JP2000100470A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000100470A
JP2000100470A JP10272651A JP27265198A JP2000100470A JP 2000100470 A JP2000100470 A JP 2000100470A JP 10272651 A JP10272651 A JP 10272651A JP 27265198 A JP27265198 A JP 27265198A JP 2000100470 A JP2000100470 A JP 2000100470A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
battery
electrolyte
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10272651A
Other languages
Japanese (ja)
Inventor
Naoki Shinoda
直樹 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10272651A priority Critical patent/JP2000100470A/en
Publication of JP2000100470A publication Critical patent/JP2000100470A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high safety and excellent in load characteristic. SOLUTION: In a nonaqueous electrolyte secondary battery provided with a positive electrode 1, a negative electrode 2 and a nonaqueous solvent electrolyte 4, the electrolyte 4 contains at least two of phosphate ester, a chain aprotic organic solvent having the boiling point of 25-150 deg.C and expressed by the composition formula Ca Hb XcSdOe, where X: halogen, 2<=a<=8, 0<=b<=a, 1<=c<=2a+2, 0<=d<=1, 1<=e<=4, and a chain compound having the boiling point of 25-150 deg.C and expressed by the composition formula CfHgXjN, where X: halogen, 3<=f<=8, O<=g<=f, 6<=j<=2f+2, The X in the composition formulas preferably contains fluorine of at least 50% or above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関し、さらに詳しくは、安全性が高く、かつ負荷特
性が優れた非水電解液二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having high safety and excellent load characteristics.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される非水電解
液二次電池は、高容量で、かつ高電圧、高エネルギー密
度であることから、その発展に対して大きな期待が寄せ
られている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries represented by lithium secondary batteries have high capacity, high voltage and high energy density, and therefore, great expectations are placed on their development. .

【0003】ところが、このような非水電解液二次電池
は、電解液の構成溶媒として有機溶媒を使用しているた
め、火災を引き起こす危険性がある。すなわち、電池が
高温に曝されたとき電池内で電解液中の有機溶媒の蒸気
圧が上昇し、引火点に達した電解液溶媒が開裂ベントの
作動により外部に放出された場合、引火源の存在や周囲
の温度によって引火や発火が発生する。そのため、現在
の非水電解液二次電池では、一般に開裂ベント・保護回
路・セパレータのシャットダウン機構などを設けること
によって、一定の安全基準に達するようにしているが、
従来の水系電池に比べると火災などの危険性は高い。
However, such a non-aqueous electrolyte secondary battery uses an organic solvent as a constituent solvent of the electrolyte, and thus may cause a fire. That is, when the vapor pressure of the organic solvent in the electrolyte rises in the battery when the battery is exposed to a high temperature, and the electrolyte solvent reaching the flash point is released outside by the operation of the cleavage vent, the ignition source Ignition and ignition occur depending on the presence and the surrounding temperature. For this reason, current non-aqueous electrolyte secondary batteries generally meet certain safety standards by providing a cleavage vent, protection circuit, separator shutdown mechanism, etc.
The danger such as fire is higher than conventional water-based batteries.

【0004】このような問題を解決する方法として、電
解液を難燃化することが検討されている。その中でもリ
ン酸エステルは比較的有望であり、鎖状のリン酸トリエ
ステルを用いて電解液を難燃化することが提案されてい
る(特開平7−114940号公報、特開平8−228
39号公報、特開平8−111238号公報、特開平8
−321313号公報など)。
[0004] As a method for solving such a problem, it has been studied to make the electrolyte solution nonflammable. Among them, phosphate esters are relatively promising, and it has been proposed to make the electrolyte solution flame-retardant using a chain phosphate triester (JP-A-7-114040, JP-A-8-228).
39, JP-A-8-111238, JP-A-8-111238
No. 321313).

【0005】[0005]

【発明が解決しようとする課題】ところが、電解液中に
鎖状のリン酸トリエステルを添加すると、リン酸トリエ
ステルの粘度が高いために負荷特性が低下するという問
題があり、パソコンなどのように高出力密度が要求され
る電池には使用することができないという問題があっ
た。
However, when chain phosphate triesters are added to the electrolytic solution, there is a problem that the load characteristics are reduced due to the high viscosity of the phosphate triesters. However, there is a problem that it cannot be used for a battery that requires a high output density.

【0006】従って、本発明は、優れた負荷特性を保持
しつつ、電解液を難燃化して、安全性が高く、かつ負荷
特性が優れた非水電解液二次電池を提供することを目的
とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery having high safety and excellent load characteristics by making the electrolyte flame-retardant while maintaining excellent load characteristics. And

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するため鋭意検討を重ねた結果なされたものであり、
電解液中にリン酸エステルとともに、鎖状で沸点が25
℃以上150℃以下の組成式Ca b c d
e (X:ハロゲン、2≦a≦8、0≦b≦a、1≦c≦
2a+2、0≦d≦1、1≦e≦4)で表される非ブロ
トン性有機溶媒または組成式Cf g j N(X:ハロ
ゲン、3≦f≦8、0≦g≦f、6≦j≦2f+2)で
表される化合物の少なくとも1種を含有させることによ
って、優れた負荷特性を保持しつつ、電解液の難燃性を
達成して、安全性が高く、かつ負荷特性が優れた非水電
解液二次電池が得られることを見出したものである。
Means for Solving the Problems The present invention has been made as a result of intensive studies to solve the above problems,
A chain having a boiling point of 25 with the phosphoric acid ester in the electrolyte.
Composition formula C a H b X c S d O of not less than 150 ° C. and not more than 150 ° C.
e (X: halogen, 2 ≦ a ≦ 8, 0 ≦ b ≦ a, 1 ≦ c ≦
2a + 2, non-brotonic organic solvent represented by 0 ≦ d ≦ 1, 1 ≦ e ≦ 4) or a composition formula C f H g X j N (X: halogen, 3 ≦ f ≦ 8, 0 ≦ g ≦ f, By containing at least one compound represented by the formula (6 ≦ j ≦ 2f + 2), the flame resistance of the electrolytic solution is achieved while maintaining excellent load characteristics, and the safety and the load characteristics are high. It has been found that an excellent non-aqueous electrolyte secondary battery can be obtained.

【0008】前記のように、従来からリン酸トリメチル
などの鎖状のリン酸トリエステルを電解液の溶媒として
用いることが提案されているが、電解液溶媒としてリン
酸エステルを用いると、これが消火剤として働き、電解
液の難燃化は達成できるものの、粘度が高く負荷特性が
低下するという問題があった。
As described above, it has been conventionally proposed to use a chain-like phosphate triester such as trimethyl phosphate as a solvent for an electrolytic solution. Although it acts as an agent and can make the electrolyte solution flame-retardant, there is a problem that the viscosity is high and the load characteristics are reduced.

【0009】そのため、本発明では、リン酸エステルと
ともに、鎖状で沸点が25℃以上150℃以下の組成式
a b c d e (X:ハロゲン、2≦a≦8、0
≦b≦a、1≦c≦2a+2、0≦d≦1、1≦e≦
4)で表される非プロトン性有機溶媒または組成式Cf
g j N(X:ハロゲン、3≦f≦8、0≦g≦f、
6≦j≦2f+2)で表される化合物の少なくとも1種
を用いることにより、電解液の難燃性を保ちながら、負
荷特性を改善できることを見出したのである。
Therefore, in the present invention, together with the phosphate ester, a chain formula having a boiling point of 25 ° C. or more and 150 ° C. or less, C a H b X c S d O e (X: halogen, 2 ≦ a ≦ 8, 0
≦ b ≦ a, 1 ≦ c ≦ 2a + 2, 0 ≦ d ≦ 1, 1 ≦ e ≦
Aprotic organic solvent represented by 4) or a composition formula C f
H g X j N (X: halogen, 3 ≦ f ≦ 8, 0 ≦ g ≦ f,
It has been found that by using at least one compound represented by the formula (6 ≦ j ≦ 2f + 2), the load characteristics can be improved while maintaining the flame retardancy of the electrolytic solution.

【0010】[0010]

【発明の実施の形態】本発明において用いる組成式Ca
b c d e で表される非プロトン性有機溶媒に属
するものとしては、例えば、ハロゲン化アルキルのエー
テル、チオエーテル、カルボン酸エステル、カルボン酸
ハロゲン化物、カルボン酸無水物、スルホン酸エステ
ル、スルホン酸ハロゲン化物、スルホン酸無水物などが
挙げられるが、それらに限られることはない。
BEST MODE FOR CARRYING OUT THE INVENTION Composition formula C a used in the present invention
As belonging to the aprotic organic solvent represented by H b X c S d O e, for example, ethers of alkyl halides, thioether, carboxylic acid esters, carboxylic acid halides, carboxylic acid anhydrides, sulfonic acid ester , Sulfonic acid halides, sulfonic anhydrides, and the like, but are not limited thereto.

【0011】また、組成式Cf g j Nで表される化
合物としては、例えば、トリフルオロアルキルアミン類
などが挙げられるが、それらに限られることはない。
Examples of the compound represented by the composition formula C f H g X j N include, but are not limited to, trifluoroalkylamines.

【0012】上記の非プロトン性有機溶媒や化合物は、
一般に誘導率は低いが難燃性であり、リン酸エステルに
比べると粘度が低いので、リン酸エステルと組み合わせ
て用いたときに互いの欠点を補いあって電解液の難燃性
を維持しつつ電解液の電気伝導度を向上させることがで
きる。これらの非プロトン性有機溶媒や化合物はそれぞ
れ単独で用いてもよいし、また複数を組み合わせて用い
てもよい。組成式中のXは任意のハロゲン元素を表す
が、環境に対する影響を考えるとXの50%(ただし、
原子の個数での%)以上がフッ素であることが好まし
く、すべてをフッ素にすることがより好ましい。
The above aprotic organic solvents and compounds are
In general, the induction rate is low, but it is flame retardant and has a lower viscosity than phosphate ester, so when used in combination with phosphate ester, it compensates for each other's drawbacks while maintaining the flame retardancy of the electrolyte. The electric conductivity of the electrolyte can be improved. These aprotic organic solvents and compounds may be used alone or in combination of two or more. X in the composition formula represents any halogen element, but considering the effect on the environment, 50% of X (however,
(% Of the number of atoms) or more is preferably fluorine, and more preferably all fluorine.

【0013】リン酸エステルが難燃性であるためには炭
素数6以下であることが好ましく、炭素数4以下である
ことがより好ましい。また、−O−P−O−を環構成の
一部とする、環状構造を有するリン酸エステルは誘導率
が高く、本発明において好適に用いられる。このような
環状構造を有するリン酸エステルとしては、例えば、メ
チルエチレンフォスフェート、エチルエチレンフォスフ
ェートなどが挙げられる。また、非環状のリン酸エステ
ルとしては、例えば、トリメチルフォスフェート、トリ
エチルフォスフェートなどが挙げられる。もとより、こ
れらは併用することができる。さらに、リン酸エステル
としてはハロゲン化アルキル基や不飽和炭化水素基、カ
ルボン酸エステル基や炭酸エステル基などを構造中に持
つものであってもよい。上記リン酸エステルの電解液中
での量が少ない場合は難燃性が充分に発現できなくなる
おそれがあり、また多すぎる場合は負荷特性が低下する
おそれがあるため、リン酸エステルは電解液中におい
て、体積比で20%以上であることが好ましく、より好
ましくは50%以上であり、また、90%以下が好まし
く、より好ましくは80%以下である。電解液は電解液
溶媒に電解質を溶解させることによって構成されるが、
電解質の溶解時の体積は電解液溶媒の体積に比べて非常
に小さいので、電解液の体積は実質上電解液溶媒の体積
と同一とみなすことができる。
In order for the phosphate ester to be flame-retardant, it preferably has 6 or less carbon atoms, more preferably 4 or less carbon atoms. Further, a phosphate having a cyclic structure having -OPO- as a part of the ring structure has a high induction ratio and is suitably used in the present invention. Examples of the phosphate having such a cyclic structure include methyl ethylene phosphate and ethyl ethylene phosphate. Examples of the acyclic phosphate include trimethyl phosphate, triethyl phosphate, and the like. Of course, these can be used in combination. Further, the phosphoric acid ester may have a halogenated alkyl group, an unsaturated hydrocarbon group, a carboxylic acid ester group, a carbonate ester group, or the like in the structure. When the amount of the phosphate ester in the electrolyte is small, the flame retardancy may not be sufficiently exhibited, and when the amount is too large, the load characteristics may be reduced. In the above, the volume ratio is preferably 20% or more, more preferably 50% or more, and preferably 90% or less, more preferably 80% or less. Electrolyte is composed by dissolving the electrolyte in the electrolyte solvent,
Since the volume of the electrolyte at the time of dissolution is much smaller than the volume of the electrolyte solvent, the volume of the electrolyte can be regarded as substantially the same as the volume of the electrolyte solvent.

【0014】上記組成式Ca b c d e で表され
る非プロトン性有機溶媒または組成式Cf g j Nで
表される化合物は、電解液中において体積比で5%以上
が好ましく、より好ましくは10%以上であり、また、
50%以下が好ましく、20%以下がより好ましい。
The aprotic organic solvent represented by the above composition formula C a H b X c S d O e or the compound represented by the composition formula C f H g X j N is 5% by volume in the electrolytic solution. % Or more, more preferably 10% or more,
It is preferably at most 50%, more preferably at most 20%.

【0015】本発明において用いる組成式Ca b c
d e で表される非プロトン性有機溶媒や組成式Cf
g j Nで表される化合物は、鎖状で沸点が25℃以
上150℃以下であることを要するが、これは以下の理
由に基づいている。すなわち、上記非プロトン性有機溶
媒や化合物が鎖状であることによって、低粘度になり、
また、沸点が25℃以上であることによって、取り扱い
やすく、沸点が150℃以下であることによって、高粘
度になりすぎず、取り扱いやすい。
The composition formula C a Hb Xc used in the present invention.
An aprotic organic solvent represented by S d O e or a composition formula C f
The compound represented by H g X j N needs to have a chain shape and a boiling point of 25 ° C. or more and 150 ° C. or less, which is based on the following reason. That is, since the aprotic organic solvent or compound is in a chain form, the viscosity becomes low,
Further, when the boiling point is 25 ° C. or higher, it is easy to handle, and when the boiling point is 150 ° C. or lower, it does not become too high in viscosity and is easy to handle.

【0016】また、負極活物質の種類によってはリン酸
エステルが負極表面上で分解反応を起こす場合がある
が、そのような場合でも電解液中に環状カーボネートま
たはカーボネート多量体を含有させることによって分解
を抑制することができる。電解液の難燃性を維持するた
めには、このようなカーボネート類の混合量としては電
解液中において体積比で20%以下が好ましく、10%
以下がより好ましい。
Further, depending on the type of the negative electrode active material, the phosphate ester may cause a decomposition reaction on the surface of the negative electrode. Even in such a case, the decomposition is caused by including a cyclic carbonate or a carbonate multimer in the electrolytic solution. Can be suppressed. In order to maintain the flame retardancy of the electrolytic solution, the mixing amount of such carbonates is preferably 20% or less by volume in the electrolytic solution, and is preferably 10% or less.
The following is more preferred.

【0017】上記環状カーボネートとしては、例えば、
エチレンカーボネート、プロピレンカーボネート、ビニ
レンカーボネートなどが挙げられ、カーボネート多量体
としては、例えば、一般式:R1 OC(O)OR2 OC
(O)OR3 (ただし、R1、R3 は炭素数1〜4のア
ルキル基、R2 は炭素数2〜4のアルキル基であり、R
1 、R3 は同一であってもよく、また異なってもよい)
で表されるものが挙げられ、具体的には、例えば、1,
2−ビスメトキシカルボニルオキシエチレン、1,2−
ビスメトキシカルボニルオキシプロピレン、1,2−ビ
スエトキシカルボニルオキシエチレン、1,2−ビスエ
トキシカルボニルオキシプロピレンなどが挙げられる。
As the above cyclic carbonate, for example,
Examples include ethylene carbonate, propylene carbonate, and vinylene carbonate. Examples of the carbonate polymer include a compound represented by the general formula: R 1 OC (O) OR 2 OC
(O) OR 3 (where R 1 and R 3 are an alkyl group having 1 to 4 carbon atoms; R 2 is an alkyl group having 2 to 4 carbon atoms;
1 and R 3 may be the same or different)
And specifically, for example, 1,
2-bismethoxycarbonyloxyethylene, 1,2-
Examples include bismethoxycarbonyloxypropylene, 1,2-bisethoxycarbonyloxyethylene, and 1,2-bisethoxycarbonyloxypropylene.

【0018】本発明において、電解液には、上記例示の
有機溶媒以外に、例えば、1,2−ジメトキシエタン、
1,2−ジエトキシエタン、γ−ブチロラクトン、テト
ラヒドロフラン、1,3−ジオキソラン、ジエチルカー
ボネート、ジメチルカーボネート、エチルメチルカーボ
ネートなどの1種または2種以上を併用することもでき
るが、電解液の難燃性を維持するためには、これらは電
解液中において体積比で20%以下が好ましく、10%
以下がより好ましい。
In the present invention, in addition to the above-mentioned organic solvents, for example, 1,2-dimethoxyethane,
One or more of 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and the like can be used in combination, but the flame retardancy of the electrolytic solution can be used. In order to maintain the properties, these are preferably 20% or less by volume in the electrolytic solution, and 10% or less.
The following is more preferred.

【0019】電解質としては、例えば、LiClO4
LiPF6 、LiBF4 、LiAsF6 、LiSb
6 、LiCF3 SO3 、LiC4 9 SO3 、LiC
3 CO 2 、Li2 2 4 (SO3 2 、LiN(C
3 SO2 2 、LiC(CF3SO2 3 、LiCn
2n+1SO3 (n≧2)、LiN(RfO SO2 2
〔ここでRfはフルオロアルキル基〕などを単独でまた
は2種以上混合して用いることができるが、特にLiP
6 やLiC4 9 SO3 などが好ましい。電解液中に
おける電解質の濃度は、特に限定されるものではない
が、濃度を1mol/l以上の多めにすると安全性がさ
らに良くなるので好ましく、1.2mol/l以上がよ
り好ましい。また、電解液中における電解質の濃度が
1.7mol/l以下にすると電気特性が良くなるので
好ましく、1.5mol/l以下がより好ましい。
As the electrolyte, for example, LiClOFour,
LiPF6, LiBFFour, LiAsF6, LiSb
F6, LiCFThreeSOThree, LiCFourF9SOThree, LiC
FThreeCO Two, LiTwoCTwoFFour(SOThree)Two, LiN (C
FThreeSOTwo)Two, LiC (CFThreeSOTwo)Three, LiCn
F2n + 1SOThree(N ≧ 2), LiN (RfO SOTwo)Two
[Where Rf is a fluoroalkyl group] alone or
Can be used as a mixture of two or more.
F6And LiCFourF9SOThreeAre preferred. In the electrolyte
Electrolyte concentration is not particularly limited
However, if the concentration is higher than 1 mol / l, safety will increase.
It is preferable because it is even better, and it is preferably at least 1.2 mol / l.
Is more preferable. In addition, the concentration of the electrolyte in the electrolyte is
When the content is less than 1.7 mol / l, the electric characteristics are improved.
Preferably, it is 1.5 mol / l or less.

【0020】本発明において、正極活物質としては、例
えば、LiCoO2 などのリチウムコバルト酸化物、L
iNiO2 などのリチウムニッケル酸化物、LiMn2
4などのリチウムマンガン酸化物、LiTiO2 など
のリチウムチタン酸化物、LiNiO2 のNiの一部を
Coで置換したLi(NiCo)O2 、二酸化マンガ
ン、五酸化バナジウム、クロム酸化物などの金属酸化物
または二硫化チタン、二硫化モリブデンなどの金属硫化
物などが用いられ、それらの中でもLiNiO2、Li
NiO2 、LiMn2 4 などの充電時の開路電圧がL
i基準で4V以上を示すリチウム複合酸化物は、高エネ
ルギー密度が得られるので好ましい。また、正極活物質
として特にLiNiO2 などの熱的に不安定なリチウム
ニッケル酸化物やニッケルを含む複合酸化物を用いる場
合に本発明を適用すると、その効果が顕著に発現する。
In the present invention, as the positive electrode active material, for example, lithium cobalt oxide such as LiCoO 2 ;
lithium nickel oxide such as iNiO 2 , LiMn 2
Lithium manganese oxides such as O 4 , lithium titanium oxides such as LiTiO 2 , and metals such as Li (NiCo) O 2 in which a part of Ni of LiNiO 2 is replaced by Co, manganese dioxide, vanadium pentoxide, and chromium oxide Oxides or metal sulfides such as titanium disulfide and molybdenum disulfide are used. Among them, LiNiO 2 , Li
The open circuit voltage during charging of NiO 2 , LiMn 2 O 4, etc. is L
A lithium composite oxide exhibiting 4 V or more on an i basis is preferable because a high energy density can be obtained. Further, when the present invention is applied to a case where a thermally unstable lithium nickel oxide such as LiNiO 2 or a composite oxide containing nickel is used as the positive electrode active material, the effect is remarkably exhibited.

【0021】正極は、例えば、上記正極活物質に、必要
に応じて、例えば、鱗片状黒鉛などの導電助剤やポリフ
ッ化ビニリデンなどのバインダーを加え、混合して正極
合剤を調製し、それを水または溶剤に溶解または分散さ
せてペースト状にし(バインダーはあらかじめ溶剤など
に溶解させてから正極活物質などと混合してもよい)、
その正極合剤ペーストをアルミニウム箔などからなる集
電体に塗布し、乾燥して、集電体の少なくとも一方の面
に正極合剤層を形成する工程を経ることによって作製さ
れる。ただし、正極の作製方法は、上記例示の方法に限
られることなく、他の方法によってもよい。
For the positive electrode, for example, a conductive additive such as flake graphite or a binder such as polyvinylidene fluoride is added to the above-mentioned positive electrode active material, if necessary, and mixed to prepare a positive electrode mixture. Is dissolved or dispersed in water or a solvent to form a paste (the binder may be dissolved in a solvent or the like in advance and then mixed with the positive electrode active material or the like),
The positive electrode mixture paste is applied to a current collector made of aluminum foil or the like, dried, and formed through a step of forming a positive electrode mixture layer on at least one surface of the current collector. However, the method for producing the positive electrode is not limited to the method described above, but may be another method.

【0022】本発明において、負極の活物質としては、
リチウムイオンをドープ・脱ドープできるものであれば
よく、そのような負極活物質としては、例えば、黒鉛、
熱分解炭素類、コークス類、ガラス状炭素類、有機高分
子化合物の焼成体、メソカーボンマイクロビーズ、炭素
繊維、活性炭などの炭素化合物が挙げられる。また、S
i、Sn、Inなどの合金またはLiに近い低電位で充
放電できる酸化物などの化合物は炭素材料に比べて高い
容量を持つものがあり、それらも好適に用いられる。
In the present invention, the active material of the negative electrode includes:
Any material capable of doping and undoping lithium ions may be used. Examples of such a negative electrode active material include graphite,
Carbon compounds such as pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, and activated carbon are exemplified. Also, S
Some compounds such as alloys such as i, Sn, and In and oxides that can be charged and discharged at a low potential close to Li have higher capacities than carbon materials, and they are also suitably used.

【0023】負極は、例えば、上記負極活物質に、必要
に応じて、例えば鱗片状黒鉛、カーボンブラックなどの
導電助剤や、例えばポリフッ化ビニリデン、ポリテトラ
フルオロエチレン、エチレンプロピレンジエンゴム、ポ
リアクリル酸、カルボキシメチルセルロースなどのバイ
ンダを加え、混合して負極合剤を調製し、それを水また
は溶剤に溶解または分散させてペースト状にし(バイン
ダはあらかじめ溶剤などに溶解させておいてから負極活
物質などと混合してもよい)、その負極合剤ペーストを
銅箔などからなる集電体に塗布し、乾燥して、集電体の
少なくとも一方の面に負極合剤層を形成する工程を経る
ことによって作製される。ただし、負極の作製方法は上
記例示の方法に限られることなく、他の方法によっても
よい。
The negative electrode is made of, for example, a conductive auxiliary such as flake graphite, carbon black, or the like, or polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, or polyacrylic, if necessary. A binder such as an acid and carboxymethyl cellulose is added and mixed to prepare a negative electrode mixture, which is dissolved or dispersed in water or a solvent to form a paste (the binder is first dissolved in a solvent or the like, and then the negative electrode active material is prepared). And the like, and the negative electrode mixture paste is applied to a current collector made of copper foil or the like, dried, and subjected to a step of forming a negative electrode mixture layer on at least one surface of the current collector. It is produced by However, the method for producing the negative electrode is not limited to the method exemplified above, and may be another method.

【0024】正極や負極の集電体としては、例えば、ア
ルミニウム、銅、ニッケル、ステンレス鋼などの金属の
箔や、それらの金属を網状にしたものなどが用いられる
が、正極集電体としては特にアルミニウム箔が適してお
り、負極集電体としては特に銅箔が適している。
As the current collector for the positive electrode and the negative electrode, for example, a metal foil such as aluminum, copper, nickel, and stainless steel, or a net formed of these metals is used. Aluminum foil is particularly suitable, and copper foil is particularly suitable as the negative electrode current collector.

【0025】セパレータとしては、強度が充分でしかも
電解液を多く保持できるものであればよく、そのような
観点から、厚みが10〜50μmで開孔率が30〜70
%のポリエチレン製、ポリプロピレン製、またはエチレ
ンとプロピレンとのコポリマー製の微孔性フィルムや不
織布などが好ましい。
As the separator, any separator having sufficient strength and capable of holding a large amount of electrolyte may be used. From such a viewpoint, the thickness is 10 to 50 μm and the porosity is 30 to 70 μm.
% Of polyethylene, polypropylene, or a copolymer of ethylene and propylene.

【0026】電池は、例えば、上記のようにして作製し
た正極と負極との間にセパレータを介在させて渦巻状に
巻回して作製した渦巻状電極体などの巻回構造または積
層構造の電極体を、ニッケルメッキを施した鉄やステン
レス鋼製の電池ケース内に挿入し、封口する工程を経て
作製される。また、上記電池には、通常、電池内部に発
生したガスをある一定圧力まで上昇した段階で電池外部
に排出して、電池の高圧下での破裂を防止するための防
爆機構が取り入れられる。
The battery is, for example, a spirally wound electrode body or a laminated electrode body such as a spirally wound electrode body produced by spirally winding a separator between the positive electrode and the negative electrode produced as described above. Is inserted into a nickel-plated iron or stainless steel battery case and sealed. Further, the battery usually incorporates an explosion-proof mechanism for discharging the gas generated inside the battery to the outside of the battery when the pressure has risen to a certain pressure, thereby preventing the battery from bursting under high pressure.

【0027】[0027]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0028】実施例1 トリメチルフォスフェートとメチルヘプタフロロブタノ
エート(CF3 CF2COOCH3 )とエチレンカーボ
ネートとを体積比85:10:5で混合し、この混合溶
媒にLiPF6 を1.0mol/l溶解させて非水溶媒
系の電解液を調製した。
Example 1 Trimethyl phosphate, methyl heptafluorobutanoate (CF 3 CF 2 COOCH 3 ) and ethylene carbonate were mixed at a volume ratio of 85: 10: 5, and 1.0 mol of LiPF 6 was added to the mixed solvent. / L was dissolved to prepare a non-aqueous solvent-based electrolyte solution.

【0029】また、上記とは別に、LiNiO2 に導電
助剤として鱗片状黒鉛を重量比100:7で加えて混合
し、この混合物と、ポリフッ化ビニリデンをN−メチル
ピロリドンに溶解させた溶液とを混合してペースト状に
した。この正極合剤ペーストを厚さ20μmのアルミニ
ウム箔からなる正極集電体の両面に均一に塗布し、乾燥
して正極合剤層を形成した後、ローラープレス機により
圧縮成形した後、切断し、リード体を溶接して、帯状の
正極を作製した。
Separately from the above, flaky graphite was added to LiNiO 2 as a conductive additive at a weight ratio of 100: 7 and mixed, and this mixture was mixed with a solution obtained by dissolving polyvinylidene fluoride in N-methylpyrrolidone. Was mixed into a paste. This positive electrode mixture paste is uniformly applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 20 μm, dried to form a positive electrode mixture layer, compression-molded by a roller press, and cut. The lead body was welded to produce a strip-shaped positive electrode.

【0030】つぎに、難黒鉛化性炭素材料(コークス
類)とポリフッ化ビニリデンをN−メチルピロリドンに
溶解させた溶液とを混合して負極合剤ペーストを調製し
た。上記負極合剤ペーストを厚さ10μmの帯状の銅箔
からなる負極集電体の両面に均一に塗布し、乾燥して負
極合剤層を形成した後、ローラープレス機により圧縮成
形し、切断した後、リード体を溶接して帯状の負極を作
製した。
Next, a non-graphitizable carbon material (coke) and a solution of polyvinylidene fluoride dissolved in N-methylpyrrolidone were mixed to prepare a negative electrode mixture paste. The negative electrode mixture paste was uniformly applied on both surfaces of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, compression-molded by a roller press, and cut. Thereafter, the lead body was welded to produce a strip-shaped negative electrode.

【0031】上記帯状正極を厚さ25μmの微孔性ポリ
エチレンフィルムを介して上記帯状負極に重ね合わせ、
渦巻状に巻回して渦巻状電極体としたのち、外径14m
mの有底円筒状の電池ケース内に充填し、正極および負
極のリード体の溶接を行った。つぎに、上記電解液1.
6mlを電池ケース内に注入し、電解液がセパレータな
どに充分に浸透した後、封口し、予備充電、エイジング
を行い、図1の模式図に示すような構造の筒形の非水電
解液二次電池を作製した。
The above-mentioned strip-shaped positive electrode is overlaid on the above-mentioned strip-shaped negative electrode via a microporous polyethylene film having a thickness of 25 μm,
After spirally winding into a spiral electrode body, the outer diameter is 14 m.
m, and the positive electrode and the negative electrode were welded together. Next, the electrolytic solution 1.
After pouring 6 ml into the battery case and allowing the electrolyte to sufficiently penetrate into the separator and the like, sealing, pre-charging and aging, the cylindrical non-aqueous electrolyte having the structure as shown in the schematic diagram of FIG. A secondary battery was manufactured.

【0032】図1に示す電池について説明すると、1は
前記の正極で、2は負極であり、この図1では、繁雑化
を避けるため、正極1や負極2の作製にあたって使用し
た集電体兼基体としての金属箔などは図示していない。
そして、これらの正極1と負極2はセパレータ3を介し
て渦巻状に巻回され、渦巻状電極体として上記の電解液
4と共に電池ケース5内に収容されている。
Referring to the battery shown in FIG. 1, 1 is the positive electrode and 2 is the negative electrode. In FIG. 1, in order to avoid complication, the current collector and the negative electrode used in producing the positive electrode 1 and the negative electrode 2 were used. A metal foil or the like as a base is not shown.
The positive electrode 1 and the negative electrode 2 are spirally wound with a separator 3 interposed therebetween, and are housed in a battery case 5 together with the electrolytic solution 4 as a spiral electrode body.

【0033】電池ケース5はステンレス鋼製で、その底
部には上記渦巻状電極体の挿入に先立って、ポリプロピ
レンからなる絶縁体6が配置されている。封口板7はア
ルミニウム製で、円板状をしていて、中央部に薄肉部7
aを設け、かつ上記薄肉部7aの周囲に電池内圧を防爆
弁9に作用させるための圧力導入口7bとしての孔が設
けられている。そして、この薄肉部7aの上面に防爆弁
9の突出部9aが溶接され、溶接部分11を構成してい
る。なお、上記の封口板7に設けた薄肉部7aや防爆弁
9の突出部9aなどは、図面上での理解がしやすいよう
に、切断面のみを図示しており、切断面後方の輪郭線は
図示を省略している。また、封口板7の薄肉部7aと防
爆弁9の突出部9aとの溶接部分11も、図面上での理
解が容易なように、実際よりは誇張した状態に図示して
いる。
The battery case 5 is made of stainless steel, and an insulator 6 made of polypropylene is disposed at the bottom of the battery case 5 before the spiral electrode body is inserted. The sealing plate 7 is made of aluminum, has a disk shape, and has a thin portion 7 in the center.
In addition, a hole is provided around the thin portion 7a as a pressure introduction port 7b for applying the internal pressure of the battery to the explosion-proof valve 9. The projection 9a of the explosion-proof valve 9 is welded to the upper surface of the thin portion 7a to form a welded portion 11. In addition, the thin portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are illustrated only in a cut plane so as to be easily understood in the drawings, and a contour line behind the cut plane is shown. Is not shown. Further, the welded portion 11 between the thin portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 is shown in an exaggerated state rather than the actual one so as to be easily understood in the drawings.

【0034】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出口8aが設けられてい
る。防爆弁9は、アルミニウム製で円板状をしており、
その中央部には発電要素側(図1では、下側)に先端部
を有する突出部9aが設けられ、かつ薄肉部9bが設け
られ、上記の突出部9aの下面が、前記したように、封
口板7の薄肉部7aの上面に溶接され、溶接部分11を
構成している。絶縁パッキング10は、ポリプロピレン
製で環状をしており、封口板7の周縁部の上部に配置さ
れ、その上部に防爆弁9が配置していて、封口板7と防
爆弁9とを絶縁するとともに、両者の間から電解液が漏
れないように両者の間隙を封止している。環状ガスケッ
ト12はポリプロピレン製で、リード体13はアルミニ
ウム製で、前記封口板7と正極1とを接続し、渦巻状電
極体の上部には絶縁体14が配置され、負極2と電池ケ
ース5の底部とはニッケル製のリード体15で接続され
ている。
The terminal plate 8 is made of rolled steel, nickel-plated on its surface, and has a hat-like shape with a peripheral edge formed in a flange shape. The terminal plate 8 is provided with a gas outlet 8a. . The explosion-proof valve 9 is made of aluminum and has a disk shape.
In the center thereof, a protruding portion 9a having a tip portion is provided on the power generation element side (the lower side in FIG. 1), and a thin portion 9b is provided, and the lower surface of the protruding portion 9a is, as described above, It is welded to the upper surface of the thin portion 7a of the sealing plate 7 to form a welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is disposed above the peripheral portion of the sealing plate 7, and the explosion-proof valve 9 is disposed above the insulating packing 10. The insulating packing 10 insulates the sealing plate 7 from the explosion-proof valve 9. The gap between the two is sealed so that the electrolyte does not leak from between the two. The annular gasket 12 is made of polypropylene, and the lead body 13 is made of aluminum. The sealing plate 7 and the positive electrode 1 are connected to each other. An insulator 14 is disposed above the spiral electrode body. The bottom portion is connected by a lead body 15 made of nickel.

【0035】この電池においては、封口体7の薄肉部7
aと防爆弁9aとが溶接部分11で接触し、防爆弁9a
の周縁部と端子板8の周縁部とが接触し、正極1と封口
体7とは正極側のリード体13で接続されているので、
正極1と端子板8とはリード体13、封口体7、防爆弁
9およびそれらの溶接部分11によって電気的接続が得
られ、電路として正常に機能する。
In this battery, the thin portion 7 of the sealing body 7
a and the explosion-proof valve 9a come into contact at the welded portion 11, and the explosion-proof valve 9a
And the peripheral edge of the terminal plate 8 are in contact with each other, and the positive electrode 1 and the sealing body 7 are connected by the lead 13 on the positive electrode side.
The positive electrode 1 and the terminal plate 8 are electrically connected to each other by the lead body 13, the sealing body 7, the explosion-proof valve 9, and the welded portion 11 thereof, and function normally as an electric circuit.

【0036】そして、電池に異常事態が起こり、電池内
部にガスが発生して電池の内圧が上昇した場合には、そ
の内圧上昇により、防爆弁9の中央部が内圧方向(図1
では、上側の方向)に変形し、それに伴って溶接部分1
1で一体化されている薄肉部7aに剪断力が働いて、該
薄肉部7aが破断するか、または防爆弁9の突出部9a
と封口板7の薄肉部7aとの溶接部分11が剥離し、そ
れによって、正極1と端子板8との電気的接続が消失し
て、電流が遮断されるようになる。その結果、電池反応
が進行しなくなるので、過充電時や短絡時でも、充電電
流や短絡電流による電池の温度上昇や内圧上昇がそれ以
上進行しなくなって、電池の高圧下での破裂などを防止
できるように設計されている。
When an abnormal situation occurs in the battery and gas is generated inside the battery and the internal pressure of the battery rises, the internal pressure rises and the central part of the explosion-proof valve 9 moves in the direction of the internal pressure (FIG. 1).
Then, it is deformed in the upper direction)
The shearing force acts on the thin portion 7a integrated at 1 and the thin portion 7a is broken or the projection 9a of the explosion-proof valve 9 is formed.
And the thin portion 7a of the sealing plate 7 is peeled off, whereby the electrical connection between the positive electrode 1 and the terminal plate 8 is lost and the current is cut off. As a result, the battery reaction does not proceed, so even during overcharge or short circuit, the battery temperature and internal pressure rise due to the charging current and short circuit current do not progress further, preventing the battery from bursting under high pressure Designed to be able to.

【0037】実施例2 電解液の溶媒として、メチルエチレンフォスフェートと
パーフルオロトリエチルアミンと1,2−ビスエトキシ
カルボキシオキシエチレンとの体積比85:10:5の
混合溶媒を用いた以外は、実施例1と同様にして非水電
解液二次電池を作製した。
Example 2 Example 2 was repeated except that a mixed solvent of methyl ethylene phosphate, perfluorotriethylamine and 1,2-bisethoxycarboxyoxyethylene in a volume ratio of 85: 10: 5 was used as a solvent for the electrolytic solution. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.

【0038】比較例1 電解液の溶媒として、トリメチルフォスフェートとエチ
レンカーボネートとの体積比95:5の混合溶媒を用い
た以外は、実施例1と同様にして非水電解液二次電池を
作製した。
Comparative Example 1 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that a mixed solvent of trimethyl phosphate and ethylene carbonate in a volume ratio of 95: 5 was used as a solvent for the electrolyte. did.

【0039】比較例2 電解液の溶媒として、メチルエチレンフォスフェートと
1,2−ビスエトキシカルボキシオキシエチレンとの体
積比95:5の混合溶媒を用いた以外は、実施例1と同
様にして非水電解液二次電池を作製した。
Comparative Example 2 The procedure of Example 1 was repeated except that a mixed solvent of methyl ethylene phosphate and 1,2-bisethoxycarboxyoxyethylene in a volume ratio of 95: 5 was used as a solvent for the electrolytic solution. A water electrolyte secondary battery was produced.

【0040】比較例3 電解液の溶媒として、エチレンカーボネートとエチルメ
チルカーボネートとの体積比50:50の混合溶媒を用
いた以外は、実施例1と同様にして非水電解液二次電池
を作製した。
Comparative Example 3 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 50:50 was used as a solvent for the electrolyte. did.

【0041】上記実施例1〜2および比較例1〜2の電
池について負荷特性を調べ、また、上記実施例1〜2お
よび比較例1〜3の電池について引火性試験を行った。
それらの試験方法および評価結果は次の通りである。
The batteries of Examples 1 and 2 and Comparative Examples 1 and 2 were examined for load characteristics, and the batteries of Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to flammability tests.
The test methods and evaluation results are as follows.

【0042】負荷特性:実施例1〜2および比較例1〜
2の電池について、電圧2.75V〜4.1Vの範囲で
充放電させ、電流密度1Cでの放電容量の電流密度0.
2Cでの放電容量に対する割合を調べた。その結果を表
1に「負荷特性(1C/0.2C)」として百分率で示
す。
Load characteristics: Examples 1-2 and Comparative Examples 1
The battery of No. 2 was charged and discharged at a voltage in the range of 2.75 V to 4.1 V, and the current density of the discharge capacity at a current density of 1 C was 0.1.
The ratio to the discharge capacity at 2C was examined. The results are shown in Table 1 as percentages as "load characteristics (1C / 0.2C)".

【0043】[0043]

【表1】 [Table 1]

【0044】引火性試験:実施例1〜2および比較例1
〜3の電池について、電池が高温に加熱されて、安全弁
が作動した状態〔すなわち、図1に示す電池において、
電解液中からの溶媒の蒸発などにより、電池内部にガス
が発生し、電池内圧が上昇して所定の圧力に達したとき
に、その内圧上昇により、防爆弁9の中央部が内圧方向
(図1では、上側の方向)に変形し、それに伴って溶接
部分11で一体化されている薄肉部7aに剪断力が働い
て、該薄肉部7aが破断するか、または防爆弁9の突出
部9aと封口板7の薄肉部7aとの溶接部分11が剥離
し、それによって、電池内部のガスが端子板8のガス排
出口8aから電池外部に排出される状態〕になったこと
を想定し、あらかじめ電池上部の封口部分を分解し、電
池内部を露呈させておき、その状態で電池を100℃ま
で加熱し、露呈部分に火を近づけて、引火するか否かを
調べた。
Flammability test: Examples 1-2 and Comparative Example 1
For the batteries of Nos. 1 to 3, the battery was heated to a high temperature and the safety valve was operated [that is, in the battery shown in FIG.
Gas is generated inside the battery due to evaporation of the solvent from the electrolytic solution and the like. When the internal pressure of the battery rises and reaches a predetermined pressure, the internal pressure rises and the central part of the explosion-proof valve 9 moves in the direction of the internal pressure (see FIG. In FIG. 1, the thin portion 7a integrated at the welded portion 11 is subjected to a shearing force, and the thin portion 7a is broken or the projection 9a of the explosion-proof valve 9 is deformed. And the thin portion 7a of the sealing plate 7 is peeled off, whereby the gas inside the battery is discharged from the gas discharge port 8a of the terminal plate 8 to the outside of the battery. The sealing portion on the upper part of the battery was disassembled in advance to expose the inside of the battery, and in this state, the battery was heated to 100 ° C., and a fire was brought close to the exposed portion to determine whether or not ignition occurred.

【0045】[0045]

【表2】 [Table 2]

【0046】表2に示す結果から明らかなように、実施
例1〜2の電池は、トリメチルフォスフェートやメチル
エチルフォスフェートなどのリン酸エステルを用いてい
ない比較例3の電池に比べて、安全性が高く、また、表
1に示す結果から明らかなように、実施例1〜2の電池
は、それぞれ対応する比較例1〜2の電池に比べて、負
荷特性が優れていた。
As is clear from the results shown in Table 2, the batteries of Examples 1 and 2 were safer than the batteries of Comparative Example 3 which did not use a phosphate such as trimethyl phosphate or methyl ethyl phosphate. As is clear from the results shown in Table 1, the batteries of Examples 1 and 2 had better load characteristics than the corresponding batteries of Comparative Examples 1 and 2, respectively.

【0047】[0047]

【発明の効果】以上説明したように、本発明では、安全
性が高く、かつ負荷特性の優れた非水電解液二次電池を
提供することができた。
As described above, according to the present invention, a non-aqueous electrolyte secondary battery having high safety and excellent load characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解液二次電池の一例を模式
的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing one example of a non-aqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電解液 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrolyte

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および非水溶媒系の電解液を
有する非水電解液二次電池において、上記電解液中に、
リン酸エステルと、鎖状で沸点が25℃以上150℃以
下の組成式Ca b c d e (X:ハロゲン、2≦
a≦8、0≦b≦a、1≦c≦2a+2、0≦d≦1、
1≦e≦4)で表される非プロトン性有機溶媒または鎖
状で沸点が25℃以上150℃以下の組成式Cf g
j N(X:ハロゲン、3≦f≦8、0≦g≦f、6≦j
≦2f+2)で表される化合物との少なくとも二つを含
むことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a non-aqueous solvent-based electrolyte, wherein the electrolyte comprises:
A phosphoric acid ester, and a chain formula having a boiling point of 25 ° C. or more and 150 ° C. or less, C a H b X c S d O e (X: halogen, 2 ≦
a ≦ 8, 0 ≦ b ≦ a, 1 ≦ c ≦ 2a + 2, 0 ≦ d ≦ 1,
An aprotic organic solvent represented by 1 ≦ e ≦ 4) or a chain-form composition formula C f H g X having a boiling point of from 25 ° C. to 150 ° C.
j N (X: halogen, 3 ≦ f ≦ 8, 0 ≦ g ≦ f, 6 ≦ j
≦ 2f + 2). A non-aqueous electrolyte secondary battery comprising at least two of the following compounds:
【請求項2】 リン酸エステルがトリメチルフォスフェ
ートであることを特徴とする請求項1記載の非水電解液
二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the phosphate ester is trimethyl phosphate.
【請求項3】 リン酸エステルが−O−P−O−を環の
一部とする環状構造を有することを特徴とする請求項1
記載の非水電解液二次電池。
3. The phosphate ester according to claim 1, wherein the phosphate ester has a cyclic structure having -OPO- as a part of the ring.
The non-aqueous electrolyte secondary battery according to the above.
【請求項4】 Xの少なくとも50%以上がフッ素であ
ることを特徴とする請求項1〜3のいずれかに記載の非
水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least 50% or more of X is fluorine.
【請求項5】 電解液中に体積比で20%以下の環状カ
ーボネートまたはカーボネート多量体を含むことを特徴
とする請求項1〜4のいずれかに記載の非水電解液二次
電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte contains 20% or less by volume of a cyclic carbonate or a carbonate multimer.
JP10272651A 1998-09-28 1998-09-28 Nonaqueous electrolyte secondary battery Withdrawn JP2000100470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10272651A JP2000100470A (en) 1998-09-28 1998-09-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10272651A JP2000100470A (en) 1998-09-28 1998-09-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000100470A true JP2000100470A (en) 2000-04-07

Family

ID=17516900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272651A Withdrawn JP2000100470A (en) 1998-09-28 1998-09-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000100470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188128A (en) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188128A (en) * 1998-12-24 2000-07-04 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2000294281A (en) Nonaqueous electrolyte secondary battery
JPH08162164A (en) Nonaqueous secondary battery and its manufacture
JPH11176470A (en) Organic electrolyte secondary battery
JP3639376B2 (en) Organic electrolyte secondary battery
JP4798729B2 (en) Lithium ion secondary battery
JP3988901B2 (en) Organic electrolyte secondary battery
JP2002270184A (en) Non-aqueous secondary battery
JPH11273727A (en) Nonaqueous electrolyte secondary battery
JP2002093405A (en) Nonaqueous secondary battery and its charging method
JP4439070B2 (en) Non-aqueous secondary battery and charging method thereof
JPH04329268A (en) Nonaqueous electrolyte secondary battery
JP2004296420A (en) Organic electrolyte battery
JP4636650B2 (en) Non-aqueous secondary battery
JP2000100421A (en) Nonaqueous electrolyte secondary battery
JP4240422B2 (en) Organic electrolyte secondary battery
JP2010135115A (en) Nonaqueous electrolyte secondary battery
JP4714976B2 (en) Nonaqueous electrolyte secondary battery
JPH11273731A (en) Nonaqueous electrolyte secondary battery
JP2000173650A (en) Nonaqueous electrolyte secondary battery
JP2000100470A (en) Nonaqueous electrolyte secondary battery
JP2004247187A (en) Organic electrolytic battery
JP2000100472A (en) Nonaqueous electrolyte secondary battery
JP4526044B2 (en) Lithium ion secondary battery
JP2001210326A (en) Nonaqueous electrolytic solution secondary battery
JP2000149984A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110