JP2000097631A - Displacement measuring device - Google Patents

Displacement measuring device

Info

Publication number
JP2000097631A
JP2000097631A JP10271711A JP27171198A JP2000097631A JP 2000097631 A JP2000097631 A JP 2000097631A JP 10271711 A JP10271711 A JP 10271711A JP 27171198 A JP27171198 A JP 27171198A JP 2000097631 A JP2000097631 A JP 2000097631A
Authority
JP
Japan
Prior art keywords
light
linearly polarized
reflected
displacement
polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10271711A
Other languages
Japanese (ja)
Other versions
JP3547628B2 (en
Inventor
Atsuro Tanuma
敦郎 田沼
Koji Omori
浩二 大森
Kazutake Nagatsuka
一毅 永塚
Eiji Tsujimura
映治 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP27171198A priority Critical patent/JP3547628B2/en
Publication of JP2000097631A publication Critical patent/JP2000097631A/en
Application granted granted Critical
Publication of JP3547628B2 publication Critical patent/JP3547628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable to remove light reflected nearby by the shape of an object to be measured, etc., and to permit the highly accurate measurement of especially an object to be measured with a narrow pitch. SOLUTION: Light radiated from a laser 1 is converted into circularly polarized light with the predetermined direction of rotation by a λ/4 wavelength plate 3 to irradiate an object to be measured 11. The reflected light at the object to be measured 11 is returned to linearly polarized light by a λ/4 wavelength plate 6, is transmitted through a polarization beam splitter 7, and becomes incident on the light receiving plane of a light location detecting means 8. The light location detecting means 8 outputs a displacement signal corresponding to the amount of displacement of the object to be measured 11 according to the location of reception of the reflected light on the light receiving plane. Even if the reflected light at the object to be measured 11 is secondarily reflected by a nearby object to be measured 12 toward the λ/4 wavelength plate 6, the stray light component 33 of the reflected light is in a state of circularly polarized light with the reverse direction of rotation, is not transmitted through the polarization beam splitter 7, is bent, does not become incident on the light location detecting means 8, does aggravate measurement accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非接触で測定対象
の変位量を測定する変位測定装置に係り、特に、狭ピッ
チの測定時における不要な反射光を除去でき高精度な測
定が行える変位測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement measuring device for measuring a displacement of a measuring object in a non-contact manner, and more particularly to a displacement measuring device capable of removing unnecessary reflected light at the time of measuring a narrow pitch and performing a highly accurate measurement. It relates to a measuring device.

【0002】[0002]

【従来の技術】図5は、変位測定装置を示す概要図であ
る。レーザ1から放射された光は、コリメータレンズ2
で平行光とされ、投光レンズにより測定対象(被測定
物)11上に光スポットをつくる。この測定対象11で
反射された光は、受光レンズ5を介して光位置検出手段
8上に光スポットをつくる。これにより、光位置検出手
段8上で検出された光スポットの位置に応じて、測定対
象11の変位量(例えば高さ)を測定することができ
る。
2. Description of the Related Art FIG. 5 is a schematic diagram showing a displacement measuring device. The light emitted from the laser 1 is transmitted to a collimator lens 2
Are collimated, and a light spot is formed on the measurement target (measurement target) 11 by the light projecting lens. The light reflected by the measuring object 11 forms a light spot on the light position detecting means 8 via the light receiving lens 5. Thereby, the displacement amount (for example, height) of the measurement target 11 can be measured according to the position of the light spot detected on the light position detection means 8.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記構
成では、測定対象11の配置が狭ピッチである場合に、
近隣の測定対象12から2次反射された光が測定精度を
低下させる場合があった。図示の測定対象11は、LS
I等の半導体パッケージの端子であり、この端子の状態
(コプラナリティ)を測定しようとするものである。こ
の測定対象11は、BGA(Ball Grid Array) など光沢
のある球状の金属面(半田ボール、バンプと呼称され
る)であり、0.3〜0.8mm程度の狭ピッチで配置
されている。
However, in the above configuration, when the arrangement of the measuring objects 11 is narrow,
In some cases, light reflected secondarily from a nearby measurement target 12 reduces measurement accuracy. The measurement object 11 shown is LS
A terminal of a semiconductor package such as I, and the state (coplanarity) of this terminal is to be measured. The measurement target 11 is a glossy spherical metal surface (called a solder ball or a bump) such as a BGA (Ball Grid Array), and is arranged at a narrow pitch of about 0.3 to 0.8 mm.

【0004】このような、光沢のある球状の測定対象1
1に投光さえた光は、近隣の測定対象12に向けて反射
しやすい(図中点線で記載)。上記形状の測定対象11
の変位量を測定する場合において、この測定対象12で
2次反射された光(迷光成分33)が光位置検出手段8
で同時に受光された際には、測定精度を著しく悪化させ
る問題が生じていた。
[0004] Such a glossy spherical measurement object 1
The light that has been projected to 1 is easily reflected toward the nearby measurement target 12 (depicted by a dotted line in the figure). Measurement object 11 of the above shape
When measuring the displacement of the light, the light (stray light component 33) secondary reflected by the measurement object 12 is reflected by the light position detecting means 8.
At the same time, there is a problem that the measurement accuracy is remarkably deteriorated.

【0005】本発明は、上記課題を解決するためになさ
れたものであり、測定対象の形状等によって近隣で反射
した光を除去することができ、特に、狭ピッチの測定対
象を高精度に測定できる変位測定装置を提供することを
目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and can remove light reflected nearby due to the shape and the like of a measuring object. It is an object of the present invention to provide a displacement measuring device that can perform the measurement.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の変位測定装置は、請求項1記載のように、
測定対象に光を照射させ反射光の位置を光位置検出手段
で検出して該測定対象の変位量を非接触で検出する変位
測定装置において、光源から放射される光を所定の回転
方向に円偏光させ前記測定対象に照射させる円偏光手段
(3)と、前記測定対象から反射された円偏光の光を直
線偏光にする直線偏光手段(6)と、前記直線偏光手段
で直線偏光に戻された光のうち所定方向に直線偏光され
ている反射光のみ前記光位置検出手段に透過させる透過
偏光手段(7)と、を備えたことを特徴とする。
In order to achieve the above object, a displacement measuring device according to the present invention has the following features.
In a displacement measuring device that irradiates light to a measurement target, detects the position of reflected light by a light position detection unit, and detects a displacement amount of the measurement target in a non-contact manner, light emitted from a light source is circularly moved in a predetermined rotation direction. Circularly polarized light means (3) for polarizing and irradiating the object to be measured, linearly polarizing means (6) for converting circularly polarized light reflected from the measured object to linearly polarized light, and returned to linearly polarized light by the linearly polarized light means And a transmission polarization means (7) for transmitting only the reflected light linearly polarized in a predetermined direction to the light position detection means.

【0007】また、請求項2記載の発明は、測定対象に
光を照射させ反射光の位置を光位置検出手段で検出して
該測定対象の変位量を非接触で検出する変位測定装置に
おいて、光源から放射される光を所定の回転方向に円偏
光させ前記測定対象に照射させる第1のλ/4波長板
(3)と、前記測定対象から反射された円偏光の光を直
線偏光にする第2のλ/4波長板(6)と、前記第2の
λ/4波長板で直線偏光に戻された光のうち所定方向に
直線偏光されている反射光のみ透過させ、他の方向に直
線偏光されている迷光成分を屈曲させる偏光ビームスプ
リッタ(7)と、前記偏光ビームスプリッタを透過した
光を受光し、受光位置に基づき前記測定対象の変位量に
対応した変位信号を出力する光位置検出手段(8)と、
を備えたことを特徴とする。
According to a second aspect of the present invention, there is provided a displacement measuring apparatus for irradiating a measuring object with light, detecting a position of reflected light by a light position detecting means, and detecting a displacement amount of the measuring object in a non-contact manner. A first λ / 4 wave plate (3) for circularly polarizing light emitted from a light source in a predetermined rotation direction and irradiating the measurement target with the light, and converting the circularly polarized light reflected from the measurement target into linearly polarized light A second λ / 4 wavelength plate (6) and, of the light returned to linearly polarized light by the second λ / 4 wavelength plate, transmit only reflected light that is linearly polarized in a predetermined direction, and A polarizing beam splitter (7) for bending a linearly polarized stray light component, and a light position for receiving light transmitted through the polarizing beam splitter and outputting a displacement signal corresponding to a displacement amount of the object to be measured based on a light receiving position. Detecting means (8);
It is characterized by having.

【0008】また、請求項3記載のように、請求項2記
載の前記偏光ビームスプリッタ(7)に代えて前記直線
偏光に戻された光のうち所定方向に直線偏光されている
反射光のみ透過させ、他の方向に直線偏光されている迷
光成分を透過させない偏光板(7a)が用いられた構成
としてもよい。
According to a third aspect of the present invention, only the reflected light, which is linearly polarized in a predetermined direction, of the light returned to the linearly polarized light is transmitted instead of the polarization beam splitter according to the second aspect. Alternatively, a configuration may be employed in which a polarizing plate (7a) that does not transmit a stray light component linearly polarized in another direction is used.

【0009】また、請求項4記載のように、請求項2記
載の前記偏光ビームスプリッタ(7)に代えて前記直線
偏光に戻された光のうち所定方向に直線偏光されている
反射光を所定方向に屈曲させ、他の方向に直線偏光され
ている迷光成分を透過させる偏光ミラー(7b)が用い
られ、前記光位置検出手段(8)は、偏光ミラーで屈曲
された光を受光する構成としてもよい。
According to a fourth aspect of the present invention, in place of the polarization beam splitter according to the second aspect, the reflected light linearly polarized in a predetermined direction out of the light returned to the linearly polarized light is transmitted to a predetermined direction. A polarizing mirror (7b) that bends in a direction and transmits a stray light component that is linearly polarized in another direction is used, and the light position detecting means (8) is configured to receive the light bent by the polarizing mirror. Is also good.

【0010】また、請求項5記載のように、前記変位測
定装置に対し、前記測定対象(11)を相対的に移動さ
せて測定対象の変位量を該移動方向に沿って連続的に測
定させる制御手段を備えた構成とすることもできる。
According to a fifth aspect of the present invention, the object to be measured (11) is relatively moved with respect to the displacement measuring device, and the displacement of the object to be measured is continuously measured along the moving direction. It is also possible to adopt a configuration provided with control means.

【0011】また、請求項6記載の発明は、測定対象に
光を走査して照射させ反射光の位置を光位置検出手段で
検出して該測定対象の変位量を該走査方向に沿って連続
的に非接触で検出する変位測定装置において、光源から
放射される光を所定の回転方向に円偏光させ前記測定対
象に照射させる第1のλ/4波長板(3)と、前記第1
のλ/4波長板(3)通過後の光を所定方向に走査させ
る偏向手段(22)と、前記測定対象から反射された円
偏光の光を直線偏光にするものであり、前記走査範囲に
対応した長さを有する第2のλ/4波長板(6a)と、
前記第2のλ/4波長板で直線偏光に戻された光のうち
所定方向に直線偏光されている反射光のみ透過させ、他
の方向に直線偏光されている迷光成分を屈曲させるもの
であり、前記走査範囲に対応した長さを有する偏光ビー
ムスプリッタ(7c)と、前記偏光ビームスプリッタを
透過した光を受光し、受光位置に基づき前記測定対象の
変位量に対応した変位信号を出力する光位置検出手段
(8)と、を備えたことを特徴とする。
According to the present invention, the object to be measured is scanned and irradiated with light, the position of the reflected light is detected by the light position detecting means, and the displacement of the object to be measured is continuously measured along the scanning direction. A first λ / 4 wavelength plate (3) for circularly polarizing light radiated from a light source in a predetermined rotation direction and irradiating the object with the light, the first λ / 4 wavelength plate (3);
A deflecting means (22) for scanning the light after passing through the .lambda. / 4 wavelength plate (3) in a predetermined direction, and for converting circularly polarized light reflected from the measurement object into linearly polarized light. A second λ / 4 wave plate (6a) having a corresponding length;
Of the light returned to linearly polarized light by the second λ / 4 wavelength plate, only reflected light linearly polarized in a predetermined direction is transmitted, and stray light components linearly polarized in another direction are bent. A polarizing beam splitter (7c) having a length corresponding to the scanning range, a light receiving the light transmitted through the polarizing beam splitter, and outputting a displacement signal corresponding to a displacement amount of the measurement object based on a light receiving position. And position detecting means (8).

【0012】また、請求項7記載のように、請求項6記
載の前記偏光ビームスプリッタ(7c)に代えて前記直
線偏光に戻された光のうち所定方向に直線偏光されてい
る反射光のみ透過させ、他の方向に直線偏光されている
迷光成分を透過させないものであり、前記走査範囲に対
応した長さを有する偏光板が用いられた構成とすること
もできる。
According to a seventh aspect of the present invention, only the reflected light which is linearly polarized in a predetermined direction is transmitted among the light returned to the linearly polarized light instead of the polarization beam splitter (7c) according to the sixth aspect. The stray light component which is linearly polarized in the other direction is not transmitted, and a configuration using a polarizing plate having a length corresponding to the scanning range may be used.

【0013】また、請求項8記載のように、請求項6記
載の前記偏光ビームスプリッタ(7c)に代えて前記直
線偏光に戻された光のうち所定方向に直線偏光されてい
る反射光を所定方向に屈曲させ、他の方向に直線偏光さ
れている迷光成分を透過させるものであり、前記走査範
囲に対応した長さを有する偏光ミラーが用いられ、前記
光位置検出手段(8)は、偏光ミラーで屈曲された光を
受光する構成とすることもできる。
According to an eighth aspect of the present invention, in place of the polarization beam splitter (7c) according to the sixth aspect, of the light returned to the linearly polarized light, reflected light linearly polarized in a predetermined direction is reflected. And a polarizing mirror having a length corresponding to the scanning range is used, and the light position detecting means (8) is provided with a polarized light. A configuration in which the light bent by the mirror is received may be employed.

【0014】放射された光は、λ/4波長板3により所
定の回転方向を有する円偏光とされて測定対象11に照
射される。測定対象11の反射光はλ/4波長板6によ
り直線偏光に戻された後、偏光ビームスプリッタ7を透
過して光位置検出手段8の受光面に入射される。光位置
検出手段8は、受光面上での反射光の受光位置に応じて
測定対象11の変位量に対応した変位信号を出力する。
測定対象11の反射光が近隣の測定対象12で2次反射
してλ/4波長板6方向に反射されても、この迷光成分
33は逆の回転方向を有する円偏光状態であり、偏光ビ
ームスプリッタ7を透過せず、屈曲され光位置検出手段
8に入射されず、測定精度を悪化させない。
The emitted light is converted into circularly polarized light having a predetermined rotation direction by the λ / 4 wavelength plate 3 and is irradiated on the measurement object 11. The reflected light of the measurement target 11 is returned to linearly polarized light by the λ / 4 wavelength plate 6, and then passes through the polarization beam splitter 7 and is incident on the light receiving surface of the light position detecting means 8. The light position detecting means 8 outputs a displacement signal corresponding to the amount of displacement of the measuring object 11 according to the light receiving position of the reflected light on the light receiving surface.
Even if the reflected light of the measurement target 11 is secondarily reflected by the neighboring measurement target 12 and reflected in the direction of the λ / 4 wavelength plate 6, the stray light component 33 is in a circularly polarized state having the opposite rotation direction, and the polarized beam The light does not pass through the splitter 7, is bent and does not enter the light position detecting means 8, and does not deteriorate the measurement accuracy.

【0015】[0015]

【発明の実施の形態】図1は、本発明の変位測定装置を
示す概要図である。従来技術で説明した箇所には同一符
号を附してある。光源(レーザ)1からの放射光軸上に
は、コリメータレンズ2、円偏光手段3、投光レンズ4
が設けられる。測定対象11からの反射光軸上には、結
像レンズ5、直線偏光手段6、透過偏光手段7、光位置
検出手段8が設けられる。これら放射光と反射光は、所
定の角度θを有している。これら光軸上には、光の偏光
方向を記載した。
FIG. 1 is a schematic diagram showing a displacement measuring apparatus according to the present invention. The parts described in the related art are denoted by the same reference numerals. A collimator lens 2, a circularly polarizing means 3, and a light projecting lens 4 are provided on an optical axis of light emitted from a light source (laser) 1.
Is provided. An imaging lens 5, a linear polarizing means 6, a transmitting polarizing means 7, and a light position detecting means 8 are provided on an optical axis reflected from the measuring object 11. The emitted light and the reflected light have a predetermined angle θ. On these optical axes, the polarization direction of light is described.

【0016】レーザ1は、所定の偏光成分を有する(直
線偏光)の光を放射する。コリメータレンズ2は、この
放射された光を平行光にする。円偏光手段3は、この光
を円偏光にするλ/4波長板が用いられる。投光レンズ
4は、この光を測定対象11上で光スポットをつくる。
The laser 1 emits light having a predetermined polarization component (linearly polarized light). The collimator lens 2 converts the emitted light into parallel light. As the circularly polarizing means 3, a λ / 4 wavelength plate for converting the light into circularly polarized light is used. The light projecting lens 4 forms a light spot on the measurement target 11 using the light.

【0017】結像レンズ5は、測定対象11からの反射
光が光位置検出手段8上で光スポットをつくるよう結像
させる。直線偏光手段6は、円偏光の反射光を直線偏光
にするλ/4波長板が用いられる。この直線偏光手段6
で用いられるλ/4波長板は、円偏光手段3のものと同
一構成のものを用い、光軸設定の向きを異ならせて配置
している。具体的には、円偏光手段3と直線偏光手段6
とでは、λ/4波長板の光学軸を90°変えて配置して
いる。
The image forming lens 5 forms an image so that the reflected light from the measuring object 11 forms a light spot on the light position detecting means 8. As the linear polarization means 6, a λ / 4 wavelength plate for converting circularly polarized reflected light into linearly polarized light is used. This linear polarization means 6
The λ / 4 wavelength plate used in (1) has the same configuration as that of the circularly polarizing means 3 and is arranged so that the direction of setting the optical axis is different. Specifically, the circular polarization means 3 and the linear polarization means 6
In, the optical axis of the λ / 4 wavelength plate is changed by 90 °.

【0018】透過偏光手段7は、直線偏光とされた反射
光のうち、所定の偏光方向の光のみ透過させ、異なる偏
光方向の光(例えば90度異なる偏光方向の光)を屈曲
させる偏光ビームスプリッタが用いられる。光位置検出
手段8は、反射光を受光する受光面の位置に応じた検出
信号を出力するポジションセンサが用いられる。
The transmission polarization means 7 is a polarization beam splitter that transmits only light of a predetermined polarization direction out of the linearly polarized reflected light and bends light of a different polarization direction (for example, light of a polarization direction different by 90 degrees). Is used. As the light position detecting means 8, a position sensor that outputs a detection signal according to the position of the light receiving surface that receives the reflected light is used.

【0019】上記構成によれば、レーザから放射された
光は測定対象11にあたり、光位置検出手段8の受光面
上の所定箇所に点状の光スポットをつくる。この光スポ
ットは、測定対象11の変位量(例えば高さ)に対応し
た位置となり、光位置検出手段8は、この光スポットの
位置に対応した変位信号を出力する。
According to the above configuration, the light emitted from the laser strikes the object to be measured 11 and forms a spot-like light spot at a predetermined position on the light receiving surface of the light position detecting means 8. This light spot becomes a position corresponding to the amount of displacement (for example, height) of the measurement target 11, and the light position detecting means 8 outputs a displacement signal corresponding to the position of this light spot.

【0020】図示しない制御手段は、この光位置検出手
段8の変位信号に基づき、測定対象11の変位量(例え
ば高さ)を演算出力する。また、変位測定装置に対し測
定対象11を相対的に水平移動させる制御を行うことに
より、測定対象11の変位量を該移動方向に沿って連続
的に測定して、測定対象11の表面形状や断面形状を算
出することもできる。
The control means (not shown) calculates and outputs a displacement amount (for example, height) of the measuring object 11 based on the displacement signal of the light position detecting means 8. Further, by controlling the displacement measuring device to relatively move the measurement target 11 horizontally, the displacement amount of the measurement target 11 is continuously measured along the moving direction, and the surface shape and the shape of the measurement target 11 are measured. The cross-sectional shape can also be calculated.

【0021】例えば、上記測定対象11は、LSI等の
半導体パッケージの端子であり、この端子の状態(コプ
ラナリティ)を測定することができる。これにより、B
GAなど光沢のある金属面(半田ボール)の各高さや、
複数の半田ボールの高さのバラツキ、半田ボールの欠
落、及び余分な半田ボールの検出等を行うことができ
る。
For example, the measurement target 11 is a terminal of a semiconductor package such as an LSI, and the state (coplanarity) of the terminal can be measured. Thereby, B
Each height of a shiny metal surface (solder ball) such as GA,
It is possible to detect variations in the height of a plurality of solder balls, missing solder balls, and detection of extra solder balls.

【0022】この際、λ/4波長板3は、放射の光軸3
1上の光を円偏光させ所定の回転方向を有して測定対象
11にあてる。対応して測定対象11からの反射の光軸
32は、円偏光が同様の回転方向を有してλ/4波長板
6に入射される。λ/4波長板6で直線偏光に戻され前
記所定の偏光角度を有して偏光ビームスプリッタ7を透
過し、光位置検出手段8に達する。
At this time, the λ / 4 wavelength plate 3 is provided with the optical axis 3 of the radiation.
The light on 1 is circularly polarized and applied to the measurement object 11 with a predetermined rotation direction. Correspondingly, as for the optical axis 32 of the reflection from the measurement object 11, the circularly polarized light is incident on the λ / 4 wavelength plate 6 with the same rotation direction. The light is returned to linearly polarized light by the λ / 4 wavelength plate 6, passes through the polarization beam splitter 7 with the predetermined polarization angle, and reaches the light position detecting means 8.

【0023】ここで、測定対象11が図示したように、
BGA等の狭ピッチで配置され、測定対象12により2
次反射が生じた場合を説明する。この場合、従来同様
に、光沢のある球状の測定対象11にあてられた光が、
上記反射の光軸32に加えて、近隣の測定対象12方向
に反射したとする(図中点線で記載)。この反射光(迷
光成分33と称する)は、この測定対象12で反射して
反射の光軸32と同方向に進行し偏光ビームスプリッタ
7に入射されることになる。
Here, as shown in FIG.
It is arranged at a narrow pitch such as BGA, and 2
The case where the next reflection occurs will be described. In this case, similarly to the related art, light applied to the glossy spherical measurement object 11 is
In addition to the above-mentioned optical axis 32 of the reflection, it is assumed that the light is reflected in the direction of the nearby measurement target 12 (shown by a dotted line in the figure). The reflected light (referred to as stray light component 33) is reflected by the measurement object 12, travels in the same direction as the optical axis 32 of the reflection, and enters the polarization beam splitter 7.

【0024】この迷光成分33は、測定対象12での反
射(即ち、通常時に比して1回分余計な反射:2次反
射)であり、円偏光の回転方向が上記反射の光軸32と
は逆向きとなる。したがって、λ/4波長板6は、この
迷光成分33は、直線偏光の偏光方向が異なる方向に偏
光させる。偏光ビームスプリッタ7は、この異なる偏光
方向を有する迷光成分33を透過させず、屈曲した角度
方向(反射の光軸32と90度直交する方向)に出射さ
せる。これにより、迷光成分33の光が光位置検出手段
8に入射することを防止できる。なお、偏光ビームスプ
リッタ7における迷光成分33の屈曲方向上には、光吸
収体15を配置させる等してこの迷光成分33を吸収さ
せて不要な反射を防止する構成が望ましい。
The stray light component 33 is a reflection at the object 12 to be measured (that is, extra reflection for one time compared to normal time: secondary reflection), and the rotation direction of the circularly polarized light is different from the optical axis 32 of the reflection. The direction is reversed. Therefore, the λ / 4 wavelength plate 6 polarizes the stray light component 33 in a direction in which the polarization direction of the linearly polarized light is different. The polarization beam splitter 7 does not transmit the stray light component 33 having the different polarization direction but emits it in a bent angle direction (a direction orthogonal to the reflection optical axis 32 by 90 degrees). Thereby, it is possible to prevent the light of the stray light component 33 from being incident on the light position detecting means 8. It is desirable that the stray light component 33 be absorbed in the bending direction of the stray light component 33 in the polarizing beam splitter 7 by absorbing the stray light component 33 to prevent unnecessary reflection.

【0025】上記のように、狭ピッチで配列されて2次
反射を生じやすい形状の測定対象11であっても、この
2次反射を要因とする測定誤差を生じることがなく、測
定精度を高精度化させることができる。なお、BGAに
限らず、ICリードの曲がりの測定や、プリント配線基
板上に狭ピッチで形成されたランド上に印刷されたクリ
ーム半田やそのリフロー後の半田形状測定等の、2次反
射を生じやすい形状の測定対象を測定する場合において
も同様の作用効果を得ることができる。
As described above, even if the measurement target 11 is arranged at a narrow pitch and has a shape that easily causes secondary reflection, the measurement error due to the secondary reflection does not occur, and the measurement accuracy is improved. Accuracy can be improved. Not only BGA but also secondary reflections such as measurement of IC lead bending, measurement of cream solder printed on lands formed at a narrow pitch on a printed wiring board and solder shape after reflow, etc. The same operation and effect can be obtained even when measuring a measurement object having an easy shape.

【0026】図2は、上記第1実施形態の構成の変形例
を示す図である。上記の偏光ビームスプリッタ7に代え
て、偏光板7aを用いる構成としてもよい。この構成の
場合、偏光板7aは、直線偏光に戻された所定の偏光方
向の反射の光軸32のみを透過させ、偏光方向の異なる
迷光成分33を透過しない。
FIG. 2 is a diagram showing a modification of the configuration of the first embodiment. Instead of the polarizing beam splitter 7, a configuration using a polarizing plate 7a may be adopted. In the case of this configuration, the polarizing plate 7a transmits only the optical axis 32 of the reflection in the predetermined polarization direction returned to the linearly polarized light, and does not transmit the stray light component 33 having a different polarization direction.

【0027】図3は、上記の偏光ビームスプリッタ7に
代えて、偏光ミラー7bを用いた構成を示す図である。
この偏光ミラー7bを用いた場合、反射の光軸32と、
迷光成分32の透過、屈曲の関係が上記偏光ビームスプ
リッタ7の場合と逆になるため、対応して反射の光軸3
2側に光位置検出手段8を配置すればよい。
FIG. 3 is a diagram showing a configuration in which a polarizing mirror 7b is used instead of the polarizing beam splitter 7 described above.
When this polarizing mirror 7b is used, the reflection optical axis 32,
Since the relationship between the transmission and bending of the stray light component 32 is opposite to that of the polarization beam splitter 7, the reflection optical axis 3
What is necessary is just to arrange the light position detection means 8 on the 2nd side.

【0028】上記構成の変位測定装置は、変位測定装置
と測定対象11を相対的に移動させ(例えば測定対象1
1側を図中矢印A方向に移動)させることにより、この
移動方向に沿って測定対象11の変位量を連続的に測定
する構成となっている。次に、図4に示す変位測定装置
は、本発明の第2実施形態であり、測定対象11に放射
する光を走査する走査型の構成である。測定対象11は
固定配置される。
In the displacement measuring device having the above-described structure, the displacement measuring device and the measuring object 11 are relatively moved (for example, the measuring object 1).
By moving the first side in the direction of arrow A in the figure), the displacement of the measurement target 11 is continuously measured along the moving direction. Next, the displacement measuring device shown in FIG. 4 is a second embodiment of the present invention, and has a scanning type configuration for scanning light emitted to the measurement target 11. The measurement object 11 is fixedly arranged.

【0029】レーザ1からの光軸31上には、λ/4波
長板3、偏向手段22が配置される。偏向手段22は、
回転ミラー型や振動ミラー型などが用いられ、光軸を図
中矢印B方向に偏向(走査)させる。レンズ23は、走
査された光を測定対象11に対し同一平面内でそれぞれ
平行となるように所定範囲(例えば30mm)で照射す
る。
On the optical axis 31 from the laser 1, the λ / 4 wavelength plate 3 and the deflecting means 22 are arranged. Deflection means 22
A rotating mirror type or a vibrating mirror type is used to deflect (scan) the optical axis in the direction of arrow B in the figure. The lens 23 irradiates the scanned light within a predetermined range (for example, 30 mm) so as to be parallel to the measurement target 11 in the same plane.

【0030】測定対象11からの反射の光軸32上に
は、レンズアレイ25、λ/4波長板6a、偏光ビーム
スプリッタ7c、結像レンズ26、光位置検出手段8が
設けられる。レンズアレイ25は、反射の光軸32の走
査幅に対応する長さを有し、平行光としてλ/4波長板
6aに出射する。λ/4波長板6a及び偏光ビームスプ
リッタ7cについても、反射の光軸32の走査幅に対応
する長さを有するものが用いられる。
A lens array 25, a λ / 4 wavelength plate 6a, a polarizing beam splitter 7c, an imaging lens 26, and a light position detecting means 8 are provided on the optical axis 32 of the reflection from the measuring object 11. The lens array 25 has a length corresponding to the scanning width of the reflection optical axis 32, and emits parallel light to the λ / 4 wavelength plate 6a. As the λ / 4 wavelength plate 6a and the polarization beam splitter 7c, those having a length corresponding to the scanning width of the reflection optical axis 32 are used.

【0031】偏光ビームスプリッタ7cは、反射の光軸
32を透過して結像レンズ26に出射し、迷光成分33
を屈曲して出射する。これにより、光位置検出手段8の
受光面には、結像レンズ26で集束された反射の光軸3
2のみの光スポットが形成される。
The polarization beam splitter 7 c transmits through the reflection optical axis 32 and exits to the imaging lens 26, and outputs a stray light component 33.
Is bent and emitted. As a result, the light receiving surface of the light position detecting means 8 is provided with the reflected optical axis 3 focused by the imaging lens 26.
Only two light spots are formed.

【0032】このように、走査型の変位測定装置におい
ても、同様に2次反射の影響を防止して高精度な変位測
定が可能となる。このような光軸の走査型によれば、第
1実施形態のものに比して変位測定を高速に行えるよう
になる。
As described above, also in the scanning type displacement measuring device, the influence of the secondary reflection can be similarly prevented and the displacement can be measured with high accuracy. According to such an optical axis scanning type, displacement measurement can be performed at a higher speed than that of the first embodiment.

【0033】上記第2実施形態の構成においても、偏光
ビームスプリッタ7cに代えて同様に走査幅に対応した
長さを有する偏光板や偏光ミラーを用いる構成とするこ
ともできる。
In the configuration of the second embodiment, a polarizing plate or a polarizing mirror having a length corresponding to the scanning width may be similarly used instead of the polarizing beam splitter 7c.

【0034】[0034]

【発明の効果】本発明の変位測定装置によれば、測定対
象の形状等によって近隣で反射した光が反射光軸側に反
射しても、光位置検出手段に入射させず除去することが
できる構成であるため、狭ピッチの測定対象を高精度に
測定できるようになる。上記効果は、汎用されているλ
/4波長板を放射及び反射光軸にそれぞれ設け、反射光
軸側に偏光ビームスプリッタを設けるだけの簡単な構成
で得ることができ、他の偏光素子への変更も可能であ
る。また、光軸を走査する走査型の変位測定装置におい
ても、走査幅の長さを有するλ/4波長板及び偏光ビー
ムスプリッタを同様に配置するだけで簡単に構成でき
る。
According to the displacement measuring apparatus of the present invention, even if light reflected nearby due to the shape of the object to be measured is reflected on the side of the reflected optical axis, it can be removed without being incident on the light position detecting means. With this configuration, a narrow-pitch measurement target can be measured with high accuracy. The above effect is achieved by
A quarter-wave plate can be obtained with a simple configuration in which a ビ ー ム wavelength plate is provided on each of the emission and reflection optical axes and a polarization beam splitter is provided on the reflection optical axis side, and a change to another polarization element is also possible. Also, a scanning displacement measuring device that scans the optical axis can be simply configured by simply disposing a λ / 4 wavelength plate having a scanning width and a polarizing beam splitter in the same manner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の変位測定装置の第1実施の形態を示す
概要図。
FIG. 1 is a schematic diagram showing a first embodiment of a displacement measuring device according to the present invention.

【図2】図1の構成の変形例を示す図。FIG. 2 is a diagram showing a modification of the configuration of FIG. 1;

【図3】図1の構成の変形例を示す図。FIG. 3 is a diagram showing a modification of the configuration of FIG. 1;

【図4】第2実施形態である走査型の変位測定装置を示
す概要図。
FIG. 4 is a schematic diagram illustrating a scanning displacement measurement device according to a second embodiment.

【図5】従来の変位測定装置を示す概要図。FIG. 5 is a schematic diagram showing a conventional displacement measuring device.

【符号の説明】[Explanation of symbols]

1…レーザ、2…コリメータレンズ、3,6,6a…λ
/4波長板、4…投光レンズ、5,26…結像レンズ、
7,7c…偏光ビームスプリッタ、7a…偏光板、7b
…偏光ミラー、8…光位置検出手段、11,12…測定
対象、22…偏向手段、23…レンズ、25…レンズア
レイ、31…照射光軸、32…反射光軸、33…迷光成
分。
1: laser, 2: collimator lens, 3, 6, 6a: λ
/ 4 wavelength plate, 4 ... light projection lens, 5,26 ... imaging lens,
7, 7c: polarizing beam splitter, 7a: polarizing plate, 7b
... Polarizing mirror, 8 ... Light position detecting means, 11, 12 ... Measurement object, 22 ... Deflecting means, 23 ... Lens, 25 ... Lens array, 31 ... Irradiation optical axis, 32 ... Reflection optical axis, 33 ... Stray light component.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永塚 一毅 東京都港区南麻布五丁目10番27号 アンリ ツ株式会社内 (72)発明者 辻村 映治 東京都港区南麻布五丁目10番27号 アンリ ツ株式会社内 Fターム(参考) 2F065 AA09 AA24 AA46 AA51 CC25 DD12 DD15 FF01 FF44 GG04 HH04 HH10 JJ16 KK01 LL10 LL13 LL32 LL36 LL37 LL62 MM03 MM16 2H042 AA04 AA09 AA21  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Kazuki Nagatsuka 5- 10-27 Minamiazabu, Minato-ku, Tokyo Anritsu Corporation (72) Inventor Eiji Tsujimura 5- 10-27 Minamiazabu, Minato-ku, Tokyo F-term in Anritsu Corporation (reference) 2F065 AA09 AA24 AA46 AA51 CC25 DD12 DD15 FF01 FF44 GG04 HH04 HH10 JJ16 KK01 LL10 LL13 LL32 LL36 LL37 LL62 MM03 MM16 2H042 AA04 AA09 AA21

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 測定対象に光を照射させ反射光の位置を
光位置検出手段で検出して該測定対象の変位量を非接触
で検出する変位測定装置において、 光源から放射される光を所定の回転方向に円偏光させ前
記測定対象に照射させる円偏光手段(3)と、 前記測定対象から反射された円偏光の光を直線偏光にす
る直線偏光手段(6)と、 前記直線偏光手段で直線偏光に戻された光のうち所定方
向に直線偏光されている反射光のみ前記光位置検出手段
に透過させる透過偏光手段(7)と、を備えたことを特
徴とする変位測定装置。
1. A displacement measuring apparatus for irradiating a measuring object with light and detecting a position of reflected light by an optical position detecting means to detect a displacement amount of the measuring object in a non-contact manner. A circularly polarizing means (3) for circularly polarizing in the direction of rotation and irradiating the object to be measured; a linearly polarizing means (6) for converting circularly polarized light reflected from the object to linearly polarized light; A transmission polarization means (7) for transmitting only reflected light, which is linearly polarized in a predetermined direction, of the light returned to linearly polarized light to the light position detection means.
【請求項2】 測定対象に光を照射させ反射光の位置を
光位置検出手段で検出して該測定対象の変位量を非接触
で検出する変位測定装置において、 光源から放射される光を所定の回転方向に円偏光させ前
記測定対象に照射させる第1のλ/4波長板(3)と、 前記測定対象から反射された円偏光の光を直線偏光にす
る第2のλ/4波長板(6)と、 前記第2のλ/4波長板で直線偏光に戻された光のうち
所定方向に直線偏光されている反射光のみ透過させ、他
の方向に直線偏光されている迷光成分を屈曲させる偏光
ビームスプリッタ(7)と、 前記偏光ビームスプリッタを透過した光を受光し、受光
位置に基づき前記測定対象の変位量に対応した変位信号
を出力する光位置検出手段(8)と、を備えたことを特
徴とする変位測定装置。
2. A displacement measuring device for irradiating a measuring object with light, detecting a position of reflected light by an optical position detecting means and detecting a displacement amount of the measuring object in a non-contact manner, wherein light emitted from a light source is determined in a predetermined manner. A first λ / 4 wave plate (3) for making the object to be circularly polarized in the direction of rotation and irradiating the object to be measured, and a second λ / 4 wave plate to make circularly polarized light reflected from the object to be linearly polarized And (6) transmitting only reflected light that is linearly polarized in a predetermined direction among the light that has been returned to linearly polarized light by the second λ / 4 wavelength plate, and removes stray light components that are linearly polarized in other directions. A polarizing beam splitter (7) to be bent; and a light position detecting means (8) for receiving light transmitted through the polarizing beam splitter and outputting a displacement signal corresponding to a displacement amount of the object to be measured based on a light receiving position. A displacement measuring device, comprising:
【請求項3】 請求項2記載の前記偏光ビームスプリッ
タ(7)に代えて前記直線偏光に戻された光のうち所定
方向に直線偏光されている反射光のみ透過させ、他の方
向に直線偏光されている迷光成分を透過させない偏光板
(7a)が用いられた変位測定装置。
3. The light beam returned to the linearly polarized light instead of the polarizing beam splitter (7) according to claim 2 transmits only reflected light that is linearly polarized in a predetermined direction and linearly polarized light in another direction. A displacement measuring device using a polarizing plate (7a) that does not transmit the stray light component.
【請求項4】 請求項2記載の前記偏光ビームスプリッ
タ(7)に代えて前記直線偏光に戻された光のうち所定
方向に直線偏光されている反射光を所定方向に屈曲さ
せ、他の方向に直線偏光されている迷光成分を透過させ
る偏光ミラー(7b)が用いられ、 前記光位置検出手段(8)は、偏光ミラーで屈曲された
光を受光する構成とされた変位測定装置。
4. The light beam returned to the linearly polarized light instead of the polarization beam splitter (7) according to claim 2, wherein the reflected light, which is linearly polarized in a predetermined direction, is bent in a predetermined direction and is bent in another direction. A displacement measuring device, wherein a polarizing mirror (7b) for transmitting a stray light component which is linearly polarized is used, and the optical position detecting means (8) receives light bent by the polarizing mirror.
【請求項5】 前記変位測定装置に対し、前記測定対象
(11)を相対的に移動させて測定対象の変位量を該移
動方向に沿って連続的に測定させる制御手段を備えた請
求項1乃至4のいずれかに記載の変位測定装置。
5. A control means for moving the measurement target relative to the displacement measuring device and continuously measuring a displacement amount of the measurement target along the moving direction. 5. The displacement measuring device according to any one of claims 4 to 4.
【請求項6】 測定対象に光を走査して照射させ反射光
の位置を光位置検出手段で検出して該測定対象の変位量
を該走査方向に沿って連続的に非接触で検出する変位測
定装置において、 光源から放射される光を所定の回転方向に円偏光させ前
記測定対象に照射させる第1のλ/4波長板(3)と、 前記第1のλ/4波長板(3)通過後の光を所定方向に
走査させる偏向手段(22)と、 前記測定対象から反射された円偏光の光を直線偏光にす
るものであり、前記走査範囲に対応した長さを有する第
2のλ/4波長板(6a)と、 前記第2のλ/4波長板で直線偏光に戻された光のうち
所定方向に直線偏光されている反射光のみ透過させ、他
の方向に直線偏光されている迷光成分を屈曲させるもの
であり、前記走査範囲に対応した長さを有する偏光ビー
ムスプリッタ(7c)と、 前記偏光ビームスプリッタを透過した光を受光し、受光
位置に基づき前記測定対象の変位量に対応した変位信号
を出力する光位置検出手段(8)と、を備えたことを特
徴とする変位測定装置。
6. A displacement for scanning and irradiating a measuring object with light, detecting a position of reflected light by a light position detecting means, and continuously detecting a displacement amount of the measuring object in a non-contact manner along the scanning direction. In the measuring device, a first λ / 4 wavelength plate (3) for circularly polarizing light emitted from a light source in a predetermined rotation direction and irradiating the object to be measured with the first λ / 4 wavelength plate (3) A deflecting means (22) for scanning the light after passing in a predetermined direction; and a second means for converting the circularly polarized light reflected from the measurement object into linearly polarized light and having a length corresponding to the scanning range. a λ / 4 wavelength plate (6a), and transmitting only reflected light that is linearly polarized in a predetermined direction out of the light returned to linearly polarized light by the second λ / 4 wavelength plate, and linearly polarized in another direction. This is to bend the stray light component, and has a length corresponding to the scanning range. A light beam splitter (7c); and a light position detecting means (8) for receiving light transmitted through the polarization beam splitter and outputting a displacement signal corresponding to a displacement amount of the measurement target based on a light receiving position. A displacement measuring device characterized by the above-mentioned.
【請求項7】 請求項6記載の前記偏光ビームスプリッ
タ(7c)に代えて前記直線偏光に戻された光のうち所
定方向に直線偏光されている反射光のみ透過させ、他の
方向に直線偏光されている迷光成分を透過させないもの
であり、前記走査範囲に対応した長さを有する偏光板が
用いられた変位測定装置。
7. Instead of the polarization beam splitter (7c) according to claim 6, only the reflected light linearly polarized in a predetermined direction among the light returned to the linearly polarized light is transmitted, and the linearly polarized light in the other direction. A displacement measuring device that does not transmit the stray light component and uses a polarizing plate having a length corresponding to the scanning range.
【請求項8】 請求項6記載の前記偏光ビームスプリッ
タ(7c)に代えて前記直線偏光に戻された光のうち所
定方向に直線偏光されている反射光を所定方向に屈曲さ
せ、他の方向に直線偏光されている迷光成分を透過させ
るものであり、前記走査範囲に対応した長さを有する偏
光ミラーが用いられ、 前記光位置検出手段(8)は、偏光ミラーで屈曲された
光を受光する構成とされた変位測定装置。
8. A light beam which has been linearly polarized in a predetermined direction among the light beams returned to the linearly polarized light instead of the polarization beam splitter (7c) according to claim 6, is bent in a predetermined direction, and is bent in another direction. A polarizing mirror having a length corresponding to the scanning range is used, and the light position detecting means (8) receives the light bent by the polarizing mirror. A displacement measuring device configured to
JP27171198A 1998-09-25 1998-09-25 Displacement measuring device Expired - Fee Related JP3547628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27171198A JP3547628B2 (en) 1998-09-25 1998-09-25 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27171198A JP3547628B2 (en) 1998-09-25 1998-09-25 Displacement measuring device

Publications (2)

Publication Number Publication Date
JP2000097631A true JP2000097631A (en) 2000-04-07
JP3547628B2 JP3547628B2 (en) 2004-07-28

Family

ID=17503785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27171198A Expired - Fee Related JP3547628B2 (en) 1998-09-25 1998-09-25 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP3547628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343153A (en) * 2005-06-07 2006-12-21 Konica Minolta Sensing Inc Three-dimensional position measuring method and apparatus used for three-dimensional position measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343153A (en) * 2005-06-07 2006-12-21 Konica Minolta Sensing Inc Three-dimensional position measuring method and apparatus used for three-dimensional position measurement
US7502100B2 (en) 2005-06-07 2009-03-10 Konica Minolta Sensing, Inc. Three-dimensional position measurement method and apparatus used for three-dimensional position measurement

Also Published As

Publication number Publication date
JP3547628B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
JP6111617B2 (en) Laser radar equipment
US7359068B2 (en) Laser triangulation method for measurement of highly reflective solder balls
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP2651093B2 (en) Shape detection method and device
KR19990008085A (en) Method and apparatus of three-dimensionalization based on triangulation using inclined scanning beam of radiant energy
US7271919B2 (en) Confocal displacement sensor
KR100632650B1 (en) Print-Soldering Inspection Apparatus
JP2510786B2 (en) Object shape detection method and apparatus
JPS5860593A (en) Method and device for detecting shape
JPH04319615A (en) Optical height measuring apparatus
JP3547628B2 (en) Displacement measuring device
JPWO2019163210A1 (en) Scanning optics and rider
JP3203851B2 (en) Inspection device for mounted printed circuit boards
JP2000321019A (en) Displacement measuring instrument
JP3817232B2 (en) Displacement measuring device
JP3399468B2 (en) Inspection device for mounted printed circuit boards
JP4112112B2 (en) Displacement measuring device
JP2000097634A (en) Image pickup device and optical sensor using the device
JPH11173823A (en) Optical inspection equipment
JP2006189390A (en) Optical displacement measuring method and device
JP2001124523A (en) Bump-top detecting method and method and apparatus for measuring bump height using the same
JP3232811B2 (en) Inspection method of mounted printed circuit board
JP2005077158A (en) Surface inspection device and method
JPH0228518A (en) Displacement measuring instrument
JPH09304531A (en) Laser distance-measuring apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees