JP2000091288A - Cleaning method of semiconductor substrate with high temperature mist sulfuric acid and cleaning equipment - Google Patents

Cleaning method of semiconductor substrate with high temperature mist sulfuric acid and cleaning equipment

Info

Publication number
JP2000091288A
JP2000091288A JP10276640A JP27664098A JP2000091288A JP 2000091288 A JP2000091288 A JP 2000091288A JP 10276640 A JP10276640 A JP 10276640A JP 27664098 A JP27664098 A JP 27664098A JP 2000091288 A JP2000091288 A JP 2000091288A
Authority
JP
Japan
Prior art keywords
sulfuric acid
cleaning
semiconductor substrate
substrate
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10276640A
Other languages
Japanese (ja)
Inventor
Hisashi Muraoka
久志 村岡
Yoshiharu Ota
嘉治 太田
Hiroshi Tomita
寛 冨田
Ryuji Takeda
隆二 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PYUAREKKUSU KK
Coorstek KK
Toshiba Corp
Nomura Micro Science Co Ltd
Original Assignee
PYUAREKKUSU KK
Toshiba Corp
Nomura Micro Science Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PYUAREKKUSU KK, Toshiba Corp, Nomura Micro Science Co Ltd, Toshiba Ceramics Co Ltd filed Critical PYUAREKKUSU KK
Priority to JP10276640A priority Critical patent/JP2000091288A/en
Publication of JP2000091288A publication Critical patent/JP2000091288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable eliminating organic contamination and metal contamination of Cu, Fe, etc., of a silicon wafer with a short time treatment for several minutes, by holding a semiconductor substrate in an atmosphere containing mist sulfuric acid at a high temperature, and keeping the surface of the substrate in the state wetted with sulfuric acid. SOLUTION: Sulfuric acid 2 is accommodated at the bottom of a cleaning vessel 1 composed of quartz glass, a lid 3 composed of quartz glass is capped, and heating is performed with a heater 4. The liquid temperature of the sulfuric acid 2 and the temperature of an atmosphere 1a can be measured with a thermocouple arranged in a quartz glass tube. When the liquid temperature reaches 250 deg.C, a wafer 7 accommodated in a carrier 6 composed of quartz glass is put in the vessel and held above the liquid. In this step, the inside of the vessel is filled with white smoke of mist sulfuric acid. When slight exhaust is performed through a sulfuric acid gathering tube 9 which is filled with quartz wool 8, a small amount of air invades from a gap between the cleaning vessel 1 and the lid 3, and white smoke becomes more dense.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、活性領域がシリコンで
ある半導体基板の洗浄方法及びそれを実施するための洗
浄装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a semiconductor substrate having an active region of silicon and a cleaning apparatus for performing the method.

【0002】[0002]

【従来の技術】半導体工程で最も代表的な清浄化処理は
活性領域がシリコンである基板表面の洗浄である。現在
半導体の性質を利用した各種デバイスで、清浄化の対象
になる半導体はほとんどの場合シリコンである。一般に
清浄化の対象は、シリコン表面及び、シリコン表面に形
成されている酸化膜、窒化膜、ポリシリコン膜で、除去
すべき汚染はパーティクル、金属元素及び有機物であ
る。このような汚染を除去する強力でかつ実績のある清
浄化法は薬液処理と超純水によるリンスを組み合わせた
湿式洗浄である。処理用薬液としてはRCA洗浄と呼ば
れているSC−1(水酸化アンモニウムと過酸化水素と
を含む水性洗浄液)及びSC−2(塩酸と過酸化水素と
を含む水性洗浄液)、硫酸と過酸化水素の混合液、希フ
ッ酸等が代表的である。
2. Description of the Related Art The most typical cleaning process in a semiconductor process is cleaning of a substrate surface whose active region is silicon. Currently, in various devices utilizing the properties of semiconductors, the semiconductor to be cleaned is silicon in most cases. Generally, the object to be cleaned is a silicon surface and an oxide film, a nitride film, and a polysilicon film formed on the silicon surface. Contaminations to be removed are particles, metal elements, and organic substances. A powerful and proven cleaning method for removing such contamination is wet cleaning combining chemical treatment and rinsing with ultrapure water. As treatment chemicals, SC-1 (aqueous cleaning solution containing ammonium hydroxide and hydrogen peroxide) and SC-2 (aqueous cleaning solution containing hydrochloric acid and hydrogen peroxide) called RCA cleaning, sulfuric acid and peroxide Representative examples include a mixed solution of hydrogen and diluted hydrofluoric acid.

【0003】1M DRAMの世代では実質的に清浄化
の対象としていたFeやCu等の重金属並びにNaのよ
うなアルカリ金属の許容量は5×1010 atoms/cm2
度であった。有機物に関しては除去の重要性はある程度
認識されていたが、パーティクルや金属ほどデバイス性
能や製造歩留まりとの関係が明確でなく、許容数値の設
定までは必要とされていなかった。1997年12月の
米国半導体工業会が発表したロードマップでは1997
年の256M DRAMプロセスで許容される金属汚染
は、5×109 atoms/cm2で、2009年の256G
DRAMプロセスでは1×109 atoms/cm2以下とさ
れている。有機物に関しても、1997年の許容量が炭
素濃度で1×1014 atoms/cm2、2009年が1.8
×1013atoms/cm2と数値で示されるようになった。
In the generation of the 1M DRAM, the allowable amounts of heavy metals such as Fe and Cu and alkali metals such as Na, which were substantially to be cleaned, were about 5 × 10 10 atoms / cm 2 . Although the importance of removal of organic matter was recognized to some extent, the relationship between device performance and manufacturing yield was not as clear as particles and metals, and setting of allowable values was not required. The roadmap published by the American Semiconductor Industry Association in December 1997
Metal contamination allowed in the 256M DRAM process in 2009 is 5 × 10 9 atoms / cm 2 ,
In the DRAM process, it is set to 1 × 10 9 atoms / cm 2 or less. Regarding organic substances, the allowable amount in 1997 was 1 × 10 14 atoms / cm 2 in terms of carbon concentration, and the allowable amount in 2009 was 1.8.
It was shown by a numerical value of × 10 13 atoms / cm 2 .

【0004】これは超微細化デバイス製造プロセスにお
ける有機汚染の悪影響が多くの研究で明らかになってき
たことと、有機汚染があると洗浄工程で金属汚染やパー
ティクル汚染の除去効果が低下するような実質的被害が
分ってきたからである。有機汚染の除去には、従来から
硫酸と過酸化水素の混合液(3容:1容程度)による約
130℃の洗浄、或いは、SC−1(アンモニア水:過
酸化水素:水=1容:1容:5容程度)による約80℃
の洗浄が効果的とされ、表面炭素濃度で上述の1×10
14 atoms/cm2程度までの清浄化レベルが得られてい
る。さらに効率の良い有機物除去の為に、数十ppmの
高濃度オゾン水による洗浄等も提案されている。
[0004] Many studies have revealed the adverse effects of organic contamination in the process of manufacturing ultra-fine devices, and the fact that organic contamination reduces the effect of removing metal and particle contamination in the cleaning step. This is because substantial damage has been identified. Conventionally, organic contamination is removed by washing at about 130 ° C. with a mixture of sulfuric acid and hydrogen peroxide (about 3: 1 volume) or SC-1 (aqueous ammonia: hydrogen peroxide: water = 1 volume: Approximately 80 ° C by 1 volume: about 5 volumes)
Cleaning is considered to be effective, and the above-mentioned 1 × 10
A cleaning level up to about 14 atoms / cm 2 has been obtained. For more efficient removal of organic substances, washing with ozone water having a high concentration of several tens of ppm has been proposed.

【0005】[0005]

【発明が解決しようとする課題】第59回応用物理学会
講演会18a−ZD−2で発明者の一人が発表する12
(d,n)13Nの核反応を利用した荷電粒子放射化分析
によれば、ウェーハ表面の有機物の炭素は2×1012 a
toms/cm2まで検出出来ることが明らかとなった。SC
−1洗浄の場合、最適組成でも10分程度の処理では半
導体製造工程で汚染の機会が多い、t−ブチル−p−ク
レゾール(BHT)、ジオクチルフタレ−ト(DOP)
並びにヘキサメチルジシラザン(HMDS)等の付着に
対し、1×1014 atoms/cm2程度までしか洗浄出来な
い。このレベルは256M DRAMレベルでは一応満
足出来るとしても、将来の高度化するULSIには対応
出来ない。しかもSC−1洗浄では表面のFeやAlの
汚染に対して洗浄力が弱く、逆に洗浄液から汚染の起る
危険も大きい。
[Problems to be Solved by the Invention] One of the inventors will present 12 C at the 59th JSAP Lecture 18a-ZD-2.
According to charged particle activation analysis using nuclear reaction of (d, n) 13 N, carbon of organic matter on the wafer surface is 2 × 10 12 a
It became clear that detection was possible up to toms / cm 2 . SC
In the case of -1 cleaning, t-butyl-p-cresol (BHT), dioctyl phthalate (DOP) have many chances of contamination in the semiconductor manufacturing process even if the treatment is performed for about 10 minutes even with the optimum composition.
In addition, it can be cleaned only up to about 1 × 10 14 atoms / cm 2 against the adhesion of hexamethyldisilazane (HMDS) and the like. Although this level can be satisfied at the 256M DRAM level for the time being, it cannot be used for ULSI which will be advanced in the future. In addition, the SC-1 cleaning has a weak cleaning power against the contamination of Fe and Al on the surface, and conversely, there is a high risk of contamination from the cleaning liquid.

【0006】130℃程度の硫酸・過酸化水素洗浄は有
機物除去に関してはSC−1洗浄より優れているが、1
0分程度の処理では上述のような汚染に対し炭素濃度は
5×1013 atoms/cm2程度までしか下らないし、また
半導体製造工程のプロセス装置から起り得る1012〜1
13 atoms/cm2のCuやFe等の金属汚染に関して、
5×109 atoms/cm2以下に低減させることが難しい
場合が多い。またこの処理は浸漬処理の為ウェーハ当た
りの薬液使用量が多く、酸化剤と共に加熱された硫酸は
量が多いと極めて危険である。また、廃液となったと
き、過酸化水素水として添加されていた分が水となって
稀硫酸化するので、硫酸の回収再生に高度な技術と特別
な装置を必要とする。
[0006] Sulfuric acid / hydrogen peroxide cleaning at about 130 ° C is superior to SC-1 cleaning in removing organic substances.
In the treatment for about 0 minutes, the carbon concentration is reduced only to about 5 × 10 13 atoms / cm 2 against the above-mentioned contamination, and the concentration of 10 12 to 1 which can occur from the process equipment in the semiconductor manufacturing process.
Regarding metal contamination such as 0 13 atoms / cm 2 of Cu and Fe,
It is often difficult to reduce it to 5 × 10 9 atoms / cm 2 or less. In addition, since this treatment is immersion treatment, a large amount of chemical solution is used per wafer, and a large amount of sulfuric acid heated together with the oxidizing agent is extremely dangerous. In addition, when it becomes a waste liquid, the amount added as the aqueous hydrogen peroxide becomes water and is diluted and sulphated. Therefore, advanced technology and special equipment are required for the recovery and recovery of sulfuric acid.

【0007】高濃度のオゾン水による洗浄ではBHTや
DOPの汚染に対してはかなり強力な除去能力がみられ
るが、強いHMDS汚染では20分浸漬処理しても除き
得ない。
Although washing with high-concentration ozone water has a considerably strong ability to remove BHT and DOP contamination, strong HMDS contamination cannot be removed even by immersion treatment for 20 minutes.

【0008】そこで本発明は、通常の半導体製造工程で
生じるシリコンウェーハの有機汚染を炭素濃度で2×1
13 atoms/cm2以下に、またCuやFe等の金属汚染
を1×109 atoms/cm2以下まで、数分の短時間処理
により除去出来る洗浄方法と洗浄装置を提供することを
目的とする。
Accordingly, the present invention is to reduce the organic contamination of a silicon wafer generated in a normal semiconductor manufacturing process by a carbon concentration of 2 × 1.
It is an object of the present invention to provide a cleaning method and a cleaning apparatus capable of removing metal contamination such as Cu or Fe to 0 13 atoms / cm 2 or less and 1 × 10 9 atoms / cm 2 or less by a short-time treatment for several minutes. I do.

【0009】[0009]

【課題を解決するための手段】この目的を達成する為
に、本発明は、請求項1に記載のように、半導体基板を
高温の霧状硫酸を含む雰囲気中に保持し、基板面を硫酸
で濡れた状態に保つ工程を有する、半導体用基板の洗浄
方法を提供する。また、本発明は、この方法を実施する
装置として、請求項6に記載のように、半導体基板を高
温の霧状硫酸と接触させる洗浄槽と、被洗浄基板を前記
洗浄槽内の霧状硫酸を含む雰囲気中に保持するキャリア
手段と、前記洗浄槽内の空間に霧状硫酸を含む雰囲気を
形成する手段と、を備える半導体基板の洗浄装置を提供
するものである。
In order to achieve this object, the present invention provides a semiconductor device, comprising: holding a semiconductor substrate in an atmosphere containing high-temperature atomized sulfuric acid; A method for cleaning a semiconductor substrate, the method including a step of keeping the substrate wet. Further, according to the present invention, as a device for carrying out this method, a cleaning tank for bringing a semiconductor substrate into contact with high-temperature mist sulfuric acid and a mist-containing sulfuric acid in the cleaning tank are provided. And a means for forming an atmosphere containing atomized sulfuric acid in a space in the cleaning tank.

【0010】[0010]

【発明の実施の形態】本発明には以下に示すようにさま
ざまな好適な実施形態がある。まず、洗浄方法について
は、請求項3に記載のように、上記工程に付される前記
半導体基板が、少なくとも表面がシリコンからなり、該
シリコン表面の自然酸化膜を予めフッ酸処理によって除
いたものである、請求項1又は2に記載の半導体基板の
洗浄方法。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has various preferred embodiments as described below. First, as for the cleaning method, as described in claim 3, the semiconductor substrate to be subjected to the above-mentioned step has at least a surface made of silicon, and a natural oxide film on the silicon surface is removed in advance by hydrofluoric acid treatment. The method for cleaning a semiconductor substrate according to claim 1, wherein:

【0011】請求項4に記載のように、上記の半導体基
板を霧状硫酸を含む雰囲気に保持する工程の後、シリコ
ン表面に該工程で形成された化学酸化膜の全部或いは一
部をフッ酸処理によって除く工程を有する、請求項1−
3のいずれかに記載の半導体基板の洗浄方法。
After the step of holding the semiconductor substrate in an atmosphere containing atomized sulfuric acid, all or part of the chemical oxide film formed in the step on the silicon surface is hydrofluoric acid. 2. The method according to claim 1, further comprising a step of removing by processing.
3. The method for cleaning a semiconductor substrate according to any one of 3.

【0012】請求項5に記載のように、上記の、半導体
基板を霧状硫酸を含む雰囲気に保持する工程の前に、該
基板の一部を液状硫酸で濡らす工程を有する、請求項1
−4のいずれかに記載の半導体基板の洗浄方法。
As set forth in claim 5, before the step of maintaining the semiconductor substrate in an atmosphere containing atomized sulfuric acid, the method further comprises a step of wetting a part of the substrate with liquid sulfuric acid.
4. The method for cleaning a semiconductor substrate according to any one of items above.

【0013】また、上記の洗浄装置の実施形態として
は、請求項7に記載のように、前記の霧状硫酸を含む雰
囲気を形成する手段が、液状硫酸を収容する洗浄槽底部
と該底部を加熱する手段とからなり、該加熱手段により
液状硫酸が加熱されて前記洗浄槽内に霧状硫酸を含む雰
囲気が形成される、請求項6に記載の洗浄装置。
According to an embodiment of the above-mentioned cleaning apparatus, the means for forming the atmosphere containing the atomized sulfuric acid may include a cleaning tank bottom containing liquid sulfuric acid and a bottom. The cleaning apparatus according to claim 6, further comprising a heating unit, wherein the heating unit heats the liquid sulfuric acid to form an atmosphere containing atomized sulfuric acid in the cleaning tank.

【0014】請求項8に記載のように、前記の霧状硫酸
を含む雰囲気を形成する手段が、液状硫酸を霧化する加
熱手段をもったインピンジャー状容器と、該容器内に形
成された霧状硫酸を含む雰囲気を前記洗浄槽内に導入す
る導入管とを備えてなる、請求項6に記載の洗浄装置。
According to another aspect of the present invention, the means for forming the atmosphere containing the atomized sulfuric acid is formed in an impinger-shaped container having a heating means for atomizing liquid sulfuric acid, and formed in the container. The cleaning apparatus according to claim 6, further comprising: an introduction pipe configured to introduce an atmosphere containing atomized sulfuric acid into the cleaning tank.

【0015】請求項9に記載のように、前記のキャリア
手段が、被洗浄基板の保持手段と該保持手段を上下に移
動可能な支持軸とを有するものであって、前記洗浄槽及
びその上部に冠せられる蓋体であって内部に前記保持手
段を収納できる空間を有するものにより形成される空間
を自在に移動可能なものである、請求項6−8のいずれ
かに記載の洗浄装置。
According to a ninth aspect of the present invention, the carrier means has a holding means for holding the substrate to be cleaned and a support shaft capable of moving the holding means up and down. The cleaning device according to any one of claims 6 to 8, wherein the cleaning device is capable of freely moving in a space formed by a lid that is covered by the device and that has a space in which the holding means can be stored.

【0016】請求項10に記載のように、さらに、含フ
ッ酸雰囲気を作成するインピンジャー状容器と、該雰囲
気を前記蓋体内に導入する導入管を備えた、請求項6−
9のいずれかに記載の洗浄装置。
According to a tenth aspect of the present invention, the apparatus further comprises an impinger-like container for creating a hydrofluoric acid-containing atmosphere, and an introduction pipe for introducing the atmosphere into the lid.
The cleaning device according to any one of claims 9 to 13.

【0017】請求項11に記載のように、さらに、石英
ウールを充填した硫酸捕集器をそなえ、該捕集器を介し
て洗浄槽内及び蓋体内の雰囲気を排気するよう構成した
請求項6−10のいずれかに記載の洗浄装置。
According to an eleventh aspect of the present invention, the apparatus further comprises a sulfuric acid collector filled with quartz wool, and the atmosphere in the cleaning tank and the lid is exhausted through the collector. The cleaning device according to any one of -10.

【0018】請求項12に記載のように、前記洗浄槽
は、上方に開口している開口部を有し;前記蓋体は下方
に開いた開口部を有し、該蓋体の開口部は前記洗浄槽の
開口部に対して横方向にスライドすることにより開閉自
在に移動可能であり;半導体基板の洗浄時には、前記洗
浄槽の開口部と前記鐘状蓋体の開口部が密着されて内部
に空間が作られ、該空間に霧状硫酸を含む雰囲気が形成
され、前記キャリア手段により被洗浄基板が前記洗浄槽
内において前記液状硫酸の上方に保持され、基板表面が
硫酸で濡れた状態に保たれる;そして、半導体基板の回
収時には、前記キャリア手段は洗浄された基板を保持し
たまま上方に移動して蓋体内に収容され、次に前記が痛
いがキャリア手段とともに横方向にスライドし、洗浄さ
れた基板を次の処理工程に供する、ことを特徴とする請
求項6−11のいずれかに記載の洗浄装置。以下、本発
明のこれら実施形態を含めさらに詳細に説明する。
As set forth in claim 12, the cleaning tank has an opening opening upward; the lid has an opening opening downward, and the opening of the lid is It can be opened and closed by sliding laterally with respect to the opening of the cleaning tank; when cleaning the semiconductor substrate, the opening of the cleaning tank and the opening of the bell-shaped lid are in close contact with each other. A space is created in the space, and an atmosphere containing atomized sulfuric acid is formed in the space, the substrate to be cleaned is held above the liquid sulfuric acid in the cleaning tank by the carrier means, and the surface of the substrate is wet with sulfuric acid. And at the time of recovery of the semiconductor substrate, the carrier means moves upward while holding the washed substrate and is accommodated in the lid, and then slides with the carrier means in the lateral direction, Next processing of the cleaned substrate Subjected to extent, cleaning apparatus according to any one of claims 6-11, characterized in that. Hereinafter, the present invention will be described in more detail including these embodiments.

【0019】洗浄対象 洗浄すべき半導体基板としては第1にシリコンウェーハ
が挙げられる。シリコンウェーハには熱酸化膜又はチッ
化膜のような膜が形成されていてもよい。基板材料はシ
リコン以外でもよく、例えばSOIウェ−ハで、基板が
サファイアであってデバイスを形成するシリコン単結晶
膜がその上に形成されているものでもよい。洗浄対象で
あるデバイスの形成される領域は単結晶でなくてもよ
く、例えばガラ基板上に形成されている多結晶シリコン
膜表面でもよい。要するに200℃以上の高温硫酸に実
質的に侵されない、半導体の性質を利用する各種デバイ
ス用の基板が本発明の対象である。
The silicon wafer and the like in the first as the semiconductor substrate to be cleaned cleaned. A film such as a thermal oxide film or a nitride film may be formed on the silicon wafer. The substrate material may be other than silicon. For example, the substrate material may be an SOI wafer, and the substrate may be sapphire and a silicon single crystal film for forming a device may be formed thereon. The region where the device to be cleaned is formed may not be a single crystal, but may be, for example, the surface of a polycrystalline silicon film formed on a glass substrate. In short, the present invention is directed to a substrate for various devices utilizing the property of a semiconductor which is not substantially attacked by high-temperature sulfuric acid of 200 ° C. or more.

【0020】高温硫酸に対するシリコン表面の性質 シリコン表面は高温の、好ましくは200℃以上の、硫
酸で非常によく濡れる。シリコン酸化膜はシリコン表面
より高温硫酸でさらに濡れやすい。濃硫酸は高温となる
と強い酸化力をもつので、フッ酸で処理された直後のベ
アなシリコン表面はこの高温硫酸液滴に触れると直ちに
数十オングストロームの化学酸化膜を生じ、この膜上で
液が直ちに広がって硫酸の薄い濡れ層が形成される。高
温のこの濡れ層が有機物やCu、Fe等の重金属に対し
て強い洗浄効果を示す。温度が低すぎると、硫酸は金属
元素に対して洗浄作用は強くない。しかし高温になると
強い酸化力を生じ、Cuのようなイオン化傾向の小さい
金属元素でもよく溶解する。この酸化力は有機物に対す
る硫酸の強い分解作用をさらに高める。この性質は既に
有機物分析の為の分解手段として古くから利用されてい
る。
Silicon Surface Properties to Hot Sulfuric Acid Silicon surfaces are very well wetted with sulfuric acid at high temperatures, preferably above 200 ° C. The silicon oxide film is more easily wetted with hot sulfuric acid than the silicon surface. Since concentrated sulfuric acid has a strong oxidizing power at high temperatures, the bare silicon surface immediately after being treated with hydrofluoric acid forms a chemical oxide film of several tens of angstroms immediately upon contact with these high-temperature sulfuric acid droplets. Immediately spread to form a thin wetting layer of sulfuric acid. This high temperature wet layer has a strong cleaning effect on organic substances and heavy metals such as Cu and Fe. If the temperature is too low, sulfuric acid does not have a strong cleaning effect on metal elements. However, at a high temperature, a strong oxidizing power is generated, and even a metal element having a low ionization tendency such as Cu is well dissolved. This oxidizing power further enhances the strong decomposition effect of sulfuric acid on organic substances. This property has been used for a long time as a decomposition means for organic matter analysis.

【0021】霧状硫酸 霧状硫酸の温度は200℃以上が好ましく、より好まし
くは、230℃〜300℃であり、さらに好ましくは2
50℃〜290℃である。霧状硫酸との接触による洗浄
時間は、通常1分以上でよく、多くの場合3〜30分間
でよい。
The temperature of the atomized sulfuric mist sulphate is preferably at least 200 ° C., more preferably from 230 ° C. to 300 ° C., more preferably 2
50 ° C to 290 ° C. The cleaning time by contact with the atomized sulfuric acid is usually 1 minute or more, and in many cases, 3 to 30 minutes.

【0022】たとえば、H2SO4 98.5%、残りH2Oか
らなる共沸混合物の沸点は317℃であるが、290℃
ではSO3 がかなり発生して空気中の水と反応し高温の
硫酸白煙を生じる。また、硫酸の蒸気圧は280℃で約
200mmHg、250℃で約100mmHg、200
℃で約30mmHgなので、蓋付石英ガラス容器の底に
硫酸を深さ1cm程度入れて加熱すると雰囲気空気中に
水分があれば液温約200℃から容器内は霧状の硫酸が
生じ、白煙化する。霧状硫酸はエーロゾルの性質からブ
ラウン運動が活発で、その液体粒子は凝結しやすい。硫
酸濃度は96%以上が望ましい。液温が250℃以上と
なると容器内は見えない程になる。白煙化の程度が少な
ければ湿った空気を僅か吹き込むと十分に白煙化する。
このような状態では容器内が気体硫酸だけの場合よりH
2SO4 濃度がずっと高くなり、この中にシリコンウェ
ーハや酸化膜付ウェーハを入れると、上述のような性質
からウェーハ表面は直ちに全面が硫酸液膜で濡れる。濡
れた硫酸は通常の蒸気洗浄の場合と同様に濡れ層の厚さ
が増すと基板面から滴下して液として回収される。従っ
て濡れ液面は常に気相を介して生じた純度の高い硫酸霧
が集まって生じることになり、洗浄効果はさらに高ま
る。
For example, an azeotropic mixture consisting of 98.5% of H 2 SO 4 and the remaining H 2 O has a boiling point of 317 ° C., but 290 ° C.
In this case, considerable SO 3 is generated and reacts with the water in the air to generate hot sulfuric acid white smoke. The vapor pressure of sulfuric acid is about 200 mmHg at 280 ° C., about 100 mmHg at 250 ° C., and 200 mmHg.
Since the temperature is about 30 mmHg, when sulfuric acid is put into the bottom of a quartz glass container with a lid at a depth of about 1 cm and heated, if there is moisture in the atmospheric air, mist-like sulfuric acid is generated in the container from the liquid temperature of about 200 ° C and white smoke Become Atomized sulfuric acid has aggressive Brownian motion due to its aerosol properties, and its liquid particles tend to condense. The sulfuric acid concentration is desirably 96% or more. When the liquid temperature exceeds 250 ° C., the inside of the container becomes invisible. If the degree of white smoke formation is small, a small amount of humid air is blown into the white smoke.
In such a state, the container is H
The 2 SO 4 concentration becomes much higher, and when a silicon wafer or a wafer with an oxide film is put in this, the entire surface of the wafer is immediately wetted with the sulfuric acid solution film due to the above-described properties. The wet sulfuric acid is dropped from the substrate surface and collected as a liquid when the thickness of the wet layer increases as in the case of ordinary steam cleaning. Therefore, the wet liquid level is always generated by collecting sulfuric acid mist of high purity generated through the gas phase, and the cleaning effect is further enhanced.

【0023】洗浄装置の基本機構 図1は本発明の装置の概念を示す縦断面図である。石英
ガラスの洗浄槽1の底に純度96%以上の硫酸2を入
れ、石英ガラス製の蓋3をしてヒーター4で加熱する。
石英ガラス管に入れた熱電対(図示せず)で硫酸2の液
温と雰囲気1aの温度を測定出来るようにしておく。液
温が250℃に達したら石英ガラスのキャリア6に入れ
たウェーハ7を槽内に入れ、液の上に保持する。この段
階で槽内は霧状硫酸の白煙で充満している。石英ウール
8を詰めた硫酸捕集筒9を通じて僅かに排気すると、洗
浄槽1と蓋3との隙間から少量の空気が入り込み白煙は
さらに濃くなる。
The basic mechanism Figure 1 of the cleaning device is a vertical sectional view showing the concept of the apparatus of the present invention. Sulfuric acid 2 having a purity of 96% or more is put in the bottom of a quartz glass washing tank 1, and a quartz glass lid 3 is placed on the washing tank 1 and heated by a heater 4.
The temperature of the sulfuric acid 2 and the temperature of the atmosphere 1a can be measured by a thermocouple (not shown) placed in a quartz glass tube. When the liquid temperature reaches 250 ° C., the wafer 7 placed in the carrier 6 made of quartz glass is put into a tank and held on the liquid. At this stage, the inside of the tank is filled with fume sulfuric acid white smoke. When the air is slightly exhausted through the sulfuric acid collecting cylinder 9 filled with quartz wool 8, a small amount of air enters from the gap between the cleaning tank 1 and the lid 3, and the white smoke further increases.

【0024】シリコンウェーハの場合、硫酸2の液温を
280℃、雰囲気1aの温度を250℃とし、3分間放
置後取り出してTOC(総有機炭素)1ppb以下の超
純水で3分スプレーリンスすると、ウェーハをHMDS
液に浸漬した後そのまま乾燥させた強い有機汚染試料で
も、表面炭素濃度を2×1013 atoms/cm2以下に低減
することが出来る。またシリコン表面に予めCuを2×
1012 atoms/cm2汚染させておき、これに対して前述
のようなHMDS汚染を加えた試料に対しても、HMD
Sを除去しかつCuの表面濃度を1×109 atoms/cm
2以下まで低減出来る。
In the case of a silicon wafer, the temperature of the sulfuric acid 2 is set to 280 ° C., the temperature of the atmosphere 1a is set to 250 ° C., and left for 3 minutes. , HMDS wafer
Even with a strong organic contaminated sample that has been immersed in the solution and dried as it is, the surface carbon concentration can be reduced to 2 × 10 13 atoms / cm 2 or less. In addition, add 2 × Cu on the silicon surface in advance.
10 12 atoms / cm 2 contaminated, and on the other hand, the HMD
S is removed and the surface concentration of Cu is reduced to 1 × 10 9 atoms / cm.
It can be reduced to 2 or less.

【0025】またシリコン引上単結晶から作られた通常
の鏡面ウェーハの場合、その内部に熱処理によってCu
のような拡散の早い不純物が平均で1014〜1015 ato
ms/cc程度侵入していても、特願平9−7893で開示
したような高温硫酸中への浸漬によらずに、雰囲気中の
硫酸濃度の高い霧状高温硫酸との接触によるごく薄い表
面濡れ硫酸だけで、内部のCuを吸い出しこの侵入Cu
の濃度を1/100まで低減することが出来る。これは
常に蒸溜精製された高純度硫酸霧が単なる気相の蒸気洗
浄作用より効率よく表面で液化し、シリコン表面を下方
に流れるので、良好な吸出し効果即ちバルクに対する洗
浄効果を生じるものと考えられる。
In the case of a normal mirror-finished wafer made of a silicon-pulled single crystal, Cu
Impurities with a fast diffusion like 10 14 to 10 15 ato on average
Even if it has penetrated about ms / cc, it is not immersed in high-temperature sulfuric acid as disclosed in Japanese Patent Application No. 9-7893, but a very thin surface due to contact with atomized high-temperature sulfuric acid having a high sulfuric acid concentration in the atmosphere. With only wet sulfuric acid, the internal Cu is sucked out and
Can be reduced to 1/100. This is thought to be due to the fact that the distilled and purified high-purity sulfuric acid mist always liquefies on the surface more efficiently than the mere vapor-phase steam cleaning action and flows down the silicon surface, so that a good suction effect, that is, a cleaning effect on the bulk is produced. .

【0026】また洗浄槽内でウェーハキャリアを上下出
来る機構を設けておき、洗浄の最初に、シリコンウェー
ハの下部末端のみを硫酸に浸漬して数十秒〜数分程度
(基板直径の大きいもの程長く)放置してから引上げ、
以降硫酸霧中で保持を行うと、浸漬のために硫酸による
濡れがシリコンウェーハ全面に広がる結果、ウェーハ全
体の温度が上がるのが早く、同一の洗浄効果を得る処理
時間を短縮出来る。
In addition, a mechanism capable of raising and lowering the wafer carrier in the cleaning tank is provided, and at the beginning of cleaning, only the lower end of the silicon wafer is immersed in sulfuric acid for several tens seconds to several minutes (the larger the substrate diameter, the larger the substrate diameter). Long) leave and then pull up,
After that, when the wafer is held in the sulfuric acid mist, the wetting by sulfuric acid spreads over the entire surface of the silicon wafer due to immersion, so that the temperature of the entire wafer rises quickly and the processing time for obtaining the same cleaning effect can be shortened.

【0027】図2は本発明に洗浄装置の別の形態を示す
縦断面図である。図1と共通する要素は図1と同一の番
号で示す。洗浄槽17内に硫酸液を予め準備することな
く、図1と同様の槽17内に霧状硫酸を送り込む方式を
示すものである。インピンジャー状の石英ガラス容器1
0内に純度96%以上の硫酸11を入れられる。該石英
ガラス容器10の頂部から石英ガラス管14が外側に延
び、洗浄槽17内に気密に導入されている。この石英ガ
ラス管14には大体ウェーハ7の下方に当たる位置に複
数の穴15が穿たれている。石英ガラス容器10内の硫
酸11をヒーター12で300℃近くまで加熱し、湿っ
た空気を石英ガラス管13により矢印のように導入する
と、容器10内に高濃度で生じた白煙状硫酸霧が石英ガ
ラス管14の穴15を通して洗浄槽内に供給される。槽
17内のウェーハ7は温度が200℃以上に保たれるよ
うに予め槽をとりまくヒーター16で加熱しておく。ウ
ェーハを十分に濡らした硫酸は槽17内の底へ落下す
る。この方法では図1の場合と同様の洗浄が可能で、硫
酸の所要量が少ないが、図1の場合と同程度の洗浄効果
を得るには洗浄時間が若干長くなる。
FIG. 2 is a longitudinal sectional view showing another embodiment of the cleaning apparatus according to the present invention. Elements in common with FIG. 1 are indicated by the same numbers as in FIG. This shows a method in which atomized sulfuric acid is fed into the same tank 17 as in FIG. 1 without preparing a sulfuric acid solution in the cleaning tank 17 in advance. Impinger-shaped quartz glass container 1
Sulfuric acid 11 having a purity of 96% or more can be put in 0. A quartz glass tube 14 extends outward from the top of the quartz glass container 10 and is hermetically introduced into a cleaning tank 17. A plurality of holes 15 are formed in the quartz glass tube 14 at positions substantially below the wafer 7. When the sulfuric acid 11 in the quartz glass container 10 is heated to about 300 ° C. by the heater 12 and moist air is introduced through the quartz glass tube 13 as indicated by an arrow, a white smoke-like sulfuric acid mist generated at a high concentration in the container 10 is formed. It is supplied into the cleaning tank through the hole 15 of the quartz glass tube 14. The wafer 7 in the tank 17 is heated in advance by a heater 16 surrounding the tank so that the temperature is maintained at 200 ° C. or higher. The sulfuric acid that has sufficiently wet the wafer falls to the bottom in the tank 17. In this method, the same cleaning as in the case of FIG. 1 can be performed, and the required amount of sulfuric acid is small, but the cleaning time is slightly longer to obtain the same cleaning effect as in the case of FIG.

【0028】洗浄槽は高温の硫酸の使用に耐える高純度
の材料で作らねばならない。石英ガラスの他にはシリコ
ンカーバイドやアモルファスカーボンが適する。ウェー
ハキャリアは石英ガラス製が望ましいが、高温の硫酸に
耐性のあるフッ素樹脂例えばPTFE製でも使うことが
出来る。硫酸霧の捕集剤としては石英ウールが最も望ま
しい。石英表面の強い濡れ性の為に実質的に系外への硫
酸汚染を防止することが出来る。
The cleaning bath must be made of a high-purity material that can withstand the use of hot sulfuric acid. In addition to quartz glass, silicon carbide and amorphous carbon are suitable. The wafer carrier is desirably made of quartz glass, but may be made of a fluororesin that is resistant to high-temperature sulfuric acid, such as PTFE. Quartz wool is most desirable as a sulfuric acid mist collector. Because of the strong wettability of the quartz surface, sulfuric acid contamination outside the system can be substantially prevented.

【0029】高温硫酸は酸化性洗浄剤のため、シリコン
表面に厚い自然酸化膜が生じているウェーハでは、その
中に金属イオンが取り込まれているとその除去が不完全
になる場合がある。そこで予め稀フッ酸あるいはフッ酸
を含む気体に接触させてこの自然酸化膜を除いておくこ
とが望ましい。
Since high-temperature sulfuric acid is an oxidizing cleaning agent, if a thick natural oxide film is formed on the silicon surface, the removal of metal ions may be incomplete if metal ions are incorporated therein. Therefore, it is preferable to remove the natural oxide film by contacting with diluted hydrofluoric acid or a gas containing hydrofluoric acid in advance.

【0030】シリコン表面の高温硫酸洗浄では20オン
グストローム程度の化学酸化膜を生じる。エピタクシャ
ル成長を行う為の前処理では、自然酸化膜を除きかつ有
機物をも十分に除去しておく必要がある。高純度のフッ
素樹脂(例えば有機強アルカリ洗浄したPFA)等で作
られたインピンジャー状のフッ酸蒸発器内に、有機物を
除去した共沸組成のフッ酸を入れ、このフッ酸を蒸発さ
せて洗浄槽内に同材質のフッ素樹脂導入管で導入し、硫
酸霧処理した後のシリコン表面と反応させると、自然酸
化膜も有機物残存も非常に少ない清浄面が得られる。こ
れによればモノシランによるエピタクシー成長温度を7
00℃程度まで下げることが出来、大直径ウェーハの場
合でもスリップ発生が抑制出来る。また化学酸化膜の表
層の一部だけを、稀フッ酸への浸漬洗浄または稀フッ酸
を入射する枚葉スピン洗浄で除くと、表面の微粒子濃度
低減に効果的である。
The high temperature sulfuric acid cleaning of the silicon surface produces a chemical oxide film of about 20 angstroms. In the pretreatment for performing the epitaxial growth, it is necessary to remove the natural oxide film and sufficiently remove the organic matter. An azeotropic hydrofluoric acid from which organic substances have been removed is placed in an impinger hydrofluoric acid evaporator made of a high-purity fluororesin (for example, PFA washed with a strong organic alkali), and the hydrofluoric acid is evaporated. When introduced into the cleaning tank with a fluororesin introduction pipe of the same material and reacted with the silicon surface after the sulfuric acid mist treatment, a clean surface with a very small amount of natural oxide film and very little organic matter remaining can be obtained. According to this, the epitaxy growth temperature of monosilane was 7
The temperature can be lowered to about 00 ° C., and the occurrence of slip can be suppressed even in the case of a large diameter wafer. If only a part of the surface layer of the chemical oxide film is removed by immersion cleaning in dilute hydrofluoric acid or by single-wafer spin cleaning in which dilute hydrofluoric acid is incident, it is effective in reducing the concentration of fine particles on the surface.

【0031】[0031]

【実施例】以下本発明を実施例により具体的に説明する
が、これらに何ら限定されるものではない。試料基板は
酸素濃度1.4×1018 atoms/ccのp型引上シリコン単
結晶から作成した鏡面ウェーハで、何らのゲッタリング
処理もしていないものを用いた。表面を汚染した重金属
の洗浄で除去が比較的難しいのはCuで、その場合n型
よりもp型ウェーハの方が一般に洗浄が難しいので、ウ
ェーハはp型とした。
EXAMPLES The present invention will be described below in more detail with reference to Examples, but it should not be construed that the invention is limited thereto. The sample substrate used was a mirror-finished wafer made of p-type pulled silicon single crystal having an oxygen concentration of 1.4 × 10 18 atoms / cc, which had not been subjected to any gettering treatment. It is Cu that is relatively difficult to remove by washing heavy metals contaminating the surface. In this case, p-type wafers are generally more difficult to clean than n-type wafers.

【0032】洗浄効果の評価は、金属汚染の場合は、R
Iトレーサ法によった。即ち放射性同位元素で標識した
金属汚染をウェーハ表面並びにウェーハ内部に対して行
い、洗浄前と洗浄後の放射能をモニタリングして、その
比率即ち洗浄後の汚染元素残存率を求めた。
The evaluation of the cleaning effect is as follows:
According to the I tracer method. That is, metal contamination labeled with a radioisotope was performed on the wafer surface and inside the wafer, the radioactivity before and after cleaning was monitored, and the ratio, that is, the residual ratio of the contaminated element after cleaning was determined.

【0033】表面汚染は、試験ウェーハを64Cuを添加
したフッ酸緩衝液(略称BHF:NH4F+HF)に浸
漬して、表面の64Cuの平均濃度が5×1012 atoms/
cm2となるように吸着処理して作成された。また59Fe
を添加したSC−1液に浸漬して表面の59Feの平均濃
度が5×1012 atoms/cm2となる試験ウェーハも作成
した。
The surface contamination was measured by immersing the test wafer in a hydrofluoric acid buffer solution (abbreviated to BHF: NH 4 F + HF) to which 64 Cu was added, so that the average concentration of 64 Cu on the surface was 5 × 10 12 atoms /
It was prepared by an adsorption treatment so as to obtain cm 2 . Also, 59 Fe
A test wafer having an average concentration of 59 Fe on its surface of 5 × 10 12 atoms / cm 2 was also prepared by immersion in the SC-1 solution to which was added.

【0034】別にウェーハ内部に64Cuを侵入汚染させ
た試料も作成した。即ち、上述と同様に64CuをBHF
から試験ウェーハに吸着させ、アルゴン雰囲気中で90
0℃で30分加熱し、ウェーハ内の64Cu平均濃度が5
×1014 atoms/ccとなるように64Cuの拡散処理を行
った。
Separately, a sample in which 64 Cu was penetrated and contaminated inside the wafer was also prepared. That is, 64 Cu is converted to BHF as described above.
From the test wafer, and 90
Heated at 0 ° C for 30 minutes, the average concentration of 64 Cu in the wafer was 5
Diffusion processing of 64 Cu was performed so as to be × 10 14 atoms / cc.

【0035】ウェーハ表面の有機物の炭素量の評価は上
述した荷電粒子放射化分析によった。経験によれば半導
体用クリーンルーム工程でもっとも洗浄の難しい有機汚
染はHMDSで、しかもウェーハをHMDS液に侵した
後、そのまま乾燥させた汚染状態が特に除き難い。従っ
て試験に供したウェーハはこのように有機汚染した。ま
たCuの洗浄にあたり試料が有機汚染していると、Cu
の除去がさらに難しくなることが分っていたので、前記
64Cu汚染ウェーハをさらにHMDS汚染処理した試料
も作成した。
The evaluation of the carbon content of the organic substance on the wafer surface was based on the above-described charged particle activation analysis. According to experience, HMDS is the most difficult organic contaminant to clean in a semiconductor clean room process, and it is particularly difficult to remove the contaminated state of the wafer after it has been immersed in the HMDS solution and dried as it is. Therefore, the wafer subjected to the test was thus organically contaminated. Also, when the sample is organically contaminated during Cu cleaning, Cu
Was found to be more difficult to remove,
A sample obtained by further treating the 64 Cu-contaminated wafer with HMDS was prepared.

【0036】以下の実施例で使用した硫酸は半導体グレ
ードで、濃度表示は96%のものである。 [実施例1]図3は複数枚用のキャリアに入った試料ウ
ェーハに対し、本発明の硫酸霧洗浄をした後、純水でリ
ンスし、加熱した清浄空気で乾燥する一連の洗浄装置を
示すもので、本実施例に使用した。(1)は硫酸霧洗浄
槽に対するキャリアの投入及び回収部、(2)は硫酸霧
洗浄部、(3)は純水リンス及び乾燥部である。1は石
英ガラス製の洗浄槽でその底部だけに硫酸2が入る。槽
1の上縁17はフランジ状で平坦なすり合わせ面を有し
ている。この面に対し直接フッ素樹脂板で蓋をすると、
硫酸をヒーター4で加熱したとき、硫酸は石英ガラスを
極めてよく濡らす為、槽内壁面を伝って這い上がり、す
り合わせ面を通過して滲み出し石英ガラス槽の外側面を
伝って落下して外部を汚染する。そこで下端にフランジ
状のすり合わせ面を有する石英ガラス製補助筒18を設
けた。これでも硫酸の滲み出しを確実に阻止できないの
で、洗浄槽の外に縁溝19を巡らしてこの溝で温度の下
がった滲み出し硫酸を回収するようにした。
The sulfuric acid used in the following examples is of semiconductor grade and has a concentration indication of 96%. [Example 1] Fig. 3 shows a series of cleaning apparatuses for subjecting a sample wafer contained in a plurality of carriers to the sulfuric acid mist cleaning of the present invention, rinsing with pure water, and drying with heated clean air. And used in this example. (1) is a part for charging and recovering a carrier into a sulfuric acid mist cleaning tank, (2) is a sulfuric acid mist cleaning part, and (3) is a pure water rinsing and drying part. Numeral 1 denotes a quartz glass cleaning tank into which sulfuric acid 2 enters only at the bottom. The upper edge 17 of the tank 1 has a flange-like flat contact surface. If this surface is directly covered with a fluororesin plate,
When the sulfuric acid is heated by the heater 4, the sulfuric acid wets the quartz glass very well. To contaminate. Therefore, an auxiliary cylinder 18 made of quartz glass having a flange-shaped mating surface at the lower end is provided. Since the oozing of sulfuric acid still cannot be reliably prevented, the leaching sulfuric acid having a lowered temperature is recovered by circling the edge groove 19 outside the cleaning tank.

【0037】石英ガラス製鐘体20は洗浄時の洗浄槽の
蓋体であり、かつウェーハ7を収納した石英ガラス製キ
ャリア6を格納して、(1)から(2)へ、また(2)
から(1)へ移動する。この鐘体は、水平に移動して洗
浄槽を開閉するフッ素樹脂PTFE製平板21の孔部の
上に結合され、鐘体の移動は平板21の移動による。こ
の平板は固定のフッ素樹脂PTFE製の載台板22上を
動く。この載台板の孔部の周囲下面に補助筒の上面平坦
面が密着するように補助筒・洗浄槽が配置されている。
また洗浄槽の下にはヒーター4が、洗浄槽の側面には石
英ウール保温帯16が配置されている。鐘体20には石
英ウール8を詰めた硫酸捕集筒9が付属させてある。ま
た図示は省略されているが、補助筒にも石英ウールを詰
めた硫酸捕集筒が付属させてある。
The quartz glass bell 20 is a lid of a washing tank at the time of washing, and stores the quartz glass carrier 6 accommodating the wafer 7, and moves from (1) to (2) and (2).
To (1). This bell is connected to the hole of the flat plate 21 made of fluororesin PTFE which moves horizontally to open and close the washing tank. The movement of the bell is caused by the movement of the flat plate 21. This flat plate moves on a mounting base plate 22 made of a fixed fluororesin PTFE. The auxiliary cylinder and the cleaning tank are arranged such that the upper flat surface of the auxiliary cylinder is in close contact with the lower surface around the hole of the mounting plate.
A heater 4 is arranged below the washing tank, and a quartz wool heat insulating zone 16 is arranged on the side of the washing tank. The bell 20 is provided with a sulfuric acid collecting tube 9 filled with quartz wool 8. Although not shown, a sulfuric acid collecting cylinder filled with quartz wool is also attached to the auxiliary cylinder.

【0038】ウェーハを収納したキャリア6は肉厚石英
ガラス管製キャリア支持軸23の下端に接合した石英ガ
ラス笠状体24付属のフックに掛かっている。キャリア
支持軸の上端近くには平板21に連結した上下移動機構
(図示せず)に連動する支持具25がある。支持軸23
は鐘体上部の石英ガラス製軸受26を通して上下動出来
る構造となっている。またこの軸を若干回転させる機構
が上下移動機構に付属している。この支持軸が管状にな
っているのは、硫酸の霧状化が不十分な時、硫酸捕集筒
で排気して外気を必要あれば湿った空気を導入する為で
ある。
The carrier 6 containing the wafer is hooked on a hook attached to a quartz glass cap 24 joined to the lower end of a carrier support shaft 23 made of a thick quartz glass tube. Near the upper end of the carrier support shaft, there is a support 25 that is linked to a vertical movement mechanism (not shown) connected to the flat plate 21. Support shaft 23
Has a structure capable of moving up and down through a quartz glass bearing 26 at the top of the bell. A mechanism for slightly rotating this shaft is attached to the vertical movement mechanism. The reason why the support shaft is formed in a tubular shape is that when the atomization of sulfuric acid is insufficient, the sulfuric acid is exhausted by a sulfuric acid collecting cylinder to introduce humid air if necessary.

【0039】硫酸霧洗浄に先立ち、キャリア6は(1)
の状態で仮想線(点線)で示した鐘体20内の位置にあ
り、このとき洗浄槽は平板21で蓋されている。硫酸は
補助筒側面を通る石英管27により硫酸溜28との間で
排気・送気により往復出来る構造となっていて、(1)
の状態の間に硫酸を洗浄槽の底に移動させ、280℃ま
で加熱した。この温度に達したら槽内は硫酸霧白煙が充
満する。ここで(2)の状態への移動を行い、支持軸を
下降させてキャリアを硫酸の上に止め、3分間硫酸霧洗
浄を行った。洗浄が終ったら、まず硫酸を硫酸溜に移動
させ、2つの硫酸捕集筒を介して鐘体20内と洗浄槽内
の硫酸雰囲気を急速に排気する。
Prior to the sulfuric acid mist cleaning, the carrier 6 is (1)
In this state, the washing tank is located at the position inside the bell 20 indicated by the imaginary line (dotted line). Sulfuric acid can be reciprocated between the sulfuric acid basin 28 and the sulfuric acid reservoir 28 by the quartz tube 27 passing through the side surface of the auxiliary cylinder.
The sulfuric acid was moved to the bottom of the washing tank during the state of and the mixture was heated to 280 ° C. When this temperature is reached, the inside of the tank is filled with sulfuric acid fog white smoke. Then, the carrier was moved to the state (2), the carrier was lowered on the sulfuric acid by lowering the support shaft, and sulfuric acid mist cleaning was performed for 3 minutes. After the washing is completed, the sulfuric acid is first moved to the sulfuric acid reservoir, and the sulfuric acid atmosphere in the bell 20 and the washing tank is rapidly exhausted through the two sulfuric acid collecting tubes.

【0040】ここでキャリアを上昇させ、鐘体を(1)
の仮想線(点線)で示した位置に戻す。鐘体20(1)
の位置には台板22に固定された補助筒29の下に超純
水リンス槽30があって、この槽を含む機構は(3)の
位置と往復可能となっている。キャリアをリンス槽内に
下降させ、底の枠31に入れこむ。支持軸を若干回転す
るとキャリアがフックから外れる。支持柱のみは上昇さ
せておく。リンス機構はリンス槽とその外側の外槽32
よりなる。キャリアを収納したリンス機構は(3)の位
置に移動させ、超純水導入口33より超純水を導入し、
オーバーフローリンスを行う。
Here, the carrier is raised, and the bell body is (1)
To the position indicated by the virtual line (dotted line). Bell 20 (1)
The ultrapure water rinsing tank 30 is located below the auxiliary cylinder 29 fixed to the base plate 22 at the position (3), and the mechanism including this tank can reciprocate with the position (3). The carrier is lowered into the rinsing tank and is inserted into the bottom frame 31. When the support shaft is slightly rotated, the carrier comes off the hook. Only the support columns are raised. The rinsing mechanism consists of a rinsing tank and an outer tank 32 outside the rinsing tank.
Consisting of The rinsing mechanism containing the carrier is moved to the position (3), and ultrapure water is introduced from the ultrapure water inlet 33,
Perform overflow rinsing.

【0041】この時点で再びキャリア支持軸23を下降
させ、次に洗浄するウェーハをセットしたキャリア(図
示せず)をフックに掛け、支持軸を上昇させて次の洗浄
操作に入る。(3)の位置では上方に乾燥機構がある。
乾燥用鐘体34の上部から貫通し、上下機構(図示せ
ず)により支持具35で上下する第2支持軸36の下端
37は超純水リンスの終ったキャリアを捕捉して、鐘体
34内に引上げる機能を有する。キャリアが引上がった
後、リンス機構は排水して(1)の位置に戻る。引上が
ったキャリア内のウェーハは、熱風導入管38から供給
される、ケミカルフィルターとHEPAフィルター通過
後に200℃まで加温された清浄熱風により乾燥され
る。乾燥ウェーハのキャリアは第2支持軸の下降により
取出すことが出来る。本装置による最初の実施例はHM
DSで汚染させた試料に対する有機汚染除去能力の検討
である。上述のように洗浄操作を行なった後、重陽子照
射による荷電粒子放射化分析で表面炭素濃度を求めた。
3枚の試料について分析結果は1.7×1013 atoms/
cm2、1.2×1013 atoms/cm2、1.4×1013 ato
ms/cm2で、高度な清浄度目標値2×1013 atoms/cm2
以下が達成されている。
At this time, the carrier support shaft 23 is lowered again, a carrier (not shown) on which a wafer to be next cleaned is set is hooked on a hook, the support shaft is raised, and the next cleaning operation is started. At the position (3), there is a drying mechanism above.
The lower end 37 of the second support shaft 36 that penetrates from the upper part of the drying bell 34 and moves up and down by the support 35 by an up-and-down mechanism (not shown) catches the carrier that has been rinsed with ultrapure water. Has the function of pulling in. After the carrier is pulled up, the rinsing mechanism drains and returns to the position (1). The wafer in the carrier pulled up is dried by clean hot air heated to 200 ° C. after passing through the chemical filter and the HEPA filter supplied from the hot air introduction pipe 38. The carrier of the dried wafer can be taken out by lowering the second support shaft. The first embodiment with this device is HM
It is an examination of the ability to remove organic contamination from a sample contaminated with DS. After performing the washing operation as described above, the surface carbon concentration was determined by charged particle activation analysis by deuteron irradiation.
The analysis result for three samples was 1.7 × 10 13 atoms /
cm 2 , 1.2 × 10 13 atoms / cm 2 , 1.4 × 10 13 ato
ms / cm 2 , high cleanliness target value 2 × 10 13 atoms / cm 2
The following has been achieved:

【0042】[実施例2]64Cu 2×1012 atoms/
cm2汚染試料に対してHMDSに一分浸漬後風乾した試
料について、実施例1と同じ装置・同じ条件で硫酸霧洗
浄を行った。洗浄後の64Cuの残存率は0.04%で、
64Cuの残存量は8×108 atoms/cm2と高度な清浄
度目標値1×109 atoms/cm2以下が達成されてい
る。一方同じ試料によりSC−1(アンモニア水:過酸
化水素水:水=1容:1容:5容)による70℃、10
分の洗浄と、SC−2(塩酸:過酸化水素水:水=1
容:1容:6容)による同じく70℃、10分の洗浄を
行ったが、前者の残存率は3.1%、後者の残存率は1
5.3%であった。
Example 2 64 Cu 2 × 10 12 atoms /
The sample that had been immersed in HMDS for one minute and air-dried with respect to the cm 2 contaminated sample was subjected to sulfuric acid mist cleaning using the same apparatus and under the same conditions as in Example 1. The residual ratio of 64 Cu after washing is 0.04%.
The residual amount of 64 Cu is 8 × 10 8 atoms / cm 2 , achieving a high cleanliness target value of 1 × 10 9 atoms / cm 2 or less. On the other hand, the same sample was used at 70 ° C. and 10 ° C. by SC-1 (aqueous ammonia: hydrogen peroxide: water = 1 volume: 1 volume: 5 volumes).
Washing with SC-2 (hydrochloric acid: hydrogen peroxide solution: water = 1)
(1 volume: 6 volumes), the same washing was performed at 70 ° C. for 10 minutes. The remaining rate of the former was 3.1%, and that of the latter was 1%.
It was 5.3%.

【0043】[実施例3]実施例2の3種の洗浄後の試
料を、有機物除去に特に留意して蒸留したフッ酸で処理
し、それぞれの化学酸化膜を取り除いた。それぞれを枚
葉スピン乾燥装置で超純水リンス後、2000rpmで
スピン乾燥したところ、硫酸霧洗浄ウェ−ハでは、中央
部にウォーターマークが生じなかった。しかし、SC−
1洗浄ウェーハ、SC−2洗浄ウェーハのいずれもにお
いて、ウォーターマークがみられ、これらには有機物汚
染が残存していることが分かる。硫酸霧洗浄フッ酸処理
ウェ−ハの荷電粒子放射化分析の結果は、炭素濃度が
2.8×1013 atoms/cm2で、一応モノシランエピタ
クシ−において700℃での無欠陥成長が期待できる値
となっている。
[Example 3] The three kinds of washed samples of Example 2 were treated with hydrofluoric acid distilled with particular attention to removing organic substances, and their respective chemical oxide films were removed. Each of the wafers was rinsed with ultrapure water using a single-wafer spin dryer and then spin-dried at 2,000 rpm. As a result, no water mark was formed at the center of the sulfuric acid mist cleaning wafer. However, SC-
Watermarks are observed in both the 1-cleaned wafer and the SC-2 cleaned wafer, and it can be seen that organic contamination remains in these. The results of charged particle activation analysis of the sulfuric acid mist-washed hydrofluoric acid-treated wafer show that the carbon concentration is 2.8 × 10 13 atoms / cm 2 , and defect-free growth at 700 ° C. can be expected in monosilane epitaxy. Value.

【0044】[実施例4]実施例1の装置を用い、石英
管27に図2の硫酸霧発生器を接続し、洗浄槽には硫酸
液を入れないで、硫酸霧洗浄を行った。試料は64Cu汚
染品と59Fe汚染品を用い、硫酸は305℃に加熱し、
ウェ−ハキャリアを洗浄構内に入れてから2つの硫酸捕
集筒で排気しつつ硫酸白煙を導入した。なお、洗浄槽の
底が280℃になるようヒーター4での加熱を行った
が、笠状体付近の雰囲気は約200℃であった。64Cu
汚染試料は3分洗浄で残存率0.12%、5分洗浄で
0.05%となった。59Fe汚染試料は3分洗浄で0.
03%であった。
Example 4 Using the apparatus of Example 1, the sulfuric acid mist generator of FIG. 2 was connected to the quartz tube 27, and sulfuric acid mist cleaning was performed without putting a sulfuric acid solution in the cleaning tank. The sample used 64 Cu contaminated product and 59 Fe contaminated product, sulfuric acid was heated to 305 ° C,
After the wafer carrier was placed in the cleaning premises, sulfuric acid white smoke was introduced while exhausting the two sulfuric acid collecting cylinders. Heating was performed by the heater 4 so that the bottom of the washing tank was at 280 ° C., but the atmosphere around the shade was about 200 ° C. 64 Cu
The contaminated sample had a residual rate of 0.12% after 3 minutes washing and 0.05% after 5 minutes washing. The 59 Fe-contaminated sample was washed for 3 minutes to obtain 0.1%.
03%.

【0045】[実施例5]900℃熱処理で64Cuをウ
ェ−ハ内部に拡散させた試料を予めフッ酸処理した後、
実施例1の装置を用い、以下の処理の外は実施例1と同
様に操作して洗浄した。ウェ−ハキャリアはまず一旦ウ
ェ−ハの下端を硫酸液に浸して、約1分でウェ−ハ全面
が濡れるのを確認してから、キャリアを図3の位置に引
き上げ、15分放置した。洗浄後ウェ−ハの放射能は洗
浄前の0.9%となり、このような薄い高温硫酸液膜で
も高温硫酸浸漬洗浄と同様にウェ−ハ内部のCuを吸出
し洗浄できることが分かった。しかし、予めフッ酸処理
で自然酸化膜を除去しなかった試料では、洗浄後の64
u残存率は27%に達した。
Example 5 A sample in which 64 Cu was diffused into a wafer by heat treatment at 900 ° C. was pre-treated with hydrofluoric acid.
Using the apparatus of Example 1, cleaning was performed in the same manner as in Example 1 except for the following processing. The wafer carrier was first immersed in a sulfuric acid solution at the lower end of the wafer, and after confirming that the entire surface of the wafer was wet in about one minute, the carrier was lifted to the position shown in FIG. 3 and left for 15 minutes. The radioactivity of the wafer after cleaning was 0.9% before cleaning, and it was found that even such a thin high-temperature sulfuric acid liquid film could suck and clean Cu inside the wafer similarly to high-temperature sulfuric acid immersion cleaning. However, in the sample in which the natural oxide film was not removed in advance by the hydrofluoric acid treatment, the 64 C
u residual rate reached 27%.

【0046】[0046]

【発明の効果】本発明による硫酸霧洗浄は、蒸留精製液
が被洗浄面を洗い、不純物を取り込んで原液へ戻る一般
の蒸気洗浄と同様の効果に加えて、硫酸霧雰囲気は純粋
な硫酸蒸気雰囲気より硫酸密度が高く、また硫酸霧白煙
は硫酸と水の発熱反応により生じるので、基盤ウェ−ハ
を高温に保つことができ、洗浄効果が著しく高まる。ま
た本発明の最大の特徴は高温硫酸がシリコン表面に対し
て極めてよく濡れることを利用していることで、硫酸霧
からウェ−ハ面に到着した硫酸は全面に均一に広がり、
スムーズにウェ−ハ面をすべり落ちる。従って、高温硫
酸が有機物をよく分解する性質や、Cu、Fe等の金属
をよく溶かす性質が本発明により強化されて、シリコン
ウェ−ハの表面の炭素濃度レベルや金属元素濃度レベル
が2009年の推定許容度を満足するほどに清浄化でき
る。
According to the sulfuric acid mist cleaning of the present invention, the sulfuric acid mist atmosphere is pure sulfuric acid vapor. Since the sulfuric acid density is higher than the atmosphere and the sulfuric acid fog is generated by the exothermic reaction between sulfuric acid and water, the substrate wafer can be kept at a high temperature, and the cleaning effect is significantly enhanced. The greatest feature of the present invention is that the sulfuric acid arriving at the wafer surface from the sulfuric acid mist spreads uniformly over the entire surface by utilizing the fact that high-temperature sulfuric acid wets the silicon surface very well.
Sliding down the wafer surface smoothly. Therefore, the property of high-temperature sulfuric acid to decompose organic substances well and the property of well dissolving metals such as Cu and Fe are enhanced by the present invention, and the carbon concentration level and metal element concentration level of the silicon wafer surface in 2009 It can be cleaned to satisfy the estimated tolerance.

【0047】上記の効果は、硫酸液膜がきわめて薄いに
もかかわらず、Cuのようなシリコン中で拡散の早い元
素をウェーハ内部から吸出して清浄化するほど強力であ
る。本発明の硫酸霧洗浄は、浸漬方式の硫酸洗浄に比し
て硫酸の使用量がはるかに少ないので、安全面の管理に
おいて有利である。当然経済的にも優れており、また廃
液硫酸も濃度としては高いので、蒸留による精製回収も
容易に出来る。
The above effect is so strong that even though the sulfuric acid solution film is extremely thin, an element which diffuses rapidly in silicon such as Cu is sucked out from the inside of the wafer and cleaned. The sulfuric acid mist cleaning of the present invention is advantageous in terms of safety management because the amount of sulfuric acid used is much smaller than that of the immersion type sulfuric acid cleaning. Naturally, it is economically excellent, and the concentration of waste liquid sulfuric acid is high, so that purification and recovery by distillation can be easily performed.

【0048】[0048]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置の一形態の縦断面図である。FIG. 1 is a longitudinal sectional view of one embodiment of the device of the present invention.

【図2】本発明の装置の別の形態の縦断面図である。FIG. 2 is a longitudinal sectional view of another embodiment of the device of the present invention.

【図3】本発明の洗浄方法及び装置の実施例を説明する
図である。
FIG. 3 is a view for explaining an embodiment of the cleaning method and apparatus of the present invention.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000221122 東芝セラミックス株式会社 東京都新宿区西新宿七丁目5番25号 (72)発明者 村岡 久志 神奈川県横浜市港北区新羽町735番地 株 式会社ピュアレックス内 (72)発明者 太田 嘉治 神奈川県厚木市岡田2丁目九番八号 野村 マイクロ・サイエンス株式会社内 (72)発明者 冨田 寛 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 竹田 隆二 新潟県北蒲原郡聖籠町東港六丁目861番5 号 新潟東芝セラミックス株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (71) Applicant 000221122 Toshiba Ceramics Co., Ltd. 7-25-25 Nishi-Shinjuku, Shinjuku-ku, Tokyo (72) Inventor Hisashi Muraoka 735 Nippacho, Kohoku-ku, Yokohama-shi, Kanagawa Pref. Inside Rex (72) Inventor Kaji Ota 2-98-9 Okada, Atsugi-shi, Kanagawa Nomura Micro-Science Co., Ltd. (72) Inventor Hiroshi Tomita 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Yokohama Business Co., Ltd. In-house (72) Inventor Ryuji Takeda 6-865-15 Higashiko, Seiro-cho, Kitakanbara-gun, Niigata Pref. Niigata Toshiba Ceramics Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板を高温の霧状硫酸を含む雰囲
気中に保持し、基板面を硫酸で濡れた状態に保つ工程を
有する、半導体用基板の洗浄方法。
1. A method for cleaning a semiconductor substrate, comprising: maintaining a semiconductor substrate in an atmosphere containing high-temperature atomized sulfuric acid, and keeping a substrate surface wet with sulfuric acid.
【請求項2】 前記の霧状硫酸を含む雰囲気が温度20
0℃以上である、請求項1に記載の半導体基板の洗浄方
法。
2. An atmosphere containing said atomized sulfuric acid at a temperature of 20.
The method for cleaning a semiconductor substrate according to claim 1, wherein the temperature is 0 ° C. or higher.
【請求項3】 前記半導体基板が、少なくとも表面がシ
リコンからなり、該シリコン表面の自然酸化膜を予めフ
ッ酸処理によって除いたものである、請求項1又は2に
記載の半導体基板の洗浄方法。
3. The method for cleaning a semiconductor substrate according to claim 1, wherein at least the surface of the semiconductor substrate is made of silicon, and a natural oxide film on the silicon surface is removed in advance by a hydrofluoric acid treatment.
【請求項4】 半導体基板を霧状硫酸を含む雰囲気に保
持する工程の後、シリコン表面に該工程で形成された化
学酸化膜の全部或いは一部をフッ酸処理によって除く工
程を有する、請求項1−3のいずれかに記載の半導体基
板の洗浄方法。
4. The method according to claim 1, further comprising, after the step of holding the semiconductor substrate in an atmosphere containing atomized sulfuric acid, removing all or part of the chemical oxide film formed on the silicon surface by the hydrofluoric acid treatment. The method for cleaning a semiconductor substrate according to any one of 1-3.
【請求項5】 半導体基板を霧状硫酸を含む雰囲気に保
持する工程の前に、該基板の一部を液状硫酸で濡らす工
程を有する、請求項1−4のいずれかに記載の半導体基
板の洗浄方法。
5. The semiconductor substrate according to claim 1, further comprising a step of wetting a part of the substrate with liquid sulfuric acid before the step of holding the semiconductor substrate in an atmosphere containing atomized sulfuric acid. Cleaning method.
【請求項6】 半導体基板を高温の霧状硫酸と接触させ
る洗浄槽と、 被洗浄基板を前記洗浄槽内の霧状硫酸を含む雰囲気中に
保持するキャリア手段と、 前記洗浄槽内の空間に霧状硫酸を含む雰囲気を形成する
手段と、を備える半導体基板の洗浄装置。
6. A cleaning tank for bringing a semiconductor substrate into contact with high-temperature atomized sulfuric acid, carrier means for holding a substrate to be cleaned in an atmosphere containing atomized sulfuric acid in the cleaning tank, and a space in the cleaning tank. Means for forming an atmosphere containing atomized sulfuric acid.
【請求項7】 前記の霧状硫酸を含む雰囲気を形成する
手段が、液状硫酸を収容する洗浄槽底部と該底部を加熱
する手段とからなり、該加熱手段により液状硫酸が加熱
されて前記洗浄槽内に霧状硫酸を含む雰囲気が形成され
る、請求項6に記載の洗浄装置。
7. The means for forming an atmosphere containing mist of sulfuric acid comprises a bottom of a washing tank containing liquid sulfuric acid and a means for heating the bottom, wherein the heating means heats the liquid sulfuric acid to clean the washing. The cleaning device according to claim 6, wherein an atmosphere containing atomized sulfuric acid is formed in the tank.
【請求項8】 前記の霧状硫酸を含む雰囲気を形成する
手段が、液状硫酸を霧化する加熱手段をもったインピン
ジャー状容器と、該容器内に形成された霧状硫酸を含む
雰囲気を前記洗浄槽内に導入する導入管とを備えてな
る、請求項6に記載の洗浄装置。
8. An impinger-like container having a heating means for atomizing liquid sulfuric acid, wherein the means for forming the atomized sulfuric acid-containing atmosphere includes an atomized sulfuric acid atmosphere formed in the container. The cleaning device according to claim 6, further comprising: an introduction pipe that is introduced into the cleaning tank.
【請求項9】 前記のキャリア手段が、被洗浄基板の保
持手段と該保持手段を上下に移動可能な支持軸とを有す
るものであって、 前記洗浄槽及びその上部に冠せられる蓋体であって内部
に前記保持手段を収納できる空間を有するものにより形
成される空間を自在に移動可能なものである、請求項6
−8のいずれかに記載の洗浄装置。
9. The cleaning device according to claim 1, wherein the carrier unit includes a holding unit for holding the substrate to be cleaned and a support shaft capable of moving the holding unit up and down. 7. A space that can be freely moved by a space having a space in which the holding means can be stored.
The cleaning device according to any one of -8.
【請求項10】 さらに、含フッ酸雰囲気を作成するイ
ンピンジャー状容器と、該雰囲気を前記蓋体内に導入す
る導入管を備えた、請求項6−9のいずれかに記載の洗
浄装置。
10. The cleaning apparatus according to claim 6, further comprising an impinger-like container for creating a hydrofluoric acid-containing atmosphere, and an introduction pipe for introducing the atmosphere into the lid.
【請求項11】 さらに、石英ウールを充填した硫酸捕
集器をそなえ、該捕集器を介して洗浄槽内及び蓋体内の
雰囲気を排気するよう構成した請求項6−10のいずれ
かに記載の洗浄装置。
11. The apparatus according to claim 6, further comprising a sulfuric acid collector filled with quartz wool, and evacuating the atmosphere in the cleaning tank and the lid via the collector. Cleaning equipment.
【請求項12】 前記洗浄槽は、上方に開口している開
口部を有し;前記蓋体は下方に開いた開口部を有し、該
蓋体の開口部は前記洗浄槽の開口部に対して横方向にス
ライドすることにより開閉自在に移動可能であり;半導
体基板の洗浄時には、前記洗浄槽の開口部と前記鐘状蓋
体の開口部が密着されて内部に空間が作られ、該空間に
霧状硫酸を含む雰囲気が形成され、前記キャリア手段に
より被洗浄基板が前記洗浄槽内において前記液状硫酸の
上方に保持され、基板表面が硫酸で濡れた状態に保たれ
る;そして、 半導体基板の回収時には、前記キャリア手段は洗浄され
た基板を保持したまま上方に移動して蓋体内に収容さ
れ、次に前記蓋体がキャリア手段とともに横方向にスラ
イドし、洗浄された基板を次の処理工程に供する、こと
を特徴とする請求項6−11のいずれかに記載の洗浄装
置。
12. The cleaning tank has an opening that opens upward; the lid has an opening that opens downward, and the opening of the lid is connected to the opening of the cleaning tank. On the other hand, when the semiconductor substrate is washed, the opening of the cleaning tank and the opening of the bell-shaped lid are in close contact with each other to form a space inside the semiconductor substrate. An atmosphere containing atomized sulfuric acid is formed in the space, the carrier means holds the substrate to be cleaned above the liquid sulfuric acid in the cleaning tank, and keeps the substrate surface wet with sulfuric acid; and At the time of collecting the substrate, the carrier means moves upward while holding the washed substrate and is housed in the lid, and then the lid slides along with the carrier means in the lateral direction, and the cleaned substrate is moved to the next. Provided for processing process Cleaning apparatus according to any one of claims 6-11 to.
JP10276640A 1998-09-11 1998-09-11 Cleaning method of semiconductor substrate with high temperature mist sulfuric acid and cleaning equipment Pending JP2000091288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10276640A JP2000091288A (en) 1998-09-11 1998-09-11 Cleaning method of semiconductor substrate with high temperature mist sulfuric acid and cleaning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10276640A JP2000091288A (en) 1998-09-11 1998-09-11 Cleaning method of semiconductor substrate with high temperature mist sulfuric acid and cleaning equipment

Publications (1)

Publication Number Publication Date
JP2000091288A true JP2000091288A (en) 2000-03-31

Family

ID=17572270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10276640A Pending JP2000091288A (en) 1998-09-11 1998-09-11 Cleaning method of semiconductor substrate with high temperature mist sulfuric acid and cleaning equipment

Country Status (1)

Country Link
JP (1) JP2000091288A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001830A1 (en) * 2002-06-25 2003-12-31 Tokyo Electron Limited Substrate processing device
KR100589080B1 (en) * 1998-09-22 2006-08-30 삼성전자주식회사 Polymer cleaning equipment for semiconductor manufacturing equipment process kit
JP2011060895A (en) * 2009-09-08 2011-03-24 Tech In Tech Co Ltd Substrate processing apparatus, and substrate processing method
CN107658251A (en) * 2017-11-06 2018-02-02 重庆长捷电子有限公司 Diode chip for backlight unit pickler
US9966282B2 (en) 2014-09-30 2018-05-08 Shibaura Mechatronics Corporation Substrate processing apparatus and substrate processing method
TWI629115B (en) * 2014-09-30 2018-07-11 芝浦機械電子裝置股份有限公司 Substrate processing device and substrate processing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100589080B1 (en) * 1998-09-22 2006-08-30 삼성전자주식회사 Polymer cleaning equipment for semiconductor manufacturing equipment process kit
WO2004001830A1 (en) * 2002-06-25 2003-12-31 Tokyo Electron Limited Substrate processing device
US7180035B2 (en) 2002-06-25 2007-02-20 Tokyo Electron Limited Substrate processing device
JP2011060895A (en) * 2009-09-08 2011-03-24 Tech In Tech Co Ltd Substrate processing apparatus, and substrate processing method
US9966282B2 (en) 2014-09-30 2018-05-08 Shibaura Mechatronics Corporation Substrate processing apparatus and substrate processing method
TWI629115B (en) * 2014-09-30 2018-07-11 芝浦機械電子裝置股份有限公司 Substrate processing device and substrate processing method
TWI647547B (en) * 2014-09-30 2019-01-11 日商芝浦機械電子裝置股份有限公司 Substrate processing device and substrate processing method
TWI669580B (en) * 2014-09-30 2019-08-21 日商芝浦機械電子裝置股份有限公司 Substrate processing device and substrate processing method
CN107658251A (en) * 2017-11-06 2018-02-02 重庆长捷电子有限公司 Diode chip for backlight unit pickler
CN107658251B (en) * 2017-11-06 2024-04-05 重庆长捷电子有限公司 Diode chip pickling equipment

Similar Documents

Publication Publication Date Title
US6491763B2 (en) Processes for treating electronic components
JP4001662B2 (en) Method for cleaning silicon and method for producing polycrystalline silicon
EP1056121A2 (en) Method and apparatus for cleaning semiconductor wafers with a deionized water solution containing a gas at saturated concentration, with temperature controlled degasification and megasonic agitation
JPH08264500A (en) Cleaning of substrate
JP2005244179A (en) Wet cleaning method of material surface and manufacturing process of electronic, optical or optoelectronic device using the same
Hattori et al. Contamination Removal by Single‐Wafer Spin Cleaning with Repetitive Use of Ozonized Water and Dilute HF
KR970003887B1 (en) Gas phase cleaning agents for removing metal containing contaminants from integrated circuit assemblies and a process for using the same
US20020066717A1 (en) Apparatus for providing ozonated process fluid and methods for using same
Tong et al. A simple chemical treatment for preventing thermal bubbles in silicon wafer bonding
JP3133054B2 (en) Substrate cleaning processing method and cleaning processing apparatus
EP1237177A2 (en) Apparatus and method for etching semiconductor wafers
KR960026331A (en) Cleaning Method of Semiconductor Substrate and Manufacturing Method of Semiconductor Device
JP2000091288A (en) Cleaning method of semiconductor substrate with high temperature mist sulfuric acid and cleaning equipment
JPH0496226A (en) Manufacture of semiconductor device
JPH10209106A (en) Method and equipment for cleaning semiconductor substrate
TW404853B (en) Wet processing methods for the manufacture of electronic components using ozonated process fluids
US20040069321A1 (en) Method and a device for producing an adhesive surface on a substrate
JPH07263402A (en) Method of cleaning semiconductor wafer
JPH104074A (en) Method of cleaning substrate or film and method of fabricating semiconductor device
JPH08264399A (en) Preservation of semiconductor substrate and manufacture of semiconductor device
JPS6286731A (en) Laser beam irradiation si surface treating device
Aoki et al. Wafer treatment using electrolysis-ionized water
JP4240637B2 (en) Wafer surface cleaning method
JPH03204932A (en) Removal of coating film on silicon layer and selective removal of silicon natural oxide film
JP2843946B2 (en) Silicon substrate surface cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205