JP2000100244A - High molecular solid electrolyte - Google Patents

High molecular solid electrolyte

Info

Publication number
JP2000100244A
JP2000100244A JP10283358A JP28335898A JP2000100244A JP 2000100244 A JP2000100244 A JP 2000100244A JP 10283358 A JP10283358 A JP 10283358A JP 28335898 A JP28335898 A JP 28335898A JP 2000100244 A JP2000100244 A JP 2000100244A
Authority
JP
Japan
Prior art keywords
peo
mol
complex
inorganic salt
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10283358A
Other languages
Japanese (ja)
Inventor
Naoya Ogata
直哉 緒方
Tsutomu Sada
勉 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PAIONIKUSU KK
Original Assignee
PAIONIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PAIONIKUSU KK filed Critical PAIONIKUSU KK
Priority to JP10283358A priority Critical patent/JP2000100244A/en
Publication of JP2000100244A publication Critical patent/JP2000100244A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To use an electrolyte as a new key material to improve film formability, an insulating property and fracture strength by forming it by adding an inorganic salt to a complex of poly(ethylene glycol)-bis-(carboxymethyl)ether and pyrazine or 4,4'-dipyridyl or 1,3,5-triazine. SOLUTION: One mol of poly(ethylene glycol)-bis-(carboxymethyl)ether (abbreviated symbol: PEO-CA) is compounded with, preferably, a nitrogen containing heterocyclic compound of one mol of pyrazine or 4,4'-dipyridyl, or two mol of 1,3,5-triazine. The ion conductivity of this electrolyte is preferably maximized at room temperature when 0.03 mol of lithium perchlorate that is an inorganic salt having a high degree of dissociation per oxyethylene unit of the PEO-CA is added and is high when the PEO-CA is in an amorphous form having a molecular weight of 200-650. It has flexibility due to hydrogen bond. Both the compounding and the addition of the inorganic salt are performed by means of stirring at around 60 deg.C for four hours in an atmosphere of argon or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【本発明の背景】本発明は、新しい基幹材料を使用する
高分子固体電解質に関する。
BACKGROUND OF THE INVENTION The present invention relates to a solid polymer electrolyte using a new base material.

【0002】塩を解離させ、生成したイオンを安定に保
ち、しかも速やかに伝導する高分子材料は「高分子固体
電解質」または「イオン伝導性高分子」と呼ばれてい
る。この材料は溶媒を使用することなく固体状態でイオ
ン伝導を可能にするので、例えばフィルムバッテリーま
たはペーパーバッテリーと呼ばれる全固体電池の隔膜の
機能を備えた固体電解質として使用することができる。
[0002] A polymer material that dissociates salts, keeps the generated ions stable, and conducts them quickly is called "polymer solid electrolyte" or "ion conductive polymer". Since this material enables ionic conduction in a solid state without using a solvent, it can be used, for example, as a solid electrolyte having a diaphragm function of an all-solid-state battery called a film battery or a paper battery.

【0003】高分子電解質の基幹材料として最初に用い
られる物質はポリエーテル、特にポリエチレングリコー
ルである。ポリエーテルは、あたかも水分子の重合体の
ようにエーテル酸素の双極子モーメントを介してイオン
を溶媒和する。しかもポリエーテルのTgが低いため常
温で連鎖のセグメント運動が活発である。エーテル酸素
によって囲まれたイオンはこのセグメント運動に従って
移動できる。これがポリエーテル固体電解質のイオン伝
導の原理である。
[0003] The first substances used as the base material for polyelectrolytes are polyethers, in particular polyethylene glycols. Polyethers solvate ions through the dipole moment of ether oxygen, much like a polymer of water molecules. Moreover, since the polyether has a low Tg, the segmental movement of the chain is active at room temperature. Ions surrounded by ether oxygen can move according to this segmental motion. This is the principle of ionic conduction of the polyether solid electrolyte.

【0004】ポリエチレングリコールの末端OH基をカ
ルボキシメチルエーテル化したポリ(エチレングリコー
ル)ビス(カルボキシメチル)エーテル(以下「PEO
−CA」と略記)そのものまたはその高分子金属塩を全
固体電池のフィルムとして使用する場合、成膜性、絶縁
破壊強度などの性能において満足ではなく、一層の向上
が望まれる。
[0004] Poly (ethylene glycol) bis (carboxymethyl) ether in which the terminal OH group of polyethylene glycol is carboxymethyl etherified (hereinafter referred to as “PEO”)
-CA) or its polymer metal salt is used as a film of an all-solid battery, and is not satisfactory in performance such as film formability and dielectric strength, and further improvement is desired.

【0005】[0005]

【本発明の開示】上記要望を満たすため、本発明は、P
EO−CAと、含窒素複素環化合物との複合体を使用す
る。使用し得る化合物は、ピラジン(略号:Py)、
4,4’−ジピリジル(略号:Bpy)、および1,
3,5−トリアジン(略号:Tri)である。PEA−
CAは2官能であり、これら含窒素複素環化合物は1分
子中2個または3個の環窒素原子を持っているので、P
yおよびBpyの場合はPEO−CAとモル比1:1の
複合体を形成し、TriはPEO−CAとモル比1:2
の複合体を形成する。
DISCLOSURE OF THE INVENTION In order to satisfy the above demands, the present invention provides
A complex of EO-CA and a nitrogen-containing heterocyclic compound is used. Compounds that can be used include pyrazine (abbreviation: Py),
4,4′-dipyridyl (abbreviation: Bpy), and 1,
3,5-triazine (abbreviation: Tri). PEA-
CA is bifunctional, and these nitrogen-containing heterocyclic compounds have two or three ring nitrogen atoms per molecule.
In the case of y and Bpy, a complex having a molar ratio of 1: 1 is formed with PEO-CA, and Tri is mixed with PEO-CA at a molar ratio of 1: 2.
To form a complex.

【0006】本発明の高分子固体電解質はこの複合体へ
1価の無機金属塩を添加して得られる。添加される無機
金属塩は高い解離度を有する塩であり、通常過塩素酸リ
チウムLiClO4 が使用される。固体高分子中のイオ
ン伝導率は塩濃度に依存することが知られている。本発
明においては、室温における伝導率はPEO単位あたり
の塩濃度が約0.03モルのとき最大値となることが観
察された。
The solid polymer electrolyte of the present invention can be obtained by adding a monovalent inorganic metal salt to the composite. The inorganic metal salt to be added is a salt having a high degree of dissociation, and usually lithium perchlorate LiClO 4 is used. It is known that the ionic conductivity in a solid polymer depends on the salt concentration. In the present invention, it has been observed that the conductivity at room temperature reaches a maximum when the salt concentration per PEO unit is about 0.03 mol.

【0007】イオン伝導率はPEO−CAの分子量にも
依存する。一般に分子量の高い方が伝導率は高くなる
が、分子鎖のセグメント運動に沿ったイオンの速やかな
移動が可能な無定形状態を保つためには、分子量は20
0〜650(PEOの平均重合度3〜15)の範囲であ
ることが適当である。
[0007] The ionic conductivity also depends on the molecular weight of PEO-CA. In general, the higher the molecular weight, the higher the conductivity. However, in order to maintain an amorphous state in which ions can move quickly along the segmental motion of the molecular chain, the molecular weight is 20%.
It is suitably in the range of 0 to 650 (average degree of polymerization of PEO 3 to 15).

【0008】PEO−CAと含窒素複素環化合物との複
合体は、PyおよびBpyの場合は1:1のモル比で、
Triの場合はTri:PEO−CA=1:2のモル比
で反応させる。反応は不活性雰囲気中、例えばアルゴン
ガスで満たされたグローブボックス中、両者の混合物を
加温下(約60℃)約4時間攪拌することによって行わ
れる。生成する複合体はすべて褐色のゲル状物質であ
る。IRスペクトルの比較により、PEO−CAのスペ
クトルに見られた1746cm-1のC=Oの伸縮による
ピークが複合体のスペクトルにおいてはそれぞれ3〜6
cm-1程度低波長側にシフトしていることから水素結合
の形成を確認することができる。
In the case of Py and Bpy, the complex of PEO-CA and the nitrogen-containing heterocyclic compound is in a molar ratio of 1: 1.
In the case of Tri, the reaction is performed at a molar ratio of Tri: PEO-CA = 1: 2. The reaction is carried out in an inert atmosphere, for example in a glove box filled with argon gas, by stirring the mixture of the two under heating (about 60 ° C.) for about 4 hours. The resulting complexes are all brown gels. By comparison of IR spectra, peaks due to expansion and contraction of C の O at 1746 cm −1 observed in the spectrum of PEO-CA were 3 to 6 in the spectrum of the composite, respectively.
The shift to the lower wavelength side by about cm −1 confirms the formation of hydrogen bonds.

【0009】金属イオン例えばリチウムイオンと複合体
との錯体(本発明の高分子固体電解質)は、同様に不活
性雰囲気中、例えばアルゴンで満たされたグローブボッ
クス中、複合体へ所定量の過塩素酸リチウムを加え、加
温下(約60℃)約4時間攪拌することによって合成す
ることができる。過塩素酸リウチムは、例えば真空ライ
ン中40℃で3日間乾燥することによってあらかじめ水
分を実質上完全に除去して添加することが重要である。
先に述べたように、LiClO4 /PEO単位=0.0
3の錯体が室温において最大のイオン伝導率を示した。
A complex of a metal ion such as a lithium ion and a complex (the polymer solid electrolyte of the present invention) is similarly added to a predetermined amount of perchlorine in an inert atmosphere such as a glove box filled with argon. It can be synthesized by adding lithium oxide and stirring under heating (about 60 ° C.) for about 4 hours. It is important that the lithium perchlorate be added, for example, by drying it in a vacuum line at 40 ° C. for 3 days to substantially completely remove water in advance.
As mentioned earlier, LiClO 4 / PEO units = 0.0
Complex 3 exhibited the highest ionic conductivity at room temperature.

【0010】実施例 (1)PEO−CA:Py複合体の合成 PEO−CA(Mw 250 Aldlich)7.7
g(3.1×10-2mol)とピラジン(Wako C
o.)3.2g(3.1×10-2mol)をサンプル瓶
にとり約60℃、アルゴンガスで満たされたグローブボ
ックス内において4時間攪拌した。
EXAMPLES (1) Synthesis of PEO-CA: Py complex PEO-CA (Mw 250 Aldrich) 7.7
g (3.1 × 10 -2 mol) and pyrazine (Wako C)
o. 3.2 g (3.1 × 10 -2 mol) was placed in a sample bottle and stirred at about 60 ° C. for 4 hours in a glove box filled with argon gas.

【0011】(2)PEO−CA:Bpy複合体の合成 (1)と同様に、PEO−CAに無水4,4’−ビピリ
ジル(Kanto Chemical Co.)をモル
比1:1の割合で加え、約60℃、アルゴンガスで満た
されたグローブボックス内において4時間攪拌した。
(2) Synthesis of PEO-CA: Bpy complex As in (1), anhydrous 4,4'-bipyridyl (Kanto Chemical Co.) was added to PEO-CA at a molar ratio of 1: 1. The mixture was stirred at about 60 ° C. for 4 hours in a glove box filled with argon gas.

【0012】(3)PEO−CA:Tri複合体の合成 PEO−CA 4.3g(1.7×10-2mol)に
1,3,5−トリアジン(Kanto Chemica
l Co.)700mg(8.6×10-3mol)を加
え、ホットスターラーを用いて約60℃、アルゴンガス
で満たされたグローブボックス内において4時間攪拌し
た。
(3) Synthesis of PEO-CA: Tri complex 1,3,5-Triazine (Kanto Chemical) was added to 4.3 g (1.7 × 10 -2 mol) of PEO-CA.
l Co. ) 700 mg (8.6 × 10 −3 mol) was added, and the mixture was stirred at about 60 ° C. for 4 hours in a glove box filled with argon gas using a hot stirrer.

【0013】(4)リチウムイオン錯体の合成 アルゴンガスで満たされたグローブボックス中において
PEO−CA及び(1),(2),(3)で合成したP
EO−CA:Py複合体、PEO−CA:Bpy複合
体、PEO−CA:Tri複合体を各々サンプル瓶にと
り、真空ラインの中で3日間40℃で乾燥させた過塩素
酸リチウム(Kanto Chemical Co.)
を、モル比〔LiClO4 〕/〔PEOunit〕=
0.01,0.03,0.06,0.1となるように加
え、ホットスターラーを用いて各々4時間60℃で加熱
攪拌しリチウム錯体を合成した。
(4) Synthesis of lithium ion complex In a glove box filled with argon gas, PEO-CA and P synthesized by (1), (2) and (3) were used.
Each of the EO-CA: Py complex, the PEO-CA: Bpy complex, and the PEO-CA: Tri complex was placed in a sample bottle, and dried at 40 ° C for 3 days in a vacuum line at lithium perchlorate (Kanto Chemical Co., Ltd.). .)
With the molar ratio [LiClO 4 ] / [PEUnit] =
The contents were adjusted to 0.01, 0.03, 0.06, and 0.1, and the mixture was heated and stirred at 60 ° C. for 4 hours using a hot stirrer to synthesize a lithium complex.

【0014】合成したリチウムイオン錯体のイオン伝導
性テスト (1)PEO−CA及びPEO−CA複合体の各高分子
固体電解質のイオン導電率の比較 実施例で合成した4つの高分子電解質の試料バルクの抵
抗を測定した後、イオン伝導度を求めた。図1に〔Li
ClO4 〕/〔PEOunit〕=0.03における高
分子電解質の温度依存性を示す。このときの25℃にお
けるPEO−CA、PEO−CA:Py複合体、PEO
−CA:Bpy複合体、PEO−CA:Tri複合体の
イオン導電率はそれぞれ、3.6×10-5Scm-1
4.4×10-6Scm-1、6.2×10-6Scm-1
4.7×10-6Scm-1であった。PEO−CAに比べ
て、これらの複合体のイオン導電率が低下したのは系の
固体化によるキャリアーイオンの移動度の低下によるも
のであるが、PEO架橋体を用いたものと同等のイオン
導電率を得ることができた。またPEO−CA及びPE
O−CA複合体のアレニウスプロットは20℃から10
0℃では直線型を示した。すなわちこれらの複合体は液
体としての性質を持っていることになる。一般にPEO
架橋体のアレニウムプロットは上に凸の曲線を示し、ゴ
ム状態の性質を示すことが知られている。よって水素結
合を利用することで従来の共有結合では得られない柔軟
性が得られることが分かった。
Ionic conduction of the synthesized lithium ion complex
After measuring the resistance of the sample bulk of each solid polymer electrolyte four polyelectrolytes synthesized in Comparative Example of the ion conductivity of sex Test (1) PEO-CA and PEO-CA complexes, ionic conductivity I asked. FIG. 1 shows [Li
The graph shows the temperature dependence of the polymer electrolyte when ClO 4 ] / [PEUnit] = 0.03. At this time, PEO-CA, PEO-CA: Py complex, PEO-
The ionic conductivity of -CA: Bpy complex and the ionic conductivity of PEO-CA: Tri complex are 3.6 × 10 −5 Scm −1 ,
4.4 × 10 −6 Scm −1 , 6.2 × 10 −6 Scm −1 ,
It was 4.7 × 10 −6 Scm −1 . The decrease in ionic conductivity of these composites as compared to PEO-CA is due to a decrease in the mobility of carrier ions due to solidification of the system, but the ionic conductivity is equivalent to that using the PEO cross-linked product. Rate was obtained. PEO-CA and PE
The Arrhenius plot of the O-CA complex is
At 0 ° C., it showed a linear type. That is, these composites have properties as a liquid. Generally PEO
The allenium plot of the crosslinked product shows an upwardly convex curve, and is known to exhibit rubbery properties. Therefore, it was found that the use of hydrogen bonding provided flexibility that could not be obtained by conventional covalent bonding.

【0015】(2)過塩素酸リチウムの導入量の異なる
各高分子固体電解質イオン導電率の比較 次に過塩素酸リチウムの導入量によるPEO−CA、P
EO−CA:Py複合体、PEO−CA:Bpy複合
体、PEO−CA:Tri複合体のイオン導電率の変化
を図2から図5に示した。この結果よりすべての複合体
において室温では〔LiClO4 〕/〔PEOuni
t〕=0.03のときにイオン導電率が極大値を示し、
100℃付近においてはモル比0.06のときに極大値
を示した。またモル比0.1では大きく低下した。この
理由を説明するために、各高分子電解質のTgの値を図
6に示す。この図より過塩素酸リチウムを導入するにつ
れTgの値は上昇していることがわかる。低濃度領域で
は過塩素酸リチウムを加えるにつれPEO−CAの酸素
原子にリチウムイオンが配位し、リチウム錯体が生成す
るため、主鎖のセグメント運動が大きく低下し、Tgの
値が大きく上昇したが、錯体生成によりリチウムイオン
生成の効果がこれを上回り、その結果、導電率が上昇し
たが、高濃度領域においてはリチウム錯体の生成は飽和
状態に近付くためリチウムイオンどうしの反発が起こり
解離が起きにくくなるこのために導電率に大きな低下が
見られた。またこの理由の他にも、過塩素酸リチウムが
結晶として析出したのも導電率の低下に寄与していると
思われる。
(2) Comparison of ionic conductivities of polymer solid electrolytes with different amounts of lithium perchlorate introduced PEO-CA, P
FIGS. 2 to 5 show changes in the ionic conductivity of the EO-CA: Py composite, the PEO-CA: Bpy composite, and the PEO-CA: Tri composite. From these results, at room temperature, [LiClO 4 ] / [PEOuni] was obtained for all the composites.
t] = 0.03, the ionic conductivity shows a maximum value,
At around 100 ° C., the maximum value was exhibited when the molar ratio was 0.06. When the molar ratio was 0.1, it was greatly reduced. In order to explain the reason, the value of Tg of each polymer electrolyte is shown in FIG. This figure shows that the value of Tg increases as lithium perchlorate is introduced. In the low-concentration region, as lithium perchlorate is added, lithium ions coordinate to oxygen atoms of PEO-CA and a lithium complex is formed, so that the segment motion of the main chain is greatly reduced and the value of Tg is greatly increased. The effect of lithium ion generation surpassed this due to complex formation, resulting in an increase in conductivity.However, in the high concentration region, lithium complex formation approaches a saturated state, so repulsion of lithium ions occurs and dissociation does not easily occur. For this reason, a large decrease in conductivity was observed. In addition to this reason, it is considered that the precipitation of lithium perchlorate as crystals also contributes to the decrease in conductivity.

【0016】(3)分子量の異なるPEO−CA高分子
固体電解質のイオン導電率の比較 分子量の変化がイオン導電率にどのような影響を与える
かを知るために分子量600のPEO−CA高分子固体
電解質(〔LiClO4 〕/〔PEOunit〕=0.
03)を合成して、そのイオン導電率を測定したとこ
ろ、図7になった。この結果より分子量600のPEO
−CA高分子固体電解質では分子量250に比べてイオ
ン導電率が高い値を示した。この理由としてPEO−C
Aの結晶状態の違いなども考えられるが、分子量600
のPEO−CAは粘性が低かったことが高いイオン導電
率を示した最大の原因であると思われる。通常、高分子
化合物は分子量が高くなれば粘度は上昇する傾向にある
がこのようにならなかったのは推論ではあるが、分子量
600のPEO−CAは分子量250のものに比べて主
鎖が長いためにカルボン酸どうしの相互作用が小さくな
ったため粘性が低かったのではないかと考えられる。
(3) Comparison of Ionic Conductivity of PEO-CA Polymer Solid Electrolytes with Different Molecular Weights In order to know how a change in molecular weight affects the ionic conductivity, a PEO-CA polymer solid having a molecular weight of 600 is used. Electrolyte ([LiClO 4 ] / [PEUnit] = 0.
03) was synthesized, and its ionic conductivity was measured, as shown in FIG. From this result, PEO of molecular weight 600
The -CA polymer solid electrolyte showed a higher value of ionic conductivity than the molecular weight of 250. The reason for this is that PEO-C
Although the crystal state of A may be different, a molecular weight of 600
It is believed that the low viscosity of PEO-CA was the largest cause of high ionic conductivity. In general, a polymer compound tends to increase in viscosity as the molecular weight increases, but it is inferred that this did not occur, but PEO-CA having a molecular weight of 600 has a longer main chain than that of a molecular weight of 250. It is thought that the viscosity was low because the interaction between the carboxylic acids became small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 〔LiClO4 〕/〔PEO単位〕=0.0
3における高分子電解質のイオン導電率の温度依存性を
示すグラフ。
FIG. 1 [LiClO 4 ] / [PEO unit] = 0.0
3 is a graph showing the temperature dependence of the ionic conductivity of the polymer electrolyte in FIG.

【図2】ないしFIG. 2

【図5】 過塩素酸リチウムの導入量によるPEO−
CA,PEO−CA:Py複合体、PEO−CA:Bp
y複合体、PEO−CA:Tri複合体のイオン導電率
の変化を示すグラフ。
FIG. 5: PEO- based on the amount of lithium perchlorate introduced
CA, PEO-CA: Py complex, PEO-CA: Bp
The graph which shows the change of the ionic conductivity of y composite, PEO-CA: Tri composite.

【図6】 過塩素酸リチウムの導入量による各高分子電
解質のTgの変化を示すグラフ。
FIG. 6 is a graph showing a change in Tg of each polymer electrolyte depending on the amount of lithium perchlorate introduced.

【図7】 分子量の異なるPEO−CA高分子固体電解
質のイオン導電率を比較したグラフ。
FIG. 7 is a graph comparing the ionic conductivities of PEO-CA polymer solid electrolytes having different molecular weights.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ポリ(エチレングリコール)ビス(カルボ
キシメチル)エーテル(PEO−CA)と、ピラジン
(Py)または4,4’−ビピリジル(Bpy)または
1,3,5−トリアジン(Tri)との複合体へ無機塩
を添加してなる高分子固体電解質。
1. Poly (ethylene glycol) bis (carboxymethyl) ether (PEO-CA) and pyrazine (Py) or 4,4'-bipyridyl (Bpy) or 1,3,5-triazine (Tri) A polymer solid electrolyte obtained by adding an inorganic salt to a composite.
【請求項2】前記複合体はPEO−CA 1モルとPy
1モルとの複合体である請求項1の高分子固体電解
質。
2. The complex comprises 1 mol of PEO-CA and Py
2. The polymer solid electrolyte according to claim 1, which is a complex with 1 mol.
【請求項3】前記複合体はPEO−CA 1モルとBp
y 1モルとの複合体である請求項1の高分子固体電解
質。
3. The complex comprises 1 mol of PEO-CA and Bp
2. The polymer solid electrolyte according to claim 1, which is a complex with 1 mol of y.
【請求項4】前記複合体はPEO−CA 2モルとTr
i 1モルとの複合体である請求項1の高分子固体電解
質。
4. The complex is composed of 2 mol of PEO-CA and Tr
2. The solid polymer electrolyte according to claim 1, which is a complex with 1 mol of i.
【請求項5】前記無機塩は過塩素酸リチウムである請求
項1ないし4のいずれかの高分子固体電解質。
5. The polymer solid electrolyte according to claim 1, wherein said inorganic salt is lithium perchlorate.
【請求項6】過塩素酸リチウムの添加量はPEO−CA
のオキシエチレン単位あたり約0.03モルである請求
項5の高分子固体電解質。
6. The amount of lithium perchlorate added is PEO-CA.
6. The polymer solid electrolyte according to claim 5, wherein the amount is about 0.03 mol per oxyethylene unit.
JP10283358A 1998-09-18 1998-09-18 High molecular solid electrolyte Pending JP2000100244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10283358A JP2000100244A (en) 1998-09-18 1998-09-18 High molecular solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10283358A JP2000100244A (en) 1998-09-18 1998-09-18 High molecular solid electrolyte

Publications (1)

Publication Number Publication Date
JP2000100244A true JP2000100244A (en) 2000-04-07

Family

ID=17664461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10283358A Pending JP2000100244A (en) 1998-09-18 1998-09-18 High molecular solid electrolyte

Country Status (1)

Country Link
JP (1) JP2000100244A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040594A1 (en) * 2000-11-14 2002-05-23 Nippon Soda Co., Ltd. Ion-conductive material containing combined low-molecular compound having hydrogen bond part
JP2006273890A (en) * 2005-03-28 2006-10-12 Tokyo Institute Of Technology Anisotropic ion conductive polymer membrane
US7919570B2 (en) 2004-08-13 2011-04-05 Nippon Soda Co., Ltd. Multibranched polymer and method for producing the same
US8436103B2 (en) 2005-09-07 2013-05-07 Nippon Soda Co., Ltd. Star polymer and method of producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040594A1 (en) * 2000-11-14 2002-05-23 Nippon Soda Co., Ltd. Ion-conductive material containing combined low-molecular compound having hydrogen bond part
US7919570B2 (en) 2004-08-13 2011-04-05 Nippon Soda Co., Ltd. Multibranched polymer and method for producing the same
US8710165B2 (en) 2004-08-13 2014-04-29 Nippon Soda Co., Ltd. Multibranched polymer and method for producing the same
JP2006273890A (en) * 2005-03-28 2006-10-12 Tokyo Institute Of Technology Anisotropic ion conductive polymer membrane
US8436103B2 (en) 2005-09-07 2013-05-07 Nippon Soda Co., Ltd. Star polymer and method of producing the same

Similar Documents

Publication Publication Date Title
Wang et al. Siloxane-based polymer electrolytes for solid-state lithium batteries
Cheng et al. Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids
Nishimoto et al. High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers
Rolland et al. Single-ion diblock copolymers for solid-state polymer electrolytes
Chu et al. Sm2O3 composite PEO solid polymer electrolyte
JP3301378B2 (en) Polyether copolymer and crosslinked polymer solid electrolyte
JP2004511879A (en) Conductive polymer composition for lithium battery
JP4089221B2 (en) Polymer solid electrolyte and battery
US20060041075A1 (en) Single ion conductor cross-linked polymeric networks
US20090029250A1 (en) Polymer Electrolyte The Use Thereof And An Electrochemical Device Containing Said Polymer Electrolyte
WO1997042251A1 (en) Cross-linked solid polyelectrolyte and use thereof
Bakker et al. Polymer electrolytes based on triblock-copoly (oxyethylene/oxypropylene/oxyethylene) systems
Xu et al. Preparation and characterization of novel “polyMOB” polyanionic solid electrolytes with weak coulomb traps
JP3563929B2 (en) Substrate for ion conductor and ion conductor
Itoh et al. Polymer electrolytes based on hyperbranched polymers
Martinez-Cisneros et al. Flexible solvent-free polymer electrolytes for solid-state Na batteries
Xu et al. Ion conduction in the comb-branched polyether electrolytes with controlled network structures
US20020185627A1 (en) Solid composite polymer electrolyte
Polu et al. Effect of organic–inorganic hybrid nanoparticles (POSS–PEG (n= 4)) on thermal, mechanical, and electrical properties of PEO‐based solid polymer electrolytes
KR101930478B1 (en) Method of controls of conductivity, mechanical properties, and morphology of polymer electrolytes via end-group chemistry
Ma et al. New oligoether plasticizers for poly (ethylene oxide)-based solid polymer electrolytes
Xu et al. Anion-trapping and polyanion electrolytes based on acid-in-chain borate polymers
Aydın et al. Nanocomposite polymer electrolytes comprising PVA-graft-PEGME/TiO2 for Li-ion batteries
JP2000100244A (en) High molecular solid electrolyte
JP3904083B2 (en) Polymer electrolyte composition