas and organic matter which are not condensed in the condensation tank 6 are discharged through a line 19. The exhaust gas is subjected to detoxification such as cryogenic separation or alkali washing as required, and is then discarded.

【0043】他方、塔状反応域下部からは目的とする液
状有機化合物のフッ化物をライン20を通して取り出
し、貯槽7に貯える。
On the other hand, the fluoride of the target liquid organic compound is taken out from the lower part of the columnar reaction zone through the line 20 and stored in the storage tank 7.

【0044】図2は、本発明において液状有機化合物を
第1段目で電解フッ素化によって部分フッ素化し、次い
で第2段でフッ素ガスによるフッ素化を行う態様を示
す。すなわち、液状有機化合物はまず電解フッ素化用の
電槽9に供給され、1〜20%程度の有機化合物濃度の
無水フッ化水素溶液中で電解フッ素化される。電解槽は
公知のものが何ら制限無く使用される。一般にニッケル
製の陽極とニッケル製、鉄製あるいは銅製の陰極とが交
互に多数設置された電解槽により、−20〜50℃で4
〜10V程度で電解を行う。
FIG. 2 shows an embodiment of the present invention in which a liquid organic compound is partially fluorinated by electrolytic fluorination in the first stage, and then fluorinated by fluorine gas in the second stage. That is, the liquid organic compound is first supplied to the electrolytic fluorination battery 9 and electrolytically fluorinated in an anhydrous hydrogen fluoride solution having an organic compound concentration of about 1 to 20%. A known electrolytic cell is used without any limitation. In general, an electrolytic cell in which a large number of nickel anodes and nickel, iron, or copper cathodes are alternately installed is used.
Electrolysis is performed at about 10 V to about 10 V.

【0045】フッ素化された有機物は無水フッ化水素に
不溶性であり、比重が大きいため、通常相分離して電解
槽の底部に集まる。このフッ素化物は未反応有機化合物
や種種の段階の有機フッ素化物を含んだ混合物である。
これらの混合物をパイプライン21により抜出し、蒸留
塔10などの分離手段により未反応有機物および必要に
応じて低フッ素化有機物等を分離し、該未反応物は電解
フッ素化工程へ循環する。他方、パーフルオロ化合物や
ある程度フッ素化の進んだ有機化合物、特に全有機物中
の活性サイトの50%以上がフッ素化された状態となる
混合物、すなわち、部分フッ素化有機化合物は次のフッ
素ガスによるフッ素化工程に供するため、有機化合物は
貯槽1に送られる。
Since the fluorinated organic substance is insoluble in anhydrous hydrogen fluoride and has a large specific gravity, it usually separates into phases and collects at the bottom of the electrolytic cell. This fluorinated compound is a mixture containing unreacted organic compounds and various stages of organic fluorinated compounds.
These mixtures are withdrawn through a pipeline 21 and unreacted organic substances and, if necessary, low fluorinated organic substances are separated by a separation means such as a distillation column 10, and the unreacted substances are circulated to an electrolytic fluorination step. On the other hand, a perfluoro compound or an organic compound that has been advanced to some extent, especially a mixture in which 50% or more of the active sites in all organic substances are in a fluorinated state, that is, a partially fluorinated organic compound is obtained by the following fluorine gas The organic compound is sent to the storage tank 1 to be subjected to the conversion step.

【0046】もちろん、第1段目の電解フッ素化によ
り、有機化合物の活性サイトの50%以上がフッ素化さ
れる場合には、前記の分離手段は用いなくて良い。
Of course, when 50% or more of the active sites of the organic compound are fluorinated by the first-stage electrolytic fluorination, the above-mentioned separation means may not be used.

【0047】有機化合物貯槽1に貯えられた部分フッ素
化有機化合物は図1において説明した工程によってさら
にフッ素化され、所望のフッ素化物、特にパーフルオロ
化合物として得られる。
The partially fluorinated organic compound stored in the organic compound storage tank 1 is further fluorinated by the process described with reference to FIG. 1 to obtain a desired fluorinated compound, particularly a perfluoro compound.

【0048】他方、フッ素含有ガスを塔状反応域の底部
に供給する手段は特に限定されないが、図2にあっては
エジェクター8を用いた例を示している。また、必要に
応じて塔状反応域底部から反応液を一部抜出し、ライン
22を通して、槽状反応域4に循環させるのも、特にス
タートアップする時など反応を安定して行わせる上で有
効な場合もある。ただし、本発明に従えば実質的にワン
パスのみで反応が完結し得るため、通常上記の循環を行
う必要はない。
On the other hand, the means for supplying the fluorine-containing gas to the bottom of the tower-like reaction zone is not particularly limited, but FIG. 2 shows an example in which the ejector 8 is used. It is also effective to withdraw a part of the reaction solution from the bottom of the tower-shaped reaction zone as needed and circulate it through the line 22 to the tank-shaped reaction zone 4 in order to stably carry out the reaction, especially at startup. In some cases. However, according to the present invention, since the reaction can be substantially completed in only one pass, it is not usually necessary to carry out the above-mentioned circulation.

【0049】本発明をさらに具体的に説明するために以
下実施例を掲げるが、本発明はこれらの実施例に限定さ
れるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0050】[0050]

【実施例】実施例1 図1に示す形態の、上部に凝縮槽6を有する反応装置2
を用いた。槽状反応域4は、冷却用ジャケットを有する
内径200mm、高さ600mm、容量16Lのもの
で、内部に内径100mm、高さ300mmの内筒5を
有し、内筒の内部を上昇する循環流uの線速度を1.4
m/secとなるようにした。
EXAMPLE 1 A reactor 2 of the type shown in FIG.
Was used. The tank-shaped reaction zone 4 has an inner cylinder 200 having an inner diameter of 200 mm, a height of 600 mm, and a capacity of 16 L having a cooling jacket, and has an inner cylinder 5 having an inner diameter of 100 mm and a height of 300 mm, and a circulating flow rising inside the inner cylinder. u with a linear velocity of 1.4
m / sec.

【0051】塔状反応域3は、加熱用ジャケットを有す
る内径80mm、高さ4800mm、容量24Lのもの
で、内部に24段の棚段を有し、1枚の棚段には内径2
mmのガス流通孔10個と8mmの液流通開口径を持つ
内径8mm、長さ15mmのダウンカマーを有する。こ
の時、下記に示す条件において棚段の下面に形成される
気相部の厚さは、コールドモデル実験ならびにシミュレ
ーションから求めると4〜7mmであった。
The tower-shaped reaction zone 3 has an inner diameter of 80 mm having a heating jacket, a height of 4800 mm, and a capacity of 24 L, and has 24 internal trays.
It has a downcomer with an inner diameter of 8 mm and a length of 15 mm with 10 mm gas flow holes and 8 mm liquid flow opening diameter. At this time, the thickness of the gas phase formed on the lower surface of the shelf under the following conditions was 4 to 7 mm as determined from a cold model experiment and simulation.

【0052】トリブチルアミンを公知の方法により電解
フッ素化し、相分離して生成したポリフルオロアミン液
体を供給ライン11を通じて4.0L/hrで供給し
た。この原料ポリフルオロアミン液体をガスクロマトグ
ラフィー分析法、ガスクロマトグラフィー/質量分析
法、赤外分光法により分析したところ、水素原子が残存
したポリフルオロアミン化合物が38wt%含まれてお
り、混合物平均のH/Fが0.09であり、また水素原
子が2.6mol/kg含まれていた。
Tributylamine was electrolytically fluorinated by a known method, and a polyfluoroamine liquid produced by phase separation was supplied at 4.0 L / hr through a supply line 11. The raw material polyfluoroamine liquid was analyzed by gas chromatography, gas chromatography / mass spectrometry, and infrared spectroscopy. As a result, the polyfluoroamine compound containing 38% by weight of the remaining hydrogen atoms was contained. H / F was 0.09 and hydrogen atoms were contained at 2.6 mol / kg.

【0053】反応器の温度を、槽状反応域を100℃、
塔状反応域の上部を130℃、中部を140℃、下部を
150℃となるよう各々のジャケット部に加熱冷却媒体
を通じた。また、反応器底部での圧力を0.2MPa・
Gとした。
The temperature of the reactor was set at 100 ° C.
A heating / cooling medium was passed through the respective jacket portions so that the upper part of the tower-like reaction zone was 130 ° C, the middle part was 140 ° C, and the lower part was 150 ° C. Also, the pressure at the bottom of the reactor was 0.2 MPa
G.

【0054】フッ素ガスをライン14を通して反応器底
部より430NL/hr(理論量の101%)で供給
し、同時に窒素ガスをライン15から槽状反応域下部へ
700NL/hr、およびライン16から塔状反応域の
上部から塔長の三分の一の位置へ100NL/hrを供
給した。
Fluorine gas is supplied at 430 NL / hr (101% of the theoretical amount) from the bottom of the reactor through the line 14, and at the same time, nitrogen gas is supplied from the line 15 to the lower part of the tank-like reaction zone at 700 NL / hr, and from the line 16 to the column. 100 NL / hr was supplied from the upper part of the reaction zone to one third of the column length.

【0055】反応器上部の液面を一定となるようにしな
がら、反応装置下部から反応液を抜き出した。抜き出し
液量は3.6L/hrであった(収率90%)。この抜
き出し液中の水素原子が残存したポリフルオロアミン化
合物濃度は、18ppmであった。また、槽状反応域下
部から塔状反応域に移行する反応液を分析したところ、
供給したポリフルオロアミン化合物中の水素原子のうち
58%が槽状反応域でフッ素化されており、水素原子は
1.1mol/kgであった。さらに、この操作を1ヶ
月に渡って実施したが、収率や反応性に何らの変化も認
められなかった。
While keeping the liquid level at the upper part of the reactor constant, the reaction liquid was withdrawn from the lower part of the reactor. The amount of the withdrawn liquid was 3.6 L / hr (yield 90%). The concentration of the polyfluoroamine compound in which hydrogen atoms remained in the withdrawn liquid was 18 ppm. Also, when analyzing the reaction solution that migrated from the lower part of the tank-like reaction zone to the tower-like reaction zone,
58% of the hydrogen atoms in the supplied polyfluoroamine compound were fluorinated in the tank-like reaction zone, and the hydrogen atoms were 1.1 mol / kg. Further, when this operation was performed for one month, no change was observed in the yield or the reactivity.

【0056】比較例1 実施例で用いた反応器のうち、槽状反応域4のみを用い
て、フッ素化を実施した。供給液量を1.6L/hrと
し、槽状反応域の下部よりフッ素ガスを172NL/h
r、窒素ガスを320NL/hr導入した他は実施例1
と同様にした。反応器上部の液面を一定としながら反応
液を抜き出したところ、収率は74%で反応液中の水素
原子が残存したポリフルオロアミン化合物濃度は、2
0,000ppmであった。
Comparative Example 1 Of the reactors used in the examples, fluorination was carried out using only the tank-like reaction zone 4. The supply liquid amount was 1.6 L / hr, and 172 NL / h of fluorine gas was supplied from the lower part of the tank-like reaction zone.
Example 1 except that r and nitrogen gas were introduced at 320 NL / hr.
Same as. When the reaction solution was withdrawn while keeping the liquid level at the top of the reactor constant, the yield was 74% and the concentration of the polyfluoroamine compound in which hydrogen atoms remained in the reaction solution was 2%.
It was 0000 ppm.

【0057】比較例2 実施例1で用いた反応器のうち、塔状反応域3のみを用
いて、フッ素化を実施した。塔状反応域の上部より供給
液を2.4L/hrで供給し、塔状反応域の下部よりフ
ッ素ガスを258NL/hr、窒素ガスを塔状反応域の
上部から塔長の三分の一の位置へ480NL/hr導入
した他は実施例1と同様にした。塔状反応域頂部での液
面を一定にしながら反応液を抜き出したところ、収率は
58%で反応液中の水素原子が残存したポリフルオロア
ミン化合物濃度は、4,000ppmであった。また、
この時、塔状反応域の上部での発熱が激しく、温度制御
が困難となり、長時間に渡る操作ができなかった。
Comparative Example 2 Of the reactors used in Example 1, fluorination was performed using only the columnar reaction zone 3. The supply liquid is supplied at 2.4 L / hr from the upper part of the column-shaped reaction zone, 258 NL / hr of fluorine gas is supplied from the lower part of the column-shaped reaction zone, and one third of the column length is supplied from the upper part of the column-shaped reaction zone from the upper part of the column-shaped reaction zone. Except that 480 NL / hr was introduced into the position of Example 1, the same operation as in Example 1 was performed. When the reaction liquid was extracted while keeping the liquid level at the top of the tower-like reaction zone constant, the yield was 58% and the concentration of the polyfluoroamine compound in which hydrogen atoms remained in the reaction liquid was 4,000 ppm. Also,
At this time, heat generation was severe in the upper part of the tower-like reaction zone, making it difficult to control the temperature, and the operation could not be performed for a long time.

【0058】[0058]

【発明の効果】本発明は、槽状の反応域すなわち反応液
を実質的に均質に混合した状態で反応する反応域に次い
で、ピストン流として反応液とフッ素含有ガスとが接触
しつつ反応する塔状反応域とを有する反応方式を用いる
ことにより、特に槽状反応域の内圧を塔状反応域の内圧
に加重させることおよび槽状反応域の内容積(V2)と
塔状反応域の内容積(V1)との比V2/V1が0.2
〜2の関係とすることにより、有機化合物をフッ素化
し、所望の有機フッ素化合物を高い収率で得ることがで
きる。特に部分フッ素化有機化合物を原料として、パー
フルオロ化合物を得るのに好適な液状有機フッ素化物の
製造方法および装置を提供するものである。
According to the present invention, the reaction liquid and the fluorine-containing gas are reacted in contact with each other in the form of a piston flow after the reaction area in the form of a tank, that is, the reaction area in which the reaction liquid is substantially homogeneously mixed. By using a reaction system having a tower-like reaction zone, the internal pressure of the tank-like reaction zone is particularly weighted to the internal pressure of the tower-like reaction zone, and the inner volume (V2) of the tank-like reaction zone and the content of the tower-like reaction zone The ratio V2 / V1 to the product (V1) is 0.2
By setting the relationship to 2, the organic compound can be fluorinated, and the desired organic fluorine compound can be obtained in a high yield. In particular, it is an object of the present invention to provide a method and an apparatus for producing a liquid organic fluorinated compound suitable for obtaining a perfluoro compound by using a partially fluorinated organic compound as a raw material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いるフッ素化工程の一例を示す概略
FIG. 1 is a schematic diagram showing an example of a fluorination step used in the present invention.

【図2】本発明の別の態様を示す概略図FIG. 2 is a schematic diagram illustrating another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2:本発明の反応装置 3:塔状反応域 4:槽状反応域 5:撹拌装置の一例 2: reactor of the present invention 3: tower-like reaction zone 4: tank-like reaction zone 5: an example of a stirring device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉永 雅樹 山口県徳山市御影町1番1号 株式会社ト クヤマ内 Fターム(参考) 4H006 AA02 AA04 AC30 BC11 BD21 BD80 BD81 BD84 BE53 4K021 AC03 BA04 BA06 DA01 DC11 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaki Yoshinaga 1-1, Mikage-cho, Tokuyama-shi, Yamaguchi F-term in Tokuyama Corporation (reference) 4H006 AA02 AA04 AC30 BC11 BD21 BD80 BD81 BD84 BE53 4K021 AC03 BA04 BA06 DA01 DC11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】塔状反応域の上端部に槽状反応域が気液流
通可能に連結され、該槽状反応域の内圧が塔状反応域の
内圧に加重される構造であって、前記槽状反応域の内容
積(V2)と塔状反応域の内容積(V1)の比(V2/
V1)が0.2〜2の関係を有する反応装置の底部より
フッ素含有ガスが供給され、槽状反応域には液状有機化
合物が供給され、該槽状反応域内では液は均一混合状態
にあり、塔状反応域に流下した液はフッ素含有ガスと向
流接触しつつ該塔内をピストン流として流下し、塔状反
応域底部より排出されることを特徴とする液状有機フッ
素化物の製造方法。
1. A structure in which a tank-like reaction zone is connected to the upper end of the tower-like reaction zone so as to allow gas-liquid flow, and the internal pressure of the tank-like reaction zone is added to the internal pressure of the tower-like reaction zone. The ratio of the inner volume (V2) of the tank-shaped reaction zone to the inner volume (V1) of the tower-shaped reaction zone (V2 /
V1) is supplied with a fluorine-containing gas from the bottom of the reactor having a relationship of 0.2 to 2, a liquid organic compound is supplied to the tank-like reaction zone, and the liquid is in a homogeneously mixed state in the tank-like reaction zone. Wherein the liquid flowing down to the column-like reaction zone flows down in the column as a piston flow while being in countercurrent contact with the fluorine-containing gas, and is discharged from the bottom of the column-like reaction zone. .
【請求項2】液状有機化合物のフッ素化されるサイトの
うち20〜80%が槽状反応域でフッ素化されることを
特徴とする請求項1に記載の液状有機フッ素化物の製造
方法。
2. The process according to claim 1, wherein 20 to 80% of the fluorinated sites of the liquid organic compound are fluorinated in the tank-like reaction zone.
【請求項3】塔状反応域が段塔であり、各段は液を流下
するためのダウンカマーを有し、かつ各段下面には少な
くとも部分的に気相部を形成させることにより流下液が
上方へ逆流することを防止しつつフッ素含有ガスと接触
させることを特徴とする請求項1に記載の液状有機フッ
素化物の製造方法。
3. The column-like reaction zone is a stage column, each stage has a downcomer for flowing down the liquid, and at least a gas phase portion is formed at least partially on the lower surface of each stage to flow down the liquid. The method for producing a liquid organic fluorinated substance according to claim 1, wherein the liquid is contacted with a fluorine-containing gas while preventing the liquid from flowing upward.
【請求項4】槽状反応域に供給される液状有機化合物が
炭素−水素結合を有し、かつ部分フッ素化有機物である
ことを特徴とする請求項1に記載の液状有機フッ素化物
の製造方法。
4. The process for producing a liquid organic fluorinated product according to claim 1, wherein the liquid organic compound supplied to the tank-like reaction zone has a carbon-hydrogen bond and is a partially fluorinated organic material. .
【請求項5】部分フッ素化有機化合物中のフッ素原子
(F)と水素原子(H)との比H/Fが1以下であること
を特徴とする請求項4に記載の液状有機フッ素化物の製
造方法。
5. The liquid organic fluorinated compound according to claim 4, wherein the ratio H / F of the fluorine atom (F) to the hydrogen atom (H) in the partially fluorinated organic compound is 1 or less. Production method.
【請求項6】有機化合物の電解フッ素化によりフッ素化
されたパーフルオロ化合物と部分フッ素化物との混合物
を原料液状有機化合物とし、液状パーフルオロ有機化合
物を得ることを特徴とする請求項1,2,3,4または
5に記載の液状有機フッ素化物の製造方法。
6. A liquid perfluoro organic compound obtained by using a mixture of a perfluoro compound fluorinated by electrolytic fluorination of an organic compound and a partially fluorinated compound as a raw material liquid organic compound. 6. The method for producing a liquid organic fluorinated product according to claim 3, 3, 4, or 5.
【請求項7】塔状反応域の上端部に槽状反応域が気液流
通可能に連結され、該槽状反応域の内圧が塔状反応域の
内圧に加重される構造であって、前記槽状反応域の内容
積(V2)と塔状反応域の内容積(V1)の比(V2/
V1)が0.2〜2の関係にあり、かつ槽状反応域は液
状有機化合物供給口、ガス排出口および撹拌手段を有
し、塔状反応域下部には液状有機フッ素化物排出口、フ
ッ素含有ガス供給口および加熱手段を有する液状有機化
合物のフッ素化反応装置。
7. A structure in which a tank-like reaction zone is connected to the upper end of the tower-like reaction zone so as to allow gas-liquid flow, and the internal pressure of the tank-like reaction zone is added to the internal pressure of the tower-like reaction zone. The ratio of the inner volume (V2) of the tank-shaped reaction zone to the inner volume (V1) of the tower-shaped reaction zone (V2 /
V1) has a relationship of 0.2 to 2, and the tank-shaped reaction zone has a liquid organic compound supply port, a gas outlet and a stirring means, and a liquid organic fluorinated substance outlet, fluorine at the lower part of the tower-shaped reaction zone. An apparatus for fluorinating a liquid organic compound having a gas-containing port and a heating means.
JP10278551A 1998-09-30 1998-09-30 Production of liquid organic fluoride and apparatus for producing the same Pending JP2000103747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10278551A JP2000103747A (en) 1998-09-30 1998-09-30 Production of liquid organic fluoride and apparatus for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10278551A JP2000103747A (en) 1998-09-30 1998-09-30 Production of liquid organic fluoride and apparatus for producing the same

Publications (1)

Publication Number Publication Date
JP2000103747A true JP2000103747A (en) 2000-04-11

Family

ID=17598847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10278551A Pending JP2000103747A (en) 1998-09-30 1998-09-30 Production of liquid organic fluoride and apparatus for producing the same

Country Status (1)

Country Link
JP (1) JP2000103747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530200A (en) * 2014-10-06 2017-10-12 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Method for improving the halogenation reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530200A (en) * 2014-10-06 2017-10-12 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Method for improving the halogenation reaction

Similar Documents

Publication Publication Date Title
JP4891480B2 (en) Reactor for continuous gas-liquid reaction, liquid-liquid reaction, or gas-liquid-solid reaction
RU2118314C1 (en) Method for uninterrupted production of 3-(methylthio)propanal
RU2230735C2 (en) Method for preparing alkanesulfoacids
RU2126787C1 (en) Improved process for preparing terephthalic acid
US6844464B2 (en) Process for producing alkyl nitrite
RU2623733C2 (en) Method of ureapoiesis and corresponding arrangement of apparatus reaction section for urea production
CN110650949A (en) Rapid continuous flow synthesis process of fluoroethylene carbonate
JP2000351749A (en) Production of (meth)acrylic acid
RU2172734C2 (en) 3-(methylthio)propanal production process
US7083773B2 (en) Method for producing nitrogen trifluoride using jet-loop reactors
KR100777517B1 (en) Continuous Adiabatic Process for Preparing Nitrochlorobenzene
JPH07206781A (en) Production of dimethyl carbonate
JP2000103747A (en) Production of liquid organic fluoride and apparatus for producing the same
US5350862A (en) Process for the preparation of ethylene glycol carbonate
BR112012015588B1 (en) APPARATUS FOR SELECTIVELY SYNTHESIZING AT LEAST 1 FIRST NITROALCAN USING A FIRST RAW MATERIAL AND AT LEAST ONE SECOND NITROALKAN USING A SECOND RAW MATERIAL AND PROCESS
US7135597B2 (en) Process for the preparation of monochloroacetic acid
RU2149159C1 (en) Method of continuously preparing 3-(methylthio) propanal (variants)
US2802872A (en) Preparation of diketene
US20220340518A1 (en) Process for manufacturing alkanesulfonic acids
RU2147922C1 (en) Reactor for liquid-phase processes of oxidation of hydrocarbons
JP2004002336A (en) Method for producing nitrous acid ester
US7413722B2 (en) Method and apparatus for manufacturing nitrogen trifluoride
JP2001354608A (en) Method of producing cyclododecanones
JPS5926609B2 (en) Method for producing di-tert-butyl cresol
SU456408A3 (en) Acrylamide Production Method