JP2000098051A - Optical ground surveyor - Google Patents

Optical ground surveyor

Info

Publication number
JP2000098051A
JP2000098051A JP10270366A JP27036698A JP2000098051A JP 2000098051 A JP2000098051 A JP 2000098051A JP 10270366 A JP10270366 A JP 10270366A JP 27036698 A JP27036698 A JP 27036698A JP 2000098051 A JP2000098051 A JP 2000098051A
Authority
JP
Japan
Prior art keywords
light
ground
geology
reflected light
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10270366A
Other languages
Japanese (ja)
Inventor
Junichi Kawabata
淳一 川端
Keisaku Yasumoto
敬作 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP10270366A priority Critical patent/JP2000098051A/en
Publication of JP2000098051A publication Critical patent/JP2000098051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical ground surveyor which performs ground survey swiftly and simply. SOLUTION: A light transmitting part 4 is provided on the external wall to be in touch with the ground 1 of a ground penetration substance 3, and one end of a projecting optical fiber 6 and one end of a receiving optical fiber 9 are fitted to the inside of the penetration substance 3, linking them to the light transmitting part 4 optically. The other end of the projecting optical fiber 6 is optically linked to a light source 12, and the other end of the receiving optical fiber 9 is optically linked to a detector 13. A reflected light data 16 from an already-known geology of the light of the light source 12 is stored in a reflected-light storing means 15. A ground geology 25 is identified, by comparing a data 26 of a reflected light from an underground geology 25 to be applied to the detector 13 via the receiving optical fiber 9, when the light of the light source 12 is emitted to the underground geology 25 via the projecting optical fiber 6, with the reflected light data 16 of the storing means 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学式地盤調査装置
に関し、とくに光ファイバ経由で地盤の地下地質へ光を
投光したときの反射光データと既知地質の反射光データ
との比較に基づき前記地下地質を同定する地盤調査装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical ground surveying apparatus, and more particularly to a method for measuring ground light based on a comparison between reflected light data obtained when light is projected onto the underground geology of the ground via an optical fiber and reflected light data of a known geology. The present invention relates to a ground survey device for identifying underground geology.

【0002】[0002]

【従来の技術】近年、油などによる地盤の汚染が問題と
なる事例が増えており、汚染土の浄化処理技術の開発が
進められている。汚染土の処理に際しては、汚染された
地盤の概略範囲を把握するための地盤調査(以下、概略
調査ということがある。)、及び概略調査で汚染が発見
された地盤についての汚染物質の種類、総量、濃度分布
などの詳細を把握する地盤調査(以下、詳細調査という
ことがある。)の二段階の地盤調査が必要となる。従来
の主な地盤調査方法は、ボーリング装置により採取した
コアと呼ばれる柱状の土又は岩石を分析するコアサンプ
リング分析、又はコーン貫入試験装置である。
2. Description of the Related Art In recent years, the number of cases where the contamination of the ground by oil or the like has become a problem has been increasing, and the development of purification technology for contaminated soil has been promoted. When treating contaminated soil, a ground survey to determine the approximate area of the contaminated ground (hereinafter sometimes referred to as a rough survey), the types of contaminants in the ground where the contamination was found in the rough survey, A two-stage ground survey is required, which includes a detailed survey of the total amount and concentration distribution, etc. (hereinafter sometimes referred to as a detailed survey). Conventional main ground survey methods are a core sampling analysis for analyzing columnar soil or rock called a core collected by a boring device, or a cone penetration test device.

【0003】[0003]

【発明が解決しようとする課題】しかしコアサンプリン
グ分析による地盤調査方法は、地盤削孔、コア採取、コ
ア分析というサイクルを繰り返すため、非常に時間がか
かる問題点がある。また概略調査のように多くの地点で
の地盤調査を行なう場合には、その全てをコアサンプリ
ング分析で行なうと費用が嵩む問題点もある。とくに汚
染土の浄化処理では、建設工事等に比し全体の費用が小
さいことから全体費用に対する地盤調査費用の割合が大
きくなりがちであり、時間と費用がかかる地盤調査がコ
ストパフォーマンス低下の原因となっている。地盤を迅
速に且つ簡易に調査できる技術の開発が望まれている。
However, the ground survey method based on core sampling analysis has a problem that it takes a very long time because a cycle of ground drilling, core sampling, and core analysis is repeated. In addition, when a ground survey is performed at many points as in a rough survey, if all the ground surveys are performed by core sampling analysis, there is a problem that the cost increases. In particular, in the case of contaminated soil purification, the ratio of the ground survey cost to the total cost tends to be large because the overall cost is smaller than that of construction work, etc. Has become. There is a demand for the development of a technology that can quickly and easily investigate the ground.

【0004】他方、コーン貫入試験装置に間隙水圧計、
電気抵抗センサ、3成分コーン等の各種センサーを取り
付け、地盤を深度方向に連続的に調査する技術の開発が
進められている。この方法によれば、地盤のリアルタイ
ムでの調査が可能となる。しかしこの地盤調査方法は、
地盤中にセンサを貫入させるため、貫入に耐えうる比較
的高価なセンサを必要とするので、複数のセンサを同時
に用いて地盤調査を行なうことは費用的に困難である。
またセンサによっては、通常の土質調査には適するもの
の、汚染された地盤調査には適しない場合もある。
On the other hand, a pore water pressure gauge is provided in a cone penetration test device,
The development of a technology for attaching various sensors such as an electric resistance sensor and a three-component cone to continuously inspect the ground in the depth direction has been advanced. According to this method, the ground can be surveyed in real time. However, this ground survey method
Since a relatively expensive sensor that can withstand the penetration is required to penetrate the sensor into the ground, it is difficult to perform a ground survey using a plurality of sensors simultaneously.
Some sensors are suitable for ordinary soil surveys but not for polluted ground surveys.

【0005】そこで本発明の目的は、地盤調査を迅速且
つ簡単に行なえる光学式地盤調査装置を提供するにあ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical ground inspection apparatus which can perform a ground inspection quickly and easily.

【0006】[0006]

【課題を解決するための手段】本発明者は、光源の光を
投光用光ファイバ経由で対象に投光し、対象からの反射
光を受光用光ファイバ経由で検知器へ入力することによ
り、対象の属性を検出する光ファイバ利用のセンサ(以
下、光ファイバセンサという。)に注目した。光ファイ
バセンサは、原理的には投光ダイオードとフォトダイオ
ードとプラスチックファイバとから製造でき、製造コス
トが非常に安価である。
SUMMARY OF THE INVENTION The present inventor has proposed a method of projecting light from a light source to a target via a light emitting optical fiber and inputting reflected light from the target to a detector via a light receiving optical fiber. Attention was paid to a sensor using an optical fiber for detecting an attribute of an object (hereinafter, referred to as an optical fiber sensor). An optical fiber sensor can be manufactured in principle from a light emitting diode, a photodiode and a plastic fiber, and the manufacturing cost is very low.

【0007】光ファイバセンサにより土や岩石からなる
地質、とくに汚染された地質を同定することが可能であ
るか否かを確認するため、以下の実験を行なった。本実
験では地質試料として、最大粒径Dmax=2mm、均等係数
Uc=3.27の粒径がほぼ均一な砂質土(以下、白砂とい
う。)と、それを墨汁により黒色に着色した砂質土(以
下、黒砂という。)との2種類のものを用いた。また汚
染地質試料として、白砂と黒砂の各々について、0.5、
1.0、3.0及び10.0重量%のC重油を良く混合した4種類
のものを用いた。2種類のC重油無添加試料及び8種類
のC重油混合試料をそれぞれ100gずつビーカーに詰め
て地質試料とした。
[0007] The following experiment was conducted to confirm whether it is possible to identify geology composed of soil and rock, particularly contaminated geology, using an optical fiber sensor. In this experiment, as a geological sample, a sandy soil (hereinafter, referred to as white sand) having a maximum particle size Dmax = 2 mm and a uniformity coefficient Uc = 3.27 and having a substantially uniform particle size, and a sandy soil obtained by coloring it with black ink using black ink ( Hereinafter, it is referred to as black sand). As a contaminated geological sample, 0.5, for each of white sand and black sand,
Four types were used in which 1.0, 3.0 and 10.0% by weight of fuel oil C were well mixed. 100 g of each of the two types of C-heavy oil-free samples and the eight types of C-heavy oil-mixed samples were packed in beakers to obtain geological samples.

【0008】光ファイバセンサとして、図1に示すよう
に、直径Φ=150mm、長さL=170mmで一端を円錐状とし
た透明なアクリル樹脂製の試験貫入体3を製造し、その
内側に投光用ファイバ6の投光端と受光用ファイバ9の
受光端とを配置した。投光用ファイバ6及び受光用ファ
イバ9の各他端を試験貫入体3の貫入方向後端から取り
出し、それぞれ光源12及び検出器13に結合した。
As shown in FIG. 1, a test penetrator 3 made of a transparent acrylic resin and having a diameter Φ = 150 mm, a length L = 170 mm, and a conical end is manufactured as shown in FIG. The light emitting end of the optical fiber 6 and the light receiving end of the light receiving fiber 9 were arranged. The other end of each of the light projecting fiber 6 and the light receiving fiber 9 was taken out from the rear end of the test penetrator 3 in the penetrating direction, and connected to the light source 12 and the detector 13, respectively.

【0009】試験貫入体3の前記円錐状の一端をビーカ
ー内の地質試料に貫入し、光源12から赤色光を投光端へ
加え、地質試料からの反射光の光強度を検出器13で計測
した。なお外部からの光の影響を除去するため、本実験
は暗室内で行なった。図3に実験結果のグラフを示す。
図3のグラフの白丸は白砂の計測値を示し、黒丸は黒砂
の計測値を表す。また図3の横軸はC重油汚染濃度(重
量%)を表し、縦軸はC重油無添加の白砂からの反射光
の光強度を1.0としたときの各地質試料からの反射光の
相対的な光強度(以下、相対受光量という。)を表す。
[0009] One end of the conical shape of the test penetrator 3 penetrates the geological sample in the beaker, a red light is applied from the light source 12 to the light projecting end, and the light intensity of the reflected light from the geological sample is measured by the detector 13. did. This experiment was performed in a dark room to remove the influence of light from the outside. FIG. 3 shows a graph of the experimental results.
In the graph of FIG. 3, white circles indicate measured values of white sand, and black circles indicate measured values of black sand. The horizontal axis in FIG. 3 represents the concentration of heavy fuel oil C (% by weight), and the vertical axis represents the relative intensity of the light reflected from each sample when the light intensity of the light reflected from white sand without the addition of heavy fuel oil was 1.0. Light intensity (hereinafter, referred to as relative light reception amount).

【0010】図3のグラフから分かるように、白砂・黒
砂共に油汚染濃度が3重量%以下の場合は、油汚染濃度
と相対受光量とはほぼ比例関係にある。従って、条件と
して予備検討などで前提条件を押えれば又は後述する流
れ図に従えば、相対受光量を測定することにより油汚染
濃度を定量的に把握することが可能である。油汚染濃度
が3重量%以上の場合は相対受光量がほぼ一定となり、
重汚染であることは示すものの、相対受光量による汚染
濃度の定量的な把握は困難である。しかし実際の油汚染
土の調査を考えた場合には、油汚染濃度が3%以下程度
の範囲において、一定程度の汚染濃度の定量的な識別が
可能であれば充分であると考えられる。
As can be seen from the graph of FIG. 3, when the oil contamination concentration of both white sand and black sand is 3% by weight or less, the oil contamination concentration and the relative amount of received light are substantially proportional. Therefore, if the prerequisites are held down in the preliminary examination or the like as a condition, or according to the flowchart described later, it is possible to quantitatively grasp the oil contamination concentration by measuring the relative received light amount. When the oil contamination concentration is 3% by weight or more, the relative received light amount becomes almost constant,
Although it indicates heavy contamination, it is difficult to quantitatively grasp the contamination concentration based on the relative received light amount. However, considering actual oil-contaminated soil surveys, it is considered sufficient if quantitative identification of a certain level of contamination concentration is possible within the range of oil contamination concentration of about 3% or less.

【0011】本実験から、光ファイバセンサにより、白
砂および黒砂のどちらについても油汚染の程度の識別が
可能であることが確認できた。すなわち、砂質土自体の
色に拘わらず、光ファイバセンサにより汚染砂質土の同
定が可能である。砂質土以外の地質についても図3と同
様のグラフを作成することが可能であり、光ファイバセ
ンサによる地質からの反射光の検出に基づき、油その他
の汚染の有無の検出、汚染濃度の定量的把握が可能であ
る。また汚染地質以外の同定についても、様々な既知地
質の反射光データを検出して記録しておけば、その記録
に基づき調査対象の地質の同定が可能である。本発明
は、これらの知見に基づき完成に至ったものである。
From this experiment, it was confirmed that the degree of oil contamination of both white sand and black sand can be determined by the optical fiber sensor. That is, regardless of the color of the sandy soil itself, the contaminated sandy soil can be identified by the optical fiber sensor. A graph similar to that in Fig. 3 can be created for geology other than sandy soil. Based on the detection of reflected light from geology by an optical fiber sensor, detection of the presence or absence of oil and other contaminants, and quantification of the concentration of contaminants It is possible to grasp the target. Regarding the identification other than the contaminated geology, if the reflected light data of various known geology is detected and recorded, the geology to be investigated can be identified based on the record. The present invention has been completed based on these findings.

【0012】図1の実施例を参照するに、本発明の光学
式地盤調査装置は、地盤1に接すべき外壁上に透光部4
を有する地盤貫入体3、一端を貫入体3の内側に透光部
4と光学的に結合させて取り付け且つ他端を光源12に光
学的に結合した投光用光ファイバ6、一端を貫入体3の
内側に透光部4と光学的に結合させて取り付け且つ他端
を検出器13に光学的に結合した受光用光ファイバ9、光
源12の光に対する既知地質からの反射光データ16を記憶
した反射光記憶手段15、及び投光用光ファイバ6経由で
光源12の光を地下地質25へ投光したときに受光用光ファ
イバ9経由で検出器13に加わる地下地質25からの反射光
データ26(図5参照)と前記記憶手段15の反射光データ
16との比較により地下地質25を同定する同定手段19を備
えてなるものである。
Referring to the embodiment shown in FIG. 1, an optical ground survey apparatus according to the present invention includes a light transmitting portion 4 on an outer wall to be in contact with the ground 1.
A ground light penetrating body 3 having one end optically coupled to the light transmitting portion 4 at one end inside the penetrating body 3 and optically coupled to the light source 12 at the other end; A light receiving optical fiber 9 which is optically coupled to the light transmitting portion 4 and is optically coupled to the detector 13 at the other end, and stores reflected light data 16 from a known geology with respect to light from the light source 12. The reflected light data from the underground geological material 25 which is applied to the detector 13 via the light receiving optical fiber 9 when the light from the light source 12 is projected on the underground geological material 25 via the reflected light storing means 15 and the light projecting optical fiber 6 26 (see FIG. 5) and the reflected light data of the storage means 15
It is provided with an identification means 19 for identifying the underground geology 25 by comparing it with the underground geology 25.

【0013】好ましくは、投光用光ファイバ6の一端を
貫入体3に貫入方向と同じ向き又は直角向きに投光する
べく取り付ける。更に好ましくは、図2に示すように、
貫入体3の外側に透光部4の外面の清掃装置20を取り付
ける。
Preferably, one end of the light projecting optical fiber 6 is attached to the penetrating body 3 so as to project the light in the same direction as or perpendicular to the direction of penetration. More preferably, as shown in FIG.
A cleaning device 20 for the outer surface of the light transmitting unit 4 is attached to the outside of the penetrator 3.

【0014】[0014]

【発明の実施の形態】貫入体3は、貫入装置30(図8参
照)等により地盤1へ貫入させ得るものであり、地盤1
と接する外壁の少なくとも一部分に透光部4を設けたも
のである。透光部4は、投光用光ファイバ4の一端(以
下、投光端という。)及び受光用光ファイバ9の一端
(以下、受光端という。)と光学的に結合され、投光端
及び受光端と地下地質25との間の光の媒体となるもので
あり、例えばガラス製又はアクリル樹脂製とすることが
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A penetrating body 3 can be penetrated into a ground 1 by a penetrating device 30 (see FIG. 8) or the like.
The light transmitting portion 4 is provided on at least a part of the outer wall in contact with the light transmitting portion. The light transmitting section 4 is optically coupled to one end of the light emitting optical fiber 4 (hereinafter, referred to as a light emitting end) and one end of the light receiving optical fiber 9 (hereinafter, referred to as a light receiving end). It serves as a medium for light between the light receiving end and the underground geology 25, and may be made of, for example, glass or acrylic resin.

【0015】図1の実施例では地表から地下地質25に至
る長い貫入体3を示すが、貫入体3は投光端及び受光端
を地下地質25へ導き得るものであれば足り、その大きさ
は図示例に限定されない。例えば従来のコーン貫入試験
装置で用いるコーンの外壁に透光部4を設けて本発明の
貫入体3とすることができる。
Although the embodiment shown in FIG. 1 shows a long penetrating body 3 extending from the ground surface to the underground geology 25, the penetrating body 3 only needs to be able to guide the light emitting end and the light receiving end to the underground geology 25, and its size is sufficient. Is not limited to the illustrated example. For example, the penetrator 3 of the present invention can be provided by providing a light transmitting portion 4 on the outer wall of a cone used in a conventional cone penetration test device.

【0016】例えば、透光部4を貫入体3の貫入方向前
端に設け、投光端を貫入方向と同じ向きに向けて投光す
ることができる。ただしこの場合は、透光部4に、地盤
1から加わる貫入時の圧力に耐え得る強度が必要とな
る。岩などの堅い地質との衝突による透光部4の損傷等
により、測定精度の悪化を防ぐためである。より好まし
くは、図1に示すように透光部4を貫入体3の側壁に設
け、透光端から貫入方向と直角向きに投光する。
For example, the light transmitting portion 4 can be provided at the front end of the penetrating body 3 in the penetrating direction, and the light projecting end can be projected in the same direction as the penetrating direction. However, in this case, the translucent portion 4 needs to have a strength that can withstand the pressure applied during penetration from the ground 1. This is to prevent the measurement accuracy from deteriorating due to damage to the light transmitting portion 4 due to collision with hard geological features such as rocks. More preferably, as shown in FIG. 1, the light transmitting portion 4 is provided on the side wall of the penetrating body 3, and the light is projected from the light transmitting end in a direction perpendicular to the penetrating direction.

【0017】透光部4への投光端及び受光端の結合は、
例えば貫入体3に貫入方向後端から透光部4へ至る光フ
ァイバ6、9の通路を形成し、貫入体3の後端から通路
内に投光端及び受光端を差し込んで透光部4と結合させ
ることができる。投光用光ファイバ4の他端(以下、光
源結合端という。)及び受光用光ファイバ9の他端(以
下、検出端という。)は、例えば地表に設けた光源12及
び検出器13と結合するため、貫入体3の後端から地表へ
導くことができる。ただし、透光部4と投光端及び受光
端との結合方法、及び光源12及び検出器13の設置位置は
この例に限定されない。
The coupling of the light projecting end and the light receiving end to the light transmitting section 4 is as follows.
For example, passages of the optical fibers 6 and 9 are formed in the penetrating body 3 from the rear end in the penetrating direction to the light transmitting part 4, and the light transmitting end and the light receiving end are inserted into the passage from the rear end of the penetrating body 3 to transmit the light transmitting part 4. Can be combined with The other end of the light projecting optical fiber 4 (hereinafter referred to as a light source coupling end) and the other end of the light receiving optical fiber 9 (hereinafter referred to as a detection end) are coupled to a light source 12 and a detector 13 provided on the ground surface, for example. As a result, the penetrator 3 can be guided to the ground from the rear end. However, the method of coupling the light transmitting part 4 to the light emitting end and the light receiving end, and the installation positions of the light source 12 and the detector 13 are not limited to this example.

【0018】光源12は例えば赤色光、緑色光その他の単
色光の光源とし、検出器13は例えば既知地質25からの反
射光の光強度の検出器とすることができる。この場合
は、既知地質の反射光データ16として、既知地質からの
反射光の光強度を反射光記憶手段15に記憶する。
The light source 12 may be, for example, a light source for red light, green light, or other monochromatic light, and the detector 13 may be, for example, a detector for detecting the light intensity of light reflected from the known geology 25. In this case, the light intensity of the reflected light from the known geology is stored in the reflected light storage unit 15 as the reflected light data 16 of the known geology.

【0019】光源12として赤色光の光源を用い、既知地
質を上述した非汚染及び所定汚染濃度の白砂・黒砂とし
た場合は、図3に示す相対受光量の曲線16W、16Bを既知
地質の反射光データ16とすることができる。図3に示す
相対受光量の曲線16W、16Bに基づき、地盤中の地下地質
の同定が可能であることを確認するため、以下の実験1
及び2を行なった。
When a red light source is used as the light source 12 and the known geology is the above-described non-contaminated and white sand / black sand of a predetermined contaminated concentration, the curves 16W and 16B of the relative received light amount shown in FIG. Optical data 16 can be used. The following experiment 1 was performed to confirm that the underground geology in the ground can be identified based on the curves 16W and 16B of the relative received light amount shown in FIG.
And 2 were performed.

【0020】[実験1]油汚染の地下地質を模擬するた
め、図4(A)に示すように、ビーカー内の下層部に1.
0重量%のC重油を混合した高さ4cmの白砂を詰め、上
層部に油を混合していない高さ4cmの白砂を詰めて試験
地盤を作成した。そののち、図1と同様のアクリル樹脂
製の試験貫入体3を試験地盤に地盤表面から貫入し、相
対受光量の深度分布を測定した。測定結果を図4(B)
に白丸で示す。図4(B)の白丸のグラフから分かるよ
うに、地表面からの深度が1cm、2cm、3cmでは相対受
光量は1.0であり、深度が5cm、6cmでは相対受光量は
約0.6であった。同定手段19で図4(B)の白丸のグラ
フと図3に白丸で表す相対受光量の曲線16Wとを比較す
ることにより、試験地盤の地表面から4cm程度の深さま
では非汚染土であり4cm程度より深部の地下地質は約1.
0重量%の油汚染土であると同定できた。
[Experiment 1] In order to simulate the underground geology of oil pollution, as shown in FIG.
A test ground was prepared by filling 4 cm in height of white sand mixed with 0% by weight of heavy fuel oil C and filling the upper layer with 4 cm in height of sand containing no oil. After that, a test penetrator 3 made of acrylic resin similar to that shown in FIG. 1 was penetrated into the test ground from the ground surface, and the depth distribution of the relative received light amount was measured. FIG. 4B shows the measurement results.
Is indicated by a white circle. As can be seen from the white circle graph in FIG. 4B, the relative light receiving amount was 1.0 when the depth from the ground surface was 1 cm, 2 cm, and 3 cm, and the relative light receiving amount was about 0.6 when the depth was 5 cm and 6 cm. By comparing the graph of the white circle in FIG. 4 (B) with the curve 16W of the relative received light amount indicated by the white circle in FIG. 3 by the identification means 19, non-contaminated soil is found at a depth of about 4 cm from the ground surface of the test ground. Underground geology deeper than about 4 cm is about 1.
The oil-contaminated soil was identified as 0% by weight.

【0021】[実験2]実験1の1.0重量%の油汚染白砂
に代え、ビーカーの下層部に3.0%のC重油を混合した
高さ4cmの白砂を詰めた試験地盤を作成し、相対受光量
の深度分布を測定した。測定結果を図4(B)に×印で
示す。図4(B)の×印のグラフと図3に白丸で表す相
対受光量の曲線16Wとの比較により、この実験において
も、同定手段19により、4cm程度より深部の地下地質は
約3.0重量%の油汚染土であると同定できた。
[Experiment 2] A test ground was prepared in which the lower layer of the beaker was filled with 4 cm high white sand mixed with 3.0% heavy fuel oil in place of the oil-contaminated white sand of Experiment 1 in place of the 1.0 wt% oil-contaminated white sand. Was measured for depth distribution. The measurement results are indicated by crosses in FIG. By comparing the graph of the crosses in FIG. 4B with the curve 16W of the relative received light amount indicated by the white circle in FIG. 3, in this experiment, the identification means 19 also revealed that the underground geology deeper than about 4 cm was about 3.0% by weight. Oil-contaminated soil.

【0022】すなわち図4(B)の実験結果から、既知
地質の反射光データ16を記憶し、地下地質25へ投光した
ときの地下地質25からの反射光データ26(図5参照)と
比較することにより、地下地質25が同定可能であること
を確認できた。また同図から、同質の地下地質からの反
射光データ26は、地表面からの深度の変化にも拘わら
ず、ほぼ一定となることも確認できた。
That is, from the experimental results of FIG. 4B, the reflected light data 16 of the known geology is stored and compared with the reflected light data 26 from the underground geology 25 when the light is projected on the underground geology 25 (see FIG. 5). By doing so, it was confirmed that underground geology 25 was identifiable. It can also be confirmed from the figure that the reflected light data 26 from the same underground geology is almost constant irrespective of the change in depth from the ground surface.

【0023】従って、例えば図5に示すような地下地質
25の反射光データ26が検出器13に加えられた場合は、同
定手段19が反射光データ26と既知地質の反射光データ16
とを比較することにより、深度D1とD2との間の地下地
質を同定できる。
Therefore, for example, as shown in FIG.
When 25 reflected light data 26 are added to the detector 13, the identification unit 19 outputs the reflected light data 26 and the reflected light data 16 of the known geology.
By comparing with, the underground geology between the depths D 1 and D 2 can be identified.

【0024】なお図1では、反射光記憶手段15をコンピ
ュータ14上のメモリとし、同定手段19をコンピュータ内
蔵のプログラムとしている。必要に応じて入力手段17か
ら反射光データを入力して記憶手段15に入力して記憶
し、同定結果などをディスプレイ等の表示手段18に表示
することができる。ただし記憶手段15及び同定手段19は
図示例に限定されない。
In FIG. 1, the reflected light storage means 15 is a memory on the computer 14 and the identification means 19 is a program built in the computer. If necessary, reflected light data can be input from the input means 17 and input to the storage means 15 for storage, and the identification result and the like can be displayed on the display means 18 such as a display. However, the storage unit 15 and the identification unit 19 are not limited to the illustrated example.

【0025】以上、単色光の光源12を用い、反射光デー
タ16を反射光の相対受光量とした実施例について説明し
たが、本発明の光源12および反射光データ16はこの例に
限定されない。例えば光源12を可視光の光源とし、検出
器13に地下地質25からの反射光の分光測色計を設け、既
知地質25からの反射光の色を反射光データ16として記憶
手段15に記憶し、同定手段19において、分光測色計によ
る地下地質25からの反射光の色と記憶手段15の反射光の
色との比較に基づき、汚染地質その他の地下地質25の同
定をすることができる。更に、紫外光やレーザー光の光
源12を用いて地下地質25を同定することも可能である。
Although the embodiment in which the monochromatic light source 12 is used and the reflected light data 16 is used as the relative amount of reflected light has been described, the light source 12 and the reflected light data 16 of the present invention are not limited to this example. For example, the light source 12 is a visible light source, the detector 13 is provided with a spectrocolorimeter for reflected light from the underground geology 25, and the color of the reflected light from the known geology 25 is stored in the storage means 15 as reflected light data 16. The identification means 19 can identify the contaminated geology and other underground geology 25 based on the comparison between the color of the light reflected from the underground geology 25 by the spectrophotometer and the color of the light reflected by the storage means 15. Further, the underground geology 25 can be identified using the light source 12 of ultraviolet light or laser light.

【0026】本発明の光学式地盤調査装置は、光ファイ
バを用いて低コストで製造でき、複数台の装置を用いて
地盤調査を行なう場合でも調査コストを低く抑えること
ができる。また既知地質の反射光データを記憶しておけ
ば、貫入体の地盤貫入により簡単に地下地質を同定する
ことも可能となるので、従来のコアサンプリング分析に
比し地盤調査の時間を短縮できる。とくに多くの地点で
の地盤調査を必要とする場合に、本発明を適用すること
により、コアサンプリング分析の地点の数を必要最小限
に抑えることができ、地盤調査の費用の低減と工期の短
縮を図ることができる。
The optical ground survey device of the present invention can be manufactured at low cost by using an optical fiber, and the survey cost can be kept low even when the ground survey is performed by using a plurality of devices. If the reflected light data of the known geology is stored, the underground geology can be easily identified by the intrusion of the intruded body into the ground, so that the time required for the ground survey can be reduced as compared with the conventional core sampling analysis. By applying the present invention, the number of points for core sampling analysis can be minimized, especially when ground surveys are required at many points, thereby reducing the cost of ground surveys and shortening the construction period. Can be achieved.

【0027】こうして本発明の目的である「地盤調査を
迅速且つ簡単に行なえる光学式地盤調査装置」の提供が
達成できる。
In this way, the object of the present invention, that is, the provision of the "optical ground inspection apparatus capable of performing the ground inspection quickly and easily" can be achieved.

【0028】本発明の地盤調査装置により深度10m程度
まで連続的に調査する場合は、貫入体3の透光部4に土
などが付着し、地下地質の精確な同定が困難となる場合
も考えられる。例えば深度2mに1回程度は透光部4の
外面を清掃することが望ましい。この場合、透光部4の
外面に洗浄液等を流して付着物を洗い流す方法も考えら
れるが、洗浄液が光源12の光及び/又は地下地質25から
の反射光に影響を与え、測定誤差の原因となるおそれが
ある。図2の実施例では、円筒状又は円錐状の貫入体3
の透光部4を含む外壁に嵌合する外面清掃装置20を設け
ている。
When the ground survey device of the present invention continuously conducts a survey up to a depth of about 10 m, it may be considered that soil or the like adheres to the translucent portion 4 of the penetrator 3 and it becomes difficult to accurately identify the underground geology. Can be For example, it is desirable to clean the outer surface of the light transmitting section 4 about once every 2 m in depth. In this case, a method in which a cleaning liquid or the like is caused to flow on the outer surface of the translucent section 4 to wash off the attached matter is conceivable. However, the cleaning liquid affects the light from the light source 12 and / or the reflected light from the underground geology 25, and causes a measurement error. There is a possibility that. In the embodiment of FIG. 2, a cylindrical or conical penetrator 3 is shown.
The outer surface cleaning device 20 fitted to the outer wall including the light transmitting portion 4 is provided.

【0029】同図の外面清掃装置20は、貫入体3の透光
部4を含む外壁に滑動可能に密着嵌合する一部切欠き鞘
体21を有する。地下地質25からの反射光データの取得時
には、鞘体21の切欠きと透光部4とを位置合わせする。
切欠きの大きさは、透光部4の大きさ以上とする。また
清掃時には、鞘体21を貫入体3の外壁上で滑動させ、鞘
体21の切欠きと透光部4との位置合わせを解除する。こ
の位置合わせの解除時に、切欠き部周縁のシール部が透
光部4の外面上を滑動することにより、透光部4の外面
上の付着物を除去することができる。
The outer surface cleaning device 20 shown in FIG. 1 has a partially notched sheath 21 which is slidably tightly fitted to the outer wall of the penetrator 3 including the light transmitting portion 4. At the time of acquiring the reflected light data from the underground geology 25, the notch of the sheath 21 and the light transmitting portion 4 are aligned.
The size of the notch is equal to or larger than the size of the light transmitting portion 4. At the time of cleaning, the sheath 21 is slid on the outer wall of the penetrating body 3 to release the alignment between the notch of the sheath 21 and the light transmitting portion 4. When the alignment is released, the seal on the outer periphery of the light transmitting portion 4 slides on the outer surface of the light transmitting portion 4 so that the deposits on the outer surface of the light transmitting portion 4 can be removed.

【0030】[0030]

【実施例】図6は、本発明の地盤調査装置により、複数
の地層からなる地盤1の汚染を調査する場合の処理の流
れ図の一例を示す。まずステップ501において調査対象
地盤の地層構成を把握し、ステップ502において例えば
図3に示すような反射光データ16の曲線を各地層につい
て作成する。例えば図7(A)に示す地下地質25a、25
b、25cからなる三地層の地盤の場合は、各地層の地質25
a、25b、25cについて油汚染のない状態、及び所定汚染
濃度の状態のサンプルを作成し、各サンプルに対して試
験貫入体3の貫入により反射光データ16を取得すること
により、図7(B)に示すような反射光データ16a、16
b、16cの曲線を作成する。作成した反射光データ16a、1
6b、16cの曲線は反射光記憶手段15に記憶する。
FIG. 6 shows an example of a flow chart of a process for investigating contamination of the ground 1 composed of a plurality of strata by the ground inspection apparatus of the present invention. First, in step 501, the stratum configuration of the surveyed ground is grasped, and in step 502, a curve of the reflected light data 16 as shown in FIG. For example, underground geology 25a, 25a shown in FIG.
In the case of three-layered ground consisting of b and 25c,
FIG. 7 (B) is obtained by preparing samples of a, 25b, and 25c in a state where there is no oil contamination and in a state of a predetermined contamination concentration, and acquires the reflected light data 16 by penetrating the test penetrator 3 for each sample. Reflected light data 16a, 16 as shown in)
Create b and 16c curves. Created reflected light data 16a, 1
The curves 6b and 16c are stored in the reflected light storage means 15.

【0031】次にステップ503で地盤1中に地盤貫入体
3を貫入させ、ステップ504で地下地質25a、25b、25cか
らの反射光データ26を取得する。ステップ505では、貫
入体3の貫入位置に基づいて、反射光データ26が何れの
地下地質25a、25b、25cから反射されたものであるかを
決定し、ステップ504で取得した地下地質25a、25b、25c
からの反射光データ26を、何れかの反射光データ16a、1
6b、16cの曲線と比較する。ステップ506において、比較
の結果に基づき地下地質25a、25b、25cの油汚染の有無
及び/又は油汚染濃度の測定、すなわち地下地質25の同
定を行なう。ステップ507で地盤調査の終了を判断し、
調査を続ける場合はステップ503に戻り、更に貫入体3
を貫入させて地質調査を継続する。
Next, at step 503, the ground penetrating body 3 is penetrated into the ground 1, and at step 504, the reflected light data 26 from the underground geology 25a, 25b, 25c is acquired. In step 505, it is determined which of the underground geology 25a, 25b, 25c the reflected light data 26 is reflected from based on the penetration position of the intruding body 3, and the underground geology 25a, 25b acquired in step 504 is determined. , 25c
The reflected light data 26 from any of the reflected light data 16a, 1
Compare with curves 6b and 16c. In step 506, the presence or absence of oil contamination of the underground geology 25a, 25b, and 25c and / or the measurement of the oil contamination concentration, that is, the identification of the underground geology 25, are performed based on the result of the comparison. In step 507, determine the end of the ground survey,
If the investigation is to be continued, return to step 503, and further penetrate 3
And continue the geological survey.

【0032】なお反射光データは、単に地下地質25の色
のみにより決定されるものではなく、地下地質25の間
隙、含水量などの地質構成により変化するものと考えら
れるが、本発明者は図6の流れ図に従えば地下地質25の
同定を行なうことができることを確認した。
The reflected light data is considered to be determined not only by the color of the underground geology 25 but also by the geological composition such as the gap of the underground geology 25 and the water content. According to the flow chart of No. 6, it was confirmed that the underground geology 25 can be identified.

【0033】また貫入体3に間隙水圧計、電気抵抗セン
サ、3成分コーン及び/又は温度計等を付加することに
より、一層精確な地下地質25の同定が可能となる。
Further, by adding a pore water pressure gauge, an electric resistance sensor, a three-component cone, and / or a thermometer to the intruder 3, it is possible to more accurately identify the underground geology 25.

【0034】図8は、本発明の地盤貫入体3を地盤に貫
入させるための地盤貫入装置30の一例を示す。一般的な
油汚染の存在範囲は深度10m程度であり、油汚染の地下
地質25を調査するためには地盤貫入体3を深度10m程度
まで貫入させる必要がある。同図の地盤貫入装置30は、
地表面に垂直なシリンダ32と、シリンダ32に支持された
地表面と垂直方向に駆動されるハンマー31と、ハンマー
31により地盤中に打設される継ぎ足し可能なロッド33と
を有する。先ず短いロッド33の下端に貫入体3を取り付
け、ロッド33の上端からハンマー31による打撃によりロ
ッド33と貫入体3とを地盤中に貫入させ、更にロッド33
を継ぎ足しながらハンマー31の打撃を続けることによ
り、貫入体3を所望の深度まで貫入させることができ
る。この場合、投光用及び受光用の光ケーブル6、9の
長さも10m以上の長さのものとする。
FIG. 8 shows an example of a ground penetrating device 30 for penetrating the ground penetrating body 3 of the present invention into the ground. The general range of oil contamination is about 10 m deep, and it is necessary to penetrate the ground penetrating body 3 to a depth of about 10 m in order to investigate the underground geology 25 of oil pollution. The ground penetrating device 30 in the figure is
A cylinder 32 perpendicular to the ground surface, a hammer 31 driven vertically to the ground surface supported by the cylinder 32, and a hammer
And an extendable rod 33 which is driven into the ground by 31. First, the penetrating body 3 is attached to the lower end of the short rod 33, and the rod 33 and the penetrating body 3 are penetrated into the ground by a hammer 31 from the upper end of the rod 33.
By continuing to hit the hammer 31 while adding the pressure, the penetrating body 3 can be penetrated to a desired depth. In this case, the lengths of the optical cables 6 and 9 for light emission and light reception are also 10 m or more.

【0035】また図8のハンマー31に代え、回転ドリル
を用いた貫入体3の貫入方法も可能である。ただし本発
明における貫入体3の貫入方法は打込みハンマー又は回
転ドリルによる方法に限定されず、例えば2〜3m程度
の支持棒の下端に貫入体3を取り付け、作業員が支持棒
を地盤1に押し込むことで貫入させることも可能であ
る。
Further, instead of the hammer 31 shown in FIG. 8, a method of penetrating the penetrating body 3 using a rotary drill is also possible. However, the method of penetrating the penetrating body 3 in the present invention is not limited to a method using a driving hammer or a rotary drill. For example, the penetrating body 3 is attached to a lower end of a support rod of about 2 to 3 m, and an operator pushes the support rod into the ground 1. It is also possible to make it penetrate.

【0036】[0036]

【発明の効果】以上説明したように、本発明の光学式地
盤調査装置は、光源の光に対する既知地質からの反射光
データと、前記光源の光を投光用光ファイバ経由で地下
地質へ投光したときに受光用光ファイバ経由で検出され
る当該地下地質からの反射光データとの比較により当該
地下地質を同定するので、次の顕著な効果を奏する。
As described above, the optical geological survey apparatus of the present invention projects the reflected light data from the known geology with respect to the light of the light source and the light of the light source to the underground geology via the light emitting optical fiber. Since the underground geology is identified by comparison with the reflected light data from the underground geology detected via the light receiving optical fiber when the light is emitted, the following remarkable effects are obtained.

【0037】(イ)地盤調査装置の製造コストが安いの
で、複数台の装置を用いて地盤調査を行なう場合でも調
査コストが節約できる。 (ロ)貫入体の地盤貫入によりリアルタイムで深度方向
の地下地質が同定できるので、従来のコアサンプリング
分析に比し地盤調査の工期を大幅に短縮できる。 (ハ)多くの地点での調査を必要とする場合に本発明を
適用することにより、コアサンプリング分析の地点の数
を必要最小限に抑えることが可能となり、地盤調査の費
用の削減と工期の短縮を図ることができる。 (ニ)間隙、含水量などの地質構成が異なる地下地質に
ついても、適当な既知地質からの反射光データと比較す
ることにより、当該地下地質の精確な同定が可能であ
る。
(A) Since the manufacturing cost of the ground survey device is low, the survey cost can be reduced even when the ground survey is performed using a plurality of devices. (B) The depth of underground geology in the depth direction can be identified in real time by the intrusion of the intruded body into the ground, so that the time required for the ground survey can be significantly reduced compared to the conventional core sampling analysis. (C) By applying the present invention when it is necessary to conduct surveys at many points, it is possible to minimize the number of points for core sampling analysis, thereby reducing the cost of ground surveys and shortening the construction period. Shortening can be achieved. (D) Accurate identification of underground geology of underground geology having different geological compositions such as gaps and water content is also possible by comparing the data with reflected light from an appropriate known geology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明装置の一実施例の説明図である。FIG. 1 is an explanatory view of an embodiment of the device of the present invention.

【図2】は、透光部外面の清掃装置の説明図である。FIG. 2 is an explanatory diagram of a cleaning device for an outer surface of a light transmitting unit.

【図3】は、油汚染濃度と相対受光量との相関関係を示
すグラフである。
FIG. 3 is a graph showing a correlation between an oil contamination concentration and a relative light reception amount.

【図4】は、相対受光量の比較による地下地質の同定の
説明図である。
FIG. 4 is an explanatory diagram of identification of underground geology by comparing relative light reception amounts.

【図5】は、地下地質からの反射光データの一例の説明
図である。
FIG. 5 is an explanatory diagram of an example of reflected light data from underground geology;

【図6】は、相対受光量による地下地質の同定の説明図
である。
FIG. 6 is an explanatory diagram of identification of underground geology based on a relative amount of received light.

【図7】は、複数地層からなる地盤の汚染調査方法の説
明図である。
FIG. 7 is an explanatory diagram of a method for investigating contamination of the ground composed of a plurality of strata.

【図8】は、地盤貫入装置の説明図である。FIG. 8 is an explanatory diagram of a ground penetration device.

【符号の説明】[Explanation of symbols]

1…地盤 2…地盤調査装置 3…地盤貫入体 4…透光部 6…投光用光ファイバ 7…投光端 8…光源結合端 9…受光用光ファイバ 10…受光端 11…検出端 12…光源 13…検出器 14…コンピュータ 15…反射光記憶手段 16…既知地質の反射光データ 17…入力手段 18…表示手段 19…同定手段 20…外面清掃装置 21…一部切欠き鞘体 22…切欠き周縁シール部 25…地下地質 26…地下地質の反射光データ 30…地盤貫入装置 31…ハンマー 32…シリンダー 33…ロッド DESCRIPTION OF SYMBOLS 1 ... Soil 2 ... Soil survey device 3 ... Soil penetrating body 4 ... Transmissive part 6 ... Light emitting optical fiber 7 ... Light emitting end 8 ... Light source coupling end 9 ... Light receiving optical fiber 10 ... Light receiving end 11 ... Detection end 12 ... Light source 13 ... Detector 14 ... Computer 15 ... Reflection light storage means 16 ... Reflection light data of known geology 17 ... Input means 18 ... Display means 19 ... Identification means 20 ... Outer surface cleaning device 21 ... Partially notched sheath body 22 ... Notch peripheral seal 25 25 Underground geology 26 ... Underground geology reflected light data 30 ... Ground penetration device 31 ... Hammer 32 ... Cylinder 33 ... Rod

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】地盤に接すべき外壁上に透光部を有する地
盤貫入体、一端を前記貫入体の内側に前記透光部と光学
的に結合させて取り付け且つ他端を光源に光学的に結合
した投光用光ファイバ、一端を前記貫入体の内側に前記
透光部と光学的に結合させて取り付け且つ他端を検出器
に光学的に結合した受光用光ファイバ、前記光源の光に
対する既知地質からの反射光データを記憶した反射光記
憶手段、及び前記投光用光ファイバ経由で前記光源の光
を地下地質へ投光したときに前記受光用光ファイバ経由
で前記検出器に加わる当該地下地質からの反射光データ
と前記記憶手段の反射光データとの比較により当該地下
地質を同定する同定手段を備えてなる光学式地盤調査装
置。
1. A ground penetrator having a light-transmitting portion on an outer wall to be in contact with the ground, one end of which is optically coupled to the light-transmitting portion inside the penetrator and mounted on the other end, and the other end of which is optically connected to a light source. A light-receiving optical fiber, one end of which is optically coupled to the light-transmitting portion and which is attached to the inside of the penetrator, and the other end of which is optically coupled to the detector; Reflected light storage means for storing reflected light data from a known geology with respect to the light source, and is applied to the detector via the light receiving optical fiber when the light from the light source is projected onto the underground geology via the light emitting optical fiber. An optical ground survey device comprising identification means for identifying the underground geology by comparing reflected light data from the underground geology with reflected light data from the storage means.
【請求項2】請求項1の地盤調査装置において、前記投
光用光ファイバの一端を前記貫入体に貫入方向と同じ向
き又は直角向きに投光するべく取り付けてなる光学的地
盤調査装置。
2. An optical ground survey device according to claim 1, wherein one end of said light projecting optical fiber is attached to said penetrator so as to project light in the same direction as or perpendicular to the direction of penetration.
【請求項3】請求項1又は2の地盤調査装置において、
前記貫入体の外側に透光部外面の清掃装置を取り付けて
なる光学的地盤調査装置。
3. The ground survey device according to claim 1 or 2,
An optical ground survey device comprising a cleaning device for cleaning the outer surface of the light-transmitting portion outside the penetrator.
【請求項4】請求項1から3の何れかの地盤調査装置に
おいて、前記貫入体を地盤に貫入させる貫入手段を設け
てなる光学的地盤調査装置。
4. An optical ground surveying device according to claim 1, further comprising a penetrating means for penetrating the penetrating body into the ground.
【請求項5】請求項1から4の何れかの地盤調査装置に
おいて、前記光源の光を可視光とし、前記記憶手段の反
射光データを前記既知地質からの反射光の色とし、前記
検出器に前記地下地質からの反射光の分光測色計を設
け、前記同定手段を前記分光測色計による反射光の色と
前記記憶手段の反射光の色との比較に基づく前記地下地
質の同定手段としてなる光学的地盤調査装置。
5. The ground surveying device according to claim 1, wherein the light of the light source is visible light, the reflected light data of the storage means is the color of the reflected light from the known geology, A spectrocolorimeter for the reflected light from the underground geology, and the identifying means for identifying the underground geology based on a comparison between the color of the light reflected by the spectrocolorimeter and the color of the reflected light from the storage means. Optical ground survey equipment.
【請求項6】請求項1から4の何れかの地盤調査装置に
おいて、前記光源の光を単色光とし、前記記憶手段の反
射光データを前記既知地質からの反射光の光強度とし、
前記同定手段を前記検知器に加わる反射光の光強度と前
記記憶手段の反射光の光強度との比較に基づく前記地下
地質の同定手段としてなる光学的地盤調査装置。
6. The ground survey device according to claim 1, wherein the light of the light source is monochromatic light, and the reflected light data of the storage means is the light intensity of the reflected light from the known geology.
An optical ground surveying apparatus, wherein the identification means is an identification means for the underground geology based on a comparison between a light intensity of reflected light applied to the detector and a light intensity of reflected light from the storage means.
【請求項7】請求項5又は6の地盤調査装置において、
前記既知地質を油汚染濃度が既知の地質及び非汚染地質
とし、前記同定手段により前記地下地質の油汚染の有無
及び/又は油汚染濃度を測定してなる光学式地盤調査装
置。
7. The ground survey device according to claim 5, wherein
An optical geological survey apparatus wherein the known geology is a geology with a known oil pollution concentration and a non-polluting geology, and the identification means measures the presence or absence of oil contamination and / or the oil contamination concentration of the underground geology.
【請求項8】請求項1から7の何れかの地盤調査装置に
おいて、前記貫入体に間隙水圧計、電気抵抗センサ、3
成分コーン及び/又は温度計を付加してなる光学的地盤
調査装置。
8. The ground survey device according to claim 1, wherein said penetrator has a pore water pressure gauge, an electric resistance sensor,
An optical ground survey device to which a component cone and / or a thermometer are added.
JP10270366A 1998-09-24 1998-09-24 Optical ground surveyor Pending JP2000098051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10270366A JP2000098051A (en) 1998-09-24 1998-09-24 Optical ground surveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10270366A JP2000098051A (en) 1998-09-24 1998-09-24 Optical ground surveyor

Publications (1)

Publication Number Publication Date
JP2000098051A true JP2000098051A (en) 2000-04-07

Family

ID=17485272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10270366A Pending JP2000098051A (en) 1998-09-24 1998-09-24 Optical ground surveyor

Country Status (1)

Country Link
JP (1) JP2000098051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122287A (en) * 2006-11-14 2008-05-29 Railway Technical Res Inst Ground monitoring tool and ground monitoring method
JP2008129849A (en) * 2006-11-21 2008-06-05 Railway Technical Res Inst Device and method for ground erosion discrimination
NL2023466B1 (en) * 2019-07-09 2021-02-02 Fnv Ip Bv Seafloor Device and method of using a seafloor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122287A (en) * 2006-11-14 2008-05-29 Railway Technical Res Inst Ground monitoring tool and ground monitoring method
JP2008129849A (en) * 2006-11-21 2008-06-05 Railway Technical Res Inst Device and method for ground erosion discrimination
NL2023466B1 (en) * 2019-07-09 2021-02-02 Fnv Ip Bv Seafloor Device and method of using a seafloor device
WO2021006735A3 (en) * 2019-07-09 2021-02-18 Fnv Ip B.V. Seafloor testing device and method of using a seafloor testing device

Similar Documents

Publication Publication Date Title
US11634984B2 (en) Sampling techniques to detect hydrocarbon seepage
CA2565254C (en) Apparatus for inspecting anchor boreholes
US5128882A (en) Device for measuring reflectance and fluorescence of in-situ soil
US8234912B2 (en) Apparatus for continuous measurement of heterogeneity of geomaterials
US11320378B2 (en) Methods, systems, and devices for measuring in situ saturations of petroleum and NAPL in soils
NO343644B1 (en) High-resolution gamma measurements and imaging
US5635710A (en) Subsurface penetrometer radiaton sensor probe and system
JP2000098051A (en) Optical ground surveyor
JPH07117532B2 (en) Method to analyze the structure of bedrock, concrete, etc.
Grundl et al. Demonstration of a method for the direct determination of polycyclic aromatic hydrocarbons in submerged sediments
EP0763731A2 (en) Liquid flow monitor
EP3289352B1 (en) Method and system for identifying fluid type inside a conduit
Fiorani et al. GEOSCOPE and GEOLIDAR: integrated instruments for underground archaeological investigations
JP2004138447A (en) Physical property evaluating method for base rock
Pepper et al. In situ measurements of subsurface contaminants with a multi-channel laser-induced fluorescence system
Mercer et al. DNAPL site characterization issues at chlorinated solvent sites
JPH0455790A (en) Examination of ground
CN117345199A (en) Dynamic detection device and detection method for borehole fracture
KR101621212B1 (en) A Monitoring Apparatus of Oil Contamination in Soil
CN115290619A (en) Method and device for detecting colloidal active carbon in soil or underground water
McGinnis et al. Field Validation of a Penetrometer-based Fiber-optic Petroleum, Oil, and Lubricant (POL) Sensor:.
Lurk et al. Laser-induced fluorescence in contaminated soils
Bello Internal Reflection Sensor for the Cone Penetrometer
Lee Jr et al. Development of a cone penetrometer for measuring spectral characteristics of soils in situ
Castillo-Feher Environmental Site Assessment and the Cone Penetrometer Technology