JP2000091668A - Manufacture of ferromagnetic tunnel junction element - Google Patents

Manufacture of ferromagnetic tunnel junction element

Info

Publication number
JP2000091668A
JP2000091668A JP11272752A JP27275299A JP2000091668A JP 2000091668 A JP2000091668 A JP 2000091668A JP 11272752 A JP11272752 A JP 11272752A JP 27275299 A JP27275299 A JP 27275299A JP 2000091668 A JP2000091668 A JP 2000091668A
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
tunnel junction
tunnel barrier
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11272752A
Other languages
Japanese (ja)
Other versions
JP3602013B2 (en
Inventor
Hisanao Tsuge
久尚 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27275299A priority Critical patent/JP3602013B2/en
Publication of JP2000091668A publication Critical patent/JP2000091668A/en
Application granted granted Critical
Publication of JP3602013B2 publication Critical patent/JP3602013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Abstract

PROBLEM TO BE SOLVED: To provide a ferromagnetic tunnel junction element of low resistance value and high current density which is required for a magnetic head and magnetic memory by forming a tunnel barrier layer of high quality under good control. SOLUTION: A first ferromagnetic layer 11 and a conductive layer 12 are continuously formed in vacuum, pure oxygen is introduced without breaking the vacuum so that the surface of the conductive layer 12 is naturally oxidized to form a tunnel barrier layer 13, and after the oxygen is evacuated, a second ferromagnetic layer 14 is formed to complete a basic structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度磁気ディス
ク装置における再生用磁気ヘッドや高密度磁気メモリ
(MRAM)に適した磁気抵抗効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element suitable for a reproducing magnetic head and a high density magnetic memory (MRAM) in a high density magnetic disk drive.

【0002】[0002]

【従来の技術】強磁性トンネル接合素子は、二つの強磁
性層の間に数nm厚の薄い絶縁体からなるトンネルバリ
ア層を挟んだ構造を持つ。この素子では、強磁性層間に
一定の電流を流した状態で強磁性層面内に外部磁界を印
加すると、両磁性層の磁化の相対角度に応じて抵抗値が
変化する磁気抵抗効果現象が現れる。この磁化の向きが
平行である場合には抵抗値は最小となり、反平行である
場合には抵抗値が最大となる。したがって、両磁性層に
保磁力差を付与することによって、磁界の強さに応じて
磁化の平行及び反平行状態を実現できるため、抵抗値の
変化による磁界検出が可能となる。
2. Description of the Related Art A ferromagnetic tunnel junction device has a structure in which a tunnel barrier layer made of a thin insulator having a thickness of several nm is sandwiched between two ferromagnetic layers. In this device, when an external magnetic field is applied in the plane of the ferromagnetic layer with a constant current flowing between the ferromagnetic layers, a magnetoresistance effect phenomenon in which the resistance value changes according to the relative angle of the magnetization of the two magnetic layers appears. When the magnetization directions are parallel, the resistance value is minimum, and when the magnetization directions are antiparallel, the resistance value is maximum. Therefore, by providing a coercive force difference between the two magnetic layers, a parallel and anti-parallel state of magnetization can be realized according to the strength of the magnetic field, so that a magnetic field can be detected by a change in resistance.

【0003】近年、トンネルバリア層にAlの表面酸化
膜を用いることによって、20%近い磁気抵抗変化率を
示す強磁性トンネル接合素子が得られるようになったこ
とから、磁気ヘッドや磁気メモリへの応用の可能性が高
まってきた。こうした大きな磁気抵抗変化率を報告して
いる代表例として、「1996年4月、ジャーナル・オブ・
アプライド・フィジックス、79巻、4724〜4729頁(Jour
nal of Applied Physics, vol.79, 4724〜4729, 199
6)」がある。
In recent years, the use of an Al surface oxide film as a tunnel barrier layer has made it possible to obtain a ferromagnetic tunnel junction element having a magnetoresistance change rate of nearly 20%. The potential for application has increased. As a representative example of such a large rate of change in magnetoresistance, "Journal of
Applied Physics, 79, 4724-4729 (Jour
nal of Applied Physics, vol. 79, 4724-4729, 199
6) ".

【0004】この技術を図面を用いて説明する。図8に
示すように、蒸着マスクを用いてガラス基板81上にC
oFeからなる第1の強磁性層82を真空蒸着し[図8
(a)]、引き続き、マスクを交換して1.2〜2.0n
m厚のAl層83を蒸着する[図8(b)]。このAl
層83表面を酸素グロー放電に曝すことにて、Al23
からなるトンネルバリア層84を形成する[図8
(c)]。最後に、このトンネルバリア層84を介して
第1の強磁性層82と重なるようにCoからなる第2の
強磁性層85を成膜して、十字電極の強磁性トンネル接
合素子を完成させる[図8(d)]。この方法では、磁
気抵抗変化率として最大18%という大きな値が得られ
ている。
[0004] This technique will be described with reference to the drawings. As shown in FIG. 8, C is formed on a glass substrate 81 using an evaporation mask.
A first ferromagnetic layer 82 of oFe is vacuum-deposited [FIG.
(A)] Then, the mask is replaced, and 1.2 to 2.0 n
An m-thick Al layer 83 is deposited [FIG. 8 (b)]. This Al
By exposing the surface of the layer 83 to oxygen glow discharge, Al 2 O 3
Forming a tunnel barrier layer 84 of FIG.
(C)]. Finally, a second ferromagnetic layer 85 made of Co is formed so as to overlap with the first ferromagnetic layer 82 via the tunnel barrier layer 84 to complete a cross-electrode ferromagnetic tunnel junction device [ FIG. 8 (d)]. In this method, a large value of a maximum magnetoresistance change of 18% is obtained.

【0005】その他の例として、特開平5−63254
号、特開平6−244477号、特開平8−70148
号、特開平8−70149号、特開平8−316548
号、及び、「1997年、日本応用磁気学会誌、21巻、493
〜496頁」等の報告がある。ここでは、トンネルバリア
層の形成方法として、Al層を成膜した後、大気中に曝
してAl23を成長させる方法が提案されている。
As another example, see Japanese Patent Application Laid-Open No. 5-63254.
JP-A-6-244777, JP-A-8-70148
JP-A-8-70149, JP-A-8-316548
And `` 1997, Journal of the Japan Society of Applied Magnetics, 21, 493
~ 496 pages ". Here, as a method of forming a tunnel barrier layer, a method is proposed in which an Al layer is formed and then exposed to the atmosphere to grow Al 2 O 3 .

【0006】[0006]

【発明が解決しようとする課題】強磁性トンネル接合素
子を磁気ヘッドや磁気メモリ等のデバイスに適用するに
は、熱雑音の影響を低減する為に実用素子寸法である程
度低い抵抗値が必要であるが、従来のトンネルバリア形
成法ではその実現が困難であった。また、高密度化に対
応した磁気ヘッドへの応用では、信号出力電圧の大きさ
が鍵を握るが、従来技術では素子特性を損なうことなく
十分な電流密度が得られないという課題もあった。さら
に、従来技術ではウェハ内やロット間の素子特性のばら
つきが大きく、実用に供するだけの十分な製造歩留まり
を得ることは難しかった。
In order to apply a ferromagnetic tunnel junction device to devices such as a magnetic head and a magnetic memory, it is necessary to have a somewhat low resistance value in practical device dimensions in order to reduce the influence of thermal noise. However, it has been difficult to realize the conventional tunnel barrier forming method. Further, in application to a magnetic head corresponding to high density, the magnitude of a signal output voltage is key, but there is a problem that a sufficient current density cannot be obtained without deteriorating element characteristics in the related art. Furthermore, in the prior art, there is a large variation in device characteristics within a wafer or between lots, and it has been difficult to obtain a sufficient production yield for practical use.

【0007】これらの課題は、主に従来のトンネルバリ
ア層の形成方法に起因すると考えられる。すなわち、酸
素グロー放電を用いる方法では、イオンやラジカル状態
の活性酸素を導電層の酸化に用いるので、薄い酸化膜厚
の制御すなわち素子抵抗の制御が難しいといった問題
や、同時に発生する活性化された不純物ガスによってト
ンネルバリア層が汚染され接合品質が劣化するという問
題がある。一方、大気中における自然酸化による方法で
は、大気中の粉塵でトンネルバリア層にピンホールを生
じたり、水分、炭素酸化物、窒素酸化物等の汚染を受け
ることによって酸素グロー放電と同様に多くの問題を抱
えている。
It is considered that these problems are mainly caused by the conventional method of forming a tunnel barrier layer. In other words, in the method using the oxygen glow discharge, active oxygen in the form of ions or radicals is used for oxidizing the conductive layer, so that it is difficult to control a thin oxide film thickness, that is, to control the element resistance. There is a problem that the tunnel barrier layer is contaminated by the impurity gas and the bonding quality is deteriorated. On the other hand, in the method based on natural oxidation in the atmosphere, many dusts in the atmosphere cause pinholes in the tunnel barrier layer and are contaminated by moisture, carbon oxides, nitrogen oxides, etc. I have a problem.

【0008】本発明の目的は、このような従来技術の課
題を解決し、実用に必要な抵抗値及び信号出力電圧特性
を備え、製造歩留まりを改善した強磁性トンネル接合素
子の製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a ferromagnetic tunnel junction device which solves the problems of the prior art described above, has a resistance value and a signal output voltage characteristic necessary for practical use, and has an improved manufacturing yield. It is in.

【0009】[0009]

【課題を解決するための手段】上記目的に従い、本発明
の強磁性トンネル接合素子の製造方法は、第1の強磁性
層と第2の強磁性層の間にトンネルバリア層を挟んだ構
造を持つ強磁性トンネル接合素子の製造方法において、
真空中で金属又は半導体からなる導電層を成膜した後、
純酸素を導入し、該導電層表面を自然酸化してトンネル
バリア層を形成する工程を含むことを特徴とする。
According to the above object, a method of manufacturing a ferromagnetic tunnel junction device according to the present invention has a structure in which a tunnel barrier layer is sandwiched between a first ferromagnetic layer and a second ferromagnetic layer. In a method of manufacturing a ferromagnetic tunnel junction device having
After forming a conductive layer made of metal or semiconductor in vacuum,
A step of introducing pure oxygen and naturally oxidizing the surface of the conductive layer to form a tunnel barrier layer.

【0010】また、特に好ましくは、第1の強磁性層、
トンネルバリア層、第2の強磁性層を不純物ガスにさら
すことなく連続形成することを特徴とし、第1の強磁性
層を成膜した後、真空中に純酸素を導入して該第1の強
磁性層表面を酸化する工程を含むことを特徴とし、前記
第1及び第2の強磁性層は、Fe、Co、Ni又はそれ
ら元素を含む合金であることを特徴とし、前記導電層
は、Al、Mg、又は、ランタノイドに属する金属の何
れかよりなることを特徴とし、純酸素の酸素分圧が、2
0mTorr〜200Torrであることを特徴とす
る。
Also, particularly preferably, the first ferromagnetic layer,
The tunnel barrier layer and the second ferromagnetic layer are continuously formed without being exposed to an impurity gas. After the first ferromagnetic layer is formed, pure oxygen is introduced into vacuum to form the first ferromagnetic layer. A step of oxidizing the surface of the ferromagnetic layer, wherein the first and second ferromagnetic layers are Fe, Co, Ni, or an alloy containing these elements, and the conductive layer is Characterized by being composed of any of Al, Mg, and metals belonging to lanthanoids, wherein the oxygen partial pressure of pure oxygen is 2
It is characterized by a range of 0 mTorr to 200 Torr.

【0011】本発明においては、真空中に純酸素を導入
し、導電層表面を自然酸化してトンネルバリア層を形成
するので、不純物ガスの影響を受けない清浄な雰囲気で
熱平衡状態を保ったまま酸化層の成長が可能であり、高
品質のトンネルバリア層を制御性良く形成することがで
き、上記目的を達成できる。
In the present invention, since pure oxygen is introduced into a vacuum and the surface of the conductive layer is naturally oxidized to form a tunnel barrier layer, a thermal equilibrium state is maintained in a clean atmosphere unaffected by impurity gas. An oxide layer can be grown, a high quality tunnel barrier layer can be formed with good controllability, and the above object can be achieved.

【0012】[0012]

【発明の実施の形態】本発明の強磁性トンネル接合素子
の製造方法に関する第1の実施の形態について、図面を
参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a method for manufacturing a ferromagnetic tunnel junction device according to the present invention will be described with reference to the drawings.

【0013】図1に示すように、第1の強磁性層11、
導電層12を真空中で連続成膜し[図1(a)]、その
後真空を破ることなく純酸素を導入し、導電層12の表
面を自然酸化してトンネルバリア層13を形成する[図
1(b)]。なお、図1(b)には導電膜12の酸化後
でも第1の強磁性層11との界面に導電層12の未酸化
部分が残されている場合を示しているが、酸化条件次第
で完全に酸化させることも可能である。次に、酸素を排
気した後、第2の強磁性層14を成膜して強磁性トンネ
ル接合素子の基本構造を完成させる[図1(c)]。
As shown in FIG. 1, a first ferromagnetic layer 11,
The conductive layer 12 is continuously formed in a vacuum [FIG. 1 (a)], and then pure oxygen is introduced without breaking the vacuum, and the surface of the conductive layer 12 is naturally oxidized to form a tunnel barrier layer 13 [FIG. 1 (b)]. FIG. 1B shows a case where an unoxidized portion of the conductive layer 12 remains at the interface with the first ferromagnetic layer 11 even after the oxidation of the conductive film 12, but depending on the oxidation conditions. It is also possible to completely oxidize. Next, after oxygen is evacuated, a second ferromagnetic layer 14 is formed to complete the basic structure of the ferromagnetic tunnel junction device [FIG. 1 (c)].

【0014】強磁性層11、14に、Fe、Co、Ni
又はそれら元素を含む合金を用いた場合には、導電層1
2として強磁性層よりも小さな表面自由エネルギーの値
を持つAlを選択することにより、特に下地となる第1
の強磁性層11に対して良好な被覆性を呈する。その結
果、完成された素子ではピンホールによる強磁性層間の
電気的ショートの無い良好な特性が得られる。また、A
lの酸素一原子あたりの生成自由エネルギーは、Fe、
Co、Niよりも大きいので、トンネルバリア層となる
Al23は接合界面で熱的に安定である。
The ferromagnetic layers 11 and 14 are made of Fe, Co, Ni.
Alternatively, when an alloy containing these elements is used, the conductive layer 1
By selecting Al having a surface free energy value smaller than that of the ferromagnetic layer as 2, in particular, the first substrate serving as an underlayer is selected.
Good ferromagnetic layer 11 is provided. As a result, in the completed device, good characteristics without an electrical short between the ferromagnetic layers due to pinholes can be obtained. Also, A
l of free energy of formation per atom of oxygen is Fe,
Since it is larger than Co and Ni, Al 2 O 3 serving as a tunnel barrier layer is thermally stable at the junction interface.

【0015】導電層12に、Mgやランタノイドに属す
る金属を選択した場合には、同様な理由から下地となる
第1の強磁性層11に対する良好な被覆性とともに、さ
らに熱的に安定なトンネルバリア層が得られる。
When Mg or a metal belonging to the lanthanoid is selected for the conductive layer 12, for the same reason, the first ferromagnetic layer 11 serving as an underlayer has good coverage and a thermally stable tunnel barrier. A layer is obtained.

【0016】次に、本発明の第2の実施形態について、
図面を参照して説明する。図2に示すように、第1の強
磁性層11を成膜し[図2(a)]、次いで真空中に酸
素を導入して、第1の強磁性層11の表面に酸化層21
を形成する[図2(b)]。この工程を加えると、次の
工程で導電層12を成膜する際に第1の強磁性層11か
ら導電層12に酸素拡散が起こり、第1の強磁性層11
に還元領域22が形成されると共に、導電層12の下部
表面に酸化層23が形成される[図2(c)]。
Next, a second embodiment of the present invention will be described.
This will be described with reference to the drawings. As shown in FIG. 2, a first ferromagnetic layer 11 is formed (FIG. 2A), and oxygen is introduced into a vacuum to form an oxide layer 21 on the surface of the first ferromagnetic layer 11.
Is formed [FIG. 2 (b)]. When this step is added, oxygen diffusion occurs from the first ferromagnetic layer 11 to the conductive layer 12 when the conductive layer 12 is formed in the next step, and the first ferromagnetic layer 11
In addition, a reduction region 22 is formed, and an oxide layer 23 is formed on the lower surface of the conductive layer 12 (FIG. 2C).

【0017】この工程によれば、少なくとも強磁性層に
接する両方の界面(図2(d)では全領域)に導電層1
2の酸化膜が形成されるので、より熱安定性に優れた素
子が実現される。導電層12側に安定な酸化層を形成す
るには、導電層12の酸素一原子当たりの生成自由エネ
ルギーが第1の強磁性層11を構成する元素よりも大き
くすればよい。強磁性層にFe、Co、Ni又はそれら
を含む合金を用いた場合には、導電層12としてAl、
Mg、ランタノイドに属する金属を用いることが有効で
ある。
According to this step, the conductive layer 1 is formed on at least both interfaces (all regions in FIG. 2D) in contact with the ferromagnetic layer.
Since the oxide film of No. 2 is formed, an element having more excellent thermal stability is realized. In order to form a stable oxide layer on the conductive layer 12 side, the free energy of formation per atom of oxygen in the conductive layer 12 may be set to be larger than that of the element forming the first ferromagnetic layer 11. When Fe, Co, Ni or an alloy containing them is used for the ferromagnetic layer, Al,
It is effective to use Mg or a metal belonging to the lanthanoid.

【0018】引続き、第1の実施の形態と同様にして、
トンネルバリア層24、第2の強磁性層14を成膜すれ
ば、強磁性トンネル接合素子の基本構造が得られる[図
2(e)]。
Subsequently, as in the first embodiment,
By forming the tunnel barrier layer 24 and the second ferromagnetic layer 14, a basic structure of a ferromagnetic tunnel junction device can be obtained [FIG. 2 (e)].

【0019】[0019]

【実施例】<実施例1>本発明の第1の実施例を図面を
参照して詳細に説明する。
<Embodiment 1> A first embodiment of the present invention will be described in detail with reference to the drawings.

【0020】まず、図3(a)に示すように、表面を熱
酸化したSi基板31上に50nm厚のAl膜からなる
第1の配線層32、10nm厚のFe膜からなる第1の
強磁性層33、2nm厚のAl層からなる導電層34を
連続してスパッタ蒸着した。この成膜には、4インチ直
径のターゲット4基を備えた高周波マグネトロンスパッ
タ装置を用いた。スパッタ条件は、すべてバックグラン
ド圧力1×10-7Torr以下、Ar圧力10mTor
r、高周波電力200Wとした。次に、スパッタ装置内
に純酸素を導入し、酸素圧力を20mTorr〜200
Torrの範囲で10分間保持して、Al導電層34表
面を酸化してトンネルバリア層35を形成した。酸素を
排気してバックグランド圧力に到達した後、20nm厚
のCoFe膜からなる第2の強磁性層36をスパッタ蒸
着し、結合構成層を完成した。
First, as shown in FIG. 3A, a first wiring layer 32 made of an Al film having a thickness of 50 nm is formed on a Si substrate 31 whose surface is thermally oxidized. A magnetic layer 33 and a conductive layer 34 of an Al layer having a thickness of 2 nm were continuously deposited by sputtering. For this film formation, a high-frequency magnetron sputtering apparatus provided with four targets each having a diameter of 4 inches was used. The sputtering conditions were all such that the background pressure was 1 × 10 −7 Torr or less, and the Ar pressure was 10 mTorr.
r, high-frequency power 200 W. Next, pure oxygen is introduced into the sputtering apparatus, and the oxygen pressure is increased from 20 mTorr to 200 mTorr.
The surface of the Al conductive layer was oxidized to hold the tunnel conductive layer at Torr for 10 minutes to form a tunnel barrier layer. After oxygen was exhausted to reach the background pressure, a second ferromagnetic layer 36 of a 20 nm-thick CoFe film was sputter-deposited to complete the coupling constituent layer.

【0021】次に、通常のフォトリソグラフィ技術とイ
オンミリング技術を用いて、接合構成層の全層を下部配
線形状に加工した[図3(b)]。第2の強磁性層36
上に接合寸法を規定するためのレジストパターン37を
形成し、第1の強磁性層33までイオンミリングした
[図3(c)]。このレジストを残したまま300nm
厚のAl23膜からなる絶縁層38を電子ビーム蒸着し
た後、レジストのリフトオフを行った[図3(d)]。
次に、上部配線を形成するためのレジストパターン39
を形成し[図3(e)]、その後第2の強磁性層36と
第2の配線層40間の電気的な接触を得るために露出し
た試料表面の逆スパッタクリーニングを行った。引き続
き、200nm厚のAl膜からなる第2の配線層40を
蒸着し、最後にレジストをリフトオフすることによって
上部配線を形成し、強磁性トンネル接合素子を完成した
[図3(f)]。
Next, using a normal photolithography technique and an ion milling technique, all of the bonding constituent layers were processed into a lower wiring shape [FIG. 3 (b)]. Second ferromagnetic layer 36
A resist pattern 37 for defining a junction size was formed thereon, and ion milling was performed up to the first ferromagnetic layer 33 (FIG. 3C). 300 nm with this resist left
After electron beam evaporation of the insulating layer 38 made of a thick Al 2 O 3 film, the resist was lifted off [FIG. 3 (d)].
Next, a resist pattern 39 for forming an upper wiring is formed.
[FIG. 3 (e)], and then the exposed sample surface was subjected to reverse sputter cleaning to obtain electrical contact between the second ferromagnetic layer 36 and the second wiring layer 40. Subsequently, a second wiring layer 40 made of an Al film having a thickness of 200 nm was deposited, and finally the resist was lifted off to form an upper wiring, thereby completing a ferromagnetic tunnel junction device [FIG. 3 (f)].

【0022】図4に、このようにして作製した強磁性ト
ンネル接合素子の代表的な磁気抵抗曲線を示す。この素
子の接合面積は40×40μm2であり、トンネルバリ
ア層を形成する際のAlの酸素圧力は20Torrとし
た。印加磁界を−300 0eから300 0e に、さらに
逆に300 0e から−300 0e に変化させることによ
り、抵抗値はA→B→C→D→E→F→G→H→Aの曲
線上を移動する。B、Fの立ち上がりと、D、Hの立ち
下がりは、それぞれFeとCoFeの保磁力に対応して
いる。A、EでFeとCoFeの磁化の向きが平行状
態、C、Gで反平行状態が実現されていることを意味し
ている。この磁気抵抗曲線から読み取った磁気抵抗変化
率は約5%であり、接合面積(2×2μm2〜40×4
0μm2)に関係無くほぼ同一の値が得られた。一方、
抵抗値は、図5に示すように、接合面積に対してきれい
な逆比例の関係を示した。最小二乗法から求めた傾きは
−1.004であり、非常に制御性よく素子が作製され
ていることが分かる。接合面積で規格化した抵抗値は
1.5×10-5Ωcm2であり、トンネルバリア層形成時
の酸素圧力を20mTorrまで低下させることによっ
て、さらに一桁以上小さな抵抗値が得られた。これらの
抵抗値は従来の方法で得られた最も小さい抵抗値よりも
二桁から三桁小さな値である。
FIG. 4 shows a typical magnetoresistance curve of the ferromagnetic tunnel junction device manufactured as described above. The junction area of this element was 40 × 40 μm 2 , and the oxygen pressure of Al when forming the tunnel barrier layer was 20 Torr. By changing the applied magnetic field from -300 0e to 300 0e and, conversely, from 300 0e to -300 0e, the resistance value changes along the curve of A → B → C → D → E → F → G → H → A. Moving. The rising edges of B and F and the falling edges of D and H correspond to the coercive forces of Fe and CoFe, respectively. A and E indicate that the magnetization directions of Fe and CoFe are realized in a parallel state, and C and G indicate that an antiparallel state is realized. The rate of change in magnetoresistance read from this magnetoresistance curve is about 5%, and the junction area (2 × 2 μm 2 to 40 × 4)
Approximately the same value was obtained irrespective of 0 μm 2 ). on the other hand,
As shown in FIG. 5, the resistance value showed a clean inverse proportional relationship with the junction area. The slope determined by the least squares method is -1.004, which indicates that the element is manufactured with very good controllability. The resistance value standardized by the junction area was 1.5 × 10 −5 Ωcm 2 , and by lowering the oxygen pressure at the time of forming the tunnel barrier layer to 20 mTorr, a resistance value smaller by one digit or more was obtained. These resistance values are two to three orders of magnitude lower than the lowest resistance values obtained by conventional methods.

【0023】図6に10×10μm2における抵抗値及
び磁気抵抗変化率の電流密度依存性を示す。抵抗値、磁
気抵抗変化率共に電流密度を増加させても103A/c
2までは全く変化が認められなかった。5×103A/
cm2でも抵抗値の変化はほとんど無く、磁気抵抗変化
率も約10%の減少に止まっている。しかも、この値は
電流密度を減少させるともとの状態に復帰した。これら
の結果から、磁気抵抗効果素子としての強磁性トンネル
接合素子の信号出力電圧を求めると、103A/cm2
電流密度で約1mV、5×103A/cm2で約3mVで
あった。この素子を再生磁気ヘッドに用いた場合、後者
は10Gb/in2以上の記録密度に対応できると考え
られる。
FIG. 6 shows the current density dependency of the resistance value and the magnetoresistance ratio at 10 × 10 μm 2 . Even if the current density is increased for both the resistance value and the magnetoresistance change rate, it is 10 3 A / c.
No change was observed at all up to m 2 . 5 × 10 3 A /
Even at cm 2 , there was almost no change in the resistance value, and the magnetoresistance change rate was only reduced by about 10%. In addition, this value returned to the original state when the current density was reduced. These results, when obtaining the signal output voltage of the ferromagnetic tunnel junction element as the magnetoresistive effect element, in 10 3 about a current density of A / cm 2 1mV, 5 × 10 3 A / cm 2 to about 3mV met Was. When this element is used for a reproducing magnetic head, it is considered that the latter can correspond to a recording density of 10 Gb / in 2 or more.

【0024】<実施例2>次に、本発明の第2の実施例
を説明する。
<Embodiment 2> Next, a second embodiment of the present invention will be described.

【0025】実施例1の図3(a)の工程で導電層34
として2nmのAl膜の代わりに、同膜厚のMg膜を用
いた。その他の工程は実施例1と全く同じとした。得ら
れた磁気抵抗変化率は約8%であり、接合面積(2×2
μm2〜40×40μm2)に関係無くほぼ同一の値が得
られた。接合面積で規格化した抵抗値は、トンネルバリ
ア層形成時の酸素圧力20Torrでは1.6×10-5
Ωcm2であり、20mTorrまで低下させることに
よって、さらに一桁以上小さな値が得られた。これらの
抵抗値は、従来の方法で得られた最も小さい抵抗値より
も二桁から三桁小さな値である。抵抗値及び磁気抵抗変
化率は共に、電流密度103A/cm2まで全く変化が認
められなかった。この条件での信号出力電圧は約1.3
mVであった。
The conductive layer 34 in the step of FIG.
In place of the 2 nm Al film, an Mg film having the same thickness was used. Other steps were exactly the same as in Example 1. The obtained magnetoresistance ratio is about 8%, and the bonding area (2 × 2
μm 2 to 40 × 40 μm 2 ), and almost the same value was obtained. The resistance value normalized by the junction area is 1.6 × 10 −5 at an oxygen pressure of 20 Torr at the time of forming the tunnel barrier layer.
Ωcm 2 , and by lowering the resistance to 20 mTorr, a value smaller by one digit or more was obtained. These resistance values are two to three orders of magnitude lower than the lowest resistance values obtained by conventional methods. Both the resistance value and the magnetoresistance change rate did not change at all up to the current density of 10 3 A / cm 2 . The signal output voltage under this condition is about 1.3
mV.

【0026】<実施例3>次に、本発明の第3の実施例
を説明する。
<Embodiment 3> Next, a third embodiment of the present invention will be described.

【0027】実施例1の図3(a)の工程で導電層34
として2nmのAl膜の代わりに、同膜厚のLa膜を用
いた。その他の工程は実施例1と全く同じとした。得ら
れた磁気抵抗変化率は約6%であり、接合面積(2×2
μm2〜40×40μm2)に関係無くほぼ同一の値が得
られた。接合面積で規格化した抵抗値は、トンネルバリ
ア層形成時の酸素圧力20Torrでは2.7×10-5
Ωcm2であり、20mTorrまで低下させることに
よって、さらに一桁以上小さな値が得られた。これらの
抵抗値は、従来の方法で得られた最も小さい抵抗値より
も二桁から三桁小さな値である。抵抗値及び磁気抵抗変
化率は共に、電流密度103A/cm2まで全く変化が認
められなかった。この条件での信号出力電圧は、約1.
6mVであった。
The conductive layer 34 in the step of FIG.
In place of the 2 nm Al film, an La film having the same thickness was used. Other steps were exactly the same as in Example 1. The obtained magnetoresistance ratio is about 6%, and the bonding area (2 × 2
μm 2 to 40 × 40 μm 2 ), and almost the same value was obtained. The resistance value normalized by the junction area is 2.7 × 10 −5 at an oxygen pressure of 20 Torr at the time of forming the tunnel barrier layer.
Ωcm 2 , and by lowering the resistance to 20 mTorr, a value smaller by one digit or more was obtained. These resistance values are two to three orders of magnitude lower than the lowest resistance values obtained by conventional methods. Both the resistance value and the magnetoresistance change rate did not change at all up to the current density of 10 3 A / cm 2 . The signal output voltage under this condition is about 1.
6 mV.

【0028】本実施例では、導電層34に用いるランタ
ノイドに属する金属としてLaを用いたが、代わりに、
Nd、Sm、Luなど同族の金属を用いてもほぼ同様な
結果が得られる。
In this embodiment, La is used as the metal belonging to the lanthanoid used for the conductive layer 34.
Almost the same results can be obtained by using a metal of the same group such as Nd, Sm, and Lu.

【0029】<実施例4>本発明の第4の実施例を説明
する。
<Embodiment 4> A fourth embodiment of the present invention will be described.

【0030】まず、図7(a)に示すように、表面を熱
酸化したSi基板31上に50nm厚のAl膜からなる
第1の配線層32、10nm厚のFe膜からなる第1の
強磁性層33を連続してスパッタ蒸着した。この成膜に
は、4インチ直径のターゲット4基を備えた高周波マグ
ネトロンスパッタ装置を用いた。スパッタ条件は、すべ
てバックグランド圧力1×10-7Torr以下、Ar圧
力10mTorr、高周波電力200Wとした。次に、
スパッタ装置内に純酸素を導入し、酸素圧力200To
rrで10分間保持して、Fe膜表面にFeOx層71
を形成した。酸素を排気してバックグランド圧力に到達
した後、2nm厚のAl膜からなる導電層34をスパッ
タ蒸着した[図7(b)]。その際、Fe膜表面のFe
Oxの酸素がAl膜へ拡散し、この界面にAl23層7
3が形成された。もう一度、スパッタ装置内に純酸素を
導入し、酸素圧力を20mTorr〜200Torrの
範囲で10分間保持して、Al導電層34表面を酸化し
てトンネルバリア層74を形成した。酸素を排気した
後、20nm厚のCoFe膜からなる第2の強磁性層3
6をスパッタ蒸着し、結合構成層を完成した[図7
(c)]。本実施例では、トンネルバリア層74とする
Al膜が完全に酸化された。
First, as shown in FIG. 7A, a first wiring layer 32 made of an Al film having a thickness of 50 nm is formed on a Si substrate 31 whose surface is thermally oxidized. The magnetic layer 33 was continuously sputter deposited. For this film formation, a high-frequency magnetron sputtering apparatus provided with four targets each having a diameter of 4 inches was used. The sputtering conditions were all such that the background pressure was 1 × 10 −7 Torr or less, the Ar pressure was 10 mTorr, and the high frequency power was 200 W. next,
Pure oxygen is introduced into the sputtering device, and the oxygen pressure is 200To.
rr for 10 minutes, and the FeOx layer 71 on the Fe film surface.
Was formed. After the oxygen was exhausted to reach the background pressure, a conductive layer 34 made of an Al film having a thickness of 2 nm was sputter-deposited [FIG. 7 (b)]. At that time, Fe on the Fe film surface
Ox oxygen diffuses into the Al film, and an Al 2 O 3 layer 7
3 was formed. Once again, pure oxygen was introduced into the sputtering apparatus, the oxygen pressure was maintained at a range of 20 mTorr to 200 Torr for 10 minutes, and the surface of the Al conductive layer 34 was oxidized to form a tunnel barrier layer 74. After exhausting oxygen, the second ferromagnetic layer 3 made of a CoFe film having a thickness of 20 nm is formed.
6 was sputter-deposited to complete the bonding constituent layer [FIG.
(C)]. In this embodiment, the Al film serving as the tunnel barrier layer 74 was completely oxidized.

【0031】次に、通常のフォトリソグラフィ技術とイ
オンミリング技術を用いて、接合構成層の全層を下部配
線形状に加工した[図7(d)]。第2の強磁性層36
上に接合寸法を規定するためのレジストパターン37を
形成し、第1の強磁性層33までイオンミリングした
[図7(e)]。このレジストを残したまま300nm
厚のAl23膜からなる絶縁層38を電子ビーム蒸着し
た後、レジストのリフトオフを行った[図7(f)]。
次に、上部配線を形成するためのレジストパターン39
を形成し[図7(g)]、その後第2の強磁性層36と
第2の配線層40間の電気的な接触を得るために露出し
た試料表面の逆スパッタクリーニングを行った。引き続
き、200nm厚のAl膜からなる第2の配線層40を
蒸着し、最後にレジストをリフトオフすることによって
上部配線を形成し、強磁性トンネル接合素子を完成した
[図7(h)]。
Next, using a normal photolithography technique and an ion milling technique, all of the bonding constituent layers were processed into a lower wiring shape [FIG. 7 (d)]. Second ferromagnetic layer 36
A resist pattern 37 for defining a junction size was formed thereon, and ion milling was performed up to the first ferromagnetic layer 33 (FIG. 7E). 300 nm with this resist left
After an insulating layer 38 made of a thick Al 2 O 3 film was subjected to electron beam evaporation, the resist was lifted off [FIG. 7 (f)].
Next, a resist pattern 39 for forming an upper wiring is formed.
[FIG. 7 (g)], and then the exposed sample surface was subjected to reverse sputter cleaning in order to obtain electrical contact between the second ferromagnetic layer 36 and the second wiring layer 40. Subsequently, a second wiring layer 40 made of an Al film having a thickness of 200 nm was deposited, and finally the upper wiring was formed by lifting off the resist, thereby completing a ferromagnetic tunnel junction device [FIG. 7 (h)].

【0032】得られた磁気抵抗変化率は約10%であ
り、接合面積(2×2μm2〜40×40μm2)に関係
無くほぼ同一の値が得られた。接合面積で規格化した抵
抗値は、トンネルバリア層形成時の酸素圧力20Tor
rでは5×10-5Ωcm2であり、20mTorrまで
低下させることによって、さらに一桁以上小さな値が得
られた。これらの抵抗値は従来の方法で得られた最も小
さい抵抗値よりも二桁から三桁小さな値である。抵抗値
及び磁気抵抗変化率は共に電流密度1.5×103A/c
2まで全く変化が認められなかった。この条件での信
号出力電圧は約7.5mVであった。この素子を再生磁
気ヘッドに用いた場合、20Gb/in2以上の記録密
度に対応できると考えられる。
The obtained magnetoresistance ratio was about 10%, and almost the same value was obtained irrespective of the junction area (2 × 2 μm 2 to 40 × 40 μm 2 ). The resistance value normalized by the bonding area is the oxygen pressure at the time of forming the tunnel barrier layer of 20 Torr.
r is 5 × 10 −5 Ωcm 2 , and by lowering the value to 20 mTorr, a value smaller by at least one order of magnitude was obtained. These resistance values are two to three orders of magnitude lower than the lowest resistance values obtained by conventional methods. Both the resistance value and the magnetoresistance change rate are a current density of 1.5 × 10 3 A / c.
No change was observed at all up to m 2 . The signal output voltage under this condition was about 7.5 mV. When this element is used for a reproducing magnetic head, it is considered that the element can cope with a recording density of 20 Gb / in 2 or more.

【0033】<実施例5>次に、本発明の第5の実施例
を説明する。
<Embodiment 5> Next, a fifth embodiment of the present invention will be described.

【0034】実施例4の図7(a)の工程で導電層34
として2nmのAl膜の代わりに、同膜厚のMg膜を用
いた。その他の工程は実施例4と全く同じとした。得ら
れた磁気抵抗変化率は約9%であり、接合面積(2×2
μm2〜40×40μm2)に関係無くほぼ同一の値が得
られた。接合面積で規格化した抵抗値は、トンネルバリ
ア層形成時の酸素圧力20Torrでは6×10-5Ωc
2であり、20mTorrまで低下させることによっ
て、さらに一桁以上小さな値が得られた。これらの抵抗
値は従来の方法で得られた最も小さい抵抗値よりも二桁
から三桁小さな値である。抵抗値及び磁気抵抗変化率は
共に、電流密度1.5×103A/cm2まで全く変化が
認められなかった。この条件での信号出力電圧は約8.
1mVであった。
The conductive layer 34 in the step of FIG.
In place of the 2 nm Al film, an Mg film having the same thickness was used. Other steps were exactly the same as in Example 4. The obtained magnetoresistance ratio is about 9%, and the bonding area (2 × 2
μm 2 to 40 × 40 μm 2 ), and almost the same value was obtained. The resistance value normalized by the junction area is 6 × 10 −5 Ωc at an oxygen pressure of 20 Torr at the time of forming the tunnel barrier layer.
m 2 , and by lowering the value to 20 mTorr, a value smaller by one digit or more was obtained. These resistance values are two to three orders of magnitude lower than the lowest resistance values obtained by conventional methods. In both the resistance value and the magnetoresistance change rate, no change was observed up to a current density of 1.5 × 10 3 A / cm 2 . The signal output voltage under this condition is about 8.
It was 1 mV.

【0035】<実施例6>次に、本発明の第6の実施例
を説明する。
<Embodiment 6> Next, a sixth embodiment of the present invention will be described.

【0036】実施例4の図7(a)の工程で導電層34
として2nmのAl膜の代わりに、同膜厚のLa膜を用
いた。その他の工程は実施例4と全く同じとした。得ら
れた磁気抵抗変化率は約12%であり、接合面積(2×
2μm2〜40×40μm2)に関係無くほぼ同一の値が
得られた。接合面積で規格化した抵抗値は、トンネルバ
リア層形成時の酸素圧力20Torrでは4×10-5Ω
cm2であり、20mTorrまで低下させることによ
って、さらに一桁以上小さな値が得られた。これらの抵
抗値は従来の方法で得られた最も小さい抵抗値よりも二
桁から三桁小さな値である。抵抗値及び磁気抵抗変化率
は共に電流密度1.5×103A/cm2まで全く変化が
認められなかった。この条件での信号出力電圧は約7.
2mVであった。
The conductive layer 34 in the step of FIG.
In place of the 2 nm Al film, an La film having the same thickness was used. Other steps were exactly the same as in Example 4. The obtained magnetoresistance change rate is about 12%, and the bonding area (2 ×
Almost the same value was obtained irrespective of 2 μm 2 to 40 × 40 μm 2 ). The resistance value normalized by the junction area is 4 × 10 −5 Ω at an oxygen pressure of 20 Torr at the time of forming the tunnel barrier layer.
cm 2 , and by lowering the value to 20 mTorr, a value smaller by one digit or more was obtained. These resistance values are two to three orders of magnitude lower than the lowest resistance values obtained by conventional methods. Both the resistance value and the rate of change in magnetoresistance showed no change up to a current density of 1.5 × 10 3 A / cm 2 . The signal output voltage under this condition is about 7.
It was 2 mV.

【0037】本実施例では、導電層34に用いるランタ
ノイドに属する金属としてLaを用いたが、代わりに、
Nd、Sm、Luなど同族の金属を用いてもほぼ同様な
結果が得られる。
In this embodiment, La is used as the metal belonging to the lanthanoid used for the conductive layer 34.
Almost the same results can be obtained by using a metal of the same group such as Nd, Sm, and Lu.

【0038】[0038]

【発明の効果】本発明によれば、不純物ガスの影響を受
けない清浄な雰囲気で熱平衡状態を保ったまま酸化層の
成長が可能なので、高品質のトンネルバリア層を制御性
良く形成することができる。また、酸素圧力や基板温度
の制御等によって磁気ヘッドや磁気メモリなどのデバイ
ス応用に必要な低抵抗値及び高電流密度の素子を容易に
得ることができる。さらに、ウエハ内の素子特性の均一
性やロット間の再現性に優れた素子を製造できる。
According to the present invention, an oxide layer can be grown in a clean atmosphere which is not affected by an impurity gas while maintaining a thermal equilibrium state. Therefore, a high quality tunnel barrier layer can be formed with good controllability. it can. Further, by controlling the oxygen pressure and the substrate temperature, it is possible to easily obtain an element having a low resistance value and a high current density necessary for application of a device such as a magnetic head or a magnetic memory. Further, it is possible to manufacture a device having excellent uniformity of device characteristics in a wafer and reproducibility between lots.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(c)は本発明の第1の実施の形態を
説明する為の工程図である。
FIGS. 1A to 1C are process diagrams for explaining a first embodiment of the present invention.

【図2】(a)〜(e)は本発明の第2の実施の形態を
説明する為の工程図である。
FIGS. 2A to 2E are process diagrams for explaining a second embodiment of the present invention.

【図3】(a)〜(f)は実施例1を説明する為の工程
図である。
FIGS. 3A to 3F are process diagrams for explaining the first embodiment.

【図4】実施例1で作製した強磁性トンネル接合素子の
磁気抵抗曲線図である。
FIG. 4 is a magnetoresistance curve diagram of the ferromagnetic tunnel junction device manufactured in Example 1.

【図5】実施例1で作製した強磁性トンネル接合素子の
抵抗と接合面積の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the resistance and the junction area of the ferromagnetic tunnel junction device manufactured in Example 1.

【図6】実施例1で作製した強磁性トンネル接合素子の
10μm角接合における抵抗及び磁気抵抗変化率の電流
依存性を示す図である。
FIG. 6 is a diagram showing the current dependence of the resistance and the magnetoresistance change rate in a 10 μm square junction of the ferromagnetic tunnel junction device manufactured in Example 1.

【図7】(a)〜(h)は実施例4を説明する為の工程
図である。
FIGS. 7A to 7H are process diagrams for explaining Example 4. FIGS.

【図8】(a)〜(d)は従来の強磁性トンネル接合素
子の製造方法を説明する為の工程図である。
FIGS. 8A to 8D are process diagrams for explaining a conventional method of manufacturing a ferromagnetic tunnel junction device.

【符号の説明】 11 第1の強磁性層 12 導電層 13 純酸素の自然酸化により形成したトンネルバリア
層 14 第2の強磁性層 21 第1の強磁性層の表面酸化膜 22 第1の強磁性層の還元領域 23 導電層下部表面の酸化層 24 純酸素の自然酸化により形成したトンネルバリア
[Description of Signs] 11 First ferromagnetic layer 12 Conductive layer 13 Tunnel barrier layer formed by natural oxidation of pure oxygen 14 Second ferromagnetic layer 21 Surface oxide film of first ferromagnetic layer 22 First strength Reduction region of magnetic layer 23 Oxide layer on lower surface of conductive layer 24 Tunnel barrier layer formed by natural oxidation of pure oxygen

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1の強磁性層と第2の強磁性層の間に
トンネルバリア層を挟んだ構造を持つ強磁性トンネル接
合素子の製造方法において、真空中で金属又は半導体か
らなる導電層を成膜した後、純酸素を導入し、該導電層
表面を自然酸化してトンネルバリア層を形成する工程を
含むことを特徴とする強磁性トンネル接合素子の製造方
法。
1. A method for manufacturing a ferromagnetic tunnel junction device having a structure in which a tunnel barrier layer is sandwiched between a first ferromagnetic layer and a second ferromagnetic layer, wherein the conductive layer is made of a metal or a semiconductor in a vacuum. And forming a tunnel barrier layer by introducing pure oxygen and naturally oxidizing the surface of the conductive layer after forming the film.
【請求項2】 第1の強磁性層、トンネルバリア層、第
2の強磁性層を不純物ガスにさらすことなく連続形成す
ることを特徴とする請求項1記載の強磁性トンネル接合
素子の製造方法。
2. The method for manufacturing a ferromagnetic tunnel junction device according to claim 1, wherein the first ferromagnetic layer, the tunnel barrier layer, and the second ferromagnetic layer are continuously formed without being exposed to an impurity gas. .
【請求項3】 第1の強磁性層を成膜した後、真空中に
純酸素を導入して該第1の強磁性層表面を酸化する工程
を含むことを特徴とする請求項1又は2記載の強磁性ト
ンネル接合素子の製造方法。
3. The method according to claim 1, further comprising the step of introducing pure oxygen into a vacuum to oxidize the surface of the first ferromagnetic layer after forming the first ferromagnetic layer. A method for manufacturing the ferromagnetic tunnel junction device according to the above.
【請求項4】 前記第1及び第2の強磁性層は、Fe、
Co、Ni又はそれら元素を含む合金であることを特徴
とする請求項1〜3の何れか一項記載の強磁性トンネル
接合素子の製造方法。
4. The method according to claim 1, wherein the first and second ferromagnetic layers include Fe,
The method for manufacturing a ferromagnetic tunnel junction device according to any one of claims 1 to 3, wherein the method is Co, Ni, or an alloy containing these elements.
【請求項5】 前記導電層は、Al、Mg、又は、ラン
タノイドに属する金属の何れかよりなることを特徴とす
る請求項1〜4の何れか一項記載の強磁性トンネル接合
素子の製造方法。
5. The method for manufacturing a ferromagnetic tunnel junction device according to claim 1, wherein the conductive layer is made of any one of Al, Mg, and a metal belonging to a lanthanoid. .
【請求項6】 純酸素の酸素分圧が20mTorr〜2
00Torrであることを特徴とする請求項1〜5の何
れか一項記載の強磁性トンネル接合素子の製造方法。
6. The oxygen partial pressure of pure oxygen is 20 mTorr to 2
The method of manufacturing a ferromagnetic tunnel junction device according to claim 1, wherein the pressure is 00 Torr.
JP27275299A 1999-09-27 1999-09-27 Manufacturing method of ferromagnetic tunnel junction device Expired - Lifetime JP3602013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27275299A JP3602013B2 (en) 1999-09-27 1999-09-27 Manufacturing method of ferromagnetic tunnel junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27275299A JP3602013B2 (en) 1999-09-27 1999-09-27 Manufacturing method of ferromagnetic tunnel junction device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20929297A Division JP3459869B2 (en) 1997-08-04 1997-08-04 Method for manufacturing ferromagnetic tunnel junction device

Publications (2)

Publication Number Publication Date
JP2000091668A true JP2000091668A (en) 2000-03-31
JP3602013B2 JP3602013B2 (en) 2004-12-15

Family

ID=17518270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27275299A Expired - Lifetime JP3602013B2 (en) 1999-09-27 1999-09-27 Manufacturing method of ferromagnetic tunnel junction device

Country Status (1)

Country Link
JP (1) JP3602013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764960B2 (en) 2000-12-20 2004-07-20 Yamaha Corp. Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film
US7075121B2 (en) 2000-12-20 2006-07-11 Yamaha Corporation Magnetic tunneling junction element having thin composite oxide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764960B2 (en) 2000-12-20 2004-07-20 Yamaha Corp. Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film
US7075121B2 (en) 2000-12-20 2006-07-11 Yamaha Corporation Magnetic tunneling junction element having thin composite oxide film

Also Published As

Publication number Publication date
JP3602013B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
JP3459869B2 (en) Method for manufacturing ferromagnetic tunnel junction device
US6639766B2 (en) Magneto-resistance effect type composite head and production method thereof
US6341053B1 (en) Magnetic tunnel junction elements and their fabrication method
KR100931818B1 (en) A novel buffer(seed) layer for making a high-performance magnetic tunneling junction MRAM
EP1885006B1 (en) A novel capping layer for a magnetic tunnel junction device to enhance dR/R and a method of making the same
US9484049B2 (en) TMR device with novel free layer
KR100467463B1 (en) Magnetoresistant device, method for manufacturing the same, and magnetic component
JP3050189B2 (en) Magnetoresistive element and method of manufacturing the same
JPWO2003090290A1 (en) Magnetoresistive element, magnetic head, magnetic memory and magnetic recording apparatus using the same
JP2005079258A (en) Method for etching processing of magnetic material, magnetoresistive effect film, and magnetic random access memory
JP2003204095A (en) Magnetoresistive device, its manufacturing method, magnetic reproducing device, and magnetic memory
Tsuge et al. Magnetic tunnel junctions with in situ naturally-oxidized tunnel barrier
JP3472207B2 (en) Method of manufacturing magnetoresistive element
JP3496215B2 (en) Manufacturing method of ferromagnetic tunnel junction device
JP2003258335A (en) Manufacturing method for tunneling magneto resistive effect device
JP3602013B2 (en) Manufacturing method of ferromagnetic tunnel junction device
JP2000150985A (en) Magneto-resistance effect element
JP4845301B2 (en) Method for manufacturing spin tunnel magnetoresistive film
JP3055662B2 (en) Ferromagnetic tunnel junction
JPH11177161A (en) Magnetoresistance effect element and magnetic reluctance effect type thin film head
JP2004079936A (en) Laminated film having ferromagnetic tunnel junction, manufacturing method thereof, magnetic sensor, magnetic recorder, and magnetic memory unit
KR20020008475A (en) Manufacturing Process of Tunneling Magnetoresistive Devices
JP2000251230A (en) Ferromagnetic tunnel junction device and fabrication method thereof, and magnetic sensor employing this device
JP2003101098A (en) Tunneling magnetoresistive element and magnetic device using the same, and method and device for manufacturing the same
JP2001014843A (en) Magnetic memory

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

EXPY Cancellation because of completion of term