JP2000098112A - Production of multiple light source forming reflection mirror and optical device using this reflection mirror - Google Patents

Production of multiple light source forming reflection mirror and optical device using this reflection mirror

Info

Publication number
JP2000098112A
JP2000098112A JP10268583A JP26858398A JP2000098112A JP 2000098112 A JP2000098112 A JP 2000098112A JP 10268583 A JP10268583 A JP 10268583A JP 26858398 A JP26858398 A JP 26858398A JP 2000098112 A JP2000098112 A JP 2000098112A
Authority
JP
Japan
Prior art keywords
workpiece
pressing means
shape
light source
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10268583A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kondo
洋行 近藤
Hideo Takino
日出雄 瀧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10268583A priority Critical patent/JP2000098112A/en
Publication of JP2000098112A publication Critical patent/JP2000098112A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily form a basic reflection surface having a surface shape of high accuracy by pressing a surface to be worked of a workpiece by a pressing means having the compressive strength higher than the compressive strength of the surface to be worked and having a prescribed shape at its front end to plastically deform this surface in such a manner that the basic reflection surface has a prescribed curvilinear surface shape. SOLUTION: The workpiece 310 is installed on a work table 325 and the pressing means 326 is arranged in the upper part of the workpiece 310. Brass is used for the workpiece 310. The pressing means 326 is connected to a drive assembly 327. The pressing means 326 worked at its front end to the prescribed reversal shape is controlled in its position with respect to the workpiece 310 on the work table 325 by a control means 328. After the pressing means 326 is positioned to the prescribed position, the pressing means presses the workpiece while a descending quantity is controlled, by which the prescribed surface shape is formed on the surface. Namely, the prescribed optical surface shape is formed in the arbitrary position on the workpiece 310 by the control of the position of the pressing means 326 and the control of the pressing quantity of the pressing means 326.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射鏡の製造方法
及び半導体製造装置に関するものであり、特には、微小
な基本反射面の繰り返し配列により構成される反射面を
有する反射鏡の製造方法、反射型照明装置、更にはその
照明装置を用いた半導体露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a reflecting mirror and a semiconductor manufacturing apparatus, and more particularly to a method for manufacturing a reflecting mirror having a reflecting surface constituted by a repetitive arrangement of minute basic reflecting surfaces. The present invention relates to a reflective illumination device, and further relates to a semiconductor exposure apparatus using the illumination device.

【0002】[0002]

【従来の技術】現在、DRAMやMCP等の半導体デバ
イスの製造においては、最小線幅をより狭くする開発研
究が盛んに行われており、デザインルール 0.13μm
(4G・DRAM相当)、0.1μm(16G・DRA
M相当)、更には0.07μm(32G・DRAM相
当)の実現に向けて種々の技術が開発されている。この
最小線幅の問題と切っても切れない関係を有するのが、
露光時に生じる光の回折現象であり、これに起因する、
像や集光点のボケが必要な最小線幅を実現する時の最大
の問題点である。この回折現象の影響を押さえるために
は露光光学系の開口数(N.A.: Numerical aperture)を
大きくする必要があり、光学系の大口径化と波長の短波
長化が開発のポイントになっている。ところが、光の波
長が短くなると、特に 200 nm 以下になると、加工が容
易で、光吸収の少ない光学材料が見当たらなくなってく
る。そこで、透過光学系を捨てて、反射光学系による投
影光学系の開発がなされており、相当な成果を上げてい
る。その中に、複数の反射鏡の組み合わせによって、軟
X線に対して円弧状の光学視野(露光領域として使用出
来る領域)を実現し、マスクとウェハを投影縮小率比の
相対速度で、互いに同期して移動させることによってチ
ップ全体を露光しようとする方法がある。(例えば、Koi
chiro Hoh and Hiroshi Tanino ;“Feasibility Study
on the Extreme UV/Soft X-ray Projection-type Lith
ography”, Bulletin of the Electrontechnical Labor
atory Vol. 49, No.12, P.983-990, 1985、を参照
: 以後、参考文献1と記す)。 ところで、最小線
幅と並んで上記の様な半導体デバイス製造にとって重要
な要素にいわゆるスループットがある。このスループッ
トに関与する要因としては、光源の発光強度、照明系の
効率、反射系に使用する反射鏡の反射率、ウェハ上の感
光材料・レジストの感度等がある。現在、光源として
は、ArFレーザー、F2レーザー、更に短波長光の光
源としてシンクロトロン放射光やレーザープラズマ光が
開発されており、反射鏡に関しても、反射率を上げる多
層膜からなる反射鏡の開発も急ピッチで行われ、実用化
のレベルに近い(詳細は前述の参考文献1、及び、Andr
ew M. Hawryluk et al ;“Soft x-ray beamsplittersan
d highly dispersive multilayer mirrors for use as
soft x-ray laser cavity component”, SPIE Vol. 688
Multilayer Structure and Laboratory X-ray Laser
Research (1986) P.81-90 及び、特開昭 63−312
640を参照: 以後、参考文献2と記す)。さて、照
明系の技術開発であるが、要求される、一様照明性や開
口数を実現する技術に関しては、例えば特開昭60ー2
32552号公報に矩形形状の照明領域を対象とした技
術が提案されている。しかし、上記投影系の様に投影光
学系の視野が円弧上である場合、照明視野が矩形形状で
は光の利用効率が悪く、どうしても露光時間を短縮出来
ず、従って、スループットが上がらなかった。最近、こ
の問題を解決する方法として、投影光学系の有する光学
視野に合わせて照明視野を設定し、これによって照明効
率を上げ、スループットの問題を解決する方法が特願平
10ー047400に提案されている。この技術を図4
を基に簡単に説明する。図4は投影露光装置の概要図で
あり、光源1より出た光は提案になる多光源形成反射反
射鏡2、コンデンサー光学素子3及び反射鏡4を経てマ
スクステージ5s上に保持されたマスク5を照明する。
マスク5には、ウェハステージ7s上に保持されたウェ
ハ上に描くべきパターンが反射体図形として形成されて
いる。マスク上のパターンは2、3、4からなる反射型
照明光学装置によって照明され、6a、6b、6c、6
dからなる投影光学装置6を通じてウェハ7上に投影さ
れる。この時投影光学装置の光学視野は製作すべきデバ
イスチップ全体をカバー出来るほど広くはなく、マスク
5とウェハ7を同期させて相対的に移動(スキャン)さ
せながら露光を行うことによってチップ全体のパターン
をウェハ上に形成する。このために、ステージの移動量
を制御する、レーザー干渉距離計を含むマスクステージ
コントローラ8とウェハステージコントローラ9が備わ
っている。(このスキャンを伴う露光方式に関しては先
の参考文献1を参照)。この際のポイントは、多光源形
成反射鏡2をひとつ又は複数の微小な基本反射面の繰り
返し配列により反射鏡を構成することであり、その基本
反射面の外形状を投影光学装置の光学視野形状と相似形
にすることである。これによって位置P2に多数の点光
源像Iがほぼ円形状に形成され、これがコンデンサー光
学素子によって必要な照明視野を形成する。上記のよう
な技術を用いると、マスク上の照明すべき領域を無駄無
く一様に照明出来、露光時間の短縮が可能になって、高
いスループットを有する半導体露光装置の実現が可能に
なる。
2. Description of the Related Art At present, in the manufacture of semiconductor devices such as DRAMs and MCPs, development research for narrowing the minimum line width is actively conducted, and the design rule is 0.13 μm.
(4G DRAM equivalent), 0.1μm (16G DRA
M), and various technologies have been developed for realizing 0.07 μm (corresponding to 32G DRAM). Having an inseparable relationship with this problem of minimum line width,
It is a light diffraction phenomenon that occurs at the time of exposure, and due to this,
This is the biggest problem when realizing the minimum line width that requires blurring of the image and the focal point. In order to suppress the influence of this diffraction phenomenon, it is necessary to increase the numerical aperture (NA) of the exposure optical system, and the point of development is to increase the diameter of the optical system and shorten the wavelength. However, when the wavelength of light is shortened, particularly when the wavelength is 200 nm or less, optical materials that are easy to process and have low light absorption are not found. Therefore, a projection optical system using a reflection optical system has been developed by abandoning the transmission optical system, and has achieved considerable results. Among them, a combination of a plurality of reflecting mirrors realizes an arc-shaped optical field of view (area that can be used as an exposure area) for soft X-rays, and synchronizes the mask and wafer with each other at the relative speed of the projection reduction ratio. There is a method in which the entire chip is exposed by moving the chip. (For example, Koi
chiro Hoh and Hiroshi Tanino; “Feasibility Study
on the Extreme UV / Soft X-ray Projection-type Lith
ography ”, Bulletin of the Electrontechnical Labor
atory Vol. 49, No. 12, p. 983-990, 1985: hereinafter referred to as reference document 1). Incidentally, along with the minimum line width, a so-called throughput is an important factor for the semiconductor device manufacturing as described above. Factors involved in this throughput include the light emission intensity of the light source, the efficiency of the illumination system, the reflectance of the reflector used in the reflection system, and the sensitivity of the photosensitive material / resist on the wafer. At present, as a light source, an ArF laser, an F2 laser, and synchrotron radiation light and laser plasma light have been developed as short-wavelength light sources. Is also carried out at a rapid pace, close to the level of practical use (for details, refer to the above-mentioned reference 1, and Andr
ew M. Hawryluk et al; “Soft x-ray beamsplittersan
d highly dispersive multilayer mirrors for use as
soft x-ray laser cavity component ”, SPIE Vol. 688
Multilayer Structure and Laboratory X-ray Laser
Research (1986) P.81-90 and JP-A-63-312
640: hereinafter referred to as reference document 2). Now, regarding the technical development of the illumination system, the required technology for realizing uniform illumination and numerical aperture is disclosed in, for example, Japanese Patent Application Laid-Open No. Sho 60-2.
Japanese Patent Publication No. 32552 proposes a technique for a rectangular illumination area. However, when the field of view of the projection optical system is on a circular arc as in the above-described projection system, if the illumination field of view has a rectangular shape, the light use efficiency is poor, and the exposure time cannot be reduced inevitably, so that the throughput has not increased. Recently, as a method of solving this problem, a method of setting an illumination field in accordance with the optical field of the projection optical system, thereby increasing illumination efficiency and solving the problem of throughput has been proposed in Japanese Patent Application No. 10-047400. ing. Fig. 4
This will be briefly described based on the above. FIG. 4 is a schematic view of a projection exposure apparatus. Light emitted from a light source 1 passes through a proposed multi-source forming reflecting mirror 2, a condenser optical element 3, and a reflecting mirror 4, and a mask 5 held on a mask stage 5s. To illuminate.
On the mask 5, a pattern to be drawn on the wafer held on the wafer stage 7s is formed as a reflector figure. The pattern on the mask is illuminated by reflective illumination optics consisting of 2, 3 and 4, 6a, 6b, 6c, 6
The light is projected onto the wafer 7 through the projection optical device 6 made of d. At this time, the optical field of view of the projection optical device is not wide enough to cover the entire device chip to be manufactured, and the exposure is performed while the mask 5 and the wafer 7 are relatively moved (scanned) in synchronization with each other to perform patterning on the entire chip. Is formed on a wafer. For this purpose, a mask stage controller 8 including a laser interferometer and a wafer stage controller 9 for controlling the amount of movement of the stage are provided. (Refer to the above-mentioned reference 1 for the exposure method involving this scan.) The point in this case is that the multiple light source forming reflecting mirror 2 constitutes a reflecting mirror by repeating arrangement of one or a plurality of minute basic reflecting surfaces, and the outer shape of the basic reflecting surface is defined by the optical field shape of the projection optical device. It is to make it similar. As a result, a large number of point light source images I are formed at the position P2 in a substantially circular shape, which forms the required illumination field by the condenser optical element. By using the above-described technique, a region to be illuminated on a mask can be uniformly illuminated without waste, the exposure time can be reduced, and a semiconductor exposure apparatus having high throughput can be realized.

【0003】[0003]

【発明が解決しようとする課題】上記の様な、円弧状の
照明視野を有する反射型照明光学装置用の多光源形成反
射鏡、及びその基本反射面を実際に設計した結果を図
5、6を用いて説明する。図5(a)に示すように、こ
の多光源形成鏡は、3種類の基本反射面(A1、B1、
C1)から構成されている。すなわち、図5(a)の多
光源形成反射鏡の各列は、各基本反射面がA1、B1、
C1、…の順に配列されている。図6(a),(b),
(c)には、各基本反射面の形状を示す。これらの図に
示すように各基本反射面は、曲率半径Rの凹の球面41
に、図5(b)に示すようなYZ面に平行な円弧状帯
(平均半径がZhの円の円弧状帯)を投影した形状にな
っている。この時投影する円弧の円の中心を球面の中心
軸に合わせた場合の投影像がA1であり、円弧の中心を
球面の軸に垂直にYhだけずらせた場合の投影像がB
1、C1である。この投影像形状を切り出して基本反射
面とする。いずれも、ほぼ円弧状になる。少なくともX
方向より見れば完全な円弧状である。そしてB1,C1
をそれぞれY軸方向に平行移動してA1と組み合わせて
いく。このようにして出来た反射鏡に例えばX方向より
平行光線を入射させるとA1による点像が球面41の焦
点に、B1による点像が焦点よりYhだけ横すれして、
C1による点像が焦点よりーYhだけ横ずれして形成さ
れる。ここで、例えば、基本反射面の、好適な実用的な
設計解としては、凹球面の曲率半径Rは160〜200
mm、Zhは4.5〜5.5mm、円弧の幅(円弧状帯
の幅)は0.3〜2mm、円弧の長さは4.5〜5.5
mm、Yhは約 2.3〜2.7mm となり、更に表面粗
さがRrms<0.3nmである。
FIGS. 5 and 6 show the results of actually designing a multiple light source forming reflector for a reflection type illumination optical device having an arc-shaped illumination field as described above and its basic reflecting surface. This will be described with reference to FIG. As shown in FIG. 5A, this multi-light source forming mirror has three types of basic reflecting surfaces (A1, B1, and B1).
C1). That is, in each row of the multiple light source forming reflecting mirror of FIG. 5A, each basic reflecting surface has A1, B1,.
Are arranged in the order of C1,. 6 (a), (b),
(C) shows the shape of each basic reflection surface. As shown in these figures, each basic reflecting surface has a concave spherical surface 41 having a radius of curvature R.
5 (b), an arc-shaped band parallel to the YZ plane (an arc-shaped band of a circle having an average radius of Zh) is projected. At this time, the projected image when the center of the projected arc is aligned with the center axis of the spherical surface is A1, and the projected image when the center of the circular arc is shifted by Yh perpendicular to the axis of the spherical surface is B.
1, C1. This projected image shape is cut out and used as a basic reflecting surface. Each of them has a substantially arc shape. At least X
When viewed from the direction, the shape is a perfect arc. And B1, C1
Are respectively translated in the Y-axis direction and combined with A1. For example, when a parallel ray is incident on the reflecting mirror formed in this way from the X direction, the point image by A1 is shifted to the focal point of the spherical surface 41, and the point image by B1 is shifted by Yh from the focal point.
A point image by C1 is formed so as to be laterally shifted by −Yh from the focal point. Here, for example, as a suitable practical design solution of the basic reflecting surface, the radius of curvature R of the concave spherical surface is 160 to 200.
mm and Zh are 4.5 to 5.5 mm, the width of the arc (the width of the arc-shaped band) is 0.3 to 2 mm, and the length of the arc is 4.5 to 5.5.
mm and Yh are about 2.3 to 2.7 mm, and the surface roughness is Rrms <0.3 nm.

【0004】ところで、上記のような反射鏡は通常、ボ
ールエンドミルを備えた切削加工機を用いて切削加工に
より製作される。ボールエンドミルは図7(a)に示す
ような形状であり、その位置を被加工物に対して3次元
的に制御することによって、同図(b)のように色々な
面の加工が可能である。しかし実際、金属材料として、
アルミニュウムを用いて基本反射面を1個づつ加工し、
出来上がった多光源形成反射鏡を用いて実際に照明して
みると、予期した良好な効率を有する多光源形成反射鏡
は得られず、従って、スループットの高い半導体露光装
置が得られなかった。そこで、その原因を追究したとこ
ろ、図13に示すように、各基本反射面51が互いに隣
接しており、谷となっている部分に加工残りが存在し、
この部分の影響が主なものであることが判明した。この
加工残りはボールエンドミルの軸半径に起因するもの、
図中のCR部、である。ボールエンドミルの軸半径の最
小値は約0.5mmであることを考えると、このような
切削加工を行う以上避けられない問題であることが判明
した。また、同加工法では、加工行程中において、たと
え1個の基本反射面の加工に失敗しても、新たな被加工
物を準備して、また最初から加工し直さなければならな
かった。この結果、高い加工効率が得られなかった。
Incidentally, the above-mentioned reflecting mirror is usually manufactured by cutting using a cutting machine equipped with a ball end mill. The ball end mill has a shape as shown in FIG. 7 (a). By controlling the position of the ball end mill three-dimensionally with respect to the workpiece, it is possible to process various surfaces as shown in FIG. 7 (b). is there. But in fact, as a metal material,
Using aluminum to process the basic reflective surfaces one by one,
When actually illuminating using the completed multi-light source forming reflector, a multi-light source forming reflector having the expected good efficiency was not obtained, and therefore a semiconductor exposure apparatus with high throughput was not obtained. Therefore, when the cause was investigated, as shown in FIG. 13, the respective basic reflection surfaces 51 were adjacent to each other, and there was an unprocessed portion in a valley portion.
The effect of this part was found to be major. This processing residue is caused by the shaft radius of the ball end mill,
This is the CR section in the figure. Considering that the minimum value of the shaft radius of the ball end mill is about 0.5 mm, it has been found that the problem is unavoidable if such cutting is performed. Further, in the processing method, even if the processing of one basic reflection surface fails during the processing process, a new workpiece has to be prepared and then processed again from the beginning. As a result, high processing efficiency could not be obtained.

【0005】又、材料としてアルミニュウムのような、
切削が容易な金属材料をNC切削加工機によって所定の
凹球面に加工し、ワイヤー放電加工機によってその球面
より所定の円弧状の反射要素素子を切り出す方法も考え
られるが、この切り出しには膨大な時間が掛かり加工コ
ストが莫大になる。そこで、本発明はこのような課題を
解決するべく考案したものであり、設計通りの反射面形
状を有する多光源形成反射鏡を歩留まり良く製造できる
製造方法を提供することを第1の目的にし、更には、よ
りスループットの高い半導体露光装置を得ることを第2
の目的にしている。
[0005] Also, as a material such as aluminum,
A method of processing a metal material that is easy to cut into a predetermined concave spherical surface using an NC cutting machine and cutting out a predetermined arc-shaped reflective element element from the spherical surface using a wire electric discharge machine is also conceivable. It takes time and the processing cost becomes enormous. Therefore, the present invention has been devised to solve such a problem, and a first object of the present invention is to provide a manufacturing method capable of manufacturing a multi-light source forming reflecting mirror having a reflecting surface shape as designed at a high yield. Furthermore, the second is to obtain a semiconductor exposure apparatus with higher throughput.
For the purpose.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明では、第1の手段として、所定の曲面の一
部を面形状とする基本反射面を繰り返し配置してなる多
光源形成反射鏡を製造する場合、多光源形成反射鏡の基
材となる金属を被加工物として用意し、被加工物の被加
工面よりも圧縮強度が高く、かつ先端部が所定の形状を
有する押圧手段によって、被加工面を押圧して塑性変形
させ、これによって基本反射面が所定の曲面形状を有す
るようにした。 これによって、高精度の面形状を有す
る基本反射面が容易に形成できる。 尚、請求項1で
の、先端が所定の形状を有する、という内容は、先端の
形状が基本反射面の曲面形状と反転した形状、即ち、雄
型の形状であることを意味する。
In order to achieve the above object, according to the present invention, as a first means, a multi-source light source is provided in which a basic reflecting surface having a part of a predetermined curved surface is repeatedly arranged. When manufacturing a formed reflector, a metal serving as a base material of the multi-source formed reflector is prepared as a workpiece, the compressive strength is higher than the processed surface of the workpiece, and the tip has a predetermined shape. The surface to be processed is pressed and plastically deformed by the pressing means, so that the basic reflecting surface has a predetermined curved shape. Thereby, a basic reflecting surface having a highly accurate surface shape can be easily formed. In the first aspect, the fact that the tip has a predetermined shape means that the tip has a shape inverted from the curved shape of the basic reflection surface, that is, a male shape.

【0007】第2の手段として、第1の手段を実施する
場合に、被加工面または押圧手段の少なくとも1つを移
動させ、該移動位置において押圧手段による押圧と塑性
変形を行い、さらに順次、前記移動と押圧と塑性変形を
繰り返すことにより、被加工面に多数の基本反射面を形
成するようにした。 これによって、高精度な面形状を
有する基本反射面を容易に、所定の位置に形成出来るよ
うになる。
As a second means, when the first means is carried out, at least one of the work surface or the pressing means is moved, the pressing by the pressing means and the plastic deformation are performed at the moving position, and further, By repeating the movement, the pressing and the plastic deformation, a large number of basic reflection surfaces are formed on the surface to be processed. This makes it possible to easily form a basic reflecting surface having a highly accurate surface shape at a predetermined position.

【0008】第3の手段として、複数の反射鏡からなる
反射型照明装置に上記第1又は第2の手段によって製造
された多光源形成反射鏡を有するようにした。これによ
って、反射型照明装置の光利用効率が良くなり、コスト
も低減される。第4の手段として、光源、マスクを保持
して移動するマスクステージ、該マスクを照明する照明
装置、該マスク上ののパターンをウェハ上に投影する投
影光学装置、ウェハを保持して移動させるウェハステー
ジを有する半導体露光装置に、上記第3の手段で得られ
た反射型照明装置を用い、その反射型照明装置の多光源
形成反射鏡が有する基本反射面が前記投影光学装置の光
学視野と相似形であるようにした。これによって、露光
装置として、照明系と投影系の光学視野を合わせる事が
出来、従って、光利用効率が各段に向上してスループッ
トの高い半導体露光装置が得られる。
As a third means, a reflection type illumination device comprising a plurality of reflecting mirrors is provided with a multiple light source forming reflecting mirror manufactured by the above first or second means. As a result, the light use efficiency of the reflective illumination device is improved, and the cost is reduced. As a fourth means, a light source, a mask stage that holds and moves a mask, an illumination device that illuminates the mask, a projection optical device that projects a pattern on the mask onto a wafer, and a wafer that holds and moves the wafer The reflection type illumination device obtained by the third means is used in a semiconductor exposure apparatus having a stage, and the basic reflection surface of the multiple light source forming reflector of the reflection type illumination device is similar to the optical field of the projection optical device. Shape. As a result, the optical field of the illumination system and that of the projection system can be matched as an exposure apparatus. Therefore, a semiconductor exposure apparatus having high light use efficiency and high throughput can be obtained.

【0009】第5の手段として、第4の手段で得られる
半導体露光装置に、投影光学装置が複数の反射鏡からな
る反射型投影光学装置を用い、かつ投影光学装置の光学
視野が円弧状であるようにした。これによって、157
nmの波長を有するF2レーザーや軟X線を利用する半
導体露光装置が得られる。なお、円弧状の投影系視野の
利用は、少ない反射鏡数で、広い視野が得られることに
よっている。
As a fifth means, as the semiconductor exposure apparatus obtained by the fourth means, a projection optical apparatus uses a reflection type projection optical apparatus comprising a plurality of reflecting mirrors, and the optical field of view of the projection optical apparatus is an arc. I did it. This gives 157
A semiconductor exposure apparatus using an F2 laser or a soft X-ray having a wavelength of nm can be obtained. The use of the arc-shaped projection system visual field is based on the fact that a wide visual field can be obtained with a small number of reflecting mirrors.

【0010】[0010]

【発明の実施の形態】本発明の基本的な考え方は、個々
の基本反射面を被加工物に対して点接触、あるいは微小
領域の機械的な接触による加工法では、加工不能領域が
出来たり、全面加工可能であっても膨大な時間が掛かっ
たり、また、加工のばらつきも大きい、という認識に立
脚してなされたもので、ひとつの型を基盤に押圧し、基
盤を塑性変形させて基本反射面を形成し、精密な面精度
を再現性良く製造できる方法を採っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic idea of the present invention is that, in a processing method in which each basic reflecting surface is in point contact with a workpiece or mechanical contact in a minute area, an unprocessable area is formed. It is based on the recognition that it takes a huge amount of time even if the entire surface can be processed, and that there is a large variation in the processing.One mold is pressed against the base, and the base is plastically deformed. A method is used in which a reflective surface is formed and precise surface accuracy can be manufactured with good reproducibility.

【0011】[0011]

【実施例】以下において、本発明の実施例について、図
面を用いて説明する。図1は本発明の概略図であり、被
加工物310は、ワークテーブル(加工台)325上に
設置されており、被加工物の上部に押圧手段326が配
置されている。押圧手段326は駆動装置327に接続
されている。また、制御装置328は、ワークテーブル
325と、前記押圧手段326とに接続されている。押
圧手段326の先端329は、工具鋼または超鋼(W
C)で作られている。さらに、押圧手段の先端329
は、多光源形成反射鏡の基本反射面の反転形状(ここで
は、塑性変形する材料に押し当てた時に、塑性変形する
材料の表面形状が所望の形状になるような、押圧部材側
の形状を反転形状、、又は雄型形状という)に加工され
ている。このような押圧手段の先端329の形状加工
は、工具鋼の場合は、フライス等で概略形状を加工した
後、焼き入れし、放電加工または研削加工で所定の面形
状を創成する。つづいて、研磨により形状の高精度化と
鏡面化を行う。また、超鋼の場合は、研削および放電加
工により形状を創成し、さらに研磨で高精度化と鏡面化
を図る。このように、先端が所定の反転形状に加工され
た押圧手段326を制御装置328によって、ワークテ
ーブル上の被加工物に対して位置制御する。所定の位置
に押圧手段326を位置決めした後、降下量を制御しな
がら押圧し、表面に所定の面形状を形成する。即ち、押
圧手段の位置の制御と押圧手段の押圧量の制御によっ
て、被加工物上の任意の位置に所定の光学面形状を形成
できる。さらに、図1に示してあるように、制御装置に
より、ワークテーブルをZまたはY方向に所定刻み幅ご
とに移動させ、押圧手段を所定の量だけ降下させること
を繰り返すことにより、基本反射面のアレイを加工する
ことができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of the present invention, in which a workpiece 310 is set on a work table (working table) 325, and a pressing means 326 is arranged above the workpiece. The pressing means 326 is connected to the driving device 327. The control device 328 is connected to the work table 325 and the pressing means 326. The tip 329 of the pressing means 326 is made of tool steel or super steel (W
C). Further, the tip 329 of the pressing means
Is the inverted shape of the basic reflection surface of the multiple light source forming reflector (here, when pressed against a plastically deformable material, the shape of the pressing member side is changed so that the surface shape of the plastically deformable material becomes a desired shape. (Referred to as inverted shape or male shape). In the case of tool steel, in the case of tool steel, after shaping the approximate shape with a milling cutter or the like, quenching is performed, and a predetermined surface shape is created by electric discharge machining or grinding. Subsequently, the shape is refined and mirror-finished by polishing. In the case of super steel, a shape is created by grinding and electric discharge machining, and further polishing is performed to achieve high precision and a mirror surface. In this way, the control device 328 controls the position of the pressing means 326 whose tip is formed into a predetermined inverted shape with respect to the workpiece on the work table. After the pressing means 326 is positioned at a predetermined position, it is pressed while controlling the amount of descent to form a predetermined surface shape on the surface. That is, by controlling the position of the pressing means and the control of the pressing amount of the pressing means, a predetermined optical surface shape can be formed at an arbitrary position on the workpiece. Further, as shown in FIG. 1, the control device repeatedly moves the work table in the Z or Y direction at a predetermined interval and lowers the pressing means by a predetermined amount, whereby the basic reflecting surface is reduced. The array can be processed.

【0012】また、押圧時に塑性変形した基盤材料が表
面に盛り上がって反射鏡としての特性を劣化させること
がある。この時には、加工終了後、表面を研磨して加工
時に生じた不要物を除去したり、又は、基本反射面を少
なくとも1つおきに形成し、全面の加工が終了後、表面
を研磨して不要なものを取り除き、次いでその既に形成
された基本反射面の間に、再び同様にして同じ基本反射
面形状、又は、異なる基本反射面の形状を作っていくよ
うにしている。 更に高精度な基本反射面が必要な場合
には、図3に示した様に、形成した基本反射面に、その
基材とは接着力の弱い樹脂を流し込んで固定させ、その
隣接する基本反射面を形成すると効果的である。この樹
脂には紫外線硬化型の樹脂を用い、既に反射面が形成さ
れた所とそうでない所を選択的に露光することによって
既に形成された基本反射面のみ(例えば、図3の31
5)に樹脂を充填できる。次に、実際に加工する方法に
ついて以下に述べる。ここでの基本反射面の形状は、例
えば、切り出すべき凹球面の曲率半径Rは180mm、
Zhは5.0mm、円弧の幅(円弧状帯の幅)は0.3
mm、円弧の長さは5.0mm、Yhは約 2.5mm の
場合を例にとる。
In addition, the base material that has been plastically deformed when pressed may bulge on the surface and degrade the characteristics as a reflector. At this time, after the processing is completed, the surface is polished to remove unnecessary substances generated during the processing, or at least every other basic reflection surface is formed. Then, the same basic reflecting surface shape or a different basic reflecting surface shape is formed between the already formed basic reflecting surfaces in the same manner. When a more accurate basic reflection surface is required, as shown in FIG. 3, a resin having low adhesive strength is poured into the formed basic reflection surface and fixed thereto. It is effective to form a surface. As this resin, an ultraviolet-curing resin is used, and only a basic reflection surface already formed by selectively exposing a portion where a reflection surface has been formed and a portion not having the reflection surface (for example, 31 in FIG. 3).
5) The resin can be filled. Next, a method of actually processing is described below. The shape of the basic reflecting surface here is, for example, the radius of curvature R of the concave spherical surface to be cut out is 180 mm,
Zh is 5.0 mm, and the width of the arc (the width of the arc-shaped band) is 0.3.
mm, the length of the arc is 5.0 mm, and Yh is about 2.5 mm.

【0013】再び図1の参照して、加工手順を説明す
る。図において被加工物には黄銅を用いる。押圧手段の
先端には工具鋼を用いる。図1の形状を押圧および塑性
変形させて基本反射面を創成するために準備した押圧手
段の先端形状を図2(a),(b),(c)に示す。そ
れぞれの先端形状は、基本反射面子A1,B1,C1に
対応しており、A1,B1,C1に対する雄側の形状で
ある。先端の材料を工具鋼としたので、上記面加工はボ
ールエンドミルを用いたフライス切削加工と、または研
削加工、及び研磨加工によって行った。基本面の加工に
あたっては、まず図2(a)の押圧手段を駆動装置に取
り付ける。つぎに、ワークテーブルを移動させて、被加
工物を所定の位置(図1中の11)11に移動させる。
押圧手段を降下させて、押圧手段の先端形状を被加工物
に転写させる。つぎに、被加工物をZ方向に0.9mm
移動さる。押圧手段を降下させて、押圧手段の先端形状
を被加工物に転写させる。このような、Z方向への0.
9mmの移動と、押圧手段の降下を繰り返す。Z方向の
1列並びの基本反射面の加工が終了すると、つぎに、被
加工物をY方向に5mm移動させたのち、Z方向への
0.9mmの移動と、押圧手段の降下を繰り返す。1列
並びの加工が終わると、再度、被加工物をY方向に5m
m移動させたのち、Z方向への0.9mmの移動と、押
圧手段の降下を繰り返す。こうして、図2(a)の形状
を被加工物に転写さる。つぎに、押圧手段を図2(b)
に交換し、ワークテーブルによって図2(a)により転
写された形状に隣接する位置(図1中の12)に、図2
(b)を転写できるように、被加工物を移動させる。つ
ぎに、押圧手段を降下させて、押圧手段の先端形状を被
加工物に転写させる。つぎに、被加工物をZ方向に0.
9mm移動させる。押圧手段を降下させて、押圧手段の
先端形状を被加工物に転写させる。このような、Z方向
への0.9mmの移動と、押圧手段の降下を繰り返す。
つぎに、被加工物をY方向に5mm移動させたのち、Z
方向への0.9mmの移動と、押圧手段の降下を繰り返
す。再度、被加工物をY方向に5mm移動させたのち、
Z方向への0.9mmの移動と、押圧手段の降下を繰り
返す。こうして、図2(b)の形状を被加工物に転写さ
せる。つぎに、押圧手段を図2(c)に交換し、ワーク
テーブルによって図2(b)により転写された形状に隣
接する位置(図1中の13)に、図2(c)を転写でき
るように、被加工物を移動させる。つぎに、押圧手段を
降下させて、押圧手段の先端形状を被加工物に転写させ
る。つぎに、被加工物をZ方向に0.9mm移動させ
る。押圧手段を降下させて、押圧手段の先端形状を被加
工物に転写させる。このような、Z方向への0.9mm
の移動と、押圧手段の降下を繰り返る。つぎに、被加工
物をY方向に5mm移動させたのち、Z方向への0.9
mmの移動と、押圧手段の降下を繰り返す。再度、被加
工物をY方向に5mm移動させたのち、Z方向への0.
9mmの移動と、押圧手段の降下を繰り返す。こうし
て、図2(c)の形状を被加工物に転写させる。 又、
前述のように必要に応じて、、形状2(a)の転写終了
後、塑性変形のために生じた転写面の周囲の盛り上がり
を除去するために研磨を行ったり、あるいは全面の転写
終了後、研磨を行う。以上のようにして、図5に示した
複雑形状の多光源形成反射鏡を加工することができる。
The processing procedure will be described with reference to FIG. 1 again. In the figure, brass is used for the workpiece. Tool steel is used at the tip of the pressing means. FIGS. 2 (a), 2 (b) and 2 (c) show the tip shapes of the pressing means prepared to press and plastically deform the shape of FIG. 1 to create a basic reflecting surface. Each tip shape corresponds to the basic reflecting facets A1, B1, and C1, and is a shape on the male side with respect to A1, B1, and C1. Since the tip material was tool steel, the above-mentioned surface processing was performed by milling using a ball end mill, or by grinding and polishing. In processing the basic surface, first, the pressing means shown in FIG. 2A is attached to the driving device. Next, the workpiece is moved to a predetermined position (11 in FIG. 1) 11 by moving the work table.
The pressing means is lowered to transfer the tip shape of the pressing means to the workpiece. Next, the workpiece is moved 0.9 mm in the Z direction.
Move. The pressing means is lowered to transfer the tip shape of the pressing means to the workpiece. In such a case, the.
The movement of 9 mm and the lowering of the pressing means are repeated. When the processing of the basic reflection surfaces arranged in one line in the Z direction is completed, the workpiece is moved by 5 mm in the Y direction, and thereafter, the movement by 0.9 mm in the Z direction and the lowering of the pressing means are repeated. When the processing in one row is completed, the workpiece is again moved 5 m in the Y direction.
After moving by m, the movement of 0.9 mm in the Z direction and the lowering of the pressing means are repeated. Thus, the shape of FIG. 2A is transferred to the workpiece. Next, the pressing means will be described with reference to FIG.
2 and the position (12 in FIG. 1) adjacent to the shape transferred by the work table in FIG.
The workpiece is moved so that (b) can be transferred. Next, the pressing means is lowered to transfer the tip shape of the pressing means to the workpiece. Next, the workpiece is moved in the Z direction by 0.
Move 9 mm. The pressing means is lowered to transfer the tip shape of the pressing means to the workpiece. Such a movement of 0.9 mm in the Z direction and the lowering of the pressing means are repeated.
Next, after moving the workpiece 5 mm in the Y direction,
The movement of 0.9 mm in the direction and the lowering of the pressing means are repeated. After moving the workpiece 5 mm in the Y direction again,
The movement of 0.9 mm in the Z direction and the lowering of the pressing means are repeated. Thus, the shape of FIG. 2B is transferred to the workpiece. Next, the pressing means is exchanged for FIG. 2 (c), and FIG. 2 (c) can be transferred to a position (13 in FIG. 1) adjacent to the shape transferred on the work table according to FIG. 2 (b). Next, the workpiece is moved. Next, the pressing means is lowered to transfer the tip shape of the pressing means to the workpiece. Next, the workpiece is moved by 0.9 mm in the Z direction. The pressing means is lowered to transfer the tip shape of the pressing means to the workpiece. 0.9mm in the Z direction
And the lowering of the pressing means are repeated. Next, after moving the workpiece 5 mm in the Y direction, the workpiece is moved 0.9 mm in the Z direction.
The movement of mm and the lowering of the pressing means are repeated. After moving the workpiece again by 5 mm in the Y direction, the workpiece is moved in the Z direction by 0.1 mm.
The movement of 9 mm and the lowering of the pressing means are repeated. Thus, the shape of FIG. 2C is transferred to the workpiece. or,
As described above, if necessary, after completion of the transfer of the shape 2 (a), polishing is performed to remove a bulge around the transfer surface caused by plastic deformation, or after completion of the transfer of the entire surface, Perform polishing. As described above, it is possible to process the complicated light source forming reflector shown in FIG.

【0014】また、このように加工した面に対して、反
射率を上げるために、F2レーザーを光源に使用する時
のために、アルミニュウム薄膜を約100nmの厚さに
蒸着によって形成し、さらにその上に同一真空層内にて
酸化防止と反射率の維持の観点よりMgF2を数十nm
の厚さに蒸着により形成した。また、軟X線領域の光
(電磁波)を使用する時のためには、SiとMoの多層
膜による反射鏡(前述の参考文献、1、2を参照)を形
成した。
In order to use the F2 laser as a light source to increase the reflectance of the surface thus processed, an aluminum thin film having a thickness of about 100 nm is formed by vapor deposition. In the same vacuum layer, MgF2 is tens of nm from the viewpoint of preventing oxidation and maintaining the reflectance.
Was formed by vapor deposition. In addition, in order to use light (electromagnetic waves) in the soft X-ray region, a reflecting mirror made of a multilayer film of Si and Mo (see the above-mentioned references 1, 2) was formed.

【0015】以上のように本実施例では、球面の1部分
である要素光学素子A1、B1、C1から構成される多
光源反射鏡の加工方法の例を示した。しかし、本発明で
加工できる多光源形成反射鏡はこれに限られない。たと
えば、基本反射面の種類は、3種類よりも多くても、少
なくても良い。また、要素光学素子は非球面の1部分で
あっても良い。
As described above, in the present embodiment, an example of a method of processing a multi-source light reflecting mirror constituted by element optical elements A1, B1, and C1, which are a part of a spherical surface, has been described. However, the multiple light source forming reflecting mirror that can be processed in the present invention is not limited to this. For example, the number of basic reflection surfaces may be more or less than three. The element optical element may be a part of an aspheric surface.

【0016】上記多光源形成反射鏡を半導体露光装置に
組み込むには、図5のように構成すれば良い。
In order to incorporate the above-mentioned multiple light source forming reflecting mirror into a semiconductor exposure apparatus, it is sufficient to configure it as shown in FIG.

【0017】[0017]

【発明の効果】上述のように、本発明によって提供され
る加工方法により、多数の基本反射面からなる複雑形状
の光学素子を高精度かつ高い加工効率で製造できる。ま
た本製造方法により得られた光学素子は、半導体デバイ
ス製造装置用の照明装置に好適である。
As described above, according to the processing method provided by the present invention, an optical element having a complicated shape composed of a large number of basic reflecting surfaces can be manufactured with high precision and high processing efficiency. The optical element obtained by this manufacturing method is suitable for a lighting device for a semiconductor device manufacturing apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のかおう模式図FIG. 1 is a schematic diagram illustrating an embodiment of the present invention.

【図2】本発明の実施例の押圧形状形成部FIG. 2 is a diagram illustrating a pressed shape forming unit according to an embodiment of the present invention.

【図3】本発明の実施例の樹脂充填法の模式図FIG. 3 is a schematic view of a resin filling method according to an embodiment of the present invention.

【図4】本発明に係る投影光学系FIG. 4 is a projection optical system according to the present invention.

【図5】本発明に係わる多光源形成反射鏡FIG. 5 is a multi-light source forming reflector according to the present invention.

【図6】本発明に係わる基本反射面の形状FIG. 6 shows the shape of a basic reflecting surface according to the present invention.

【図7】ボールエンドミルの外形状と加工曲面FIG. 7: External shape and processing curved surface of a ball end mill

【図8】従来方法の問題点の図FIG. 8 is a diagram showing a problem of the conventional method.

【符号の説明】[Explanation of symbols]

1 ・・・・・ 光源 2 ・・・・・ 多光源形成反射鏡 3 ・・・・・ コンデンサー光学系 4 ・・・・・ 反射鏡 5 ・・・・・ マスク、 5s ・・・・・ マ
スクステージ 6 ・・・・・ 投影光学装置 7 ・・・・・ ウェハ、 7s ・・・・・
ウェハステージ 8 ・・・・・ マスクステージコントローラ 9 ・・・・・ ウェハステージコントローラ 41 ・・・・・ 基本反射面を切り出す母体となる凹
球面 51 ・・・・・ 基本反射面 310 ・・・・・ 被加工物 315 ・・・・・ 充填樹脂 325 ・・・・・ ワークテーブル 326 ・・・・・ 押圧手段 327 ・・・・・ 駆動手段 328 ・・・・・ 制御手段 329 ・・・・・ 面形状形成部 A1、B1、C1・基本反射面
1 ····· Light source 2 ···· Multiple light source forming reflector 3 ···· Condenser optical system 4 ···· Reflector 5 ···· Mask, 5s ···· Mask Stage 6 Projection optical device 7 Wafer 7 s
Wafer stage 8 Mask stage controller 9 Wafer stage controller 41 Concave spherical surface 51 that cuts out the basic reflection surface 51 Basic reflection surface 310 Workpiece 315 Filling resin 325 Work table 326 Pressing means 327 Driving means 328 Control means 329 Surface shape forming part A1, B1, C1, basic reflection surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】所定の曲面の一部を面形状とする基本反射
面を繰り返し配置してなる多光源形成反射鏡の製造方法
であって、該多光源形成反射鏡の基材となる金属を被加
工物として用意し、被加工物の被加工面よりも圧縮強度
が高く、かつ先端部が所定の形状を有する押圧手段によ
って、被加工面を押圧して塑性変形させ、これによって
基本反射面が所定の曲面形状を有するようにしたことを
特徴とする多光源形成反射鏡製造方法。
1. A method of manufacturing a multi-light source forming reflector, comprising: repeatedly arranging a basic reflecting surface having a part of a predetermined curved surface as a surface shape, wherein a metal as a base material of the multi-light source forming mirror is provided. Prepared as a workpiece, the compression strength is higher than the workpiece surface of the workpiece, and the tip portion is pressed by a pressing means having a predetermined shape to plastically deform the workpiece surface, whereby the basic reflection surface Has a predetermined curved surface shape.
【請求項2】請求項1に記載の多光源形成反射鏡の製造
方法であって、被加工面または押圧手段の少なくとも1
つを移動させ、該移動位置において押圧手段による押圧
と塑性変形を行い、さらに順次、前記移動と押圧と塑性
変形を繰り返すことにより、被加工面に多数の基本反射
面を形成することを特徴とする光学素子の加工方法。
2. The method of manufacturing a multi-light source forming reflecting mirror according to claim 1, wherein at least one of the processing surface and the pressing means is provided.
Moving one, performing the pressing and plastic deformation by the pressing means at the moving position, and further sequentially, by repeating the movement, pressing and plastic deformation, forming a number of basic reflection surfaces on the surface to be processed. Processing method of the optical element.
【請求項3】複数の反射鏡からなる反射型照明装置であ
って、請求項1又は2に記載の製造方法によって製造さ
れた多光源形成反射鏡を有することを特徴とする反射型
照明装置。
3. A reflection type illumination device comprising a plurality of reflection mirrors, wherein the reflection type illumination device has a multi-light source forming reflection mirror manufactured by the manufacturing method according to claim 1.
【請求項4】光源、マスクを保持して移動するマスクス
テージ、該マスクを照明する照明装置、該マスク上のの
パターンをウェハ上に投影する投影光学装置、ウェハを
保持して移動させるウェハステージを有する半導体露光
装置であって、請求項3記載の反射型照明装置を有し、
該反射型照明装置の多光源形成反射鏡が有する基本反射
面は前記投影光学装置の光学視野と相似形であることを
特徴とする半導体露光装置。
4. A light source, a mask stage that holds and moves a mask, an illumination device that illuminates the mask, a projection optical device that projects a pattern on the mask onto a wafer, and a wafer stage that holds and moves the wafer A semiconductor exposure apparatus having the reflective illumination device according to claim 3,
A semiconductor exposure apparatus, wherein a basic reflecting surface of a multiple light source forming reflector of the reflection type illumination device has a shape similar to an optical field of view of the projection optical device.
【請求項5】請求項4記載の半導体露光装置であって、
該投影光学装置が複数の反射鏡からなる反射型投影光学
装置であり、かつ該投影光学装置の光学視野が円弧状で
あることを特徴とする半導体露光装置。
5. The semiconductor exposure apparatus according to claim 4, wherein
A semiconductor exposure apparatus, wherein the projection optical device is a reflection type projection optical device including a plurality of reflecting mirrors, and an optical field of view of the projection optical device is arc-shaped.
JP10268583A 1998-09-22 1998-09-22 Production of multiple light source forming reflection mirror and optical device using this reflection mirror Pending JP2000098112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10268583A JP2000098112A (en) 1998-09-22 1998-09-22 Production of multiple light source forming reflection mirror and optical device using this reflection mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10268583A JP2000098112A (en) 1998-09-22 1998-09-22 Production of multiple light source forming reflection mirror and optical device using this reflection mirror

Publications (1)

Publication Number Publication Date
JP2000098112A true JP2000098112A (en) 2000-04-07

Family

ID=17460553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10268583A Pending JP2000098112A (en) 1998-09-22 1998-09-22 Production of multiple light source forming reflection mirror and optical device using this reflection mirror

Country Status (1)

Country Link
JP (1) JP2000098112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040938A1 (en) 2007-08-16 2009-02-19 Carl Zeiss Smt Ag Panel facet's optical surface producing method for microlithography projector, involves adjusting tilting angle at longitudinal axis or tilting angle at transverse axis at facet base bodies in predetermined range

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040938A1 (en) 2007-08-16 2009-02-19 Carl Zeiss Smt Ag Panel facet's optical surface producing method for microlithography projector, involves adjusting tilting angle at longitudinal axis or tilting angle at transverse axis at facet base bodies in predetermined range

Similar Documents

Publication Publication Date Title
US5003567A (en) Soft x-ray reduction camera for submicron lithography
US5610763A (en) Illuminating optical apparatus
EP1307768B1 (en) Condenser with diffractive spectral filter for euv lithography
JP3771414B2 (en) Lithographic projection device
JP2852169B2 (en) Projection exposure method and apparatus
KR20020028806A (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
JPH06214318A (en) Reflection type homogenizer and reflection type illuminating optical device
KR100696736B1 (en) Lithographic Projection Apparatus with Collector including Concave and Convex Mirrors
US5891806A (en) Proximity-type microlithography apparatus and method
USRE34634E (en) Light illumination device
TW201017345A (en) Collector assembly, radiation source, lithographic apparatus, and device manufacturing method
US6335786B1 (en) Exposure apparatus
JP2002198309A (en) Illumination system with less heat load
JP3817848B2 (en) Lighting device
US20200348600A1 (en) Illumination optic for projection lithography
JP2000162415A (en) Manufacture of reflection mirror or reflection type lighting system or semiconductor exposing device
JP2004006908A (en) Scanning ring field reduction projection system
JP2000098114A (en) Manufacture of multiple light source formation reflection mirror and optical device using the reflection mirror
JP2000098112A (en) Production of multiple light source forming reflection mirror and optical device using this reflection mirror
TWI374340B (en) Optical apparatus and associated method
JP2000162414A (en) Manufacture of reflection mirror, reflection illuminating device, or semiconductor exposing device
JP2000098110A (en) Production of multiple light source forming reflection mirror and optical device using this reflection mirror
KR20060093920A (en) Off-axis projection optics and extreme ultra violet lithography apparatus applying it
JP2000162416A (en) Manufacture of multi-surface reflection mirror or reflection type lighting system or semiconductor exposing device
JP2000098113A (en) Production of multiple light source forming reflection mirror and optical device using this reflection mirror