JP2000097623A - Interferometer - Google Patents

Interferometer

Info

Publication number
JP2000097623A
JP2000097623A JP10268793A JP26879398A JP2000097623A JP 2000097623 A JP2000097623 A JP 2000097623A JP 10268793 A JP10268793 A JP 10268793A JP 26879398 A JP26879398 A JP 26879398A JP 2000097623 A JP2000097623 A JP 2000097623A
Authority
JP
Japan
Prior art keywords
wavefront
light source
null
interferometer
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10268793A
Other languages
Japanese (ja)
Inventor
Takashi Genma
隆志 玄間
Shigeru Nakayama
繁 中山
Hajime Ichikawa
元 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10268793A priority Critical patent/JP2000097623A/en
Priority to US09/401,552 priority patent/US6312373B1/en
Publication of JP2000097623A publication Critical patent/JP2000097623A/en
Priority to US09/870,734 priority patent/US6456382B2/en
Priority to US10/217,015 priority patent/US6765683B2/en
Priority to US10/461,379 priority patent/US20030215053A1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To permit the highly accurate calibration of chiefly a null wave front with a small amount of aspheric surface by alternately arrangiong a reflex primary standard with a spherical surface accurately calibrated separately instead of a test surface and measuring a wavefront for measurement from the reflex primary standard. SOLUTION: Instead of the test surface of a specimen, a reflex primary standard 6 with a spherical reflector surface accurately calibrated separately is set to perform interference measurement. An incident wavefront to a null element 4 is taken as a spherical wave from a Fizeau lens 7, and a Fizeau surface 7a is used as a reference surface. The Fizeau lens 7 may be a divergent system. The Fizeau surface as a reference surface with a plane-wave incident wavefront to the null element 4 is used. As a beam of light to be transformed by the null element 4 becomes a convergent beam of light, it becomes possible to measure not only a concave surface but also a convex surface. In the calibration of a null wavefront 4a in this case, a wavefront once converged and diverged at a concave reflector surface 6a is calibrated, and the shape of the null wave front 4a at a location in actual use is computed backward from the calibrated shape of the wavefront. Through the use of a pinhole interferometer for calibrating the concave reflector surface 6a, it becomes possible to perform accurate calibration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非球面の波面形状
を高精度に測定するための干渉計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer for measuring an aspherical wavefront shape with high accuracy.

【0002】[0002]

【従来の技術】従来より、非球面形状の計測には、ヌル
素子を用いた所謂ヌル干渉計測が行われている。このヌ
ル素子としては、主に球面で構成される球面レンズを用
いたヌルレンズや、輪帯状の回折格子が平面板に形成さ
れたゾーンプレートが使用される。
2. Description of the Related Art Conventionally, so-called null interference measurement using a null element has been performed for measuring an aspherical shape. As the null element, a null lens using a spherical lens mainly composed of a spherical surface, or a zone plate in which a ring-shaped diffraction grating is formed on a flat plate is used.

【0003】図5は、従来よりの、ヌルレンズを用いた
ヌル計測の測定配置図である。ここでの干渉計測は、フ
ィゾー干渉計測を少し変形したものである。即ち、干渉
計1から射出された平面波2は、フィゾー平面板3に形
成された高精度なフィゾー面3aから反射光される。ま
た、フィゾー面3aを透過した平面波は、ヌル素子4に
より、測定の基準位置で所望の非球面設計形状に変換さ
れた測定波面(ヌル波面)4aに変換され、基準位置に
セットされた被検物5が有する被検面5aに到達する。
被検面5aに到達した光は、この被検面5aから反射さ
れ、フィゾー面3aから反射された光と干渉を生じ、干
渉計1の内部に縞一色の干渉縞を形成する。この干渉縞
を、図示しないCCDなどの検知器により検知し、得ら
れた信号を、干渉計の情報を処理する情報処理システム
により解析する。トワイマン・グリーン干渉計を用いて
も、同様の計測が可能である。
FIG. 5 is a conventional measurement arrangement diagram for null measurement using a null lens. The interference measurement here is a slightly modified version of the Fizeau interference measurement. That is, the plane wave 2 emitted from the interferometer 1 is reflected from the highly accurate Fizeau surface 3 a formed on the Fizeau plane plate 3. The plane wave transmitted through the Fizeau surface 3a is converted by the null element 4 into a measurement wavefront (null wavefront) 4a converted into a desired aspherical design shape at the measurement reference position, and the test object set at the reference position. The object 5 reaches the surface 5a to be inspected.
The light that has reached the test surface 5a is reflected from the test surface 5a and interferes with the light reflected from the Fizeau surface 3a to form a single-color interference fringe inside the interferometer 1. This interference fringe is detected by a detector such as a CCD (not shown), and the obtained signal is analyzed by an information processing system that processes information of the interferometer. Similar measurements are possible using a Twyman-Green interferometer.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この被
検面形状を正確に知るためには、ヌル波面に誤差が有っ
てはならないため、ヌル素子の製作に高度な技術を必要
としていた。具体的には、ヌル素子を構成する光学部材
の光学特性を事前に高精度に測定しておき、その測定値
を基に光線追跡からヌル波面の形状を算出するため、ヌ
ル素子の製作に時間がかかっていた。そのため、非球面
を測定するのに時間がかかると言う問題点が有った。
However, in order to accurately know the shape of the surface to be inspected, there must be no error in the null wavefront, so that a high-level technique is required for manufacturing the null element. Specifically, the optical characteristics of the optical element constituting the null element are measured in advance with high precision, and the shape of the null wavefront is calculated from the ray trace based on the measured values. Was hanging. Therefore, there is a problem that it takes time to measure the aspherical surface.

【0005】本発明は上記従来技術の欠点に鑑みなされ
たもので、主に非球面量の小さなヌル波面を、高精度か
つ短時間で校正することを可能とすることを目的とす
る。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has as its object to enable a highly accurate and short-time calibration of a null wavefront having a small aspherical amount.

【0006】[0006]

【課題を解決する為の手段】本発明では、上記目的を達
成するために、第1の手段として、光源から出射された
光束であってヌル素子により所望の形状に変換して被検
面に照射されるとともに、前記被検面で反射された測定
用波面と、前記光源から出射された光束であって参照面
に照射され反射された参照用波面とを互いに干渉させ、
干渉により生じる干渉縞の状態を検知することにより、
前記被検面の面形状を計測する干渉計において、前記被
検面の代わりに、別途正確に校正された球面を有するレ
フ原器を交代配置し、該レフ原器からの測定用波面を計
測することにより、前記ヌル素子で形成される波面を決
定することを特徴とする干渉計を提供する。これによ
り、ヌル波面の形状を正確に知ることが可能になる。
According to the present invention, in order to achieve the above object, as a first means, a light beam emitted from a light source, which is converted into a desired shape by a null element and is applied to a surface to be inspected. Irradiated, the measurement wavefront reflected on the surface to be measured, and the reference wavefront reflected and illuminated on the reference surface is a light flux emitted from the light source,
By detecting the state of interference fringes caused by interference,
In the interferometer for measuring the surface shape of the surface to be measured, instead of the surface to be measured, a ref prototype having a spherical surface calibrated separately and separately is alternately arranged, and a measurement wavefront from the ref prototype is measured. By doing so, a wavefront formed by the null element is determined. This makes it possible to accurately know the shape of the null wavefront.

【0007】また、本発明では、第2の手段として、光
源から出射された光束であってヌル素子により所望の形
状に変換して被検面に照射されるとともに、前記被検面
で反射された測定用波面と、前記光源から出射された光
束であって参照面に照射され反射された参照用波面とを
互いに干渉させ、干渉により生じる干渉縞の状態を検知
することにより、前記被検面の面形状を計測する干渉計
において、前記光源は、所定の大きさの点光源であっ
て、反射面上から射出され、球面波を形成するものであ
り、前記被検面の代わりに、別途正確に校正された球面
を有するレフ原器を交代配置し、該レフ原器からの測定
用波面を、前記反射面で反射折り返しさせて、前記参照
用波面と互いに干渉させ、干渉縞を計測することによ
り、前記ヌル素子で形成される波面を決定することを特
徴とする干渉計を提供する。これにより、ヌル波面の形
状とともに、ヌル素子の透過特性を正確に知ることが可
能になる。
Further, in the present invention, as a second means, a light beam emitted from a light source is converted into a desired shape by a null element and is radiated to a surface to be measured, and is reflected by the surface to be measured. The measurement wavefront, the light flux emitted from the light source and the reference wavefront illuminated and reflected on the reference surface interfere with each other, and by detecting the state of interference fringes caused by the interference, the test surface In the interferometer that measures the surface shape of the above, the light source is a point light source of a predetermined size, which is emitted from the reflective surface and forms a spherical wave, and is separately provided instead of the test surface. A ref prototype having an accurately calibrated spherical surface is alternately arranged, and a wavefront for measurement from the ref prototype is reflected and folded back on the reflecting surface to interfere with the reference wavefront to measure interference fringes. By this, it is possible to form Determining the wavefront to provide an interferometer characterized by. This makes it possible to accurately know the shape of the null wavefront and the transmission characteristics of the null element.

【0008】第3の手段は、光源から出射された光束で
あってヌル素子により所望の形状に変換して被検面に照
射されるとともに、前記被検面で反射された測定用波面
と、前記光源から出射された光束であって参照面に照射
され反射された参照用波面とを互いに干渉させ、干渉に
より生じる干渉縞の状態を検知することにより、前記被
検面の面形状を計測する干渉計において、前記被検面の
代わりに、所定の大きさの点光源であって、反射面を有
し、球面波を形成する点光源形成手段を、交代配置し、
該点光源形成手段からの波面を、ヌル素子を通して干渉
計測することにより、前記ヌル素子で形成される波面を
決定することを特徴とする干渉計を提供する。これによ
り、レフ原器を用いること無く、ヌル波面の形状を正確
に知ることが可能となる。
The third means is a light beam emitted from a light source, which is converted into a desired shape by a null element and illuminated on a surface to be measured, and a wavefront for measurement reflected by the surface to be measured; The light beam emitted from the light source, and the reference wavefront illuminated and reflected on the reference surface interfere with each other, and the state of interference fringes generated by the interference is detected to measure the surface shape of the test surface. In the interferometer, instead of the surface to be detected, a point light source having a predetermined size, having a reflecting surface, and a point light source forming unit that forms a spherical wave is alternately arranged,
An interferometer is provided, wherein a wavefront formed by the null element is determined by measuring the wavefront from the point light source forming means through a null element. This makes it possible to accurately know the shape of the null wavefront without using a Ref prototype.

【0009】第4の手段は、光源から出射された光束で
あってヌル素子により所望の形状に変換して被検面に照
射されるとともに、前記被検面で反射された測定用波面
と、前記光源から出射された光束であって参照面に照射
され反射された参照用波面とを互いに干渉させ、干渉に
より生じる干渉縞の状態を検知することにより、前記被
検面の面形状を計測する干渉計において、前記光源は、
所定の大きさの点光源であって、反射面上から射出さ
れ、球面波を形成するものであり、前記被検面の代わり
に、所定の大きさの点光源であって、反射面を有し、球
面波を形成する点光源形成手段を、交代配置し、前記ヌ
ル素子で形成される波面を決定することを特徴とする干
渉計を提供する。これにより、レフ原器を用いること無
く、ヌル波面の形状とともに、ヌル素子の透過特性を正
確に知ることが可能になる。
The fourth means is a light beam emitted from a light source, which is converted into a desired shape by a null element and radiated to a surface to be measured, and a wavefront for measurement reflected by the surface to be measured; The light beam emitted from the light source, and the reference wavefront illuminated and reflected on the reference surface interfere with each other, and the state of interference fringes generated by the interference is detected to measure the surface shape of the test surface. In the interferometer, the light source is
A point light source having a predetermined size, which is emitted from a reflecting surface to form a spherical wave, and is a point light source having a predetermined size instead of the surface to be detected, which has a reflecting surface. Further, an interferometer is provided, wherein point light source forming means for forming a spherical wave are alternately arranged to determine a wavefront formed by the null element. Thus, it is possible to accurately know the shape of the null wavefront and the transmission characteristics of the null element without using a ref prototype.

【0010】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が実施の形態に限定されるものではない。
In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used for easy understanding of the present invention. However, the present invention is not limited to this.

【0011】[0011]

【発明の実施の形態】〔本発明による干渉計の説明〕以
下、図1を用いて、本発明による干渉計について説明す
る。本発明による干渉計は、図5に示した従来例と比較
すると、被検物の被検面(非球面)の代わりに、別途正
確に校正された球面のレフ面を有するレフ原器をセット
し、干渉計測するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Description of Interferometer According to the Present Invention] An interferometer according to the present invention will be described below with reference to FIG. Compared with the conventional example shown in FIG. 5, the interferometer according to the present invention sets a reflex prototype having a spherical reflex surface which is separately and accurately calibrated instead of the test surface (aspheric surface) of the test object. Then, interference measurement is performed.

【0012】図1(a)に示す干渉計で、図5に示した
従来例と比較して異なる点は、ヌル素子への入射波面を
フィゾーレンズからの球面波とし、参照面としてフィゾ
ー面を使用した点である。このフィゾーレンズとして
は、図に示すような収束系のものに限定される必要は無
く、発散系でも良い。図1(b)示す干渉計は、ヌル素
子への入射波面が、図5に示した従来例と同じ平面波で
あり、参照面としてフラットなフィゾー面を使用した例
である。図5に示した従来例と異なる点は、ヌル素子で
変換される光束は収束光束となり、凹面のみならず凸面
の測定も可能とした点である。この場合のヌル波面の校
正方法としては、凹面のレフ面で、一旦収束してから発
散する波面の校正を行い、実際に使用される位置(図の
太線)でのヌル波面の形状を、校正された波面形状から
逆算する。凹面のレフ面の校正には、ピンホール干渉計
(Point Diffraction Interferometer、以下ではPDI
と称す)を用いれば、高精度な校正が可能となる。
The difference between the interferometer shown in FIG. 1A and the conventional example shown in FIG. 5 is that the wavefront incident on the null element is a spherical wave from a Fizeau lens, and the Fizeau surface is used as a reference surface. This is the point used. The Fizeau lens need not be limited to a convergent system as shown in the figure, but may be a divergent system. The interferometer shown in FIG. 1B is an example in which the wavefront incident on the null element is the same plane wave as the conventional example shown in FIG. 5 and a flat Fizeau surface is used as a reference surface. The difference from the conventional example shown in FIG. 5 is that the light beam converted by the null element is a convergent light beam, so that not only a concave surface but also a convex surface can be measured. As a method of calibrating the null wavefront in this case, the wavefront that converges and then diverges on the concave reflex surface is calibrated, and the shape of the null wavefront at the position actually used (thick line in the figure) is calibrated. Back calculation from the wavefront shape. For calibration of concave refraction surfaces, use a pinhole interferometer (Point Diffraction Interferometer, hereinafter PDI).
) Enables highly accurate calibration.

【0013】非球面量が小さな非球面の場合は、図1に
示す状態で一括全面測定が可能である。しかし、干渉計
のCCDの分解能を超える干渉縞を発生させてしまう非
球面の場合は、レフ原器をヌル波面に対して相対的に光
軸方向に変位させて、複数の輪帯状の波面データを干渉
計測し、各データの重複領域が無理なく重なるように繋
ぎあわせる、所謂波面合成の手法を適用することによ
り、同様に全面のデータを得る。 〔本発明による干渉計の第一の実施例の説明〕図2に示
す実施例は、図1(a)に示すフィゾー干渉計のヌル素
子を、点光源からの理想的な球面波を利用するPDIを
用い、計測する実施例である。
In the case of an aspherical surface having a small amount of aspherical surface, the whole surface can be collectively measured in the state shown in FIG. However, in the case of an aspheric surface that generates interference fringes exceeding the resolution of the CCD of the interferometer, the ref prototype is displaced in the optical axis direction relative to the null wavefront, and a plurality of annular wavefront data is obtained. Is measured, and the so-called wavefront synthesis method of joining the data so that the overlapping areas of the data are overlapped with each other without difficulty is applied, thereby similarly obtaining the entire data. [Explanation of First Embodiment of Interferometer According to the Present Invention] The embodiment shown in FIG. 2 uses the null element of the Fizeau interferometer shown in FIG. This is an embodiment in which measurement is performed using PDI.

【0014】図2(a)に示す実施例は、発散系のヌル
素子を用いた場合であり、図2(b)に示す実施例は、
収束系のヌル素子を用いた場合である。後者は、凸面の
測定用のヌル波面の校正を行う場合に採用される。図2
に示すこれらの例では、ヌル素子に入射する球面波が、
点光源からの理想的な球面波であるため、ヌル波面の形
状のみならず、ヌル素子の透過特性も、同時に正確に知
ることが可能となる。 〔本発明による干渉計の第二の実施例の説明〕図3に示
す実施例は、図1(b)に示した、収束光束のヌル波面
を発生させるヌル素子の測定に、適用されるものであ
る。ここで、ヌル素子へのフィゾー面からの入射波面と
して、それぞれ、図3(a)に示す実施例では球面波を
用いた場合で、図3(b)に示す実施例では平面波を用
いた場合である。球面波としては、収束光束であるか発
散光束であるかは問わない。そして、レフ面による校正
の代わりに、PDIを用いるものである。このPDI
が、本発明の点光源形成手段に相当する。
The embodiment shown in FIG. 2A is a case where a diverging null element is used, and the embodiment shown in FIG.
This is a case where a converging system null element is used. The latter is adopted when calibrating a null wavefront for measuring a convex surface. FIG.
In these examples shown in Figure 3, the spherical wave incident on the null element is
Since it is an ideal spherical wave from a point light source, not only the shape of the null wavefront but also the transmission characteristics of the null element can be accurately known at the same time. [Explanation of Second Embodiment of Interferometer According to the Present Invention] The embodiment shown in FIG. 3 is applied to the measurement of a null element for generating a null wavefront of a convergent light beam shown in FIG. It is. Here, as the incident wavefront from the Fizeau surface to the null element, a spherical wave is used in the embodiment shown in FIG. 3A, and a plane wave is used in the embodiment shown in FIG. It is. It does not matter whether the spherical wave is a convergent light beam or a divergent light beam. Then, PDI is used instead of the calibration using the reflex surface. This PDI
Corresponds to the point light source forming means of the present invention.

【0015】PDIで観測するために、収束光束のヌル
波面とし、その略集光点をPDIの点光源と合致させ
る。これにより、ピンホール周辺部の反射面から反射さ
れたヌル波面と理想的な球面波とが、干渉縞を形成す
る。 〔本発明による干渉計の第三の実施例説明〕図4に示す
実施例は、図3(a)に示した、球面波を発生させるフ
ィゾーレンズの代わりに、PDIを2つ用い、第二のP
DIからの測定光を利用するものである。図3に示した
配置では、PDIからの測定光がフィゾー干渉計のノイ
ズとなる可能性があり、この場合、偏光素子を併用して
ノイズカットを行うことが好ましい。
For observation by PDI, a null wavefront of a convergent light beam is used, and its substantially converging point is matched with a point light source of PDI. As a result, the null wavefront reflected from the reflection surface around the pinhole and the ideal spherical wave form interference fringes. [Explanation of Third Embodiment of Interferometer According to the Present Invention] The embodiment shown in FIG. 4 uses two PDIs instead of the Fizeau lens for generating a spherical wave shown in FIG. P
The measurement light from the DI is used. In the arrangement shown in FIG. 3, there is a possibility that the measurement light from the PDI may become noise of the Fizeau interferometer, and in this case, it is preferable to use a polarizing element together to perform noise cut.

【0016】それに対して、図4に示す測定配置では、
第二のPDIの点光源を形成するピンホールが、ノイズ
カットの作用をすると言う利点を有する。また、ヌル波
面形状及びヌル素子の透過特性の正確な校正が可能とな
るのみならず、2個のPDIによる正逆方向からの透過
特性の校正が可能となるため、更なる精度向上が可能と
なる。
On the other hand, in the measurement arrangement shown in FIG.
There is an advantage that the pinhole forming the point light source of the second PDI acts as a noise cut. In addition, not only can accurate calibration of the null wavefront shape and the transmission characteristics of the null element be performed, but also the transmission characteristics from the normal and reverse directions can be calibrated by two PDIs, so that further improvement in accuracy can be achieved. Become.

【0017】上記各実施例とも、実際に被検面を測定す
るときには、レフ原器や点光源形成手段やPDIを取り
外し、もとの被検面や光源に取り替えて、測定を行う。
In each of the above embodiments, when actually measuring the surface to be inspected, the measurement is carried out by removing the ref prototype, the point light source forming means and the PDI and replacing them with the original surface to be inspected and the light source.

【0018】[0018]

【発明の効果】以上のように、本発明に係る干渉計を採
用すれば、非球面のヌル素子の高精度で且つ短時間な校
正が可能となる。
As described above, by employing the interferometer according to the present invention, it is possible to calibrate an aspherical null element with high accuracy and in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る干渉計の原理説明図であ
る。
FIG. 1 is a diagram illustrating the principle of an interferometer according to the present invention.

【図2】図2は、本発明に係る干渉計の第一の実施例の
説明図である。
FIG. 2 is an explanatory diagram of a first embodiment of an interferometer according to the present invention.

【図3】図3は、本発明に係る干渉計の第二の実施例の
説明図である。
FIG. 3 is an explanatory diagram of a second embodiment of the interferometer according to the present invention.

【図4】図4は、本発明に係る干渉計の第三の実施例の
説明図である。
FIG. 4 is an explanatory diagram of a third embodiment of the interferometer according to the present invention.

【図5】図5は、従来例の説明図である。FIG. 5 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 干渉計 2 平面波 3 フィゾー平面板 3a フィゾー面 4 ヌル素子 4a ヌル波面 5 被検物 5a 被検面 6 レフ原器 6a レフ面 7 フィゾーレンズ 7a フィゾー面 10 光源 11 集光レンズ 12 ピンホール板 12a ピンホール 12b 反射面 13 結像レンズ 14 撮像素子 Reference Signs List 1 interferometer 2 plane wave 3 Fizeau plane plate 3a Fizeau surface 4 null element 4a null wavefront 5 test object 5a test surface 6 ref prototype 6a reflex surface 7 Fizeau lens 7a Fizeau surface 10 light source 11 condenser lens 12 pinhole plate 12a Pinhole 12b Reflective surface 13 Imaging lens 14 Image sensor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 BB03 EE02 EE05 GG32 GG47 HH03 HH08 JJ01 2F065 AA54 CC21 DD06 FF52 FF61 GG12 HH03 JJ03 JJ26 LL10 LL30 LL32  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F064 AA09 BB03 EE02 EE05 GG32 GG47 HH03 HH08 JJ01 2F065 AA54 CC21 DD06 FF52 FF61 GG12 HH03 JJ03 JJ26 LL10 LL30 LL32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光源から出射された光束であってヌル素子
により所望の形状に変換して被検面に照射されるととも
に、前記被検面で反射された測定用波面と、前記光源か
ら出射された光束であって参照面に照射され反射された
参照用波面とを互いに干渉させ、干渉により生じる干渉
縞の状態を検知することにより、前記被検面の面形状を
計測する干渉計において、 前記被検面の代わりに、別途正確に校正された球面を有
するレフ原器を交代配置し、 該レフ原器からの測定用波面を計測することにより、前
記ヌル素子で形成される波面を決定することを特徴とす
る干渉計。
1. A light beam emitted from a light source, which is converted into a desired shape by a null element and is radiated to a surface to be measured, and a measurement wavefront reflected by the surface to be measured, and a light beam emitted from the light source. In the interferometer that measures the surface shape of the surface to be detected by causing the reference wavefront reflected and illuminated on the reference surface to interfere with each other, and detecting the state of the interference fringes generated by the interference, Instead of the test surface, alternately arrange a ref prototype having a spherical surface that is accurately calibrated separately, and determine a wavefront formed by the null element by measuring a measurement wavefront from the ref prototype. An interferometer.
【請求項2】前記被検面は非球面であり、 前記測定用波面と前記レフ原器との位置関係を変化させ
たことにより得られる、複数の、前記測定用波面の一部
の領域の形状を表す干渉縞を、総合的に解析することに
より、前記測定用波面の所望の範囲の形状を計測するこ
とを特徴とする請求項1記載の干渉計。
2. The test surface is an aspherical surface, and a plurality of partial areas of the measurement wavefront obtained by changing a positional relationship between the measurement wavefront and the ref prototype. The interferometer according to claim 1, wherein a shape of a desired range of the measurement wavefront is measured by comprehensively analyzing interference fringes representing the shape.
【請求項3】光源から出射された光束であってヌル素子
により所望の形状に変換して被検面に照射されるととも
に、前記被検面で反射された測定用波面と、前記光源か
ら出射された光束であって参照面に照射され反射された
参照用波面とを互いに干渉させ、干渉により生じる干渉
縞の状態を検知することにより、前記被検面の面形状を
計測する干渉計において、 前記光源は、所定の大きさの点光源であって、反射面上
から射出され、球面波を形成するものであり、 前記被検面の代わりに、別途正確に校正された球面を有
するレフ原器を交代配置し、 該レフ原器からの測定用波面を、前記反射面で反射折り
返しさせて、前記参照用波面と互いに干渉させ、干渉縞
を計測することにより、前記ヌル素子で形成される波面
を決定することを特徴とする干渉計。
3. A light beam emitted from a light source, which is converted into a desired shape by a null element and illuminated on a surface to be measured, and a measuring wavefront reflected by the surface to be measured, and a light beam emitted from the light source. In the interferometer that measures the surface shape of the surface to be detected by causing the reference wavefront reflected and illuminated on the reference surface to interfere with each other, and detecting the state of the interference fringes generated by the interference, The light source is a point light source of a predetermined size, which is emitted from a reflective surface and forms a spherical wave. Instead of the surface to be measured, a reflex element having a spherical surface calibrated separately and accurately. The null wave element is formed by alternately arranging instruments and reflecting the measurement wavefront from the reflex prototype on the reflection surface to interfere with the reference wavefront and measuring interference fringes. It is characterized by determining the wavefront Interferometer that.
【請求項4】前記被検面は非球面であり、 前記測定用波面と前記レフ原器との位置関係を変化させ
たことにより得られる、複数の、前記測定用波面の一部
の領域の形状を表す干渉縞を、総合的に解析することに
より、前記測定用波面の所望の範囲の形状を計測するこ
とを特徴とする請求項3記載の干渉計。
4. The test surface is an aspherical surface, and a plurality of partial areas of the measurement wavefront obtained by changing a positional relationship between the measurement wavefront and the ref prototype. 4. The interferometer according to claim 3, wherein a shape of a desired range of the measurement wavefront is measured by comprehensively analyzing interference fringes representing the shape.
【請求項5】光源から出射された光束であってヌル素子
により所望の形状に変換して被検面に照射されるととも
に、前記被検面で反射された測定用波面と、前記光源か
ら出射された光束であって参照面に照射され反射された
参照用波面とを互いに干渉させ、干渉により生じる干渉
縞の状態を検知することにより、前記被検面の面形状を
計測する干渉計において、 前記被検面の代わりに、所定の大きさの点光源であっ
て、反射面を有し、球面波を形成する点光源形成手段
を、交代配置し、 該点光源形成手段からの波面を、ヌル素子を通して干渉
計測することにより、前記ヌル素子で形成される波面を
決定することを特徴とする干渉計。
5. A light beam emitted from a light source, which is converted into a desired shape by a null element and illuminated on a surface to be measured, and a measurement wavefront reflected by the surface to be measured, and a light beam emitted from the light source. In the interferometer that measures the surface shape of the surface to be detected by causing the reference wavefront reflected and illuminated on the reference surface to interfere with each other, and detecting the state of the interference fringes generated by the interference, Instead of the surface to be inspected, a point light source of a predetermined size, having a reflecting surface, and a point light source forming means for forming a spherical wave are alternately arranged, and a wavefront from the point light source forming means is An interferometer characterized in that a wavefront formed by the null element is determined by performing interference measurement through a null element.
【請求項6】光源から出射された光束であってヌル素子
により所望の形状に変換して被検面に照射されるととも
に、前記被検面で反射された測定用波面と、前記光源か
ら出射された光束であって参照面に照射され反射された
参照用波面とを互いに干渉させ、干渉により生じる干渉
縞の状態を検知することにより、前記被検面の面形状を
計測する干渉計において、 前記光源は、所定の大きさの点光源であって、反射面上
から射出され、球面波を形成するものであり、 前記被検面の代わりに、所定の大きさの点光源であっ
て、反射面を有し、球面波を形成する点光源形成手段
を、交代配置し、前記ヌル素子で形成される波面を決定
することを特徴とする干渉計。
6. A light beam emitted from a light source, which is converted into a desired shape by a null element and illuminated on a surface to be measured, and a measuring wavefront reflected by the surface to be measured, and a light beam emitted from the light source. In the interferometer that measures the surface shape of the surface to be detected by causing the reference wavefront reflected and illuminated on the reference surface to interfere with each other, and detecting the state of the interference fringes generated by the interference, The light source is a point light source of a predetermined size, which is emitted from a reflective surface and forms a spherical wave, and is a point light source of a predetermined size instead of the surface to be measured, An interferometer, wherein point light source forming means having a reflecting surface and forming a spherical wave are alternately arranged, and a wavefront formed by the null element is determined.
JP10268793A 1998-09-22 1998-09-22 Interferometer Pending JP2000097623A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10268793A JP2000097623A (en) 1998-09-22 1998-09-22 Interferometer
US09/401,552 US6312373B1 (en) 1998-09-22 1999-09-22 Method of manufacturing an optical system
US09/870,734 US6456382B2 (en) 1998-09-22 2001-06-01 Interferometer that measures aspherical surfaces
US10/217,015 US6765683B2 (en) 1998-09-22 2002-08-13 Interferometer system and method of manufacturing projection optical system using same
US10/461,379 US20030215053A1 (en) 1998-09-22 2003-06-16 Interferometer system and method of manufacturing projection optical system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10268793A JP2000097623A (en) 1998-09-22 1998-09-22 Interferometer

Publications (1)

Publication Number Publication Date
JP2000097623A true JP2000097623A (en) 2000-04-07

Family

ID=17463355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10268793A Pending JP2000097623A (en) 1998-09-22 1998-09-22 Interferometer

Country Status (1)

Country Link
JP (1) JP2000097623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238400A (en) * 2020-03-19 2020-06-05 熵智科技(深圳)有限公司 Large-visual-field speckle structure optical camera illumination system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238400A (en) * 2020-03-19 2020-06-05 熵智科技(深圳)有限公司 Large-visual-field speckle structure optical camera illumination system

Similar Documents

Publication Publication Date Title
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
JP4312602B2 (en) Aspheric and wavefront scanning interferometers
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
US6894788B2 (en) Interferometric system for automated radius of curvature measurements
JP2679221B2 (en) Interferometer
US8400641B2 (en) Interferometer for aspherical or spherical surface measurements
JP2009162539A (en) Light wave interferometer apparatus
JPH1096679A (en) Apparatus for measuring wavefront aberration
JPH1089935A (en) Device for measuring aspherical interference
JP2005201703A (en) Interference measuring method and system
JP2000097623A (en) Interferometer
JPH116784A (en) Device and method for measuring shape of aspherical surface
JP2006133059A (en) Device for measuring interference
JPH10260020A (en) Aspherical shape measuring device and method
JPH10260024A (en) Aspherical shape measuring device and method
JP2000097622A (en) Interferometer
JP3461566B2 (en) Interferometer for measuring cone shape
RU2746940C1 (en) Holographic device for measuring the curvature radius of spherical surfaces
JP2000097657A (en) Interferometer
JP2000088513A (en) Aspherical wave generating lens system assembling adjusting equipment
CN105067229A (en) Grating ruler three-probe focal length measurement device and measurement method based on combined lens method
JPH10221029A (en) Apparatus for measuring aspherical shape
JP6821407B2 (en) Measuring method, measuring device, manufacturing method of optical equipment and manufacturing equipment of optical equipment
JP2006284233A (en) Apparatus for measuring system error and interferometer system for wavefront measurement equipped with the same
CN108663124B (en) Detection device and method of wavefront sensor