JP2000088400A - 蒸発式冷却機 - Google Patents

蒸発式冷却機

Info

Publication number
JP2000088400A
JP2000088400A JP10256769A JP25676998A JP2000088400A JP 2000088400 A JP2000088400 A JP 2000088400A JP 10256769 A JP10256769 A JP 10256769A JP 25676998 A JP25676998 A JP 25676998A JP 2000088400 A JP2000088400 A JP 2000088400A
Authority
JP
Japan
Prior art keywords
water supply
water
refrigerant
moisture
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10256769A
Other languages
English (en)
Other versions
JP3293780B2 (ja
Inventor
Hokyo Kyu
鵬舉 邱
Suirei Hei
翠玲 薜
Shiken Ko
志賢 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25676998A priority Critical patent/JP3293780B2/ja
Publication of JP2000088400A publication Critical patent/JP2000088400A/ja
Application granted granted Critical
Publication of JP3293780B2 publication Critical patent/JP3293780B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

(57)【要約】 【課題】 エネルギー資源を節約し環境に優しい蒸発式
冷却機の提供。 【解決手段】 冷媒が気体から液体に変化する時の温度
と冷却圧力が正比例する原理を利用し、冷却機の空気通
路中の熱伝導接触面上を吸湿性の薄膜材料で被覆し、給
水を該吸湿性材料に付着させて、空気に空気通路中を急
速に通過させて常温で蒸発させ、水分に悉く潜熱変化を
行わせて、冷媒管内の熱量を吸収させ、大幅に冷媒の温
度を下げ、極めて低い冷却圧力を使用してそれを蒸発さ
せるようにし、圧縮機の負担を軽減し、冷凍効果を増進
し、圧縮機内部のモータの出力パワーを変更してエネル
ギー資源を節約し、また、吸湿性材料の吸湿と保湿機能
により、周期的な給水補充によりその機能を維持するよ
うにし、給水量を蒸発量に接近させて給水の回収、循環
を不要とした。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は一種の蒸発式冷却機
に関し、さらに詳しくは、冷凍或いは空調設備で冷媒の
冷却液化用いられうる冷却機及び部分蒸発式冷却機に関
する。
【0002】
【従来の技術】環境保護意識が高まり地球全体の石油エ
ネルギーが危機にある今日、新たなエネルギー資源の開
発とエネルギー資源の節約が重要な課題となっている。
特に、亜熱帯地域にある国家では、毎年夏の猛暑により
冷凍空調設備が大量に使用され、往々にして電力供給不
足の現象が発生する。例えば台湾では、天然エネルギー
資源を有さないため電力の多くを核発電に頼っている。
ただし、核電力は核の廃棄物、放射などの環境問題をも
たらし、ゆえに新たなエネルギー資源の開発のほか、い
かに有効に設備の電力消費量を減らし、エネルギー使用
効率を高めるかが早急に解決されるべき課題とされてい
る。
【0003】鑑みるに、空調設備中では、主に、液体冷
媒に蒸発器中で引き込んだ室外空気と熱交換作用を進行
させ、冷却した空気を室内に進入させている。そして気
化した冷媒は冷却機中の圧縮機でまず圧縮して高密度の
気体となしてから、さらに冷却器で冷却して液状冷媒と
なしており、この循環作用を重複して行うようにしてあ
る。
【0004】また、従来の冷凍空調設備の冷却機には、
気冷式と水冷式及び蒸発式の三種の形態がある。これら
三種類の冷却方式はそれぞれ以下のようである。 1.気冷式冷却機は空気の対流を利用して冷却効果を発
生しており、空気の温度が高く高い冷媒冷却圧力が必要
となると、冷却温度もまた高くなり、放熱効果が劣るた
めに、熱伝導面積と風量を増加する必要が生じる。この
ため体積が大きく、騒音が高く、消耗するエネルギー資
源も最大であった。 2.水冷式冷却機は冷却水入出水の温度差の顕熱変化
(1グラムの水の水温が摂氏1度上昇するのに1cal
の熱量を吸収する原理)を利用しており、その運転効率
は気冷式のものよりやや優れているが、冷却水システム
を別に設置しなければならないため、膨大な空間と設備
コストがかかり、また冷却水の循環で発生する環境問題
はアルツハイマー病との関係も取り沙汰されており、解
決が待たれている。且つ冷却水循環システムには比較的
大きな馬力の水ポンプが必要で、エネルギーの使用効率
を高めることはできなかった。 3.蒸発式冷却機は冷却水の蒸発する潜熱変化(1gの
水が蒸発するのに539calの熱量を吸収する原理)
を利用しており、その放熱効果は上述の2種類のタイプ
よりも優れている。しかし、その中の一部の水が、蒸発
する際に吸収する潜熱により冷媒の温度を下げるのに使
用され、その他の大部分の水は蒸発せず循環使用される
ため、水冷式冷却機と同様に貯水設備の設置に大きな空
間を必要とし、その問題とコストも水冷式冷却機と同じ
であった。
【0005】
【発明が解決しようとする課題】本発明の主要な課題
は、1gの水が完全に気化する時に539calの蒸発
潜熱を吸収するという原理を十分に利用し、給水を回収
及び循環させる必要が無く、そのため従来の大量の水の
循環システムを使用したものより熱交換効率が高い、一
種の蒸発式冷却機を提供することにある。
【0006】本発明の次の課題は、簡単な構造で各部品
がその中に包含され、外部の冷却システムと管路を取り
付ける必要がなく、製造と取り付けコストを最低にまで
下げることができる一種の冷却機を提供することを課題
としている。
【0007】
【課題を解決するための手段】請求項1の発明は、低圧
縮比の圧縮機10とされて、圧縮機のモータコイルを、
圧縮機の作業に必要な消費パワーを下げて電力節約を行
えるように改良してある上記低圧縮比の圧縮機10、蒸
発式冷却装置20とされて、冷媒管204を具え、該冷
媒管204に上記低圧縮比の圧縮機10が高圧高温の気
体冷媒を送り込み、気体冷媒を該冷媒管204中で冷却
液化させ、該冷媒管204の間の空気通路212中の熱
伝導接触面が一層の吸湿材202で被覆されている、上
記蒸発式冷却装置20、給水システム40とされて、一
つの給水制御プリント基板404で給水電磁弁402を
制御し、冷却水を均一に上記蒸発式冷却装置20に流し
て冷却水を上記吸湿材202に吸着させる上記給水シス
テム40、送風装置60とされて、ファンモータ604
でファン602を駆動して発生する気流に蒸発式冷却装
置20内部の空気層間隙の空気通路212を通過させ
て、吸湿材202に吸着された水分を常温で蒸発させ、
蒸発時に、蒸発式冷却装置20の冷媒が液化する時に放
出する熱量を吸収させることで熱交換を行わせる上記送
風装置60、以上を包括して構成された蒸発式冷却機と
している。
【0008】請求項2の発明は、前記給水制御プリント
基板404が水圧選定切り換え機能を有し、高、中、低
の給水水圧に応じて、給水電磁弁402の閉鎖時間を一
定に、開放の時間を変更可能に制御し、給水電磁弁40
2に低圧縮比の圧縮機10の運転時期に合わせて間欠性
の開閉動作を行わせることで、周期給水を進行して、給
水量を、十分に冷媒と低圧縮比の圧縮機の発生した熱量
を冷却するに十分なものとすると共に、給水量をほぼ蒸
発量に等しくして、冷却水を回収する必要をなくし、余
剰給水があれば、必要に応じて外部より回収使用する措
置をとれるようにしてあることを特徴とする、請求項1
に記載の蒸発式冷却機としている。
【0009】請求項3の発明は、前記給水システム40
にさらに一つの放水器408が設けられて、該放水器4
08の給水出口面に複数の孔が設けられると共に、放水
器408の管径が入水端より管末に向けて除々に縮小さ
れて、給水圧力を平均に分配できるようにしてあり、出
水口面に一層の吸湿材210が設けられて給水供給時に
給水を平均的に分布させられ、冷却水が均一に蒸発式冷
却機を通過するようにしてあることを特徴とする、請求
項1に記載の蒸発式冷却機としている。
【0010】請求項4の発明は、冷却水を連続して蒸発
式冷却装置20に供給してテスト運転及びメインテナン
ス時に十分な給水を行うための連続給水スイッチ406
が設けられていることを特徴とする、請求項1に記載の
蒸発式冷却機としている。
【0011】請求項5の発明は、前記蒸発式冷却装置2
0が、以下のもの、即ち、少なくとも一つの冷媒管20
4とされて、冷媒管本体210の表面を吸湿材202で
被覆してなるもの、少なくとも一つの支持板206とさ
れ、該冷媒管204を固定して冷媒管204間に同じ間
隔の空気通路212を保持させ、該空気通路212を、
蒸発により形成された蒸気を空気と共に連続的に送るの
に供するもの、少なくとも一つの固定板208とされ、
支持板206に嵌入固定されて各層の冷媒管204を位
置決めすると共にその重量を支持するもの、以上のもの
を包括することを特徴とする、蒸発式冷却機としてい
る。
【0012】請求項6の発明は、前記蒸発式冷却装置2
0が一般の鰭片気冷式冷却機と組み合わせられて該鰭片
気冷式冷却機の放熱効果を高めた部分蒸発式冷却機を形
成しうることを特徴とする、請求項5に記載の蒸発式冷
却機としている。
【0013】請求項7の発明は、前記冷媒管204が、
吸湿材202で冷媒管本体210を被覆した後に、蛇行
状に成形されてなることを特徴とする、請求項5に記載
の蒸発式冷却機としている。
【0014】
【発明の実施の形態】本発明は、冷媒が気体から液体に
変化する時の温度と冷却圧力が正比例する原理を利用
し、冷却機の空気通路中の熱伝導接触面上を吸湿性の薄
膜材料で被覆し、給水を該吸湿性材料に付着させて、空
気に空気通路中を急速に通過させて常温で蒸発させ、水
分に悉く潜熱変化を行わせて、冷媒管内の熱量を吸収さ
せ、大幅に冷媒の温度を下げ、極めて低い冷却圧力を使
用してそれを蒸発させるようにしてあり、これにより、
圧縮機のシステム中での運転も軽々と行えるようにな
り、冷凍効果を増進でき、並びに圧縮機内部のモータの
出力パワーを変更できてエネルギー資源を節約する目的
を達成できるものとされている。また、吸湿性材料の吸
湿と保湿機能により、周期的な給水補充を行えばその機
能を維持できるようにしてあり、給水量を蒸発量に接近
させる制御が可能であり、給水を回収し、循環させる必
要がない。
【0015】
【実施例】図1は、R−22冷媒の液体気体の互換曲線
図である。図より分かるように、冷媒温度が低い時に
は、極めて低い温度の冷却圧力でそれを凝結させられ
る。例えば冷媒温度45℃で凝結させるのに必要な相対
圧力理論値は約18kg/cm2であり、もし冷媒温度30℃
で凝結させるのであれば、必要な相対圧力理論値は1
2.27kg/cm2まで大幅に下がる。ゆえに圧縮機のシス
テム中での運転の負担が少なくなり、冷凍効果を増進す
ることができ、並びに圧縮機内部のモータの出力パワー
を変更できるため、エネルギー資源節約の目的を達成で
きる。本発明では、以上に述べた、冷媒の気体と液体の
相互変換時の冷媒温度と凝結圧力が正比例する原理を十
分に利用し、大幅に冷却機中の圧縮機の作業圧力を下げ
て、圧縮機の駆動のための消費パワー(馬力)を大幅に
節約することを以て、冷凍空調設備のEER(エネルギ
ー効率比)を大幅に改善する。
【0016】図2を参照されたい。本発明では、低圧縮
比の圧縮機10で高圧高温の気体冷媒を蒸発式冷却装置
20に進入させて冷却液化させており、その中、給水シ
ステム40の給水制御プリント基板404が蒸発式冷却
装置20への周期的な給水を制御する。そして、送風装
置60のファンモータ604がファン602を駆動する
ことで外部の空気が蒸発式冷却装置20内部の空気通路
間隙に引き込まれて蒸発を強力に進行し、水が蒸発する
時に蒸発式冷却装置20の冷媒が液化する時に排出する
熱量を吸収し、熱交換の目的が達成される。該給水制御
プリント基板404は水圧選定切り換え機能を有し、
高、中、低の給水水圧に応じて自動設定され、給水制御
プリント基板404は給水電磁弁402の閉鎖時間を一
定に制御し、開放の時間を変更可能とすることで対応し
ており、給水電磁弁402が低圧縮比の圧縮機10の運
転時期に合わせて間欠性の開閉動作を行い、周期給水の
目的を達成する。こうして、給水量を、十分に冷媒及び
低圧縮比の圧縮機10の発生する熱量を冷却できるもの
となし、且つ給水量をほぼ蒸発量に等しいものとし、冷
却水を回収する必要をなくし、余剰給水があれば、必要
に応じて外部より回収使用する措置をとれるようにして
ある。給水電磁弁402は給水システム40の給水の供
給源であり、周期性給水の開閉と外部との接続用途を提
供しており、給水源には、水道水、地下水など自然圧力
給水、及び蒸発器凝結水補充などの方式とされ、極めて
少量の外部再増圧給水の方式が採用されうる。連続給水
スイッチ406は、手動で連続給水して試験運転や洗浄
メンテナンスを行うのに用いられる。その他の図示され
る部品は従来の設計に属し、予めユニット化され包装さ
れている。これは図3に示されるとおりである。
【0017】図4及び図5には蒸発式冷却装置20の外
観が示されている。本発明の蒸発式冷却装置20の外形
は、図4に示される縦型或いは図5に示されるL型或い
はU型及び円型など各種の形式とされうる。その構成部
品については図6を参照されたい。吸湿材202で被覆
された冷媒管204にそれぞれ支持板206が組み込ま
れて、単数層或いは複数層の冷媒管204が、空気層間
隙により平行或いは交錯するように配列されて、冷媒管
204が同じ間隔の空気通路212を有するものとされ
て、蒸発により形成された蒸気が空気により連続的に吹
き送られるようにしてある。冷媒管204の組み込み完
成後に、固定板208が押し込まれてネジで固定され
る。その中、固定板208には孔が穿たれて支持板20
6へのネジ止めに利用され、固定板208と支持板20
6により各層の冷媒管204が位置決めされる。最後に
放水器408が支持板206中に設けられた空間に置き
入れられ、並びに放水器408の出水面に一層の吸湿材
410が置かれて給水時に平均した引水作用が得られる
ようにしてある。放水器408は冷却機の設計高度によ
り一層或いは複数層設けられる。
【0018】上述の冷媒管204は図7に示されるよう
に、冷媒管本体210の表面を吸湿材202で螺旋式に
被覆して形成されるか、或いは、吸湿材202と相似の
材料で形成した円形チューブを冷媒管本体210に套設
して冷媒管本体210を被覆する方式、或いは接着など
の方式が採用されうる。その中、吸湿材には、不織布、
布、天然繊維、合成繊維、再生繊維、無機質繊維などの
材料が使用される。被覆完成した冷媒管204は設計に
応じてその管間の空気通路212の寸法が決定されて一
体に成形され、図に示されるように、管間を溶接処理に
より接続する必要がない。
【0019】図8に示されるように、放水器408は、
図のような方形管或いは円形管とされ、給水出口端は線
形出口或いは円形出口のいずれとされてもよい。且つ管
径は入水端から管末へと漸次縮小され、こうして給水圧
力を平均して分配して冷却水を均一に蒸発式冷却装置2
0に流すことができ、並びに各層結合後に、水管412
でそれと給水電磁弁402が接続される。
【0020】総合すると、本発明は蒸発式冷却装置20
の冷媒管本体210を吸湿材202で被覆し、即ち空気
通路212中の熱伝導接触面上を吸湿性の薄膜材料(吸
湿材202)で被覆し、放水器408による給水を該吸
湿材202に付着させ、空気通路212中への快速空気
の吹送りにより付着した水分を常温で蒸発させて、大幅
に冷媒の温度を下げて、極めて低い冷却圧力を以てそれ
を凝結させられるようにしている。さらに吸湿材202
の有する吸湿と保湿の機能に、給水制御プリント基板4
04による周期的な給水補充制御を組み合わせて、吸湿
材202の機能を維持させるようにしてあり、これによ
り給水量をほぼ蒸発量に接近させることができ、ゆえに
給水の回収と循環を必要としない特性を有するものとさ
れている。
【0021】最後に図11に示されるように、本発明を
各種の天候環境或いは水量不足或いは停水時期に応用す
るとき、従来の鰭片気冷式冷却機80を本発明の蒸発式
冷却装置20の上面に配置し、並びに連接管で両者を結
合して一つの冷却機となせば、高効率の熱交換の目的を
達成することができる。
【0022】
【発明の効果】従来の冷却機は空調設備に利用される
時、R−22システムでは、図9のR−22のモーリエ
グラフ(Mollier diagram)に示される
ように、冷却機入口の気体冷媒温度が約80度で、出口
の液体冷媒温度は約37度で、冷却圧力は20kg/cm2
aであったが、本発明の冷却機を使用した時には、図1
0に示されるように、R−22システムにおいて、冷却
機の入口の気体冷媒温度は約60℃に下げられ、出口の
液体冷媒温度は約30℃であり、冷却圧力は約14kg/c
m2−aしか必要でない(図1に示されるように、理論的
にはR−22が30℃の時、液化に要する冷却圧力は1
2.27kg/cm2である)。本発明により、圧縮機に要求
される圧縮比が大幅に下がり、冷却機出口の液体冷媒温
度は従来のものより約7℃も下がり、その冷凍効果は約
20%も上昇した。また圧縮比が低くなるために、本発
明は従来の圧縮機内部のモータの巻線を改良して、圧縮
機自身の出力効率を下げた低圧縮比の圧縮機10を使用
することができ、圧縮機単体の運転による消耗パワーも
25%減少する。ゆえに本発明の冷却機は冷凍或いは空
調製品に使用されていずれもその出力パワーを向上で
き、消耗パワーを減少でき、EER値(或いはCOP)
を50%以上も向上させることができる。
【図面の簡単な説明】
【図1】従来のR−22システムにおける冷媒の液体と
気体の相互変換曲線図である。
【図2】本発明を空調設備に応用した実施例の内部部品
表示図である。
【図3】図2の外観表示図である。
【図4】本発明の蒸発式冷却機の実施例の外観表示図で
ある。
【図5】本発明の蒸発式冷却機のもう一つの実施例の外
観表示図である。
【図6】本発明の蒸発式冷却機の各構成部品を示すの分
解図である。
【図7】本発明の給水システム表示図である。
【図8】本発明の蒸発式冷却機の冷媒管構成表示図であ
る。
【図9】従来の冷却機をR−22システムに応用した時
の、冷却作用を示すモーリエグラフである。
【図10】本発明の冷却機をR−22システムに応用し
た時の、冷却作用を示すモーリエグラフである。
【図11】本発明の部分蒸発式冷却機の実施例表示図で
ある。
【符号の説明】
10 低圧縮比の圧縮機 20 蒸発式冷却機 202 吸湿材 204 冷媒管 206 支持板 208 固定板 210 冷媒管本体 212 空気通路 40 給水システム 402 給水電磁弁 404 給水制御プリント基板 406 連続給水スイッチ 408 放水器 410 吸湿材 412 水管 60 送風装置 602 ファン 604 ファンモータ 80 鰭片気冷式冷却機

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 低圧縮比の圧縮機10とされて、圧縮機
    のモータコイルを、圧縮機の作業に必要な消費パワーを
    下げて電力節約を行えるように改良してある上記低圧縮
    比の圧縮機10、 蒸発式冷却装置20とされて、冷媒管204を具え、該
    冷媒管204に上記低圧縮比の圧縮機10が高圧高温の
    気体冷媒を送り込み、気体冷媒を該冷媒管204中で冷
    却液化させ、該冷媒管204の間の空気通路212中の
    熱伝導接触面が一層の吸湿材202で被覆されている、
    上記蒸発式冷却装置20、 給水システム40とされて、一つの給水制御プリント基
    板404で給水電磁弁402を制御し、冷却水を均一に
    上記蒸発式冷却装置20に流して冷却水を上記吸湿材2
    02に吸着させる上記給水システム40、 送風装置60とされて、ファンモータ604でファン6
    02を駆動して発生する気流に蒸発式冷却装置20内部
    の空気層間隙の空気通路212を通過させて、吸湿材2
    02に吸着された水分を常温で蒸発させ、蒸発時に、蒸
    発式冷却装置20の冷媒が液化する時に放出する熱量を
    吸収させることで熱交換を行わせる上記送風装置60、 以上を包括して構成された蒸発式冷却機。
  2. 【請求項2】 前記給水制御プリント基板404が水圧
    選定切り換え機能を有し、高、中、低の給水水圧に応じ
    て、給水電磁弁402の閉鎖時間を一定に、開放の時間
    を変更可能に制御し、給水電磁弁402に低圧縮比の圧
    縮機10の運転時期に合わせて間欠性の開閉動作を行わ
    せることで、周期給水を進行して、給水量を、十分に冷
    媒と低圧縮比の圧縮機の発生した熱量を冷却するに十分
    なものとすると共に、給水量をほぼ蒸発量に等しくし
    て、冷却水を回収する必要をなくし、余剰給水があれ
    ば、必要に応じて外部より回収使用する措置をとれるよ
    うにしてあることを特徴とする、請求項1に記載の蒸発
    式冷却機。
  3. 【請求項3】 前記給水システム40にさらに一つの放
    水器408が設けられて、該放水器408の給水出口面
    に複数の孔が設けられると共に、放水器408の管径が
    入水端より管末に向けて除々に縮小されて、給水圧力を
    平均に分配できるようにしてあり、出水口面に一層の吸
    湿材210が設けられて給水供給時に給水を平均的に分
    布させられ、冷却水が均一に蒸発式冷却機を通過するよ
    うにしてあることを特徴とする、請求項1に記載の蒸発
    式冷却機。
  4. 【請求項4】 冷却水を連続して蒸発式冷却装置20に
    供給してテスト運転及びメインテナンス時に十分な給水
    を行うための連続給水スイッチ406が設けられている
    ことを特徴とする、請求項1に記載の蒸発式冷却機。
  5. 【請求項5】 前記蒸発式冷却装置20が、以下のも
    の、即ち、 少なくとも一つの冷媒管204とされて、冷媒管本体2
    10の表面を吸湿材202で被覆してなるもの、 少なくとも一つの支持板206とされ、該冷媒管204
    を固定して冷媒管204間に同じ間隔の空気通路212
    を保持させ、該空気通路212を、蒸発により形成され
    た蒸気を空気と共に連続的に送るのに供するもの、 少なくとも一つの固定板208とされ、支持板206に
    嵌入固定されて各層の冷媒管204を位置決めすると共
    にその重量を支持するもの、 以上のものを包括することを特徴とする、蒸発式冷却
    機。
  6. 【請求項6】 前記蒸発式冷却装置20が一般の鰭片気
    冷式冷却機と組み合わせられて該鰭片気冷式冷却機の放
    熱効果を高めた部分蒸発式冷却機を形成しうることを特
    徴とする、請求項5に記載の蒸発式冷却機。
  7. 【請求項7】 前記冷媒管204が、吸湿材202で冷
    媒管本体210を被覆した後に、蛇行状に成形されてな
    ることを特徴とする、請求項5に記載の蒸発式冷却機。
JP25676998A 1998-09-10 1998-09-10 蒸発式冷却機 Expired - Fee Related JP3293780B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25676998A JP3293780B2 (ja) 1998-09-10 1998-09-10 蒸発式冷却機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25676998A JP3293780B2 (ja) 1998-09-10 1998-09-10 蒸発式冷却機

Publications (2)

Publication Number Publication Date
JP2000088400A true JP2000088400A (ja) 2000-03-31
JP3293780B2 JP3293780B2 (ja) 2002-06-17

Family

ID=17297202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25676998A Expired - Fee Related JP3293780B2 (ja) 1998-09-10 1998-09-10 蒸発式冷却機

Country Status (1)

Country Link
JP (1) JP3293780B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795493A1 (fr) * 1998-09-09 2000-12-29 Liu Fu Chin Dispositif evaporateur/condenseur
CN108344086A (zh) * 2017-12-27 2018-07-31 南通航运职业技术学院 一种基于蒸发式冷凝器的制冷系统及其控制方法
CN114543280A (zh) * 2022-02-16 2022-05-27 四川贝园科技有限公司 一种蒸发式冷凝器冷却水泵与风机速度联合控制方法
CN116156853A (zh) * 2023-04-10 2023-05-23 江苏泽宇智能电力股份有限公司 一种高效热冷去湿型变电站高带宽通信板卡

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795493A1 (fr) * 1998-09-09 2000-12-29 Liu Fu Chin Dispositif evaporateur/condenseur
CN108344086A (zh) * 2017-12-27 2018-07-31 南通航运职业技术学院 一种基于蒸发式冷凝器的制冷系统及其控制方法
CN108344086B (zh) * 2017-12-27 2023-08-25 南通航运职业技术学院 一种基于蒸发式冷凝器的制冷系统及其控制方法
CN114543280A (zh) * 2022-02-16 2022-05-27 四川贝园科技有限公司 一种蒸发式冷凝器冷却水泵与风机速度联合控制方法
CN114543280B (zh) * 2022-02-16 2023-10-17 四川贝园科技有限公司 一种蒸发式冷凝器冷却水泵与风机速度联合控制方法
CN116156853A (zh) * 2023-04-10 2023-05-23 江苏泽宇智能电力股份有限公司 一种高效热冷去湿型变电站高带宽通信板卡
CN116156853B (zh) * 2023-04-10 2024-04-05 江苏泽宇智能电力股份有限公司 一种高效热冷去湿型变电站高带宽通信板卡

Also Published As

Publication number Publication date
JP3293780B2 (ja) 2002-06-17

Similar Documents

Publication Publication Date Title
Kojok et al. Hybrid cooling systems: A review and an optimized selection scheme
TW445360B (en) Air-conditioning apparatus with evaporative type condenser
JP4018443B2 (ja) 寒冷地対応サーモサイホンチラー冷凍機
US6070423A (en) Building exhaust and air conditioner condenstate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
CN203550344U (zh) 蒸发式冷凝器、具有该蒸发式冷凝器的蒸发冷却式压缩冷凝机组及蒸发冷却式冷水机组
CN201149335Y (zh) 可调温的除湿空调机
WO2010006553A1 (zh) 带填料的板管蒸发式冷凝冷水机组
CN207991017U (zh) 雾化喷淋装置和制冷机组
WO2011085527A1 (zh) 空气能水源热泵一体化机组
CN104703452A (zh) 液冷和压缩机空冷系统相结合的双效型服务器散热装置
JP2000088400A (ja) 蒸発式冷却機
CN104697247A (zh) 一种壳管式多功能换热器
CN110762896A (zh) 一种间接蒸发冷却与溴化锂吸收式制冷联合的空调机组
JP3057989U (ja) 蒸発式冷却機
CN109827271A (zh) 一种蒸发冷却太阳能喷射式制冷复合的空调系统
KR101111293B1 (ko) 에어컨용 응축기 냉각장치
CN205783456U (zh) 一种水冷型氟泵空调制冷系统
WO2021208397A1 (zh) 一种除湿烘干设备及其工作方法
CN201262494Y (zh) 带填料的板管蒸发式冷凝冷水机组
CN204494920U (zh) 一种壳管式多功能换热器
CN211345638U (zh) 基于间接蒸发冷却与溴化锂吸收式制冷结合的空调机组
CN113124514A (zh) 一种吸附式蓄冷空调系统
CN107246679B (zh) 蒸发冷却与机械制冷复合式空调机组
CN1059030C (zh) 蒸发式冷凝机组
CN216790414U (zh) 一种混合制冷系统

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000411

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees