JP2000096165A - Titanium alloy excellent in antibacterial property and organism sticking resistance and its production - Google Patents

Titanium alloy excellent in antibacterial property and organism sticking resistance and its production

Info

Publication number
JP2000096165A
JP2000096165A JP27113598A JP27113598A JP2000096165A JP 2000096165 A JP2000096165 A JP 2000096165A JP 27113598 A JP27113598 A JP 27113598A JP 27113598 A JP27113598 A JP 27113598A JP 2000096165 A JP2000096165 A JP 2000096165A
Authority
JP
Japan
Prior art keywords
alloy
less
grain size
antibacterial properties
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27113598A
Other languages
Japanese (ja)
Other versions
JP2000096165A5 (en
Inventor
Atsuhiko Kuroda
篤彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27113598A priority Critical patent/JP2000096165A/en
Priority to ITMI990466 priority patent/IT1309598B1/en
Priority to EP99306954A priority patent/EP0992599A1/en
Publication of JP2000096165A publication Critical patent/JP2000096165A/en
Publication of JP2000096165A5 publication Critical patent/JP2000096165A5/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Abstract

PROBLEM TO BE SOLVED: To impart excellent antibacterial properties and organism sticking resistance to an alloy by allowing it to contain a specified ratio of Cu and forming its structure into the equiaxed crystal one of the specified average crystal grain size. SOLUTION: It is preferable that the ratio of Cu to be contained is controlled to, by weight, 0.01 to <2%, and the average crystal grain size is controlled to <=100 μm. In the case Cu is contained in the range of 0.01 to <2%, a cocentrated region of Cu is formed on the grain boundaries of the crystal grains of the α phases. It is because Cu is a β phase forming element for titanium, and they are concentrated on the grain boundaries. The stock for producing the Ti alloy uses sponge titanium as the raw material, is melted in a vacuum or in an argon atmosphere to control the elements to be added and is thereafter cast into an ingot. Its metallic structure is formed into the equiaxial one, and the crystal grains of <=100 μm average crystal grain size are worked at the temp. below βtransus and at a working degree of >=20% to sufficiently destroy the needle crystals and is held at 60 deg.C to the temp. below βtransus. The working degree denotes the reduction of cross section in the stock generated by forging, rolling or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抗菌性が求められ
る建築用内装材、厨房用品、時計の側材、眼鏡フレー
ム、メス等の医療用器具および食品製造装置等ならびに
耐生物付着性が求められる海洋構造物、養殖用の漁網、
海水冷却による熱交換器配管および海水淡水化装置等の
素材として好適なTi合金とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to medical equipment such as building interior materials, kitchenware, watch side materials, eyeglass frames, scalpels, etc., food production equipment, etc., which are required to have antibacterial properties, and bioadhesion resistance. Offshore structures, fishing nets for aquaculture,
The present invention relates to a Ti alloy suitable as a material for heat exchanger piping and seawater desalination equipment by seawater cooling, and a method for producing the same.

【0002】[0002]

【従来の技術】Tiは、耐食性に優れ、かつ軽量である
ために、様々な部材の素材として用いられている。Ti
は、特に海水に対して抜群の耐食性を持っているので、
海水冷却による復水器、海水淡水化装置等の配管に多く
用いられている。
2. Description of the Related Art Ti is used as a material for various members because of its excellent corrosion resistance and light weight. Ti
Has excellent corrosion resistance especially against seawater,
It is widely used for piping of condensers for seawater cooling, seawater desalination equipment and the like.

【0003】また、Tiは、生体にアレルギー反応を起
こさない金属であるので、直接人体に接触して使用され
る時計側材や眼鏡のフレーム等の素材としても利用され
ている。さらには、生体適合性に優れているために人工
骨等の素材としても利用されている。
[0003] Further, Ti is a metal that does not cause an allergic reaction to a living body, and is therefore used as a material for a watch side member or a frame of eyeglasses used in direct contact with a human body. Furthermore, since it has excellent biocompatibility, it is also used as a material for artificial bones and the like.

【0004】上述のようにTiの用途は多岐にわたって
いる。しかし、Tiは生物との親和性が高いためにいく
つかの問題点を抱えている。例えば、Tiを海水冷却に
よる熱交換器配管に利用した場合に、貝等の生物が配管
内に進入して内面に付くため、冷却水の流通を妨げると
ともに、冷却効果を悪くする問題がある。この問題を回
避するためには、配管内をスポンジ等で洗浄する処理を
定期的に実施する必要がある。
[0004] As mentioned above, Ti has a wide variety of uses. However, Ti has some problems due to its high affinity for living things. For example, when Ti is used in a heat exchanger pipe by seawater cooling, organisms such as shellfish enter the pipe and adhere to the inner surface, so that there is a problem that the circulation of the cooling water is hindered and the cooling effect is deteriorated. In order to avoid this problem, it is necessary to periodically perform a process of cleaning the inside of the pipe with a sponge or the like.

【0005】また、Tiは養殖用漁網の素材としても利
用が期待されているが、この場合も漁網に生物が付着す
るために海水の流れが制限されるという問題が起こる。
そのために亜鉛等の表面処理を施すことが検討されてい
るが、この表面処理により製品コストが上昇すること
と、亜鉛による環境汚染問題も生じるといった弊害があ
るので実用化には至っていない。
[0005] Ti is also expected to be used as a material for fish nets for aquaculture, but in this case also, there is a problem that the flow of seawater is restricted because organisms adhere to the fishing nets.
For this reason, surface treatment with zinc or the like has been considered, but this surface treatment has the disadvantages of increasing the product cost and causing environmental pollution problems due to zinc, and thus has not been put to practical use.

【0006】上記の問題点を解消するためには、Tiの
耐生物付着性、すなわち生物の付着を防止する性能を向
上させる必要がある。
[0006] In order to solve the above problems, it is necessary to improve the bio-adhesion resistance of Ti, that is, the performance of preventing the adhesion of organisms.

【0007】特開平8−9836号公報には、海洋生物
が付着しにくいTi合金製フロートが開示されている。
しかし、同公報でいう「海洋生物が付着しにくい」と
は、フロートの材料を従来の樹脂から、樹脂よりは生物
が付着しにくいTi合金に代えたにすぎず、Ti合金そ
のものの耐生物付着性を向上させたものではない。
Japanese Patent Application Laid-Open No. Hei 8-9836 discloses a float made of a Ti alloy to which marine organisms are unlikely to adhere.
However, the phrase "the marine organisms are hard to adhere" referred to in this publication merely means that the material of the float is changed from a conventional resin to a Ti alloy to which organisms are less likely to adhere than the resin. It is not what improved the character.

【0008】一方、Tiには、生物との親和性が高いた
めに細菌が繁殖しやすいという欠点もある。上述したよ
うにTiは、直接人体に接触する日用品の素材としても
利用されている。近年の社会の菌類に対する問題の関心
が高まるにつれ、Tiも抗菌性を備えることが要求され
ている。
[0008] On the other hand, Ti has a drawback that bacteria easily propagate because of high affinity with living things. As described above, Ti is also used as a raw material for daily necessities that comes into direct contact with the human body. With the increasing interest in fungi in recent years, Ti is required to have antibacterial properties.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、抗菌
性および耐生物付着性に優れたTi合金とその製造方法
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Ti alloy excellent in antibacterial properties and bio-adhesion resistance and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、次の抗
菌性および耐生物付着性に優れるTi合金とその製造方
法にある。
The gist of the present invention resides in the following Ti alloy having excellent antibacterial and bioadhesive properties and a method for producing the same.

【0011】(1)重量%で、Cuを0.01%以上、
2%未満含有することを特徴とする抗菌性および耐生物
付着性に優れたTi合金。
(1) Cu is 0.01% or more by weight%,
A Ti alloy excellent in antibacterial properties and bio-adhesion resistance, characterized by containing less than 2%.

【0012】(2)平均結晶粒径が100μm以下の等
軸結晶組織を有する請求項1記載のTi合金。
(2) The Ti alloy according to claim 1, having an equiaxed crystal structure having an average crystal grain size of 100 μm or less.

【0013】(3)上記(1)記載のチタン合金を、β
トランザス以下の温度で加工度20%以上の加工を施し
た後、600℃以上、βトランザス未満の温度範囲内で
1分間以上保持する熱処理を施す抗菌性および耐生物付
着性に優れたTi合金の製造方法。
(3) The titanium alloy as described in (1) above,
After performing processing with a working ratio of 20% or more at a temperature equal to or lower than Transus, heat-treating the alloy at a temperature of 600 ° C. or higher and lower than β Transas for 1 minute or more. Production method.

【0014】ここで、平均結晶粒径とは、JIS H 5
01で規定されている切断方により求められる結晶粒径
とする。
Here, the average crystal grain size is defined by JIS H5
The crystal grain size is determined by the cutting method specified in 01.

【0015】本発明者は、Tiに抗菌性と耐生物付着
性、すなわち生物の付着を防止する性能を付与するた
め、種々実験、検討をおこなった結果、以下の知見を得
て本発明を完成させた。
The present inventor conducted various experiments and studies in order to impart antibacterial properties and bio-adhesion resistance to Ti, ie, the ability to prevent the adhesion of organisms, and as a result, obtained the following findings and completed the present invention. I let it.

【0016】a)Cuを0.01〜2%未満の範囲内の
量で含有させたとき、α相の結晶粒(以下α粒と記す)
の粒界にはCuの濃化領域が形成される。このCuの濃
化領域が形成されることにより抗菌性あるいは耐生物の
付着性が発揮される。
A) When Cu is contained in an amount in the range of 0.01 to less than 2%, α phase crystal grains (hereinafter referred to as α grains)
Cu-rich regions are formed at the grain boundaries. The formation of the Cu-enriched region exerts antibacterial properties or biological adhesion.

【0017】b)α粒の粒界にCuの濃化領域が形成さ
れるのは、Cuはチタンにとってβ相形成元素であるた
め、α相からCuが排出され、それらが粒界に集まるた
めである。
B) The formation of a Cu-enriched region at the grain boundaries of α grains is because Cu is a β-phase forming element for titanium, so that Cu is discharged from the α phase and they are collected at the grain boundaries. It is.

【0018】c)金属組織は、等軸組織とし、等軸晶の
平均粒径は100μm以下にするのが好ましい。平均粒
径が100μm を超えると粒界間の距離が大きくなり、
細菌がCuが濃化している粒界を横切ることなく存在し
て抗菌作用が低下する可能性があるためである。
C) The metal structure is preferably an equiaxed structure, and the average grain size of the equiaxed crystals is preferably 100 μm or less. If the average particle size exceeds 100 μm, the distance between grain boundaries increases,
This is because bacteria may exist without crossing the grain boundaries where Cu is concentrated, and the antibacterial action may be reduced.

【0019】d)平均結晶粒径が100μm以下の等軸
結晶粒は、βトランザス以下の温度で20%以上の加工
度で加工し、針状晶を充分破壊して600℃〜βトラン
ザス未満の温度で保持することにより得られる。
D) Equiaxed crystal grains having an average crystal grain size of 100 μm or less are processed at a temperature of not more than β transus at a processing degree of 20% or more, and the needle-like crystals are sufficiently destroyed to obtain a temperature of from 600 ° C. to less than β transas. Obtained by holding at temperature.

【0020】[0020]

【発明の実施の形態】本発明のTi合金およびその製造
方法を具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The Ti alloy of the present invention and a method for producing the same will be specifically described.

【0021】(1)Ti合金の化学組成 以下、化学組成の説明で使用する%は重量%を表すもの
とする。
(1) Chemical Composition of Ti Alloy Hereinafter, the percentages used in the description of the chemical composition represent weight percentages.

【0022】Cu:0.01〜2%未満 抗菌性および耐生物付着性を発揮させるには、Cuを
0.01%以上含有させる必要がある。Cuを0.01
%以上含有させることにより、製造過程の最終の段階に
おいてα粒とα粒の粒界にCuが富化した領域が形成さ
れる。すなわち、α粒内におけるCuの固溶限は低く、
Cuはチタンにとってβ相形成元素であるため、α相か
ら排出される傾向を持つ。この結果、Cuはα 粒の粒界
およびその周辺に濃縮し、β相になると推測される。し
かし、Cu含有量が多すぎる場合には、加工性の低下を
招き、製品の形状に成形する場合に割れ等が発生する。
この弊害を防止するためには、Cuの含有量を2%未満
にする必要がある。望ましくは、1.5%以下である。
Cu: 0.01 to less than 2% In order to exhibit antibacterial properties and bioadhesion resistance, it is necessary to contain Cu in an amount of 0.01% or more. 0.01 for Cu
% Or more, a Cu-enriched region is formed in the α grain and the grain boundary of the α grain in the final stage of the manufacturing process. That is, the solid solubility limit of Cu in α grains is low,
Since Cu is a β-phase forming element for titanium, Cu tends to be discharged from the α-phase. As a result, it is presumed that Cu is concentrated at and around the grain boundaries of α grains and becomes β phase. However, if the Cu content is too large, the workability is reduced, and cracks and the like occur when forming into a product shape.
In order to prevent this adverse effect, the Cu content needs to be less than 2%. Desirably, it is 1.5% or less.

【0023】Cuの含有量が、Ti合金の加工性に及ぼ
す影響について下記のような試験をおこなった。
The following tests were conducted on the effect of the Cu content on the workability of the Ti alloy.

【0024】Cu含有量を、0〜2.5%と種々変化さ
せた厚さ15mmのチタン合金のインゴットをボタンア
ーク溶解法により鋳造し、850℃に加熱した後、熱間
圧延により厚さ5mmのチタン合金板を製造した。この
板を800℃で30分間焼鈍した後、板表面に生成した
酸化スケールを除去するため切削加工して4mmの厚さ
に仕上げた。次いで、4mm厚の板を冷間圧延して厚さ
1mmとし、アルゴン雰囲気中で700℃で1時間保持
した。この板からJIS13Bの引張試験片を作成し、
引張強さと破断伸びを求めた。その結果を表1に示す。
A 15 mm thick titanium alloy ingot having various Cu contents of 0 to 2.5% was cast by a button arc melting method, heated to 850 ° C., and then hot rolled to a thickness of 5 mm. Was manufactured. This plate was annealed at 800 ° C. for 30 minutes, and was then cut to remove oxide scale formed on the plate surface and finished to a thickness of 4 mm. Next, the 4 mm-thick plate was cold-rolled to a thickness of 1 mm and kept at 700 ° C. for 1 hour in an argon atmosphere. A JIS13B tensile test piece was created from this plate,
Tensile strength and elongation at break were determined. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】同表より明らかなように、Cu含有量が2
%以上になると伸びが著しく低下し、加工性が劣化する
ことが分かる。
As is clear from the table, the Cu content is 2
%, The elongation is significantly reduced, and the workability is deteriorated.

【0027】Cuの他に、必要によりFeおよびO(酸
素)等を含有させることができる。
In addition to Cu, if necessary, Fe and O (oxygen) can be contained.

【0028】Fe Feは、通常0.03%程度含有する。また、Feは強
度を調整するために積極的に含有させてもよい。しか
し、含有量が多いと耐食性が劣化する傾向があり、また
加工性も劣化するので、Feを含有させる場合は0.3
%以下とするのがよい。
Fe Fe is usually contained at about 0.03%. Further, Fe may be positively contained to adjust the strength. However, when the content is large, the corrosion resistance tends to deteriorate, and the workability also deteriorates.
% Or less.

【0029】酸素(O):0.3%以下 酸素は、通常0.05%程度含有する。酸素は、Feと
同じく強度を高める効果があり、積極的に含有させても
よい。しかし、含有量が多くなると特に冷間での加工性
が低下するため0.3%以下にするのが好ましい。
Oxygen (O): 0.3% or less Oxygen usually contains about 0.05%. Oxygen has the effect of increasing the strength similarly to Fe, and may be positively contained. However, when the content is large, the workability particularly in the cold state is reduced, so that the content is preferably set to 0.3% or less.

【0030】また、不純物としては以下に示す元素があ
る。
The following elements are included as impurities.

【0031】Ni:原料のスポンジチタンに不可避的に
混入している元素である。Niの含有量が0.05%を
超えると加工性低下の問題が起こる。したがって、含有
量を0.05%以下にするのが好ましい。
Ni: an element inevitably mixed in the raw titanium sponge. If the Ni content exceeds 0.05%, a problem of deterioration in workability occurs. Therefore, the content is preferably set to 0.05% or less.

【0032】Cr:Crも原料のスポンジチタンに不可
避的に混入している元素である。Crの含有量が0.0
5%を超えると加工性低下の問題が起こる。したがっ
て、含有量を0.05%以下にするのが好ましい。
Cr: Cr is also an element inevitably mixed in the raw material titanium sponge. Cr content is 0.0
If it exceeds 5%, a problem of deterioration in workability occurs. Therefore, the content is preferably set to 0.05% or less.

【0033】窒素(N):Nはスポンジチタンや、溶解
工程で混入する元素である。窒素(N)の含有量が0.
02%を超えると加工性低下の問題が起こる。したがっ
て、含有量を0.02%以下にするのが好ましい。
Nitrogen (N): N is sponge titanium or an element mixed in the melting step. When the content of nitrogen (N) is 0.
If it exceeds 02%, a problem of deterioration in workability occurs. Therefore, the content is preferably set to 0.02% or less.

【0034】水素(H):Hは、溶解工程または後述す
る熱処理工程で混入する元素である。Hの含有量が0.
015%を超えると水素脆化の問題が起こる。したがっ
て、含有量を0.015%以下にするのが好ましい。
Hydrogen (H): H is an element mixed in the dissolution step or the heat treatment step described later. H content is 0.
If it exceeds 015%, the problem of hydrogen embrittlement occurs. Therefore, the content is preferably set to 0.015% or less.

【0035】炭素(C):Cは、原料のスポンジチタン
に不可避的に混入している元素である。Cの含有量が
0.01%を超えると加工性低下の問題が起こる。した
がって、含有量を0.01%以下にするのが好ましい。
Carbon (C): C is an element inevitably mixed in the raw material sponge titanium. When the content of C exceeds 0.01%, a problem of deterioration in workability occurs. Therefore, the content is preferably set to 0.01% or less.

【0036】(2)金属組織、平均結晶粒径 金属組織は、特に限定するものではないが、針状組織よ
りも等軸組織の方が抗菌性および加工性に優れているの
で、等軸組織とするのが好ましい。
(2) Metal Structure, Average Crystal Grain Size The metal structure is not particularly limited, but the equiaxial structure is superior to the acicular structure in antibacterial properties and workability. It is preferred that

【0037】針状組織は、その形成過程において、旧β
粒界を起点として針状のα相がβ粒の中心部方向へ向か
ってコロニーを形成して成長する。この際、Cuは旧β
の粒界に濃化しており、コロニーの境界では濃化量が少
ない。一方、チタンはβ相温度領域では結晶粒の成長速
度が極めて速いため、旧β粒は粗大である。すなわち、
針状組織において、Cuの濃化領域の間隔は広い。この
ような状態においてチタン表面上において菌がCuの濃
化領域に触れる確立は低くなるため、抗菌性の発揮程度
が後記する等軸晶に比べて低くなる。
In the course of its formation, the needle-like tissue forms
The needle-like α phase forms a colony and grows toward the center of the β grain starting from the grain boundary. At this time, Cu
And the amount of enrichment is small at the boundaries of colonies. On the other hand, titanium has a very high growth rate of crystal grains in the β phase temperature range, and thus the old β grains are coarse. That is,
In the needle-like structure, the interval between the Cu enriched regions is wide. In such a state, since the probability that the bacteria touch the Cu-enriched region on the titanium surface is low, the degree of antibacterial activity is lower than that of the equiaxed crystal described later.

【0038】等軸組織の場合、α粒内にはCuの濃化部
が存在しないので、結晶粒は小さい方が好ましく、粒径
が100μmを超えると、結晶粒界間の距離が長くなる
ため抗菌作用のあるCu濃化部分が減少することにな
る。この観点から結晶粒径は100μm以下とするのが
好ましい。
In the case of the equiaxed structure, since there is no concentrated portion of Cu in the α grains, it is preferable that the crystal grains are small. If the grain size exceeds 100 μm, the distance between the crystal grain boundaries becomes long. Cu-concentrated portions having an antibacterial action will be reduced. From this viewpoint, the crystal grain size is preferably set to 100 μm or less.

【0039】等軸組織は、α相のアスペクト比が1に近
いα粒であり、アスペクト比は1〜4程度にするのが好
ましいが、1近くにすることによりより抗菌性がよくな
る。好ましくは1〜3である。 (3)製造方法 本発明のTi合金製造用の素材は、例えば、スポンジチ
タンを原料として、真空中あるいはアルゴン雰囲気中で
溶解し、本発明で規定する化学組成となるように添加元
素を調整した後、インゴットに鋳造することにより製造
できる。インゴットを素材として用いてもよく、また、
さらにこのインゴットを、目的に合わせて、通常の鍛
造、圧延等の塑性加工を施して板、棒、パイプ等に加工
して素材とすることができる。
The equiaxed structure is α grains in which the aspect ratio of the α phase is close to 1, and the aspect ratio is preferably set to about 1 to 4. However, when the aspect ratio is set to close to 1, the antibacterial property is improved. Preferably it is 1-3. (3) Production Method The material for producing a Ti alloy of the present invention was prepared, for example, by using titanium sponge as a raw material and dissolving it in a vacuum or an argon atmosphere, and adjusting the additive elements so as to have the chemical composition specified in the present invention. Thereafter, it can be manufactured by casting into an ingot. Ingots may be used as a material,
Furthermore, this ingot can be processed into a plate, a rod, a pipe, or the like as a material by subjecting the ingot to plastic working such as normal forging and rolling according to the purpose.

【0040】抗菌性と耐生物付着性をより高めたTi合
金を製造する場合には、化学組成を上記のように規定し
た範囲内とし、素材製造の最終工程において下記のよう
な特定条件の加工と熱処理を施すことが有効である。
In the case of producing a Ti alloy having higher antibacterial and bioadhesive properties, the chemical composition is set within the range specified above, and processing under the following specific conditions is performed in the final step of material production. And heat treatment is effective.

【0041】まず、上述のTi合金の素材に、βトラン
ザス以下の温度で加工度20%以上の加工を施す。次
に、600℃以上、βトランザス未満の温度で1分間以
上保持する。本発明でいう加工度とは、鍛造や圧延等に
より生じる素材の断面減少率を指し、以下の式で求めら
れる値である。
First, the above-described Ti alloy material is processed at a temperature of not more than β transus and a working degree of 20% or more. Next, it is kept at a temperature of 600 ° C. or more and less than β transus for 1 minute or more. The working degree referred to in the present invention refers to a cross-sectional reduction rate of a material caused by forging, rolling, or the like, and is a value obtained by the following equation.

【0042】加工度(%)={(加工前の素材断面積−
加工後の素材断面積)×100}/加工前の素材断面積 βトランザス以下の加工度が20%より低いと、インゴ
ットの段階あるいは粗加工時におけるβトランザス以上
の温度への加熱によって形成された針状組織が十分に破
壊されず残留する。針状組織が素材に残留すると加工性
が低下するためプレス割れなどを生じる。また、粗大な
旧β粒界に沿ってCuの濃化領域が残存することにな
り、濃化部と濃化部との距離が大きくなるため、抗菌性
の発揮はあまり期待できない。加工温度の下限は、冷間
での加工も可能であるので特に規定しない。また加工度
の上限についても制限されるものではなく特に規定しな
い。上記の加工に引き続き、600℃以上、βトランザ
ス未満の温度で1分以上保持する熱処理を施す。この熱
処理は前記の加工と組み合わせることにより等軸のα相
が形成される。熱処理の温度が600℃未満であると等
軸のα相が形成されない。βトランザス以上の温度で
は、β単相となって結晶粒が粗大化するとともに針状組
織が形成され、加工性が低下する。
Degree of processing (%) = {(Material cross-sectional area before processing−
Material cross-sectional area after processing) x 100 mm / material cross-sectional area before processing If the degree of processing below β transus is lower than 20%, it was formed by heating to a temperature higher than β transus at the stage of ingot or rough processing. The needle-like tissue remains without being sufficiently destroyed. If the needle-like structure remains in the material, the workability is reduced, so that press cracking or the like occurs. In addition, since the Cu-enriched region remains along the coarse old β grain boundary, and the distance between the enriched portions becomes large, the antibacterial property cannot be expected to exhibit much. The lower limit of the processing temperature is not particularly defined because cold processing is also possible. The upper limit of the working ratio is not limited and is not particularly limited. Subsequent to the above-described processing, heat treatment is performed at a temperature of 600 ° C. or more and less than β transus for 1 minute or more. When this heat treatment is combined with the above-mentioned processing, an equiaxed α phase is formed. If the temperature of the heat treatment is lower than 600 ° C., no equiaxed α phase is formed. At a temperature equal to or higher than β transus, the phase becomes a β single phase, the crystal grains become coarse, a needle-like structure is formed, and the workability is reduced.

【0043】処理時間が1分未満では、加工組織が残存
し等軸のα相が形成されない。なお処理の最大時間は特
に規定しないが、粒径を100μm以下とするのがよ
い。
If the processing time is less than 1 minute, the processed structure remains and no equiaxed α phase is formed. Although the maximum time of the treatment is not particularly specified, the particle size is preferably set to 100 μm or less.

【0044】等軸組織で優れた抗菌性及び耐生物付着性
が発現されるのは、熱処理により形成される等軸結晶粒
の結晶粒界にCuの濃化領域が形成されることによる。
すなわち表面上においてCuの濃度の高い、すなわち抗
菌性に優れた領域が点在することによる。
The excellent antibacterial property and the anti-bioadhesive property are exhibited by the equiaxed structure because Cu-enriched regions are formed at the crystal grain boundaries of the equiaxed crystal grains formed by the heat treatment.
That is, a region having a high Cu concentration, that is, a region having excellent antibacterial properties is scattered on the surface.

【0045】[0045]

【実施例】(実施例1)アルゴン雰囲気としたボタンア
ーク溶解炉を使用して、幅100mm、長さ300m
m、厚さ25mmの種々の化学組成のインゴットを鋳造
した。インゴットの化学組成は表2に示した。
EXAMPLES Example 1 Using a button arc melting furnace in an argon atmosphere, a width of 100 mm and a length of 300 m were used.
m and ingots of various chemical compositions having a thickness of 25 mm were cast. The chemical composition of the ingot is shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】インゴットを1000℃(βトランザス以
上)に加熱し通常の方法で熱間圧延を施して厚さ12m
mの熱延板に形成し徐冷した。
The ingot was heated to 1000 ° C. (β transus or more) and subjected to hot rolling by a usual method to have a thickness of 12 m.
m and rolled slowly.

【0048】その後、βトランザス以下の温度である8
00℃に加熱し熱間圧延によって加工度38%の加工を
施し、7.5mmの熱延板に形成した。熱延板の表面に
生成したスケールを除去するために機械加工を施して7
mmの厚さに仕上げた。
Thereafter, the temperature is equal to or lower than β transus 8
The sheet was heated to 00 ° C., hot-rolled, processed to a degree of working of 38%, and formed into a 7.5 mm hot-rolled sheet. Machined to remove scale formed on the surface of hot rolled sheet
mm.

【0049】上記のようにして得た厚さ7mmの熱延板
に通常の方法で冷間圧延を施して厚さ3mmの冷延板に
仕上げた。この冷延板に600℃以上、βトランザス未
満の温度である700℃で1時間保持する焼鈍熱処理を
施してTi合金の板を製造した。
The hot-rolled sheet having a thickness of 7 mm obtained as described above was subjected to cold rolling by a conventional method to obtain a cold-rolled sheet having a thickness of 3 mm. This cold-rolled sheet was subjected to an annealing heat treatment at 700 ° C., which is a temperature of 600 ° C. or higher and lower than β transus, for 1 hour, to produce a Ti alloy sheet.

【0050】製造したTi合金の板の抗菌性(耐生物付
着性)、およびミクロ組織を調べた。抗菌性の試験は、
以下のように実施した。大腸菌(Escherichi
acoli W3110株)を、1/500に希釈した
ブイヨン培地に分散させて接種用菌液を調製した。ブイ
ヨン培地は、肉エキス5g、ペプトン10.0g、塩化
ナトリウム5gを精製水1リットルに溶かしたものとし
た。
The antibacterial properties (bioadhesion resistance) and microstructure of the plate of the manufactured Ti alloy were examined. The antibacterial test is
It carried out as follows. Escherichia coli
acoli strain W3110) was dispersed in a 1 / 500-diluted bouillon medium to prepare a bacterial solution for inoculation. The bouillon medium was prepared by dissolving 5 g of meat extract, 10.0 g of peptone, and 5 g of sodium chloride in 1 liter of purified water.

【0051】次に、予めエタノールで拭くことにより殺
菌済みの試験片(Ti合金の板を50mm角に切り出し
たもの)を滅菌シャーレ内におき、試験片の表面に接種
用菌液(0.5ml;菌数2.0×105 個)を接種し
た。ストマッカー用ポリ袋減菌ケンサパックを50mm
角に切り取った被覆フィルムを試験片に被せた後、温度
35±1℃、相対湿度95%の条件下で保存した。
Next, a test piece (a Ti alloy plate cut into a 50 mm square) which had been sterilized by previously wiping with ethanol was placed in a sterile petri dish, and the surface of the test piece was inoculated with a bacterial solution (0.5 ml). 2.0 × 10 5 bacteria). 50mm plastic bag sterilization Kensa pack for stomacher
After covering the test piece with the coated film cut into corners, it was stored under the conditions of a temperature of 35 ± 1 ° C. and a relative humidity of 95%.

【0052】24時間後、試験片の表面とフィルムに付
着した菌を9.5mlの生理食塩水で洗い出し、標準寒
天培地に沫塗した。さらに、温度35±1℃で48時間
培養後、生育したコロニーを計数し、生菌率を算出し、
抗菌性の評価の指標とした。なお、耐生物付着性は、T
i合金板の表面における生物の付着しやすさを示す指標
であるために抗菌性と比例すると考え、抗菌性に優れる
ものを耐生物付着性に優れるものと判断した。つまり、
抗菌性に優れるものは耐生物付着性にも優れているもの
と評価した。
After 24 hours, the bacteria adhered to the surface of the test piece and the film were washed out with 9.5 ml of physiological saline, and sprayed on a standard agar medium. Furthermore, after culturing at a temperature of 35 ± 1 ° C. for 48 hours, the number of grown colonies was counted, and the viable cell ratio was calculated.
It was used as an index for evaluating antibacterial properties. The bioadhesion resistance is T
Since it is an index indicating the susceptibility of organisms to adhere to the surface of the i-alloy plate, it is considered to be proportional to the antibacterial property, and those having excellent antibacterial properties were judged to be excellent in bioadhesion resistance. That is,
Those having excellent antibacterial properties were evaluated as having excellent bioadhesion resistance.

【0053】ミクロ組織は圧延縦断面から試料を採取
し、研磨、腐食後に100倍の光学顕微鏡にて観察し、結
晶粒径を測定した。
For the microstructure, a sample was taken from a longitudinal cross section of the roll, polished and corroded, observed with an optical microscope of 100 times, and the crystal grain size was measured.

【0054】抗菌性、および組織について調査した結果
を表2に併せて示した。
Table 2 also shows the results of investigations on antibacterial properties and tissues.

【0055】抗菌性の欄の○は、菌の生存率が30%未
満のもの、×は、菌の生存率が70%以上のものを示し
ている。表1から明らかなように、本発明のTi合金
は、抗菌性に優れているが、Cu含有量が本発明で規定
する下限以下の試験 NO.1は抗菌性がなかった。
In the column of antibacterial activity, ○ indicates that the survival rate of the bacteria is less than 30%, and X indicates that the survival rate of the bacteria is 70% or more. As is clear from Table 1, the Ti alloy of the present invention was excellent in antibacterial properties, but Test No. 1 in which the Cu content was lower than the lower limit specified in the present invention did not have antibacterial properties.

【0056】(実施例2)実施例1と同様に、アルゴン
雰囲気としたボタンアーク溶解炉を使用して幅100m
m、長さ300mm、厚さ25mmのインゴットを鋳造
した。インゴットの化学組成は、重量%でCuが0.5
%、Feが0.1%、酸素(O)が0.05%であっ
た。これらのインゴットを使用して、加工度、加工時の
加熱温度および焼鈍熱処理の温度と時間を様々に変化さ
せて、供試用のTi合金を製造し、抗菌性およびミクロ
組織を調べた。なお、使用した試料のβトランザスは、
約840℃である。
(Example 2) In the same manner as in Example 1, a button arc melting furnace in an argon atmosphere was used to have a width of 100 m.
m, a length of 300 mm, and a thickness of 25 mm were cast. The chemical composition of the ingot is 0.5% by weight of Cu.
%, Fe was 0.1%, and oxygen (O) was 0.05%. Using these ingots, the working degree, the heating temperature during working, and the temperature and time of the annealing heat treatment were variously changed to produce a Ti alloy for a test, and the antibacterial properties and the microstructure were examined. The β transus of the sample used was
About 840 ° C.

【0057】本発明例では、それぞれのインゴットをま
ず、実施例1と同様に1000℃に加熱し、熱間圧延と
機械加工を施して厚さ7.5mmの熱延板に形成した。
この熱延板を素材として、表3に示す様々な温度と加工
度で種々の厚さの熱延板に仕上げ、その後焼鈍熱処理を
施した。
In the example of the present invention, each ingot was first heated to 1000 ° C. in the same manner as in Example 1 and subjected to hot rolling and machining to form a hot-rolled sheet having a thickness of 7.5 mm.
Using this hot-rolled sheet as a raw material, hot-rolled sheets having various thicknesses were formed at various temperatures and working degrees shown in Table 3, and then subjected to annealing heat treatment.

【0058】[0058]

【表3】 [Table 3]

【0059】焼鈍熱処理後、機械加工により試験片に切
り出し、抗菌性および組織を調べた。試験方法は実施例
1と同じで、抗菌性の評価基準は、菌の生存率が30%
未満は抗菌性に優れるとして○印で、また菌の生存率が
30〜70%のものは抗菌性がやや劣るとして△とし
た。
After the annealing heat treatment, test pieces were cut out by machining to examine the antibacterial properties and the structure. The test method was the same as in Example 1, and the evaluation criteria for the antibacterial property was that the survival rate of the bacteria was 30%.
Less than is indicated by ○ for excellent antibacterial properties, and の も の for those with a survival rate of 30 to 70% of bacteria is slightly inferior in antibacterial properties.

【0060】抗菌性およびミクロ組織について調査した
結果を表2に併せて示した。
Table 2 also shows the results of the investigation on the antibacterial properties and the microstructure.

【0061】本発明で規定する製造方法方法で製造され
た試験片は良好な抗菌性と加工性を有していることがわ
かる。特に針状組織が残存した試験 NO.1.3.6は、
抗菌性がやや劣っている。この理由は、針状組織では結
晶粒径が粗いため、結晶粒界に存在するCuの濃化領域
間の距離が大きくなり、菌がこのCu濃化領域と出会う
確率が減少するために抗菌性が発揮されないものと思わ
れる。同じ理由で、等軸組織でも結晶粒径の大きい試験
NO.8は抗菌性が発揮できなかった。
It can be seen that the test specimen produced by the production method specified in the present invention has good antibacterial properties and workability. In particular, the test No. 1.3.6 in which the needle-like structure remained,
Antibacterial properties are slightly inferior. The reason for this is that in the needle-shaped structure, the crystal grain size is coarse, the distance between the Cu-enriched regions present at the crystal grain boundaries increases, and the probability that bacteria will encounter this Cu-enriched region is reduced, so that the antibacterial property is reduced. Seems not to be exhibited. For the same reason, a test with a large grain size even in an equiaxed structure
No. 8 failed to exhibit antibacterial properties.

【0062】[0062]

【発明の効果】本発明のTi合金は、抗菌性および耐生
物付着性に優れており、抗菌性や耐生物付着性が要求さ
れる広範な用途に使用できる。また、本発明の製造方法
により、抗菌性および耐生物付着性に優れたTi合金を
容易に製造することができる。
The Ti alloy of the present invention has excellent antibacterial properties and bio-adhesion resistance, and can be used in a wide range of applications requiring anti-bacterial properties and bio-adhesion resistance. Further, according to the production method of the present invention, a Ti alloy excellent in antibacterial properties and bio-adhesion resistance can be easily produced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 673 C22F 1/00 673 675 675 683 683 685 685Z 686 686Z 691 691B 691C 694 694B 694A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 673 C22F 1/00 673 675 675 683 683 683 685 685Z 686 686Z 691 691B 691C 694 694B 694A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Cuを0.01%以上、2%未
満含有することを特徴とする抗菌性および耐生物付着性
に優れたTi合金。
1. A Ti alloy excellent in antibacterial properties and bio-adhesion resistance, characterized by containing Cu in an amount of 0.01% or more and less than 2% by weight.
【請求項2】平均結晶粒径が100μm以下の等軸結晶
組織を有する請求項1記載のTi合金。
2. The Ti alloy according to claim 1, having an equiaxed crystal structure having an average crystal grain size of 100 μm or less.
【請求項3】請求項1記載のチタン合金に、βトランザ
ス以下の温度で加工度20%以上の加工を施した後、6
00℃以上、βトランザス未満の温度範囲内で1分間以
上保持する熱処理を施すことを特徴とする抗菌性および
耐生物付着性に優れたTi合金の製造方法。
3. After subjecting the titanium alloy according to claim 1 to processing at a temperature of not more than β transus and a working degree of not less than 20%,
A method for producing a Ti alloy having excellent antibacterial properties and bioadhesion resistance, which comprises performing a heat treatment for maintaining the temperature within a temperature range of 00 ° C. or more and less than β transus for 1 minute or more.
JP27113598A 1998-09-25 1998-09-25 Titanium alloy excellent in antibacterial property and organism sticking resistance and its production Pending JP2000096165A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27113598A JP2000096165A (en) 1998-09-25 1998-09-25 Titanium alloy excellent in antibacterial property and organism sticking resistance and its production
ITMI990466 IT1309598B1 (en) 1998-09-25 1999-03-05 TITANIUM ALLOY AND METHOD TO PRODUCE IT.
EP99306954A EP0992599A1 (en) 1998-09-25 1999-09-01 Titanium alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27113598A JP2000096165A (en) 1998-09-25 1998-09-25 Titanium alloy excellent in antibacterial property and organism sticking resistance and its production

Publications (2)

Publication Number Publication Date
JP2000096165A true JP2000096165A (en) 2000-04-04
JP2000096165A5 JP2000096165A5 (en) 2005-09-15

Family

ID=17495814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27113598A Pending JP2000096165A (en) 1998-09-25 1998-09-25 Titanium alloy excellent in antibacterial property and organism sticking resistance and its production

Country Status (3)

Country Link
EP (1) EP0992599A1 (en)
JP (1) JP2000096165A (en)
IT (1) IT1309598B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105385A (en) * 2003-10-01 2005-04-21 National Institute Of Advanced Industrial & Technology Fine structure titanium and its production method
JP2005298970A (en) * 2004-03-19 2005-10-27 Nippon Steel Corp Heat resistant titanium alloy sheet excellent in cold workability and process for producing the same
WO2012147998A1 (en) * 2011-04-27 2012-11-01 東邦チタニウム株式会社 α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME
KR101424385B1 (en) 2013-01-21 2014-08-13 서울대학교산학협력단 The method for manufacturing metal-material by hydrostatic pressure ecap process
KR20200024262A (en) * 2017-08-31 2020-03-06 닛폰세이테츠 가부시키가이샤 Titanium
JP2022500008A (en) * 2018-09-28 2022-01-04 株式会社小松精機工作所 Metallic material with biological properties
JP2022513130A (en) * 2019-03-22 2022-02-07 株式会社小松精機工作所 Metallic materials and articles with biological properties manufactured from them
CN115896498A (en) * 2022-11-22 2023-04-04 西安交通大学 High-phase-change circulation stability Ti-Ni-Cu shape memory alloy plate and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666271B2 (en) * 2009-02-13 2011-04-06 住友金属工業株式会社 Titanium plate
DE102010016567A1 (en) * 2010-02-26 2011-09-01 Viktor Hegedüs Antimicrobial material made of stainless steel, titanium, titanium alloy, powdery precursor or intermetallic compound to manufacture e.g. medical implant and toys, comprises antimicrobial active elements including silver, copper and zinc
DE102014010032B4 (en) 2014-07-08 2017-03-02 Technische Universität Braunschweig titanium alloy
EP3266887A4 (en) * 2015-03-02 2018-07-18 Nippon Steel & Sumitomo Metal Corporation Thin titanium sheet and manufacturing method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB854809A (en) * 1958-01-29 1960-11-23 Ici Ltd Heat-treatment of titanium-copper alloys
GB944130A (en) * 1961-08-03 1963-12-11 Ici Ltd Improvements in or relating to the heat-treatment of titanium-copper alloys
FR2052920A1 (en) * 1969-06-30 1971-04-16 Ugine Kuhlmann
US4744878A (en) * 1986-11-18 1988-05-17 Kerr-Mcgee Chemical Corporation Anode material for electrolytic manganese dioxide cell
MY118759A (en) * 1995-12-15 2005-01-31 Nisshin Steel Co Ltd Use of a stainless steel as an anti-microbial member in a sanitary environment
US5792288A (en) * 1996-01-16 1998-08-11 Mite Ltd. Titanium alloy with solutive and intermetallic reinforcement
JPH1180867A (en) * 1997-09-08 1999-03-26 Sumitomo Metal Ind Ltd Titanium alloy excellent in antibacterial property and organism adhesion resistance and its production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105385A (en) * 2003-10-01 2005-04-21 National Institute Of Advanced Industrial & Technology Fine structure titanium and its production method
JP4686700B2 (en) * 2003-10-01 2011-05-25 独立行政法人産業技術総合研究所 Microstructured titanium and manufacturing method thereof
JP2005298970A (en) * 2004-03-19 2005-10-27 Nippon Steel Corp Heat resistant titanium alloy sheet excellent in cold workability and process for producing the same
JP4486530B2 (en) * 2004-03-19 2010-06-23 新日本製鐵株式会社 Heat-resistant titanium alloy plate excellent in cold workability and method for producing the same
US9797029B2 (en) 2004-03-19 2017-10-24 Nippon Steel & Sumitomo Metal Corporation Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same
JP5692940B2 (en) * 2011-04-27 2015-04-01 東邦チタニウム株式会社 α + β-type or β-type titanium alloy and method for producing the same
WO2012147998A1 (en) * 2011-04-27 2012-11-01 東邦チタニウム株式会社 α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME
KR101424385B1 (en) 2013-01-21 2014-08-13 서울대학교산학협력단 The method for manufacturing metal-material by hydrostatic pressure ecap process
KR20200024262A (en) * 2017-08-31 2020-03-06 닛폰세이테츠 가부시키가이샤 Titanium
KR102334071B1 (en) 2017-08-31 2021-12-03 닛폰세이테츠 가부시키가이샤 titanium plate
JP2022500008A (en) * 2018-09-28 2022-01-04 株式会社小松精機工作所 Metallic material with biological properties
JP2022513130A (en) * 2019-03-22 2022-02-07 株式会社小松精機工作所 Metallic materials and articles with biological properties manufactured from them
JP7254383B2 (en) 2019-03-22 2023-04-10 株式会社小松精機工作所 Metallic materials and articles with biological properties made therefrom
CN115896498A (en) * 2022-11-22 2023-04-04 西安交通大学 High-phase-change circulation stability Ti-Ni-Cu shape memory alloy plate and preparation method thereof
CN115896498B (en) * 2022-11-22 2024-03-05 西安交通大学 Ti-Ni-Cu shape memory alloy plate with high phase-change cycle stability and preparation method thereof

Also Published As

Publication number Publication date
EP0992599A1 (en) 2000-04-12
IT1309598B1 (en) 2002-01-24
ITMI990466A1 (en) 2000-09-05

Similar Documents

Publication Publication Date Title
Wątroba et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material
EP2728024B1 (en) Silver-white copper alloy and method for its manufacture
JP2000096165A (en) Titanium alloy excellent in antibacterial property and organism sticking resistance and its production
JP5183911B2 (en) Titanium alloy plate excellent in bendability and stretchability and manufacturing method thereof
KR20010030864A (en) Corrosion resistant and drawable aluminum alloy, article thereof and process of making article
JP5112723B2 (en) Titanium alloy material excellent in strength and formability and manufacturing method thereof
KR20130059399A (en) Titanium material
WO2020119074A1 (en) Dental titanium alloy and preparation method therefor
CN108677074A (en) A kind of medical degradable corrosion-resistant magnesium alloy bracket and preparation method thereof of implantation heart
CN108277407A (en) A kind of intravascular stent degradable corrosion-resistant magnesium alloy and preparation method thereof
CN111172426B (en) High-plasticity degradable LiZn4-X intermetallic compound and preparation method thereof
JP4081537B2 (en) Bio-based Co-based alloy and method for producing the same
JP4152050B2 (en) Ti-Zr alloy
JPH1180867A (en) Titanium alloy excellent in antibacterial property and organism adhesion resistance and its production
KR102434520B1 (en) High strength and high formability titanium alloy using molybdenum and ferrochrome and method of manufacturing the same
JP2000313940A (en) Duplex stainless steel material and its manufacture
KR102452654B1 (en) Alloy material with antibacterial activity
CN112371983B (en) Alloy material with antibacterial property and obdurability as well as preparation method and application thereof
JP6258113B2 (en) Method for producing antibacterial titanium alloy material
JPH116036A (en) Cu-containing stainless steel sheet and its production
KR20210061324A (en) Titanium alloy with low elastic modulus and high yield strength
US20050284548A1 (en) Stainless steel product having excellent antibacterial activity and method for production thereof
CN107158479B (en) Biodegradable metal stent
JPH10306352A (en) Ferritic stainless steel sheet excellent in antibacterial characteristic and surface characteristic and having high workability, and its production
KR100888679B1 (en) Ti-BASE ALLOY WITH EXCELLENT BIOSTABILITY AND BIOCOMPATIBILITY

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20050330

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819