JP2000097618A - Null interferometer computing method and storage medium storing the method - Google Patents

Null interferometer computing method and storage medium storing the method

Info

Publication number
JP2000097618A
JP2000097618A JP10266112A JP26611298A JP2000097618A JP 2000097618 A JP2000097618 A JP 2000097618A JP 10266112 A JP10266112 A JP 10266112A JP 26611298 A JP26611298 A JP 26611298A JP 2000097618 A JP2000097618 A JP 2000097618A
Authority
JP
Japan
Prior art keywords
null
interferometer
wavefront
interference
test surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10266112A
Other languages
Japanese (ja)
Inventor
Hajime Ichikawa
元 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10266112A priority Critical patent/JP2000097618A/en
Publication of JP2000097618A publication Critical patent/JP2000097618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the measurement of null interference independent of the accuracy of a coordinate measuring device by using both the data of the coordinate measuring device on a test surface and the data on the computation of a null wave front, performing simulation and computation on interference measurement in a computing unit, and feeding back the obtained results on the location of measurement along the optical axis. SOLUTION: First, through the use of alignment error aberration computed with respect to a wavefront of 'NULL 0', alignment error correction is performed, and a test surface is moved to the location of the result of defocusing in a computing unit. Then alignment error correction with respect to the location is performed on data on interference fringes virtually measured at the location, and obtained defocusing components are corrected. This procedure is repeated until the defocusing components due to alignment error correction are converged on zero to specify the location. As the shape of a test surface is approximately accurately measured in the case that higher-order components are not superimposed on the test surface as error, locational error along the optical axis at least on the computed null wave front is absent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非球面の面形状を
高精度に測定するためのヌル干渉計測に用いられるヌル
干渉計演算方法、およびその演算方法が記録された記録
媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a null interferometer used for measuring a null interferometer for measuring an aspheric surface shape with high accuracy, and a recording medium on which the calculation method is recorded.

【0002】[0002]

【従来の技術】従来、非球面形状の計測には、ヌル素子
を用いた所謂ヌル干渉計測が行われている。このヌル素
子としては、主に球面で構成される球面レンズで構成さ
れたヌルレンズや、輪帯状の回折格子が平面板に形成さ
れたゾーンプレートが使用される。
2. Description of the Related Art Conventionally, a so-called null interference measurement using a null element has been performed for measuring an aspherical shape. As the null element, a null lens mainly composed of a spherical lens composed of a spherical surface, or a zone plate in which an annular diffraction grating is formed on a flat plate is used.

【0003】図4は、ヌルレンズを用いたヌル計測の測
定配置図であり、これはフィゾー干渉計測の変形であ
る。即ち、干渉計1から射出された平面波2は、フィゾ
ー平面板3に形成された高精度なフィゾー面3aで反射
され、該平面波2がヌル素子4により、測定の基準位置
で所望の非球面設計形状に変換された測定波面4aも、
該基準位置にセットされた被検物5が有する被検面5a
から反射され、それぞれの反射光が、干渉計1の内部に
縞一色の干渉縞を形成し、該干渉縞をCCDなどの検知
器により検知し、得られた信号を干渉計の情報を処理す
る情報処理システムにより解析するものである。トワイ
マン・グリーン干渉計を用いても、同様の計測が可能で
ある。
FIG. 4 is a measurement arrangement diagram of null measurement using a null lens, which is a modification of Fizeau interferometry. That is, the plane wave 2 emitted from the interferometer 1 is reflected by the high-precision Fizeau surface 3a formed on the Fizeau plane plate 3, and the plane wave 2 is converted by the null element 4 into a desired aspherical surface at a reference position for measurement. The measurement wavefront 4a converted into the shape is also
The test surface 5a of the test object 5 set at the reference position
Are reflected from each other, and each reflected light forms a single-color interference fringe inside the interferometer 1, the interference fringe is detected by a detector such as a CCD, and the obtained signal is processed by the information of the interferometer. This is analyzed by the information processing system. Similar measurements are possible using a Twyman-Green interferometer.

【0004】このヌルレンズを用いたヌル干渉計測シス
テムとしては、ヌル波面の形状を回転対称成分と非回転
対称成分に分けて考え、この内の回転対称成分をさらに
低次成分と高次成分に分け、それぞれの成分を正確に求
めてから加えることにより、被検面の非球面形状を正確
に得る測定システム(特願平10−160027)が提
案されている。
As a null interference measuring system using this null lens, the shape of a null wavefront is considered by dividing it into a rotationally symmetric component and a non-rotationally symmetric component, and the rotationally symmetric component is further divided into a lower-order component and a higher-order component. A measurement system (Japanese Patent Application No. 10-160027) has been proposed which accurately obtains each component and then adds the components to accurately obtain the aspherical shape of the test surface.

【0005】具体的には、非回転対称成分は、被検面を
実機上で回転させて測定された干渉計データを演算器内
で回転平均化することにより、低次成分は、別途座標測
定器等を用いて被検面を正確に測定することにより、高
次成分は、ヌル素子の製造誤差を正確に把握しその値を
用いてヌル波面の形状を演算することにより、それが達
成されていた。
More specifically, the non-rotationally symmetric component is obtained by rotating and averaging the interferometer data measured by rotating the surface to be measured on a real machine in an arithmetic unit, so that the low-order component is separately measured by coordinates. High-order components are achieved by accurately measuring the manufacturing error of the null element and calculating the shape of the null wavefront using the value by accurately measuring the surface to be inspected using a device or the like. I was

【0006】これは、座標測定器の精度によっては高次
成分が正確に把握できない一方、ヌル波面の形状は、製
造誤差の把握誤差から低次成分が正確に特定できない場
合があるからである。
This is because, depending on the accuracy of the coordinate measuring instrument, the high-order component cannot be accurately grasped, while the shape of the null wavefront may not accurately specify the low-order component from the grasping error of the manufacturing error.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、高次の
成分を正確に把握できない座標測定器を用いる場合、被
検面に大きな高次成分の誤差が存在した場合、低次成分
の誤差に転化する可能性があった。逆に、ヌル波面の所
定の光軸位置において低次成分の誤差が大きい場合、座
標測定器でその低次成分が校正された被検面を、低次誤
差の大きなヌル波面に対して縞が極力少なくなる位置で
測定しても、所定の光軸方向の被検物設定位置からずれ
た位置で測定が行われてしまうため、ヌル波面の変化に
起因する高次成分の誤差が発生すると言う問題点もあっ
た。
However, when using a coordinate measuring instrument that cannot accurately grasp higher-order components, if there is a large higher-order component error on the surface to be inspected, it is converted to a lower-order component error. There was a possibility. Conversely, when the error of the low-order component is large at a predetermined optical axis position of the null wavefront, the test surface whose low-order component is calibrated by the coordinate measuring instrument has a fringe with respect to the null wavefront having a large low-order error. Even if the measurement is performed at a position that is reduced as much as possible, since the measurement is performed at a position deviated from the test object setting position in the predetermined optical axis direction, an error of a higher-order component due to a change in the null wavefront occurs. There were also problems.

【0008】本発明は上記従来技術の欠点に鑑みなされ
たもので、座標測定器の精度に依存しないヌル干渉計測
を可能にすることを目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has as its object to enable null interference measurement independent of the accuracy of a coordinate measuring instrument.

【0009】[0009]

【課題を解決する為の手段】本発明では、上記目的を達
成するために、光源から出射された測定用光束をヌル素
子により所定の非球面形状を有するヌル波面に変換し、
被検面に照射し反射された該測定用光束と、該光源から
出射された所定の波面を有する参照用光束とを互いに干
渉させ、干渉により生じる干渉縞の状態を検知すること
により、該被検面の面形状を計測する、ヌル干渉計を用
いる干渉計測において、該被検面の座標測定器データ、
及び該ヌル波面の計算データの両方を用いて、演算器内
で干渉計測をシミュレーション演算し、得られた光軸方
向の測定位置に関する結果をフィードバックさせること
により、該被検面の非球面形状を高精度に校正すること
を可能としたことを特徴とする、ヌル干渉計演算方法を
用いることとした。これにより、被検面、及びヌル波面
を高精度に校正することが可能になる。
According to the present invention, in order to achieve the above object, a measuring light beam emitted from a light source is converted into a null wavefront having a predetermined aspherical shape by a null element.
The measurement light flux irradiated and reflected on the surface to be measured and the reference light flux having a predetermined wavefront emitted from the light source interfere with each other, and the state of interference fringes generated by the interference is detected, thereby detecting the interference. Measure the surface shape of the test surface, in the interferometry using a null interferometer, the coordinate measuring device data of the test surface,
By using both the calculation data of the null wavefront and the calculation data of the interference measurement in the calculator, the result of the measurement position in the optical axis direction is fed back to obtain the aspheric shape of the test surface. A null interferometer calculation method characterized by being capable of high-accuracy calibration is used. This makes it possible to calibrate the test surface and the null wavefront with high accuracy.

【0010】なお、本発明の構成を分かり易くするため
に、発明の実施の形態の図を用いたが、これにより本発
明が実施の形態に限定されるものではない。また、本発
明のヌル干渉計演算方法を、干渉計に使用される情報処
理装置において用いるためには、前記干渉縞から前記被
検面の面形状を求めるための手順を情報処理装置に実行
させるためのプログラムが記録された記録媒体が必要で
ある。
Although the drawings of the embodiments of the present invention have been used to make the configuration of the present invention easy to understand, the present invention is not limited to the embodiments. Further, in order to use the null interferometer calculation method of the present invention in an information processing apparatus used for an interferometer, the information processing apparatus is caused to execute a procedure for obtaining a surface shape of the test surface from the interference fringes. Recording medium on which a program for recording is recorded.

【0011】[0011]

【発明の実施の形態】以下、図1を用いて本発明のヌル
干渉計演算方法によるアライメント誤差補正について説
明する。アライメント誤差補正とは、本来、非球面設計
値どおりに製造された被検面を、同じく設計値どおりに
製造されたヌル素子によるヌル波面を用いて、ヌル干渉
計測した場合に、被検面がヌル波面に対して最適な位置
からのずれ(アライメントずれ)が発生した状態で設定
されてしまうことに起因して、アライメント誤差収差
(アライメントずれに起因して観測される見掛け上の収
差)が発生するため、このアライメント誤差収差を測定
データから除去することにより、被検面本来の形状誤差
を求める演算である。(前記仮定の場合は、形状誤差が
ゼロとして計算される)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an alignment error correction by a null interferometer operation method according to the present invention will be described with reference to FIG. Alignment error correction means that when a test surface originally manufactured according to the aspheric design value is subjected to null interference measurement using a null wavefront of a null element manufactured similarly according to the design value, the test surface is Alignment error aberration (apparent aberration observed due to misalignment) occurs due to misalignment from the optimal position (alignment misalignment) with respect to the null wavefront. Therefore, this is an operation for obtaining the original shape error of the surface to be measured by removing the alignment error aberration from the measurement data. (In the case of the above assumption, the shape error is calculated as zero).

【0012】図1中の”NULL0”は、ヌル素子によ
り形成されたヌル波面の非球面形状を、事前に測定され
たヌル素子構成部材の曲率半径や中心厚などの値を基
に、演算器で計算した結果(演算ヌル波面)である。さ
らには、各構成部材の光学面や内部均質性に起因するう
ねり誤差も事前に測定して、この形状誤差に重畳させる
ことも行われる。図では設計値どおりに製造された被検
面が該ヌル波面形状に対して、演算器内で仮想的にセッ
トされる最適位置(極力干渉縞が少なくなる位置)を基
準位置に設定している。この位置は、前述したアライメ
ント誤差補正を、”NULL0”の波面を基準に行えば
良い。これに対して、図1中の”NULL1”は、座標
測定器により測定された被検面(図では、レフ減算のた
めに使用される、レフ原器の有するレフ面)の形状の
内、高次成分は無視して低次成分のみを用い、前述した
演算ヌル波面に対して、同様に最適位置にセットされた
場合の模式図である。この位置は、前述したアライメン
ト誤差補正を、”NULL1”の波面を基準に行えば良
い。ただし、この測定位置はアライメント誤差補正を掛
けて初めて求まるが、このアライメント誤差補正を掛け
るためのアライメント誤差収差を事前に計算しようとし
ても、この位置が特定できない。したがって、先ず”N
ULL0”の波面を基準に計算したアライメント誤差収
差を用いてアライメント誤差補正を掛け、そのデフォー
カス結果の位置まで、被検面を演算器内で移動させ、そ
の位置で仮想的に測定される干渉縞データに対して、そ
の位置基準のアライメント誤差補正を掛け、同じく得ら
れたデフォーカス成分を補正すると言う手順を、アライ
メント誤差補正によるデフォーカス成分がゼロに収束す
るまで繰り返しすことにより、この位置を特定してい
る。
"NULL0" in FIG. 1 is a calculator for calculating the aspherical shape of the null wavefront formed by the null element based on the previously measured values such as the radius of curvature and the center thickness of the null element constituting members. (Calculated null wavefront). Furthermore, the waviness error due to the optical surface and internal homogeneity of each component is measured in advance, and is superimposed on the shape error. In the figure, an optimal position (a position where interference fringes are reduced as much as possible) is set as a reference position, where the test surface manufactured according to the design value is virtually set in the arithmetic unit with respect to the null wavefront shape. . This position may be obtained by performing the above-described alignment error correction on the basis of the wavefront of “NULL0”. On the other hand, “NULL1” in FIG. 1 is the shape of the surface to be inspected (in the figure, the reflex surface of the reflex prototype used for reflex subtraction) measured by the coordinate measuring device. FIG. 9 is a schematic diagram showing a case where only a low-order component is used ignoring a high-order component and the calculated null wavefront is similarly set at an optimum position. At this position, the above-described alignment error correction may be performed with reference to the wavefront of “NULL1”. However, this measurement position is obtained only after the alignment error correction is performed, but this position cannot be specified even if the alignment error aberration for performing the alignment error correction is calculated in advance. Therefore, first, "N
The alignment error is corrected by using the alignment error aberration calculated based on the UL0 "wavefront, the test surface is moved in the arithmetic unit to the position of the defocus result, and the interference virtually measured at that position By repeating the procedure of multiplying the fringe data by the position-based alignment error correction and correcting the obtained defocus component until the defocus component due to the alignment error correction converges to zero, Has been identified.

【0013】被検面に高次成分が誤差として重畳して無
い場合は、略正確にその形状(低次成分)も測定されて
いるため、少なくとも演算ヌル波面に対しては、光軸方
向の位置誤差は無いことになる。さらに、ヌル波面に誤
差が無い場合は、収束したデータの低次成分は、座標測
定器の測定結果と一致する筈である。しかるに、実際の
被検面には高次成分が誤差として重畳している上に、ヌ
ル波面の低次成分にも誤差が乗っている可能性があるた
め、一致を見ない場合がある。この時の補正を図2を用
いて説明する。先ず、被検面の高次成分は干渉計の実測
定データで代用することとする。この時、ヌル波面が基
準位置で”NULL0”となるように製造されていれ
ば、被検面の干渉計測が行われる位置は、演算器で計算
した”NULL1”の筈であるため、この波面を基準
に、実測データにアライメント誤差補正を掛ける。その
結果得られる高次成分を用いて、座標測定器の低次成分
と合わせて、被検面のより正確な形状として、前述した
収束演算を繰り返し行い(内側のループ演算)、収束し
たデータの低次成分が、座標測定器の測定結果と一致さ
せる。
When the higher-order component is not superimposed as an error on the surface to be measured, its shape (lower-order component) is also measured almost exactly. There will be no position error. Furthermore, if there is no error in the null wavefront, the low-order component of the converged data should match the measurement result of the coordinate measuring instrument. However, since the higher-order component is superimposed on the actual test surface as an error and the lower-order component of the null wavefront may have an error, the coincidence may not be found. The correction at this time will be described with reference to FIG. First, the higher order components of the surface to be inspected are substituted by actual measurement data of the interferometer. At this time, if the null wavefront is manufactured so as to be “NULL0” at the reference position, the position where the interference measurement of the test surface is performed should be “NULL1” calculated by the arithmetic unit. Based on the above, the alignment error correction is applied to the measured data. Using the higher order component obtained as a result, together with the lower order component of the coordinate measuring instrument, the above-mentioned convergence operation is repeated (inner loop operation) as a more accurate shape of the test surface, and the converged data The low-order component matches the measurement result of the coordinate measuring instrument.

【0014】しかし、前述したヌル波面の低次成分の認
識誤差に起因して、これら低次成分が収束はするが、そ
の収束値が0ではなくなってしまう。そこで、この収束
値(低次成分の誤差)がヌル波面の低次成分の認識誤差
と仮定して、ヌル波面の形状に補正を加える。このヌル
波面形状を基準に前述した演算を繰り返す(外側のルー
プ演算)ことにより、前述した収束値(低次成分の誤
差)をほぼゼロにすることが可能となる。すなわち、正
確なレフ面とヌル波面の特定が完了したことになる。
However, due to the recognition error of the low-order components of the null wavefront, these low-order components converge, but the convergence value is not 0. Accordingly, the shape of the null wavefront is corrected on the assumption that the convergence value (low-order component error) is a recognition error of the low-order component of the null wavefront. By repeating the above-described calculation based on this null wavefront shape (outer loop calculation), the above-described convergence value (low-order component error) can be made substantially zero. That is, the accurate specification of the reflex plane and the null wavefront is completed.

【0015】正確に測定できた座標測定器の低次成分
が、2次と4次の場合が図2であり、2次乃至6次の場
合が図3である。また、このヌル干渉計演算方法を、干
渉計に使用される情報処理装置において実行可能なよう
にプログラミングし、そのプログラムを、フロッピーデ
ィスク、あるいは光磁気ディスク、いわゆるハードディ
スク、あるいは情報処理装置に付属するROM、RAM
等の記録媒体に記録することにより、本発明の演算方法
を、前記の情報処理装置に記憶させ、実行させることが
可能になる。
FIG. 2 shows the case where the low-order components of the coordinate measuring instrument which can be accurately measured are the second and fourth orders, and FIG. 3 shows the case where the low-order components are the second to sixth orders. Further, this null interferometer calculation method is programmed so as to be executable in an information processing device used for the interferometer, and the program is attached to a floppy disk, or a magneto-optical disk, a so-called hard disk, or an information processing device. ROM, RAM
By recording the information on a recording medium such as the above, the arithmetic method of the present invention can be stored and executed in the information processing apparatus.

【0016】[0016]

【発明の効果】以上のように、本発明に係るヌル干渉計
演算を採用すれば、被検面、及びヌル波面を高精度に校
正することが可能となる。
As described above, by employing the null interferometer calculation according to the present invention, it is possible to calibrate the test surface and the null wavefront with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るヌル干渉計演算に用いられるアラ
イメント誤差補正の原理説明図である。
FIG. 1 is an explanatory view of the principle of alignment error correction used in a null interferometer operation according to the present invention.

【図2】本発明に係るヌル干渉計演算の実施例の説明図
である。
FIG. 2 is an explanatory diagram of an embodiment of a null interferometer operation according to the present invention.

【図3】本発明に係るヌル干渉計演算の実施例の説明図
である。
FIG. 3 is an explanatory diagram of an embodiment of a null interferometer operation according to the present invention.

【図4】本発明に使用される干渉計測の説明図である。FIG. 4 is an explanatory diagram of the interference measurement used in the present invention.

【符号の説明】[Explanation of symbols]

1 ・・・・干渉計 2 ・・・・平面波 3 ・・・・フィゾー平面板 3a・・・・フィゾー面 4 ・・・・ヌル素子 4a・・・・測定波面 5 ・・・・被検物 5a・・・・被検面 1 ... interferometer 2 ... plane wave 3 ... Fizeau plane plate 3a ... Fizeau surface 4 ... null element 4a ... measurement wavefront 5 ... test object 5a ··· Test surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光源から出射された測定用光束をヌル素子
により所定の非球面形状を有するヌル波面に変換し、被
検面に照射し反射された該測定用光束と、該光源から出
射された所定の波面を有する参照用光束とを互いに干渉
させ、干渉により生じる干渉縞の状態を検知することに
より、該被検面の面形状を計測する、ヌル干渉計を用い
る干渉計測において、該被検面の座標測定器データ、及
び該ヌル波面の計算データの両方を用いて、演算器内で
干渉計測をシミュレーション演算し、得られた光軸方向
の測定位置に関する結果をフィードバックさせることに
より、該被検面の非球面形状を高精度に校正することを
可能としたことを特徴とする、ヌル干渉計演算方法。
1. A measuring light beam emitted from a light source is converted into a null wavefront having a predetermined aspherical shape by a null element, and the measuring light beam irradiated and reflected on a surface to be measured and the light beam emitted from the light source are reflected. In the interference measurement using a null interferometer for measuring the surface shape of the test surface by causing the reference light beam having the predetermined wavefront to interfere with each other and detecting the state of interference fringes generated by the interference, By using both the coordinate measuring instrument data of the test surface and the calculated data of the null wavefront, the interference measurement is simulated and calculated in the calculator, and the result regarding the obtained measurement position in the optical axis direction is fed back. A method for calculating a null interferometer, characterized in that it is possible to calibrate an aspherical shape of a surface to be measured with high accuracy.
【請求項2】請求項1に記載されるヌル干渉計演算方法
を用いる干渉計に使用される情報処理装置において、前
記干渉縞から前記被検面の面形状を求めるための手順を
情報処理装置に実行させるためのプログラムが記録され
た記録媒体。
2. An information processing apparatus used for an interferometer using a null interferometer operation method according to claim 1, wherein a procedure for obtaining a surface shape of the surface to be detected from the interference fringes is performed by the information processing apparatus. Recording medium on which a program to be executed by a computer is recorded.
JP10266112A 1998-09-21 1998-09-21 Null interferometer computing method and storage medium storing the method Pending JP2000097618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10266112A JP2000097618A (en) 1998-09-21 1998-09-21 Null interferometer computing method and storage medium storing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10266112A JP2000097618A (en) 1998-09-21 1998-09-21 Null interferometer computing method and storage medium storing the method

Publications (1)

Publication Number Publication Date
JP2000097618A true JP2000097618A (en) 2000-04-07

Family

ID=17426498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10266112A Pending JP2000097618A (en) 1998-09-21 1998-09-21 Null interferometer computing method and storage medium storing the method

Country Status (1)

Country Link
JP (1) JP2000097618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760365B2 (en) 2007-03-29 2010-07-20 Fujinon Corporation Aspheric lens surface-decenter measuring method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760365B2 (en) 2007-03-29 2010-07-20 Fujinon Corporation Aspheric lens surface-decenter measuring method and apparatus
KR100972571B1 (en) * 2007-03-29 2010-07-28 후지논 가부시키가이샤 Aspheric lens surface-misalignment measuring method and apparatus

Similar Documents

Publication Publication Date Title
JP5399304B2 (en) Aspherical surface measuring method and apparatus
JP3237309B2 (en) System error measuring method and shape measuring device using the same
JP5868142B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
US9091614B2 (en) Wavefront optical measuring apparatus
CN105241396B (en) A kind of high-precise ball face aperture splicing fusion method based on digital hologram
JP3613906B2 (en) Wavefront aberration measuring device
CN109724532B (en) Accurate testing device and method for geometric parameters of complex optical curved surface
US20170074648A1 (en) Method for calibrating a measuring device
US20130044332A1 (en) Surface profile measurement apparatus and alignment method thereof and an improved sub-aperture measurement data acquisition method
CN105091781B (en) A kind of method and apparatus of single hardwood interference fringe picture measurement optical surface
JP5595463B2 (en) Wavefront optical measuring device
KR20110065365A (en) Method and apparatus for measuring aspherical body
JP2000097663A (en) Interferometer
JP2000097618A (en) Null interferometer computing method and storage medium storing the method
JPH0996589A (en) Method and apparatus for measuring performance of lens
JPH05296879A (en) Method and equipment for measuring optical performance
US20150120232A1 (en) Shape calculation apparatus and method, measurement apparatus, method of manufacturing article, storage medium
JP2006126103A (en) Aspheric surface shape measuring method
JP5888998B2 (en) Wavefront slope distribution measuring method and wavefront slope distribution measuring apparatus
JPH073323B2 (en) Interfering device
JP2006133059A (en) Device for measuring interference
JP2000088545A (en) Method of measuring nonspherical shape
CN115435677A (en) System error calibration device and method universally used for dual-channel interferometer
JP2753545B2 (en) Shape measurement system
JP6821407B2 (en) Measuring method, measuring device, manufacturing method of optical equipment and manufacturing equipment of optical equipment