JP2000090923A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2000090923A
JP2000090923A JP10255061A JP25506198A JP2000090923A JP 2000090923 A JP2000090923 A JP 2000090923A JP 10255061 A JP10255061 A JP 10255061A JP 25506198 A JP25506198 A JP 25506198A JP 2000090923 A JP2000090923 A JP 2000090923A
Authority
JP
Japan
Prior art keywords
lithium
active material
secondary battery
positive electrode
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10255061A
Other languages
Japanese (ja)
Other versions
JP4189457B2 (en
Inventor
Tsutomu Kotsuki
勉 小槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP25506198A priority Critical patent/JP4189457B2/en
Publication of JP2000090923A publication Critical patent/JP2000090923A/en
Application granted granted Critical
Publication of JP4189457B2 publication Critical patent/JP4189457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode material having 5 V solid phase redox potential comprising spinel structure manganese iron lithium base composite oxide capable of controlling expansion and contraction by using Fe as a replacing element of Mn. SOLUTION: In a secondary battery comprising a positive active material, a negative active material, and a nonaqueous electrolyte containing a lithium salt, the positive active material is spinel structure manganese iron lithium composite oxide having a lattice constant (a) of 8.19-8.28 Å, represented by general formula, Li[Fe1/2+xMeyMn3/2-x-y]O4 (wherein 0<x, 0<y, x+y=<=1/2, Me is one or two or more of Cr, Co, and Al). The positive active material is prepared in such a way that at least one of a Cr source compound, a Co source compound, and an Al source compound is added to a mixture containing LiOH, MnOOH (manganite), and FeOOH (goethite), the mixed powder is pressed to form a pellet, the pellet is preliminarily baked in the air at 250-600 deg.C for 2-12 hours, the preliminarily baked material is crushed, the crushed powder is molded in a pellet again, then the pellet is heated in the air at 700-850 deg.C for 2-24 hours as main baking.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池、特に全固体リチウムイオン電池の正極材料とし
て好適な複合酸化物からなる正極活物質、およびその製
造方法、さらに該活物質と複合酸化物からなる負極活物
質とを組み合わせたリチウムイオン二次電池に関する。
The present invention relates to a positive electrode active material comprising a composite oxide suitable as a positive electrode material for a lithium ion secondary battery, in particular, an all solid state lithium ion battery, a method for producing the same, and a method for producing the same. The present invention relates to a lithium ion secondary battery in which a negative electrode active material made of a material is combined.

【0002】[0002]

【従来の技術】リチウム二次電池の正極活物質として、
実用的な放電容量を備えた4V放電反応が確認されてい
る物質としては、LiCoO2 、LiNiO2 、LiM
2 4 のLi含有遷移金属酸化物が知られている。な
かでも、LiMn2 4 は、資源的に豊富で安価なマン
ガン化合物を原料とするため、正極コストを大幅に低下
できる材料として注目されている。しかし、LiMn2
4 を正極活物質とする電池は、LiMn2 4 結晶構
造中でのLiイオンの拡散速度が遅く、電池の内部抵抗
が大きくなり、放電時の作動電圧の低下、充放電サイク
ルに伴う容量低下等が起こり、また、結晶中のマンガン
化合物が電解液中に溶解し電極の可逆性が失われる等の
欠点を有している。
2. Description of the Related Art As a positive electrode active material of a lithium secondary battery,
A 4V discharge reaction with a practical discharge capacity has been confirmed.
Materials include LiCoOTwo, LiNiOTwo , LiM
nTwo O FourAre known. What
Even, LiMnTwoOFour Is a resource-rich and inexpensive man
Significant reduction in cathode cost due to use of cancer compound as raw material
It is drawing attention as a possible material. However, LiMnTwo 
OFourIs a positive electrode active material, LiMnTwoOFourCrystal structure
The diffusion rate of Li ions during fabrication is slow, and the internal resistance of the battery is low.
Increase in operating voltage during discharge,
Of the manganese in the crystal.
The compound dissolves in the electrolyte and the reversibility of the electrode is lost.
Has disadvantages.

【0003】このため、LiMn2 4 のMn原子の一
部を他の原子Xで置換したLiMn (2−y)
4 を正極活物質として用いる試みがなされている。例え
ば、特開平4−87268号公報には、Li Mn
(2−y)Fe4 (但し、0<x,0<y<2)
で示されるスピネル型構造またはスピネル類似構造のマ
ンガン鉄リチウム複合酸化物を正極活物質とするリチウ
ム電池が記載されている。この電池は、鉄の含有量とし
ては0<y<2が可能であり、0.1<y<≦1の場合
が特に好ましいと記載されている。
For this reason, LiMnTwoOFourOne of the Mn atoms
LiMn whose part is replaced by another atom X (2-y)Xy O
FourAttempts have been made to use as a positive electrode active material. example
For example, Japanese Patent Application Laid-Open No. 4-87268 discloses Lix Mn
(2-y)FeyOFour(However, 0 <x, 0 <y <2)
Of spinel type structure or spinel-like structure
Lithium using lithium manganese iron composite oxide as a positive electrode active material
Battery is described. This battery has an iron content
0 <y <2 is possible, and 0.1 <y <≦ 1
Is stated to be particularly preferred.

【0004】しかし、二酸化マンガンと鉄の酸化物もし
くは塩とを混合し、酸素を有する雰囲気中で450℃以
上の温度で熱処理して製造された物質のみが、作動電圧
3V以上の高電圧領域での放電容量が大きく、電池の内
部抵抗が著しく改善され、大電流放電が容易である旨説
明されており、上記の製造条件を満たさないものは所期
の効果を呈しない。また、具体的実施例としては、L
i:Mn:Fe=1:1.6:0.4のモル比で製造し
たものが記載されているだけで、0.4<yの正極材料
については具体的開示はなされていない。
However, only a substance produced by mixing manganese dioxide and an oxide or salt of iron and heat-treating it in an atmosphere containing oxygen at a temperature of 450 ° C. or more can be used in a high voltage region of an operating voltage of 3 V or more. It is described that the discharge capacity is large, the internal resistance of the battery is remarkably improved, and large-current discharge is easy. Those which do not satisfy the above manufacturing conditions do not exhibit the expected effect. As a specific example, L
Only the one manufactured at a molar ratio of i: Mn: Fe = 1: 1.6: 0.4 is described, but no specific disclosure is made about a positive electrode material of 0.4 <y.

【0005】特開平7−122299号公報には、一般
式Li1+x Mn(2−y)Z4 (但し、−1.0
<x<1.7,0<y<1.2,0.02<z<1.
0)で示されるスピネル型構造をもつリチウム含有マン
ガン複合酸化物を正極活物質とするリチウム電池が記載
されている。この式中、Aは金属陽イオンであり、N
i,Co,Cu,Fe,Ti,Cr,V,Zr,Nb,
Ru,S,Ge,Ga,Sb,Te等多数の元素が挙げ
られており、0.02<z<1.0であるが、より好ま
しい組成は、金属陽イオンの添加量がマンガンに対して
20%未満の場合であり、0.02<z<0.4が好ま
しく、かつy=zでないことが好ましいとされている。
Japanese Patent Application Laid-Open No. Hei 7-122299 discloses a general formula Li 1 + x Mn (2-y) AZ O 4 (provided that -1.0
<X <1.7, 0 <y <1.2, 0.02 <z <1.
No. 0) describes a lithium battery using a lithium-containing manganese composite oxide having a spinel structure as a positive electrode active material. In this formula, A is a metal cation and N
i, Co, Cu, Fe, Ti, Cr, V, Zr, Nb,
Numerous elements such as Ru, S, Ge, Ga, Sb, and Te are mentioned, and 0.02 <z <1.0. More preferably, the amount of the metal cation added to manganese is It is less than 20%, 0.02 <z <0.4 is preferable, and y = z is not preferable.

【0006】そして、この正極活物質は、リチウム塩と
マンガン塩もしくはマンガン酸化物をドーパントである
金属の酸化物もしくはその塩の共存下で高温で固相反応
させることで得られる旨開示されている。すなわち、原
料に炭酸リチウムと二酸化マンガンを用いる場合、焼成
温度は350℃から900℃、好ましくは350℃から
500℃であり、焼成時間は8時間から48時間であ
る。また、リチウム塩に低融点の硝酸リチウムを用いる
場合は、焼成温度は300℃から900℃であり、好ま
しくは300℃から500℃である。マンガン酸化物と
しては、λ−MnO2 、電解的に調製されたMnO2
化学的に調製されたMnO2 およびそれらの混合物を用
いることができるとされている。しかしながら、上記の
ように、より好ましくは、0.02<z<0.4とさ
れ、陽イオンがFeの場合については、実施例にLi
0.95Mn1.7 Fe0.24 が示されているのみで、0.
4<zの正極材料を用いたものについては具体的開示は
なされていない。
It is disclosed that this positive electrode active material can be obtained by subjecting a lithium salt and a manganese salt or a manganese oxide to a solid phase reaction at a high temperature in the presence of a metal oxide or a salt thereof as a dopant. . That is, when lithium carbonate and manganese dioxide are used as raw materials, the firing temperature is 350 ° C. to 900 ° C., preferably 350 ° C. to 500 ° C., and the firing time is 8 hours to 48 hours. When lithium nitrate having a low melting point is used as the lithium salt, the firing temperature is from 300 ° C to 900 ° C, preferably from 300 ° C to 500 ° C. The manganese oxide, λ-MnO 2, electrolytically prepared MnO 2,
It is stated that chemically prepared MnO 2 and mixtures thereof can be used. However, as described above, more preferably, 0.02 <z <0.4, and in the case where the cation is Fe, the Examples
Only 0.95 Mn 1.7 Fe 0.2 O 4 is shown, but only 0.15 Mn 1.7 Fe 0.2 O 4 .
No specific disclosure is made of a material using a positive electrode material of 4 <z.

【0007】特開平8−298115号公報には、一般
式LiX Mn(2−y)4(但し、1≦x≦2.
1、0.45<y<0.60、Mは、Ni,Co,F
e,Zn)で示される格子定数が8.190オングスト
ローム以下の立方晶のスピネル構造のリチウム電池用正
極活物質が記載されている。そして、「MとしてNiを
選んだ場合の正極物質の合成方法として、yの値が0.
2を超えると、MnのNiへの置換が困難となり、不純
物としてNiOが常に残存した。この傾向は、出発原料
の種類には関係がなかった。このように、MnのNiへ
の置換量が0.2を超えると純粋なスピネル構造物が得
られないことが分かったが、出発原料と合成条件を種々
検討した結果、出発原料として硝酸リチウム、炭酸マン
ガンおよび硝酸ニッケルとした固相反応法(焼成温度:
750〜850℃)を採用した場合のみ、加圧してから
再焼成する処理を繰り返すとyの値が0.4と大きな場
合でも、LiMn1.6 Ni0.4 4 が得られることを見
いだした。」と説明されており、特定の合成条件でなけ
れば、上記一般式の純粋な正極活物質が得られないこと
が開示されている。
[0007] Japanese Patent Laid-Open No. 8-298115, the general formula Li X Mn (2-y) M y O 4 ( where, 1 ≦ x ≦ 2.
1, 0.45 <y <0.60, M is Ni, Co, F
e, Zn) describes a positive electrode active material for a lithium battery having a cubic spinel structure with a lattice constant of 8.190 angstroms or less. Then, as a method of synthesizing the positive electrode material when Ni is selected as M, the value of y is set to 0.
If it exceeds 2, it is difficult to substitute Mn for Ni, and NiO always remained as an impurity. This trend was independent of the type of starting material. As described above, it was found that a pure spinel structure could not be obtained when the amount of Mn to Ni exceeds 0.2, but as a result of various examinations of the starting materials and synthesis conditions, lithium nitrate as a starting material, Solid-state reaction method using manganese carbonate and nickel nitrate (calcination temperature:
Only when 750 to 850 ° C. was employed, it was found that when the treatment of pressurization and re-firing was repeated, LiMn 1.6 Ni 0.4 O 4 was obtained even when the value of y was as large as 0.4. It is disclosed that a pure cathode active material of the above general formula cannot be obtained unless specific synthesis conditions are used.

【0008】特開平10−188984号公報には、一
般式LiMn(2−y)4(但し、0<y≦1.
0、Mは、Fe,Co,Ni,Cu,Zn等)で示され
る正極活物質を用いた固体二次電池が記載されている。
0<y≦1.0であることがスピネル構造が安定である
ので好ましいと記載されているものの、特に0<y≦
0.2であることが好ましいと説明されている。そし
て、この正極活物質は、「リチウム塩(例えば、Li2
CO3 、Li2 NO3 、LiOH等)、マンガン化合物
(例えばMn3 4 、MnO2 等)、Mの化合物(酸化
物、水酸化物、炭酸塩、硝酸塩等)を混合して、所定の
温度で熱処理することによって得られる。」と説明さ
れ、具体的な実施例として、「Li2 CO3 、Mn2
3 、Fe2 3 を1:1.5:0.5モル比で混合し、
空気中で750℃、8時間焼成してLiMn1.5 Fe
0.5 4 を合成した。」ことが開示されている。
[0008] Japanese Patent Application Laid-Open No. 10-188894 describes
General formula LiMn(2-y)MyOFour(However, 0 <y ≦ 1.
0 and M are represented by Fe, Co, Ni, Cu, Zn, etc.)
A solid secondary battery using a positive electrode active material is described.
When 0 <y ≦ 1.0, the spinel structure is stable
Although it is described as preferable, particularly, 0 <y ≦
It is stated that it is preferably 0.2. Soshi
The positive electrode active material may be a lithium salt (for example, LiTwo
COThree , LiTwoNOThree, LiOH, etc.), manganese compounds
(For example, MnThreeOFour, MnOTwoEtc.), compounds of M (oxidation
Substances, hydroxides, carbonates, nitrates, etc.)
It is obtained by heat treatment at a temperature. "
As a specific example, “LiTwoCOThree , MnTwoO
Three , FeTwo O ThreeIn a 1: 1.5: 0.5 molar ratio,
LiMn fired at 750 ° C for 8 hours in air1.5Fe
0.5OFour Was synthesized. Is disclosed.

【0009】さらに、文献には、一般式Li[Me0.5
Mn1.5 ]O4 (Me:Cr,Ni,Cu)の複合酸化
物は、4価マンガンイオンとリンクした立方密充填酸素
配列によりほぼ5Vの固相レドックス電位を示すことが
報告されている(「Solid State Ioni
cs」81,162,1995、「J.Electro
chem.Soc.」144,205,1997、
「J.Electrochem.Soc.」144,L
205,1997)。
Further, in the literature, the general formula Li [Me 0.5
It has been reported that a composite oxide of [Mn 1.5 ] O 4 (Me: Cr, Ni, Cu) exhibits a solid-state redox potential of approximately 5 V due to a cubic densely packed oxygen arrangement linked to tetravalent manganese ions (“ Solid State Ioni
cs "81, 162, 1995," J. Electro
chem. Soc. 144, 205, 1997,
"J. Electrochem. Soc." 144, L
205, 1997).

【0010】[0010]

【発明が解決しようとする課題】近年、リチウムイオン
電池の研究・開発が活発に行われ、成長期へと移行しつ
つある。この新しい電池の中で静かに正極・負極として
働いているものがリチウムインサーション材料と呼ばれ
ているものである。電池機能材料は、一つでは機能せ
ず、相性のよい材料同士が必ず対(バッテリー)となっ
て、しかも時々刻々互いに化学組成を適宜変えることに
よって蓄電・発電機能を発揮する。電池を共通の尺度で
評価する場合にはエネルギー密度という考え方がよく用
いられる。高エネルギー密度電池に向けた材料開発は、
単位体積(あるいは単位重量)当たりの蓄電容量が大き
い材料を巧く組み合わせて電池電圧が高く、しかも軽量
なものとすれば良い。
In recent years, research and development of lithium ion batteries have been actively carried out, and the lithium ion battery is shifting to a growth period. Among these new batteries, the one that works quietly as the positive and negative electrodes is called the lithium insertion material. The battery functional material does not function as a single material, but the compatible materials are always paired (battery), and exhibit a power storage / power generation function by appropriately changing the chemical composition from time to time. When batteries are evaluated on a common scale, the concept of energy density is often used. Material development for high energy density batteries
A material having a large storage capacity per unit volume (or unit weight) may be skillfully combined to achieve a high battery voltage and a light weight.

【0011】リチウムイオン電池の正極材料として用い
られるリチウムイオン含有遷移金属酸化物は、1cm3
の体積の中に1Ah以上もの蓄電が可能である。硫化
物、セレン化物等のカルコゲナイドでは、固体マトリッ
クスを構成するアニオンのサイズが嵩高く、蓄電容量
は、酸化物の場合の半分以下となるので電池材料として
不利である。また酸化物に比べて硫化物、セレン化物は
共有結合性が強くなり、リチウムと組み合わせた場合の
電池の作動電圧は、酸化物に比べて通常低くなる。した
がって、高エネルギー密度電池の正極材料を考える場合
には、(リチウムイオン含有)遷移金属の二酸化物に限
定される。
A lithium ion-containing transition metal oxide used as a positive electrode material of a lithium ion battery has a capacity of 1 cm 3
It is possible to store more than 1 Ah in the volume. Chalcogenides such as sulfides and selenides are disadvantageous as battery materials because the size of the anions constituting the solid matrix is bulky and the storage capacity is less than half that of oxides. In addition, sulfides and selenides have a stronger covalent bond than oxides, and the operating voltage of a battery when combined with lithium is usually lower than that of oxides. Therefore, when considering a positive electrode material for a high energy density battery, it is limited to a transition metal dioxide (containing lithium ions).

【0012】一方、リチウムイオン電池の負極材料は、
その作動電圧が、リチウム金属負極に近ければ近いほど
良い。作動電圧の低い遷移金属酸化物を用いることもで
きるが、金属リチウムに近い作動電圧を示す材料を考え
る場合には、リチウムの電子構造からsp元素の構造体
となる。これらの中で、炭素のみで構成される黒鉛とリ
チウムの化合物形成(リチウム・黒鉛インターカレーシ
ョン化合物)を用いた負極材料が何と言っても単位体積
あたりの蓄電容量、リチウム金属負極と比べて遜色のな
い作動電圧、寸法・性状安定性等の点で興味深く、魅力
的である。
On the other hand, the negative electrode material of the lithium ion battery is
The closer the operating voltage is to the lithium metal negative electrode, the better. A transition metal oxide having a low operating voltage can be used, but when a material having an operating voltage close to that of lithium metal is considered, a structure of an sp element is obtained from the electronic structure of lithium. Among these, the negative electrode material using the compound formation of graphite and lithium composed only of carbon (lithium-graphite intercalation compound) has a storage capacity per unit volume, which is inferior to lithium metal negative electrode It is interesting and attractive in terms of operating voltage, dimensional stability and property stability.

【0013】リチウムイオン電池用電極材料を考える上
で、特に重要なことは電極形態・寸法安定性である。こ
の観点から、式□C6 +xLi→LiX 6 (0≦x≦
1)を基礎とする黒鉛負極と、リチウム金属負極を比較
検討すると、今仮に1Ahの充放電容量を考えてみる
と、リチウム金属負極の場合は、放電時に負極体積が
0.49cm3 消失し、充電時に同一体積が新たに生成
するので、著しい負極体積の変化が起こる。
In considering electrode materials for lithium ion batteries, particularly important factors are electrode shape and dimensional stability. From this viewpoint, the formula □ C 6 + xLi → Li X C 6 (0 ≦ x ≦
A comparison between a graphite negative electrode based on 1) and a lithium metal negative electrode shows that the charge / discharge capacity of 1 Ah is now considered. In the case of a lithium metal negative electrode, the volume of the negative electrode disappears by 0.49 cm 3 during discharging, Since the same volume is newly generated at the time of charging, a significant change in the negative electrode volume occurs.

【0014】一方、LiC6 負極の場合には、1Ahの
蓄電容量でLiC6 の体積が1.34cm3 、これを放
電して黒鉛とした時の体積は、1.19cm3 である。
言い換えれば、負の体積変化は、1Ah当たり0.15
cm3 となり、金属リチウムの場合に比べて格段に小さ
い。しかも、黒鉛の強固な炭素−炭素の共有結合と層状
構造から電極形態・寸法安定性に富んでいる。このよう
に黒鉛負極は、充電時に体積が約10%膨張し、放電時
に収縮するので、この負極に適合する正極は、LiNi
2 、LiAl1/4 Ni3/4 2 、LiCo1/4 Ni
3/4 2 、あるいはLi[LiX Mn2-X ]O4 等の充
電時に体積が収縮し、放電時に膨張するようなリチウム
インサーション材料である。特に、次世代リチウム電池
として期待されるポリマー電池等の固体電池、ゲル電解
質を用いる半固体電池等の固体リチウムイオン電池を考
えた場合、このような特性をもつ新規正極材料の開発が
特に望まれる。
On the other hand, in the case of the LiC 6 negative electrode, the volume of LiC 6 is 1.34 cm 3 at a storage capacity of 1 Ah, and the volume when this is discharged to graphite is 1.19 cm 3 .
In other words, the negative volume change is 0.15 per Ah
cm 3 , which is much smaller than that of lithium metal. In addition, the graphite has a strong carbon-carbon covalent bond and a layered structure, and is rich in electrode form and dimensional stability. As described above, the graphite negative electrode expands in volume by about 10% during charging and contracts during discharging. Therefore, a positive electrode suitable for this negative electrode is LiNi.
O 2 , LiAl 1/4 Ni 3/4 O 2 , LiCo 1/4 Ni
It is a lithium insertion material such as 3/4 O 2 or Li [Li X Mn 2 -X ] O 4, whose volume shrinks during charging and expands during discharging. In particular, when considering solid-state batteries such as polymer batteries, which are expected as next-generation lithium batteries, and solid-state lithium-ion batteries such as semi-solid batteries using a gel electrolyte, the development of a new cathode material having such characteristics is particularly desired. .

【0015】鉄は、資源上、環境上、コスト上、最も有
利な材料であり、すでにLiCoO 2 と同構造のLiF
eO2 を正極材料として合成する試みもなされている
が、LiMn2 4 のスピネル構造の複合酸化物でMn
の一部をFeに置換したスピネル型複酸化物はレドック
ス電位の高い物質として注目されており、LiMn2
4 では得られない優れた電池特性が実現できれば、電池
の製造コストを大幅に低下させ、大量消費製品としてエ
コフレンドリーな電池を提供することができる。
Iron is the most valuable resource, environment and cost.
LiCoO Two LiF with the same structure as
eOTwoAttempts have been made to synthesize as a positive electrode material
Is LiMnTwoOFourIs a complex oxide with a spinel structure of Mn
Is a redox
LiMnTwo O
FourIf you can achieve excellent battery characteristics that cannot be obtained with
Significantly lowers the manufacturing cost of
Co-friendly batteries can be provided.

【0016】上記の各特許文献には、Mnの一部を他の
金属で置換したスピネル型複酸化物からなるリチウムイ
オン電池用の正極材料が示されており、例えば、Li
[Fe 1/2 Mn3/2 ]O4 の材料は、二段反応を示し、
4から5Vでサイクルするが電解液の安定性にはまだ問
題がある。また、各特許文献に記載された正極材料につ
いては、いずれも特定の合成方法によって、電池として
の所定の効果を得られる純粋な単相の上記組成の物質を
得ることを開示しているが、特に、Mnを置換する元素
としてFeを選択した場合、0.5<yの正極材料を単
相合成することは非常に困難であり、各特許文献にはこ
のような物質を得る具体的方法や得られた物質の特性等
については開示されていない。そこで、Mnの置換元素
としてFeを用いて膨張・収縮の制御を可能としたスピ
ネル型構造マンガン鉄リチウム系複合酸化物を製造で
き、Fe置換量の多い純粋な単相の立方密充填酸素配列
の物質が何らかの方法で得られれば、5Vの固相レドッ
クス電位を持つ正極材料として極めて有用な電池特性が
期待される。
[0016] In each of the above patent documents, a part of Mn is replaced by another.
Lithium alloy consisting of spinel double oxide substituted with metal
Cathode materials for on-batteries are shown, for example, Li
[Fe 1/2Mn3/2] OFourMaterial shows a two-step reaction,
Cycles at 4-5V, but still has problems with electrolyte stability
There is a title. In addition, for the positive electrode materials described in each patent document,
In each case, batteries are manufactured by a specific synthesis method.
A pure single-phase substance of the above composition
, But especially those that substitute for Mn.
When Fe is selected as the positive electrode material, a positive electrode material of 0.5 <y is simply used.
Phase synthesis is very difficult, and each patent document
Method of obtaining a substance like the above, characteristics of the obtained substance, etc.
Is not disclosed. Therefore, the substitution element of Mn
That can control expansion and contraction using Fe
Manufacture of manganese iron lithium-based composite oxide with flannel type structure
Pure single-phase cubic densely packed oxygen arrangement with high Fe substitution
5V solid phase reddish
Battery properties that are extremely useful as cathode materials with
Be expected.

【0017】[0017]

【課題を解決するための手段】本発明は、正極活物質、
負極活物質、リチウム塩を含む非水電解質からなる二次
電池において、該正極活物質が、一般式Li[Fe
1/2+xMeMn3/2−x −y ]O(但し、0<
x,0<y,x+y≦1/2、Meは、Cr,Co,A
lの単独あるいは二種以上)で示される格子定数a=
8.19〜8.28オングストロームのスピネル型構造
マンガン鉄リチウム系複合酸化物であることを特徴とす
るリチウムイオン二次電池である。また、本発明は、特
に、負極活物質として、式Li[Li1/3 Ti5/3 ]O
4で示されるリチウムチタン複合酸化物を用いた非水電
解質リチウムイオン二次電池である。また、本発明は、
特に、上記一般式の正極活物質と上記式の負極活物資と
を組み合わせ、固体電解質を用いた作動電圧が3.5V
以上である全固体リチウムイオン二次電池である。
SUMMARY OF THE INVENTION The present invention provides a positive electrode active material,
In a secondary battery comprising a negative electrode active material and a nonaqueous electrolyte containing a lithium salt, the positive electrode active material has a general formula Li [Fe
1/2 + x Me y Mn 3/2-x -y] O 4 ( where 0 <
x, 0 <y, x + y ≦ 1/2, Me is Cr, Co, A
l alone or in combination of two or more)
A lithium ion secondary battery characterized by a lithium manganese iron composite oxide having a spinel structure of 8.19 to 8.28 angstroms. The present invention also provides, in particular, the formula Li [Li 1/3 Ti 5/3 ] O as a negative electrode active material.
4 is a non-aqueous electrolyte lithium-ion secondary battery using the lithium-titanium composite oxide shown in 4 . Also, the present invention
In particular, when the positive electrode active material of the above general formula and the negative electrode active material of the above formula are combined and the operating voltage using the solid electrolyte is 3.5 V
The above is an all-solid-state lithium ion secondary battery.

【0018】さらに、本発明は、上記正極材料として、
LiOH、MnOOH(マンガナイト)、FeOOH
(ゲ−タイト)を含む混合物にCr源の化合物、Co源
の化合物、Al源の化合物の一種以上を加えた原料粉末
を加圧してペレットにし、空気中で250〜600℃で
2〜12時間加熱して予備仮焼し、この予備仮焼した材
料を粉砕し、再度ペレットに成形し、空気中で700〜
850℃で2〜24時間加熱して本焼成することを特徴
とするスピネル型構造マンガン鉄リチウム系複合酸化物
からなるリチウムイオン二次電池用正極材料を製造する
方法である。Cr源の化合物、Co源の化合物、Al源
の化合物としては、酸化物、水酸化物、炭酸塩、硝酸塩
等を使用できる。例えば、上記Cr源として、Cr2
3 、Co源としてCo(OH)2 、Al源としてAl
(OH)3 を原料粉末に混合させることによりCr、C
o、Alの一種以上を含有する一般式Li[Fe1/2+
MeMn3/2−x−y]O4 (但し、0<x,0<
y,x+y≦1/2、Meは、Cr,Co.Alの単独
あるいは二種以上)で示されるスピネル型構造マンガン
鉄リチウム系複合酸化物が得られる。
Further, the present invention provides the above-mentioned cathode material,
LiOH, MnOOH (manganite), FeOOH
A raw material powder obtained by adding at least one of a compound of a Cr source, a compound of a Co source, and a compound of an Al source to a mixture containing (getite) is pressed into pellets, and is heated at 250 to 600 ° C. in air for 2 to 12 hours. Preliminarily calcined by heating, the preliminarily calcined material is pulverized and formed into pellets again, and 700 to
This is a method for producing a positive electrode material for a lithium ion secondary battery comprising a manganese iron lithium-based composite oxide having a spinel structure, which is heated at 850 ° C. for 2 to 24 hours and subjected to main firing. As the compound of the Cr source, the compound of the Co source, and the compound of the Al source, oxides, hydroxides, carbonates, nitrates and the like can be used. For example, as the Cr source, Cr 2 O
3 , Co (OH) 2 as Co source and Al as Al source
By mixing (OH) 3 with the raw material powder, Cr, C
General formula Li [Fe 1/2 + containing at least one of o and Al
x Me y Mn 3/2- x-y] O 4 ( however, 0 <x, 0 <
y, x + y ≦ 1/2, Me is Cr, Co. (Single or two or more types of Al) can be obtained.

【0019】[0019]

【発明の実施の形態】本発明の正極活物質は、一般式L
i[Fe1/2+xMeMn3/2−x−y]O 4(但し、
0<x,0<y,x+y≦1/2、Meは、Cr,C
o,Alの単独あるいは二種以上)で示される格子定数
a=8.19〜8.28オングストロームのスピネル型
構造マンガン鉄リチウム系複合酸化物でであり、Mnを
Feにより多量に置換して、さらに、Cr,Co,Al
の単独あるいは二種以上を加えて、立方密充填酸素配列
のスピネル構造の約5Vのレドックス電位を生じる正極
物質を実現することを可能にしたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode active material of the present invention has a general formula L
i [Fe1/2 + xMeyMn3 / 2-xy] O Four(However,
0 <x, 0 <y, x + y ≦ 1/2, Me is Cr, C
o, Al alone or in combination of two or more)
a = 8.19 to 8.28 angstroms of spinel type
It is a structure manganese iron lithium-based composite oxide, and Mn is
Fe, a large amount of Cr, Co, Al
Singly or two or more of
Positive electrode producing a redox potential of about 5 V with a spinel structure of
It is possible to realize the substance.

【0020】本発明のマンガン鉄リチウム系複合酸化物
の組成の具体例は、例えば、Li[Fe0.6 Co0.3
1.1 ]O4 、Li[Fe0.5 Cr0.25Mn1.25]O
4 、Li[Fe0.5 Al0.25Mn1.25]O4 を挙げるこ
とができる。スピネル型構造マンガン複合酸化物の特性
は、出発材料、焼成温度、焼成時間等の合成方法により
左右されることが大であり、Fe2 3 やLi,Mn,
Feの酸化物等を含まない純粋(単相)の複合酸化物を
製造する必要があり、従来技術に示される正極材料も特
定の製造方法によって初めて所期の特性が得られてい
る。
A specific example of the composition of the lithium manganese iron composite oxide of the present invention is, for example, Li [Fe 0.6 Co 0.3 M
n 1.1] O 4, Li [ Fe 0.5 Cr 0.25 Mn 1.25] O
4 , Li [Fe 0.5 Al 0.25 Mn 1.25 ] O 4 . Characteristics of spinel structure manganese oxide, the starting materials, the firing temperature is large to be governed by synthetic methods such as baking time, Fe 2 O 3 and Li, Mn,
It is necessary to produce a pure (single-phase) composite oxide containing no Fe oxide or the like, and the desired properties of the positive electrode material shown in the prior art are obtained for the first time by a specific production method.

【0021】本発明は、Li源としてLiOHを、Mn
源としてMnOOH(マンガナイト)を、鉄源としてF
eOOH(ゲータイト)を含む混合物にCr源の化合
物、Co源の化合物、Al源の化合物の一種以上を加え
た原料粉末を加圧してペレットにし、まず空気中で25
0〜600℃で2〜12時間予備加熱して仮焼する。2
50℃より低いと反応は脱水反応のみとなり、600℃
より高いと反応は不均一となり、Li2 MnO3 、Li
FeO2 等の不純物相が混入するので好ましくない。こ
の仮焼後の粉体は、所定の立方晶の微結晶となってい
る。加熱時間は、温度との関係で、所定の立方晶の微結
晶が得られるのに適した2〜12時間とする。
In the present invention, LiOH is used as the Li source, and Mn is used as the Li source.
MnOOH (manganite) as a source and F as an iron source
A raw material powder obtained by adding at least one of a compound of a Cr source, a compound of a Co source, and a compound of an Al source to a mixture containing eOOH (goethite) is pressed into pellets, and first, the pellets are formed in air.
Preheat at 0 to 600 ° C for 2 to 12 hours and calcine. 2
When the temperature is lower than 50 ° C, the reaction becomes only a dehydration reaction,
If it is higher, the reaction becomes heterogeneous, and Li 2 MnO 3 , Li
It is not preferable because an impurity phase such as FeO 2 is mixed. The powder after the calcination is a predetermined cubic microcrystal. The heating time is set to 2 to 12 hours suitable for obtaining predetermined cubic crystallites in relation to the temperature.

【0022】この仮焼したペレットを適宜の粉砕手段に
より粉末にし、この粉末を再度ペレットに成形し、空気
中で700〜850℃で2〜24時間加熱し、本焼成す
る。700℃より低いと結晶が十分に成長しない。85
0℃より高いとLi2 Mn24 、Li2 MnO3 、L
iFeO2 等に分相する。加熱時間は、温度との関係
で、所定の立方晶の結晶を成長させるのに適した2〜2
4時間とする。上記の合成時にFe、Cr、Co、Al
は3価の状態で固定され、格子定数はa=8.19〜
8.28である。
The calcined pellets are made into powder by a suitable pulverizing means, the powder is formed into pellets again, and heated in air at 700 to 850 ° C. for 2 to 24 hours, followed by main firing. If the temperature is lower than 700 ° C., the crystal does not grow sufficiently. 85
If the temperature is higher than 0 ° C., Li 2 Mn 2 O 4 , Li 2 MnO 3 , L
Separates into iFeO 2 etc. The heating time is 2 to 2 suitable for growing a predetermined cubic crystal depending on the temperature.
4 hours. At the time of the above synthesis, Fe, Cr, Co, Al
Is fixed in a trivalent state, and the lattice constant is a = 8.19-
8.28.

【0023】Li[Fe1/2 Mn3/2 ]O4 は、ボルタ
ンメトリック測定により、約4.2Vと5.1Vに明確
な酸化ピークが認められ、3.9Vと4.9Vに還元ピ
ークが認められる。また、X線回折(XRD)によっ
て、LiMn2 4 (a=8.24オングストローム)
より大きな格子定数a=8.27オングストロームを有
している。一般式Li[Fe1/2+x Mn3/2−x]O
4 のxの値が大きくなるにつれ格子定数aは大きくな
り、x=1/4では8.28オングストロームとなる。
Li [Fe 1/2 Mn 3/2 ] O 4 showed clear oxidation peaks at about 4.2 V and 5.1 V by voltammetric measurement, and reduced to 3.9 V and 4.9 V. A peak is observed. Also, by X-ray diffraction (XRD), LiMn 2 O 4 (a = 8.24 angstroms)
It has a larger lattice constant a = 8.27 angstroms. General formula Li [Fe 1/2 + x Mn 3 / 2-x ] O
As the value of x of 4 increases, the lattice constant a increases. At x = 1/4, the lattice constant a becomes 8.28 angstroms.

【0024】Li[Fe1/2 Mn3/2 ]O4 のトポタク
ティック反応は実験の結果から下記の式で示される。
4.05Vで、
The topotactic reaction of Li [Fe 1/2 Mn 3/2 ] O 4 is represented by the following formula based on the results of experiments.
At 4.05V,

【0025】[0025]

【数1】 Li[Fe 1/2 Mn3/2 ]O4 →←Li1/2 [Fe 1/2 Mn3/2 ]O4 +(1/2)Li + +(1/2)e- (Fd3m;a=8.27A) (Fd3m;a=8.17A)[Equation 1] Li [Fe 1/2 Mn 3/2 ] O 4 → ← Li 1/2 [Fe 1/2 Mn 3/2 ] O 4 + (1/2) Li + + (1/2) e -(Fd3m; a = 8.27A) (Fd3m; a = 8.17A)

【0026】5.00Vで、At 5.00 V,

【0027】[0027]

【数2】 Li1/2 [Fe 1/2 Mn3/2 ]O4 →←□[Fe 1/2 Mn3/2 ]O4 +(1/2)Li + +(1/2)e- (Fd3m;a=8.17A) (Fd3m;a=8.07A)[Equation 2] Li 1/2 [Fe 1/2 Mn 3/2 ] O 4 → ← □ [Fe 1/2 Mn 3/2 ] O 4 + (1/2) Li + + (1/2) e -(Fd3m; a = 8.17A) (Fd3m; a = 8.07A)

【0028】上記の反応式から、式Li[Fe1/2 Mn
3/2 ]O4 の複合酸化物は、リチウムイオン電池用の正
極の動作をさせると4.0Vで74mAh/g、5Vで
74mAh/gの二段反応になり、合計148mAh/
gの放電容量を得ることができる。
From the above equation, the formula Li [Fe 1/2 Mn
When a positive electrode for a lithium ion battery is operated, the composite oxide of 3/2 ] O 4 has a two-stage reaction of 74 mAh / g at 4.0 V and 74 mAh / g at 5 V, for a total of 148 mAh / g.
g of discharge capacity can be obtained.

【0029】本発明は、式Li[Fe1/2 Mn3/2 ]O
4 の複合酸化物の二段反応を制御するためにMeとし
て、Cr、Co、Alの一種以上の元素を固溶させて、
一般式Li[Fe1/2+x MeMn3/2−x−y]O4
として新規な単相複合酸化物を合成することに成功
し、これにより5Vの領域での反応を実現したものであ
る。式Li[Fe1/2 Mn3/2 ]O4 の複合酸化物にC
o、Cr、Alの一種以上の元素を固溶させると作動電
圧が、すべての場合4.8〜5.2Vになり、4Vの領
域が消えて、その容量が約5Vの領域に上がり、充放電
容量100mAh/g以上が得られる。他に、上記の二
段の反応を制御する方法として、式Li[FeMn]O
4 の複合酸化物を合成することも考えられるが、この組
成は、理論的にも不安定であり合成することが困難であ
り、従来成功している最高のFe含有量は、Li[Fe
0.75Mn1.25]O4 までである。
The present invention uses the formula Li [Fe1/2 Mn3/2] O
Four Me to control the two-step reaction of the complex oxide of
To form a solid solution of one or more elements of Cr, Co, and Al,
The general formula Li [Fe1/2 + x MeyMn3 / 2-xy] OFour
 Succeeded in synthesizing a novel single-phase composite oxide
This achieves a reaction in the 5V region.
You. The formula Li [Fe1/2 Mn3/2 ] OFour Complex oxide of C
When one or more elements of o, Cr and Al are dissolved,
The pressure is 4.8-5.2V in all cases,
The area disappears and its capacity rises to the area of about 5V,
A capacity of 100 mAh / g or more is obtained. Other than the above two
As a method of controlling the reaction of the stage, the formula Li [FeMn] O
Four It is conceivable to synthesize a composite oxide of
Synthesis is theoretically unstable and difficult to synthesize.
The highest Fe content that has hitherto been successful is Li [Fe
0.75Mn1.25] OFourUp to.

【0030】一般式Li[Fe1/2+xMeMn
3/2−x−y ]O のxの値については、理論的にx
=1/2のところで4Vが消えて全て5Vになるので上
限は1/2となるが、xの価が大きいほど単相の複合酸
化物の製造は困難になり、製造上好ましいxの上限は1
/4程度であり、好ましいyの値は1/4以上である。
ただ、Alを固溶させると、xの値が1/4を越えてF
eを含有させることを製造上可能とすることが分かっ
た。例えば、Li[Fe0.8 Al0.2 Mn]O4 の単相
に近い複合酸化物の合成ができる。また、Alは、5V
の作動電圧を若干上昇させ、インサーション材料の作動
時の安定性や、膨張収縮の度合いの調整に好適な元素で
ある。
[0030] general formula Li [Fe 1/2 + x Me y Mn
3/2-x-y] for the value of O 4 of x, theoretically x
The upper limit becomes 1/2 since 4V disappears and all become 5V when == 1/2. However, the larger the value of x, the more difficult it is to produce a single-phase composite oxide. 1
/ 4, and a preferable value of y is 1/4 or more.
However, when Al is dissolved, the value of x exceeds 1/4 and F
It has been found that it is possible to contain e in production. For example, a composite oxide close to a single phase of Li [Fe 0.8 Al 0.2 Mn] O 4 can be synthesized. Al is 5V
Is an element suitable for slightly increasing the operating voltage of the insertion material and adjusting the stability of the insertion material during operation and the degree of expansion and contraction.

【0031】本発明の正極物質は、通常の電池と同じく
アセチレンブラック等の導電剤、ポリフッ化ビニル等の
結着剤と混合し、アルミニウム、ステンレス鋼、チタン
等の集電体に塗布して使用することができる。負極活物
質としては、リチウム、Li−Al合金、Li−Sn合
金、Li−Mg合金等の合金、炭素、酸化スズ等のリチ
ウムイオンを吸蔵できるインターカレート物質を使用で
きる。電解質としては、プロピレンカーボネート、エチ
レンカーボネート等の有機溶媒にリチウム塩を加えた電
解液、ポリプロピレンオキサイド誘導体、ポリエチレン
オキサイド誘導体等の有機固体電解質、Liの窒化物、
ハロゲン化物、酸素酸塩等の無機固体電解質等公知の物
質を用いることができる。本発明の正極材料を用いて、
定電流充放電特性を有し、黒鉛を負極活物質とする5V
級の非水電解液リチウムイオン電池を提供することがで
きる。
The cathode material of the present invention is mixed with a conductive agent such as acetylene black and a binder such as polyvinyl fluoride and applied to a current collector such as aluminum, stainless steel and titanium as in a normal battery. can do. As the negative electrode active material, lithium, an alloy such as a Li-Al alloy, a Li-Sn alloy, a Li-Mg alloy, an intercalating material capable of absorbing lithium ions such as carbon and tin oxide can be used. As the electrolyte, propylene carbonate, an electrolyte solution obtained by adding a lithium salt to an organic solvent such as ethylene carbonate, a polypropylene oxide derivative, an organic solid electrolyte such as a polyethylene oxide derivative, a nitride of Li,
Known substances such as inorganic solid electrolytes such as halides and oxyacid salts can be used. Using the positive electrode material of the present invention,
5V with constant current charge / discharge characteristics and graphite as negative electrode active material
Grade non-aqueous electrolyte lithium ion battery can be provided.

【0032】また、チタン酸リチウムまたはチタン酸リ
チウムとルチル型酸化チタンの共存する混晶体を負極活
物質とすることは公知であるが、特に、本発明者が見出
した反応の前後で格子寸法に変化のない無歪インサーシ
ョン物質である式Li[Li 1/3 Ti5/3 ]O4 で示さ
れるリチウムチタン複合酸化物を負極として組み合わせ
ると、固体電解質を用いて3.5V級の全固体リチウム
イオン電池を実現できる。一般式Li[LiX Ti
2-X ]O4 において、x=1/3以外は、湿った空気中
で反応して発熱するので使用困難である。LiTiO4
は、水との反応性が高く使用できない。式Li[Li
1/3 Ti5/3 ]O4 の複合酸化物は、例えば、TiO2
(アナターセ)とLiOH/H2 Oの混合物を窒素気流
中で800℃、12時間加熱することにより調製でき
る。
Also, lithium titanate or lithium titanate may be used.
A mixed crystal in which titanium and rutile titanium oxide coexist is used as the negative electrode active material.
Although it is known to be a substance, in particular,
Strain-free insert with no change in lattice size before and after the reaction
The formula Li [Li 1/3Ti5/3] OFourIndicated by
Combined lithium-titanium composite oxide as negative electrode
Then, using a solid electrolyte, all solid lithium of 3.5V class
An ion battery can be realized. The general formula Li [LiXTi
2-X ] OFour , Except in x = 1/3, in humid air
It is difficult to use because it generates heat by reaction. LiTiOFour
Is highly reactive with water and cannot be used. The formula Li [Li
1/3 Ti5/3 ] OFourIs, for example, TiO.Two
(Anatase) and LiOH / HTwoO2 mixture with nitrogen stream
Can be prepared by heating at 800 ° C for 12 hours in
You.

【0033】比較実験例 LiOH、MnOOH(マンガナイト)、FeOOH
(ゲータイト)の混合物(Li:Mn:Fe=2:1:
3のモル比)を加圧してペレット(直径23mm,厚み
5mm)にし、空気中で550℃で15時間予備加熱し
仮焼した。550℃の仮焼の後の状態は、粉末X線回折
法ではブロードな回折線ながら目的の立方晶の回折プロ
ファイルを持ち、結晶が十分に成長していない微結晶な
状態を示した。予備仮焼した材料を粉砕し、再度ペレッ
トに成形し、750℃で15時間空気中で本焼成し、L
i[Fe1/2 Mn3/2 ]O4 を調製した。反応生成物を
粉砕し、XRDにより分析した。同様の方法で、FeO
OHに代えて、Cr23 、Co(OH)2 、Ni(O
H)2 、CuOをそれぞれ原料とし、Li[Me1/2
3/2 ]O4 (Me:Cr,Co,Ni,Cu)につい
て試料を作成した。
Comparative Experimental Examples LiOH, MnOOH (manganite), FeOOH
(Goethite) mixture (Li: Mn: Fe = 2: 1:
(Molar ratio of 3) was pressed into pellets (diameter 23 mm, thickness 5 mm), which were preheated in air at 550 ° C. for 15 hours and calcined. The state after the calcination at 550 ° C. was a microcrystalline state in which the crystal had not grown sufficiently but had a desired cubic diffraction profile despite broad diffraction lines in the powder X-ray diffraction method. The pre-calcined material is pulverized, formed into pellets again, and finally fired in air at 750 ° C. for 15 hours.
i [Fe 1/2 Mn 3/2 ] O 4 was prepared. The reaction product was ground and analyzed by XRD. In a similar manner, FeO
Instead of OH, Cr 2 O 3 , Co (OH) 2 , Ni (O
H) 2 and CuO as raw materials, respectively, and Li [Me 1/2 M
A sample was prepared for n 3/2 ] O 4 (Me: Cr, Co, Ni, Cu).

【0034】試料は、使用前にデシケータ中のブルーシ
リカゲルの上に貯蔵した。サイクリックボルタンメトリ
ー用の電極を製造する際に、上記反応生成物80w/o
%(重量%)、アセチレンブラック10w/o、フッ化
ポリビニリデン(PVDF)10w/o%をN−メチル
−2−ピロリドン(NMP)溶液に溶解し、アルミニウ
ム板(15×20mm2 )に塗布し、真空中150℃で
12時間乾燥した。セパレータとして2枚の多孔性隔膜
(電池ガード2500)を使用した。エチレンカーボネ
ート(EC)/ヂエチルカーボネート(DEC)(容量
で1/1)に1モルのLiPF6 を溶解した電解液を使
用した。
Samples were stored on blue silica gel in a desiccator before use. When producing an electrode for cyclic voltammetry, the above reaction product 80 w / o
% (% By weight), 10 w / o of acetylene black and 10 w / o% of polyvinylidene fluoride (PVDF) are dissolved in an N-methyl-2-pyrrolidone (NMP) solution and applied to an aluminum plate (15 × 20 mm 2 ). And dried in vacuum at 150 ° C. for 12 hours. Two porous diaphragms (battery guard 2500) were used as separators. An electrolytic solution obtained by dissolving 1 mol of LiPF6 in ethylene carbonate (EC) / diethyl carbonate (DEC) (1/1 by volume) was used.

【0035】作成した当初の電池の開放端子電圧は、
3.0〜3.5Vであった。電池を0.2mV/sの走
査速度で上方へ走査すると約4.2Vと5.1Vに明確
な酸化ピークが認められ、3Vへサイクルバックすると
3.9Vと4.9Vに還元ピークが認められた。酸化と
還元のピークの間のそれぞれの中間点電圧は、4.05
Vと5.00Vであった。4.05Vのレドックスピー
クは単一のレドックスピークであると思われる。表1に
各試料について3.0から5.2Vの間で測定した構造
データと電気化学レドックス特性を示す。この表から分
かるように、Me=Fe、Cr、Ni、Co、CuをL
i[Me1/2 1Mn3/2 ]O4 として合成すると、例外
なく4.8から5.2V程度のレドックス準位が発生す
る。
The open-circuit terminal voltage of the initial battery is as follows:
3.0-3.5V. When the battery was scanned upward at a scanning speed of 0.2 mV / s, distinct oxidation peaks were observed at about 4.2 V and 5.1 V, and reduction peaks were observed at 3.9 V and 4.9 V when cycled back to 3 V. Was. The respective midpoint voltage between the oxidation and reduction peaks is 4.05
V and 5.00V. The redox peak at 4.05V appears to be a single redox peak. Table 1 shows the structural data and electrochemical redox properties of each sample measured between 3.0 and 5.2V. As can be seen from this table, Me = Fe, Cr, Ni, Co, Cu
When synthesized as i [Me 1/2 1Mn 3/2 ] O 4 , a redox level of about 4.8 to 5.2 V is generated without exception.

【0036】[0036]

【表1】 格子定数 レドックス レベル* Me a/A E<4.5V E>4.5V ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ Fe 8.269 4.05V 5.00V Cr 8.217 ca.4.09V ca.4.9V Co 8.152 ca.4.0V ca.5.0V(?) Ni 8.188 ca.3.95V 4.75V Cu 8.210 3.98&4.15V 4.90V[Table 1] Lattice constant Redox level * Mea / A E <4.5V E> 4.5V .. Fe 8.269 4.05V 5.00V Cr 8.217 ca. 4.09V ca. 4.9V Co 8.152 ca. 4.0V ca. 5.0V (?) Ni 8.188 ca. 3.95V 4.75V Cu 8.210 3.98 & 4.15V 4.90V

【0037】*は、サイクリックボルタンメトリーによ
り3.0から5.2Vの間で走査速度0.2mV/sで
Li[Me1/2 Mn3/2 ]O4 電池を観察した酸化と還
元のピークの中間電圧からの推定値である。
*: Oxidation and reduction peaks obtained by observing a Li [Me 1/2 Mn 3/2 ] O 4 cell at a scanning rate of 0.2 mV / s between 3.0 and 5.2 V by cyclic voltammetry. Is an estimated value from the intermediate voltage.

【0038】[0038]

【実施例】実施例1 原料混合物にCo(OH)2 を混合した以外は上記比較
実験例と同様にしてLi[Fe0.6 Co0.3 Mn1.1
4 を調製した。格子定数はa=8.21オングストロ
ームで、4Vに若干の平坦部(15mAh/g程度)が
あり、作動電圧は4.8−5.15Vで、充放電容量は
90−110mAh/g(理論的には130mAh/
g)であった。Coの固溶化で90mAh/gを越す値
が得られることが確認された。
Example, except that a mixture of Co (OH) 2 in Example 1 starting mixture in the same manner as above Comparative Experiment Li [Fe 0.6 Co 0.3 Mn 1.1 ]
O 4 was prepared. The lattice constant is a = 8.21 angstroms, there is a slight flat portion (about 15 mAh / g) at 4 V, the operating voltage is 4.8-5.15 V, and the charge / discharge capacity is 90-110 mAh / g (theoretical). 130 mAh /
g). It was confirmed that a value exceeding 90 mAh / g was obtained by solid solution of Co.

【0039】実施例2 原料混合物にCr23 を混合した以外は上記比較実験
例と同様にしてLi[Fe0.5 Cr0.25Mn1.25]O4
を調製した。格子定数はa=8.25オングストローム
で、4Vに若干の平坦部(25−30mAh/g程度)
があり、作動電圧は4.8−5.1Vで、充放電容量は
75−90mAh/g(理論的には110mAh/g)
であった。Crの固溶化で75mAh/gを越す値が得
られることが確認された。
Example 2 Li [Fe 0.5 Cr 0.25 Mn 1.25 ] O 4 was prepared in the same manner as in the comparative example except that the raw material mixture was mixed with Cr 2 O 3.
Was prepared. The lattice constant is a = 8.25 angstroms, and a little flat portion at 4 V (about 25-30 mAh / g)
The operating voltage is 4.8-5.1 V, and the charge / discharge capacity is 75-90 mAh / g (theoretically 110 mAh / g).
Met. It was confirmed that a value exceeding 75 mAh / g was obtained by solid solution of Cr.

【0040】実施例3 原料混合物にAl(OH)3 を混合した以外は上記比較
実験例と同様にしてLi[Fe0.5 Al0.25Mn1.25
4 を調製した。Alの固溶化によって5Vの容量が変
化せず、4Vの容量が半分になった。
Example 3 Li [Fe 0.5 Al 0.25 Mn 1.25 ] was prepared in the same manner as in the comparative example except that Al (OH) 3 was mixed in the raw material mixture.
O 4 was prepared. The solution of Al did not change the capacity of 5 V, and the capacity of 4 V was halved.

【0041】[0041]

【発明の効果】本発明の電池は、安価で環境問題の懸念
が非常に少ないFe、Mnを用いるリチウムイオン電池
用正極材料をさらに発展させて、5V領域を用いること
を実現することによりエネルギー密度を高めることがで
きたので、通常の用途としてのみならず、電気自動車用
の大型リチウムイオン電池として好適である。また、特
に、式Li[Li1/3 Ti5/3 ]O4 で示されるリチウ
ムチタン複合酸化物からなる無歪インサーション材料を
選択して負極とすることにより、作動電圧の高い全固体
リチウムイオン電池を実現できる。
According to the battery of the present invention, the energy density can be improved by further developing a cathode material for lithium ion batteries using Fe and Mn which are inexpensive and have very little concern about environmental problems and realize the use of a 5 V region. Therefore, it is suitable not only for normal use but also as a large lithium ion battery for electric vehicles. In particular, by selecting a non-strained insertion material made of a lithium-titanium composite oxide represented by the formula Li [Li 1/3 Ti 5/3 ] O 4 as a negative electrode, all-solid lithium having a high operating voltage can be obtained. An ion battery can be realized.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質、負極活物質、リチウム塩を
含む非水電解質からなる二次電池において、該正極活物
質が、一般式Li[Fe1/2+xMeMn3
/2−x−y ]O4 (但し、0<x,0<y,x+y≦
1/2、Meは、Cr,Co,Alの単独あるいは二種
以上)で示される格子定数a=8.19〜8.28オン
グストロームのスピネル型構造マンガン鉄リチウム系複
合酸化物であることを特徴とするリチウムイオン二次電
池。
1. A positive electrode active material, negative electrode active material, a secondary battery comprising a nonaqueous electrolyte containing a lithium salt, the positive electrode active material has the general formula Li [Fe 1/2 + x Me y Mn 3
/ 2−xy ] O 4 (where 0 <x, 0 <y, x + y ≦
(1/2, Me is Cr, Co, Al alone or in combination of two or more). It is characterized by being a spinel-type manganese iron lithium-based composite oxide having a lattice constant a = 8.19 to 8.28 angstroms. Lithium ion secondary battery.
【請求項2】 負極活物質が式Li[Li1/3
5/3 ]O4 で示されるリチウムチタン複合酸化物であ
ることを特徴とする請求項1記載のリチウムイオン二次
電池。
2. The method according to claim 1, wherein the negative electrode active material has the formula Li [Li 1/3 T
The lithium ion secondary battery according to claim 1, which is a lithium-titanium composite oxide represented by i5 / 3 ] O4 .
【請求項3】 固体電解質を用い、作動電圧が3.5V
以上であることを特徴とする請求項2記載の全固体リチ
ウムイオン二次電池。
3. An operating voltage of 3.5 V using a solid electrolyte.
The all-solid-state lithium-ion secondary battery according to claim 2, wherein:
【請求項4】 LiOH、MnOOH(マンガナイ
ト)、FeOOH(ゲ−タイト)を含む混合物にCr源
の化合物、Co源の化合物、Al源の化合物の一種以上
を加えた原料粉末を加圧してペレットにし、空気中で2
50〜600℃で2〜12時間加熱して予備仮焼し、こ
の予備仮焼した材料を粉砕し、再度ペレットに成形し、
空気中で700〜850℃で2〜24時間加熱して本焼
成することを特徴とするスピネル型構造マンガン鉄リチ
ウム系複合酸化物からなるリチウムイオン二次電池用正
極材料の製造方法。
4. A raw material powder comprising a mixture containing LiOH, MnOOH (manganite), and FeOOH (geetite) to which at least one of a Cr source compound, a Co source compound, and an Al source compound has been added is pressed and pelletized. And in the air 2
Pre-calcining by heating at 50 to 600 ° C. for 2 to 12 hours, pulverizing the pre-calcined material, forming it again into pellets,
A method for producing a positive electrode material for a lithium ion secondary battery comprising a manganese iron lithium-based composite oxide having a spinel structure, which is heated at 700 to 850 ° C. for 2 to 24 hours in air to perform main firing.
JP25506198A 1998-09-09 1998-09-09 Lithium ion secondary battery Expired - Lifetime JP4189457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25506198A JP4189457B2 (en) 1998-09-09 1998-09-09 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25506198A JP4189457B2 (en) 1998-09-09 1998-09-09 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2000090923A true JP2000090923A (en) 2000-03-31
JP4189457B2 JP4189457B2 (en) 2008-12-03

Family

ID=17273610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25506198A Expired - Lifetime JP4189457B2 (en) 1998-09-09 1998-09-09 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4189457B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141067A (en) * 2000-10-31 2002-05-17 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2012012273A (en) * 2010-07-05 2012-01-19 Sumitomo Chemical Co Ltd Raw material mixture for alkali metal-based complex metal oxide
WO2012014846A1 (en) 2010-07-30 2012-02-02 Necエナジーデバイス株式会社 Secondary battery positive electrode active material and secondary battery using the same
US9236602B2 (en) 2012-04-13 2016-01-12 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
US9299475B2 (en) 2010-11-05 2016-03-29 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
US9401525B2 (en) 2009-03-20 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
CN112204779A (en) * 2019-02-13 2021-01-08 株式会社Lg化学 Positive electrode for lithium secondary battery containing goethite and lithium secondary battery comprising same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734705B2 (en) * 2000-10-31 2011-07-27 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2002141067A (en) * 2000-10-31 2002-05-17 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
US9401525B2 (en) 2009-03-20 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
US9590277B2 (en) 2009-03-20 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Power storage device and manufacturing method thereof
JP2012012273A (en) * 2010-07-05 2012-01-19 Sumitomo Chemical Co Ltd Raw material mixture for alkali metal-based complex metal oxide
CN103003987A (en) * 2010-07-30 2013-03-27 Nec能源元器件株式会社 Secondary battery positive electrode active material and secondary battery using the same
US9281519B2 (en) 2010-07-30 2016-03-08 Nec Energy Devices, Ltd. Positive electrode active material for secondary battery and secondary battery using the same
WO2012014846A1 (en) 2010-07-30 2012-02-02 Necエナジーデバイス株式会社 Secondary battery positive electrode active material and secondary battery using the same
EP3327836A1 (en) 2010-07-30 2018-05-30 NEC Energy Devices, Ltd. Positive electrode active material for secondary battery and secondary battery using the same
US9299475B2 (en) 2010-11-05 2016-03-29 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
US9236602B2 (en) 2012-04-13 2016-01-12 Nec Corporation Positive electrode active material for secondary battery and secondary battery using the same
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
CN112204779A (en) * 2019-02-13 2021-01-08 株式会社Lg化学 Positive electrode for lithium secondary battery containing goethite and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP4189457B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP4137635B2 (en) Positive electrode active material and non-aqueous secondary battery
EP1837937B1 (en) Lithium manganese-based composite oxide and method for preparing the same
JP4326041B2 (en) Doped intercalation compound and method for producing the same
JP4691228B2 (en) Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery
KR101389409B1 (en) Lithium manganese compounds and methods of making the same
CN107428559B (en) Positive electrode material and lithium secondary battery using same for positive electrode
JP2002110167A (en) Lithium oxide material and method for manufacturing the same
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JPH06275263A (en) Lithium secondary battery and manufacture of its negative electrode
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
JPH05283076A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2008120679A5 (en)
Luo et al. Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance
JP4189457B2 (en) Lithium ion secondary battery
Baazizi et al. A Ni-rich cathode material for lithium-ion batteries with improved safety and cost
WO2007007581A1 (en) Positive electrode material for lithium secondary battery, process for production of the same, and lithium secondary material manufactured using the same
KR100560537B1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery
JP4560168B2 (en) Method for producing composite oxide for non-aqueous lithium secondary battery
JP2001126731A (en) Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell, and the lithium secondary cell
JP2000154022A (en) Lithium manganese double oxide, its production and its use
JP3921697B2 (en) Lithium manganese spinel, method for producing the same, and use thereof
JP2001143704A (en) Method of manufacturing positive electrode material for lithiun secondary battery
JP2000154021A (en) New lithium manganese oxide, its production and its use

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140926

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term