JP2000088747A - Meter for degree of ripeness - Google Patents

Meter for degree of ripeness

Info

Publication number
JP2000088747A
JP2000088747A JP10301596A JP30159698A JP2000088747A JP 2000088747 A JP2000088747 A JP 2000088747A JP 10301596 A JP10301596 A JP 10301596A JP 30159698 A JP30159698 A JP 30159698A JP 2000088747 A JP2000088747 A JP 2000088747A
Authority
JP
Japan
Prior art keywords
ripeness
light
degree
led
fruit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10301596A
Other languages
Japanese (ja)
Inventor
Masao Matsunari
昌男 松成
Yumiko Nakamura
由美子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAYA CORP
Original Assignee
TAKAYA CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAYA CORP filed Critical TAKAYA CORP
Priority to JP10301596A priority Critical patent/JP2000088747A/en
Publication of JP2000088747A publication Critical patent/JP2000088747A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the highly accurate detection of the degree of ripeness without damaging fruits by using a plurality of LEDs as a light source, using a plurality of different wavelengths, and determining the degree of ripeness by the presence or absence of chlorophylls. SOLUTION: A sensor part formed of LEDs 1 and 2 covered with a hood F at the back surface of the main body of a meter for the degree of ripeness and a photodiode 3 is brought into contact with the surface of a fruit to be the object of ripeness degree measurement. By pressing a measurement switch D, the LEDs 1 and 2 continuously alternately irradiate red light (in the vicinity of 660 nm) and near infrared rays (in the vicinity of 880 nm), respectively, at the timing determined by a microcomputer 4, and the photodiode 3 receives part of the reflected light of the light diffused in the fruit. The infrared light of the LED 1 with the absorption wavelength of chlorophylls is diffused at the skin of the fruit, and its part is absorbed by chlorophylls. The majority of the infrared rays of the LED 2 is reflected. The photodiode 3 measures the amount of the infrared rays of the LED 1 absorbed by chlorophylls on the basis of the amount of the reflected light of the LED 2, and its relative value is taken as the degree of ripeness and displayed on a liquid crystal display.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光を使用し、非破
壊で、果実等の熟度を測定する装置に係わるものであ
り、詳しくは、葉緑素(クロロフィル)特有の吸収波長
を使用して、果実等の葉緑素の含有量を測定し、熟度を
判定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for non-destructively measuring the ripeness of fruits and the like using light, and more particularly to an apparatus using an absorption wavelength specific to chlorophyll (chlorophyll). The present invention relates to a method for measuring the content of chlorophyll, fruit and the like, and judging the maturity.

【0002】[0002]

【従来の技術】従来、果実等の熟度を判定するには、硬
度計を使用し、果実の表皮を破壊する際の硬度から判定
していた。
2. Description of the Related Art Heretofore, in order to determine the ripeness of fruits and the like, a hardness meter has been used, and the hardness has been determined based on the hardness at the time of breaking the epidermis of the fruits.

【0003】[0003]

【発明が解決しようとする課題】従来、果実等の熟度の
判定には、果実を破壊する際の硬度から熟度を判定する
硬度計を使用しており、熟度を測定した果実は商品価値
が無くなり、出荷不可能となる。さらに、この硬度計は
大変高価であり、装置も大規模である。
Conventionally, in order to judge the ripeness of fruits and the like, a hardness meter for judging the ripeness from the hardness at the time of breaking the fruits has been used. It loses value and cannot be shipped. Moreover, the hardness tester is very expensive and the equipment is large.

【0004】よって、各農家では、果実の収穫適期の判
定や可食適期の判定を、外観からの目視と勘に頼ってい
る面が大きく、実際の熟度には差がある。
[0004] Therefore, most farmers rely on visual observation and intuition from the appearance to determine the optimal harvest time and edible time of fruits, and there is a difference in actual ripeness.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の熟度計においては、果実の表皮の硬さから
ではなく、果実中に含まれる葉緑素の量を測定して、熟
度を判定する。葉緑素の吸収波長である、赤色可視光の
660nm付近の波長と、それに影響されない近赤外線
880nm付近の2種類の波長を使用することにより、
従来の硬度計と違い、果実を傷つけることなく、精度の
高い熟度を判定することが可能となる。
In order to achieve the above object, the maturity meter of the present invention measures the amount of chlorophyll contained in a fruit, not from the hardness of the epidermis of the fruit. Determine the degree. By using two wavelengths near 660 nm of red visible light, which is the absorption wavelength of chlorophyll, and near 880 nm of near infrared light which is not affected by it,
Unlike a conventional hardness tester, it is possible to determine a highly accurate ripeness without damaging the fruit.

【0006】さらに、光源にLEDを使用することによ
り、小型で安価な熟度計を提供する。LEDは比較的寿
命が長いので、交換等の手間も省ける。ここで規定して
いる880nm付近の波長は、糖分・水分・葉緑素等に
比較的影響を受けない波長として採用しただけであり、
これに限るものではない。
Further, by using an LED as a light source, a small and inexpensive ripeness meter is provided. Since the LED has a relatively long life, trouble such as replacement can be omitted. The wavelength around 880 nm defined here is only adopted as a wavelength relatively unaffected by sugar, moisture, chlorophyll, etc.
It is not limited to this.

【0007】[0007]

【発明の実施の形態】図1、図2において、本発明の熟
度計には、熟度計の本体前面パネルAに液晶ディスプレ
イE、本体後面パネルBには、発光部である複数個のL
ED1並びにLED2と、受光部である複数個のフォト
ダイオード3と、それを覆うゴム等の材質から成るフー
ドFが外来光を遮断する目的で備わっており、側面には
本体の電源スイッチC、並びに、測定スイッチDを有す
る。本体の外形寸法も、手のひらに収まるほどの小型設
計で、さらに、電源として乾電池を使用しているので、
持ち運びも容易である。
1 and 2, a ripometer according to the present invention has a liquid crystal display E on a front panel A of the main body of the ripometer and a plurality of light emitting units on a rear panel B of the main body. L
An ED 1 and an LED 2, a plurality of photodiodes 3 serving as a light receiving unit, and a hood F made of a material such as rubber for covering the photodiodes 3 are provided for the purpose of blocking external light. , Measurement switch D. The external dimensions of the main unit are small enough to fit in the palm of your hand, and because it uses dry batteries as a power supply,
It is easy to carry.

【0008】フードFで覆われたLED1並びにLED
2は、それぞれ異なった波長特性を有し、LED1は、
葉緑素の吸収波長である660nm付近、もう一方のL
ED2は、果実の糖分・水分等に比較的影響を受けない
880nm付近を使用する。LED1並びにLED2
は、発光部としてフードF内に複数個配置され、その中
央には受光部として、フォトダイオードあるいはフォト
トランジスタ3が複数個配置される。LED1,2並び
にフォトダイード3は、円形に配置しており、球体の果
実を測定する際に、まんべんなく光を照射することがで
きる
LED 1 and LED covered with hood F
2 have different wavelength characteristics, and LED 1 has
Around 660 nm which is the absorption wavelength of chlorophyll, the other L
ED2 uses a wavelength around 880 nm which is relatively unaffected by the sugar content and water content of the fruit. LED1 and LED2
Are arranged in the hood F as light emitting units, and a plurality of photodiodes or phototransistors 3 are arranged as light receiving units in the center thereof. The LEDs 1 and 2 and the photodiode 3 are arranged in a circle, and can uniformly irradiate light when measuring a spherical fruit.

【0009】図3において、熟度測定の対象となる果実
の表面に、熟度計本体後面にあるフードFに覆われた、
複数個のLED1並びにLED2とフォトダイオード3
から成るセンサー部を接触させ、熟度を判定する。熟度
の判定は、0.1〜0.2秒ほどの超高速で行われる。
In FIG. 3, the surface of a fruit to be measured for ripeness is covered with a hood F at the back of the main body of the ripeness meter.
A plurality of LEDs 1, LED2 and photodiode 3
The sensor part consisting of is contacted to judge the maturity. The determination of the maturity is performed at a very high speed of about 0.1 to 0.2 seconds.

【0010】果実表面にセンサー部を軽く接触させ、測
定スイッチDを押すことにより、マイコン4が決めたタ
イミングで、LED1並びにLED2は、断続的にそれ
ぞれ赤色光と近赤外線を交互に照射し、フォトダイオー
ド3が、果実内部で拡散した光の一部の反射光を受光す
る。葉緑素の吸収波長であるLED1の赤色光は、果実
の表皮及び内部で拡散し、そして、その一部が葉緑素に
吸収され、LED2の赤外線は葉緑素にほとんど影響さ
れず、その大部分が反射する。フォトダイオード3は、
LED1とLED2から返ってきた反射光を受光し、L
ED2の反射光量を基準とし、LED1の赤色光がどれ
だけ葉緑素に吸収されたかを測定する。その相対値を熟
度として、2桁で液晶ディスプレイEに表示する。表示
する熟度については、複数回(例えば10回)行った測
定の結果を、マイコン4が平均化することにより、精度
を高める。
When the sensor is lightly brought into contact with the surface of the fruit and the measurement switch D is pressed, the LED 1 and the LED 2 emit red light and near infrared light intermittently and alternately at the timing determined by the microcomputer 4. The diode 3 receives the reflected light of a part of the light diffused inside the fruit. The red light of LED1, which is the absorption wavelength of chlorophyll, diffuses in the epidermis and inside of the fruit, and a part of it is absorbed by chlorophyll, and the infrared light of LED2 is hardly affected by chlorophyll and most of it is reflected. The photodiode 3 is
The reflected light returned from LED1 and LED2 is received, and L
Based on the amount of reflected light of ED2, how much red light of LED1 is absorbed by chlorophyll is measured. The relative value is displayed on the liquid crystal display E in two digits as the maturity. The microcomputer 4 averages the results of measurements performed a plurality of times (for example, 10 times) on the displayed ripeness, thereby improving the accuracy.

【0011】図5において、図5−a並びに図5−b
は、果実におけるLED1並びにLED2の吸収波長曲
線を示している。880nm付近の波長を基準として、
図5−a並びに図5−bを見ると、図5−aにおける6
60nm付近の相対吸光度レベルが低く、基準の880
nm付近の波長との差が見られない。すなわち、果実内
部の葉緑素が少ないことを意味し、被測定果実が熟して
いることが分かる。一方、図5−bにおいては、基準波
長と葉緑素の吸収波長との相対吸光度の差が著しい。ゆ
えに、葉緑素が多く、熟していないことが分かる。この
2波長の相対吸光度の差から熟度を判定するのである。
In FIG. 5, FIG. 5A and FIG.
Shows absorption wavelength curves of LED1 and LED2 in fruit. With reference to a wavelength around 880 nm,
5A and FIG. 5B, 6 in FIG.
The relative absorbance level around 60 nm is low and the reference 880
No difference from the wavelength near nm is observed. That is, it means that the chlorophyll in the fruit is small, and it is understood that the measured fruit is ripe. On the other hand, in FIG. 5-b, the difference in relative absorbance between the reference wavelength and the absorption wavelength of chlorophyll is remarkable. Therefore, it is understood that the chlorophyll is much and not ripe. Ripeness is determined from the difference between the relative absorbances of the two wavelengths.

【0012】図4において、熟度計のブロック図を示
す。発光部LED1並びにLED2から照射された光
は、果実内部で拡散し、受光部へと反射する。LED1
並びにLED2の光量のデータは、まず、直流及び交流
の両増幅器を通り、交流化され、太陽等の外来光の影響
を受けない。その後、そのデータはマイコン4に入り、
比較演算され、平均データ数値が、液晶ディスプレイE
に表示される。
FIG. 4 shows a block diagram of the ripness meter. Light emitted from the light emitting units LED1 and LED2 is diffused inside the fruit and reflected to the light receiving unit. LED1
In addition, the data of the light amount of the LED 2 first passes through both the DC and AC amplifiers, and is converted into an AC signal, and is not affected by extraneous light such as the sun. After that, the data enters the microcomputer 4,
The comparison operation is performed and the average data value is displayed on the liquid crystal display E.
Will be displayed.

【0013】[0013]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載する効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0014】光を使用して、熟度を測定することによ
り、被測定果実を傷つけることがない。
By measuring the ripeness using light, the fruit to be measured is not damaged.

【0015】そして、熟度計の発光部として、赤外線と
赤色光を使うことにより、熟度測定の測定精度も上が
り、光源にLEDを採用したことにより、ハロゲンラン
プ等を使用するよりも、コストも装置の規模も小さくな
る。消費電力が小さいため、電源に乾電池を使用するこ
とができるので、持ち運びが可能となり、枝なりの果実
をその場で測定することができる。よって、ある特定の
木の果実の熟度を、その成長過程を追って、測定するこ
とが可能となる。定期的に熟度を測定することにより、
収穫適期を正確に判断し、流通時の傷みを軽減すること
も可能である。測定した数値を、マイコン4が10回平
均化するので、精度の高い測定結果が得られる。この測
定値を2桁で液晶ディスプレイEに表示する。こうした
結果、この測定数値の信頼性は大幅に上昇する。
The use of infrared light and red light as the light emitting portion of the ripeness meter increases the measurement accuracy of the ripeness measurement, and adopts an LED as a light source, thereby reducing costs compared to using a halogen lamp or the like. However, the size of the apparatus is also reduced. Since the power consumption is small, a dry battery can be used as a power supply, so that the portable battery can be carried and the fruit in a branch can be measured on the spot. Therefore, it is possible to measure the ripeness of the fruit of a specific tree following the growth process. By regularly measuring ripeness,
It is also possible to accurately determine the optimal time for harvesting and reduce damage during distribution. The microcomputer 4 averages the measured values ten times, so that highly accurate measurement results can be obtained. This measured value is displayed on the liquid crystal display E in two digits. As a result, the reliability of this measurement is greatly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熟度計を被測定果実に接触させ、熟度を測定し
ている図
FIG. 1 is a diagram of measuring a ripeness by bringing a ripeness meter into contact with a fruit to be measured.

【図2】熟度計の外観図FIG. 2 is an external view of a ripeness meter

【図3】熟度計の分解図FIG. 3 is an exploded view of a ripeness meter.

【図4】熟度計のブロック図FIG. 4 is a block diagram of a ripeness meter

【図5】LED1並びにLED2の吸収波長グラフFIG. 5 is an absorption wavelength graph of LED1 and LED2.

【符号の説明】[Explanation of symbols]

A 熟度計本体前面パネル B 熟度計本体後面パネル C 電源スイッチ D 測定スイッチ E 液晶ディスプレイ F フード 1 LED 2 LED 3 フォトダイオード 4 マイコン A front panel of ripeness meter main body B rear panel of ripeness meter main body C power switch D measurement switch E liquid crystal display F hood 1 LED 2 LED 3 photodiode 4 microcomputer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 異なった2つ以上の波長を使用し、葉緑
素の有無で熟度を測定することを特徴とした非破壊熟度
計。
1. A non-destructive ripeness meter characterized by using two or more different wavelengths and measuring the ripeness with or without chlorophyll.
【請求項2】 光源にLEDを複数個使用することを特
徴とした請求項1記載の非破壊熟度計。
2. The nondestructive maturity meter according to claim 1, wherein a plurality of LEDs are used as the light source.
JP10301596A 1998-09-16 1998-09-16 Meter for degree of ripeness Pending JP2000088747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10301596A JP2000088747A (en) 1998-09-16 1998-09-16 Meter for degree of ripeness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10301596A JP2000088747A (en) 1998-09-16 1998-09-16 Meter for degree of ripeness

Publications (1)

Publication Number Publication Date
JP2000088747A true JP2000088747A (en) 2000-03-31

Family

ID=17898860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10301596A Pending JP2000088747A (en) 1998-09-16 1998-09-16 Meter for degree of ripeness

Country Status (1)

Country Link
JP (1) JP2000088747A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1203941A1 (en) * 2000-04-13 2002-05-08 Mitsui Mining & Smelting Co., Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
WO2002088678A2 (en) * 2001-04-27 2002-11-07 S.C.E. S.R.L. Portable apparatus for the non-destructive measurement of the internal quality of vegetable products
JP2003075341A (en) * 2001-09-04 2003-03-12 Japan Science & Technology Corp Method for measuring dissolved/suspensible substance concentration by near infrared spectroscopy
WO2007088563A1 (en) * 2006-02-01 2007-08-09 Sacmi Cooperativa Meccanici Imola Societa Cooperativa Portable device for the quality control of products
US7746452B2 (en) * 2005-11-21 2010-06-29 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Portable meter to measure chlorophyll, nitrogen and water and methods
JP2011017570A (en) * 2009-07-08 2011-01-27 Graduate School For The Creation Of New Photonics Industries Ripeness measurement apparatus of fruit and ripeness measurement method
JP2011080959A (en) * 2009-10-09 2011-04-21 Graduate School For The Creation Of New Photonics Industries Agricultural product internal quality measuring device for outdoor use
JP2012078206A (en) * 2010-10-01 2012-04-19 Yanmar Co Ltd Apparatus and method for determining quality of fruit and vegetable
JP2016122004A (en) * 2015-12-25 2016-07-07 セイコーエプソン株式会社 Spectroscopic sensor and pulse oximeter
CN108254511A (en) * 2016-12-28 2018-07-06 南宁市浩发科技有限公司 A kind of jackfruit maturity detection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1203941A4 (en) * 2000-04-13 2006-01-04 Mitsui Mining & Smelting Co Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
EP1203941A1 (en) * 2000-04-13 2002-05-08 Mitsui Mining & Smelting Co., Ltd. Device for evaluating internal quality of vegetable or fruit, method for warm-up operation of the device, and method for measuring internal quality
WO2002088678A2 (en) * 2001-04-27 2002-11-07 S.C.E. S.R.L. Portable apparatus for the non-destructive measurement of the internal quality of vegetable products
WO2002088678A3 (en) * 2001-04-27 2003-12-04 S C E S R L Portable apparatus for the non-destructive measurement of the internal quality of vegetable products
US7173246B2 (en) 2001-04-27 2007-02-06 Angelo Benedetti Portable apparatus for the non-destructive measurement of the internal quality of vegetable products
JP2003075341A (en) * 2001-09-04 2003-03-12 Japan Science & Technology Corp Method for measuring dissolved/suspensible substance concentration by near infrared spectroscopy
US7746452B2 (en) * 2005-11-21 2010-06-29 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Portable meter to measure chlorophyll, nitrogen and water and methods
WO2007088563A1 (en) * 2006-02-01 2007-08-09 Sacmi Cooperativa Meccanici Imola Societa Cooperativa Portable device for the quality control of products
JP2011017570A (en) * 2009-07-08 2011-01-27 Graduate School For The Creation Of New Photonics Industries Ripeness measurement apparatus of fruit and ripeness measurement method
JP2011080959A (en) * 2009-10-09 2011-04-21 Graduate School For The Creation Of New Photonics Industries Agricultural product internal quality measuring device for outdoor use
JP2012078206A (en) * 2010-10-01 2012-04-19 Yanmar Co Ltd Apparatus and method for determining quality of fruit and vegetable
JP2016122004A (en) * 2015-12-25 2016-07-07 セイコーエプソン株式会社 Spectroscopic sensor and pulse oximeter
CN108254511A (en) * 2016-12-28 2018-07-06 南宁市浩发科技有限公司 A kind of jackfruit maturity detection device

Similar Documents

Publication Publication Date Title
US5365066A (en) Low cost means for increasing measurement sensitivity in LED/IRED near-infrared instruments
US6512577B1 (en) Apparatus and method for measuring and correlating characteristics of fruit with visible/near infra-red spectrum
US8072605B2 (en) Method and apparatus for determining quality of fruit and vegetable products
CN1182572A (en) Optical property testing method for skin surface state and device thereof
US4928014A (en) Near-infrared apparatus and method for determining percent fat in a body
CN106770067B (en) Portable kiwi fruit sugar content nondestructive test device
JPS622809B2 (en)
JPH02163634A (en) Method and device for measuring internal information of substance using light scattering
JP2000088747A (en) Meter for degree of ripeness
JPH06288903A (en) Light transmission detector for inspecting internal quality of vegetables and fruits
US20060210154A1 (en) Skin tone measurement device and method
JP2002122540A (en) Fresh product evaluating device and method
Rochmanto et al. Non-invasive hemoglobin measurement for anemia diagnosis
Timm et al. Non-invasive optical real-time measurement of total hemoglobin content
CN206261605U (en) A kind of noninvasive portable glucose meter based on array CCD
JPH05288674A (en) Sacchari meter
JP4473397B2 (en) Body fat measuring device and method
JPH1054794A (en) Method and device for inspecting quality inside vegitables and fruits
ATE143786T1 (en) MEASURING THE FAT CONTENT IN TISSUE USING LIGHT RADIATION CLOSE TO THE INFRARED RANGE
JPH10318914A (en) Inspection method of interior quality of vegetables and fruits and its device
Shiina et al. Determination of brix value and acidity in pineapple fruits by near infrared spectroscopy
CN204394526U (en) Near infrared tissue oxygenation saturation Non-invasive detection probe
Greensill et al. An investigation into the determination of the maturity of pawpaws (Carica papaya) from NIR transmission spectra
TW202117306A (en) Method for measuring chlorophyll content and method for determining maturity of fruit
Gunasekaran Delayed light emission as a means of quality evaluation of fruits and vegetables