JP2000088204A - Thermal-power generation system - Google Patents

Thermal-power generation system

Info

Publication number
JP2000088204A
JP2000088204A JP10256966A JP25696698A JP2000088204A JP 2000088204 A JP2000088204 A JP 2000088204A JP 10256966 A JP10256966 A JP 10256966A JP 25696698 A JP25696698 A JP 25696698A JP 2000088204 A JP2000088204 A JP 2000088204A
Authority
JP
Japan
Prior art keywords
evaporator
fuel
water
power generation
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10256966A
Other languages
Japanese (ja)
Inventor
Yukishige Maezawa
沢 幸 繁 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10256966A priority Critical patent/JP2000088204A/en
Publication of JP2000088204A publication Critical patent/JP2000088204A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal-power generation system utilizing supercritical water oxidized which improves thermal efficiency, and makes efficient use of various hydrocarbon materials as its fuel. SOLUTION: A thermal-power generation system which makes use of combustion energy of hydrocarbon materials to drive a steam turbine and obtain electric power, comprises an evaporator 1, a steam turbine 2, a condenser 3, a pump 4 and a generator 5. Water in the condenser is pressurized by the pump and supplied to the evaporator, while the evaporator is supplied with fuel comprising hydrocarbon materials, and oxygen. The inside of the evaporator is maintained in a supercritical water condition in which the temperature is in the range of 370-450 deg.C and the pressure is in the range of 220-500 kgf/cm2. In the evaporator, the fuel comprising the hydrocarbon materials is mixed with oxygen and water supplied by the pump and permitted to react.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素材料の燃
焼エネルギーを利用して電力を得る石油火力発電等の火
力発電システムに係り、特に、超臨界水酸化技術を利用
して炭化水素材料を蒸発器内で直接燃焼させることによ
り熱効率を改善し、かつ多様な炭化水素材料を燃料とし
て利用可能にする超臨界水酸化利用型の火力発電システ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal power generation system such as a petroleum thermal power generation system that obtains electric power by utilizing the combustion energy of a hydrocarbon material. The present invention relates to a thermal power generation system utilizing supercritical water oxidation, which improves thermal efficiency by directly burning in an evaporator and enables various hydrocarbon materials to be used as fuel.

【0002】[0002]

【従来の技術】火力発電システムでは、時代とともに蒸
気温度を高温化し蒸気圧力を高圧化することにより、出
力が増大し効率が改善されてきた。
2. Description of the Related Art In the thermal power generation system, the output has increased and the efficiency has been improved by increasing the steam temperature and the steam pressure with the times.

【0003】現在の火力発電システムは、タービン入口
主蒸気温度は約570℃であり、主蒸気圧力は約310
気圧で運転される。この火力発電システムでは、ボイラ
(蒸発器)を重油等の燃料の燃焼熱で加熱し、高温・高
圧の水蒸気を得て、その水蒸気でタービンを駆動し発電
機を回すことが行われる。
[0003] Current thermal power generation systems have a turbine inlet main steam temperature of about 570 ° C and a main steam pressure of about 310 ° C.
Operated at atmospheric pressure. In this thermal power generation system, a boiler (evaporator) is heated by the combustion heat of fuel such as heavy oil to obtain high-temperature high-pressure steam, and the steam is used to drive a turbine to turn a generator.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この方
式では必然的にボイラ(蒸発器)内の水を外部から間接
加熱するためボイラ構成材料の無抵抗分の損失が避けら
れないという問題が存在する。
However, in this method, since the water in the boiler (evaporator) is indirectly heated from the outside inevitably, there is a problem that the loss of the resistance of the boiler constituent material is inevitable. .

【0005】そこで、本発明の目的は、上記従来技術の
有する問題を解消し、熱効率を改善し、また多様な炭化
水素材料をその燃料として活用できる超臨界水酸化利用
火力発電システムを提供することを目的とする。
Accordingly, an object of the present invention is to provide a thermal power generation system utilizing supercritical water oxidation, which solves the above-mentioned problems of the prior art, improves thermal efficiency, and can utilize various hydrocarbon materials as its fuel. With the goal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、炭化水素材料の燃焼エネルギーを利用し
て水蒸気タービンを駆動し電力を得る火力発電システム
であって、蒸発器と水蒸気タービンと復水器とポンプと
発電機とを備え、前記復水器の水を前記ポンプによって
加圧し前記蒸発器に供給するとともに前記蒸発器に炭化
水素材料からなる燃料及び酸素を供給し、前記蒸発器内
を温度370〜450℃、圧力220〜500kgf/
cm2の超臨界水状態に保持し、前記蒸発器内で炭化水
素材料からなる燃料及び酸素と前記ポンプによって供給
される水とを混合し反応させることを特徴とする。
In order to achieve the above object, the present invention relates to a thermal power generation system for obtaining power by driving a steam turbine by utilizing the combustion energy of a hydrocarbon material. A turbine, a condenser, a pump, and a generator are provided, and the water in the condenser is pressurized by the pump and supplied to the evaporator, and the fuel and oxygen comprising a hydrocarbon material are supplied to the evaporator, Temperature inside the evaporator is 370-450 ° C, pressure 220-500kgf /
The supercritical water state of 2 cm 2 is maintained, and a fuel and a hydrocarbon made of a hydrocarbon material and water supplied by the pump are mixed and reacted in the evaporator.

【0007】本発明は、従来の方式では必然的にボイラ
(蒸発器)内の水を外部から間接加熱するためボイラ構
成材料の無抵抗分の損失が避けられないという問題に鑑
み、本発明者らは、火力発電システムの構成について鋭
意検討した結果、蒸発器内を温度370〜450℃、圧
力220〜500kgf/cm2の超臨界水状態に保持
し、炭化水素材料を蒸発器内で酸素を含むガスと混合・
反応させることによって熱効率を改善し、また多様な炭
化水素材料をその燃料として活用できることを見出し、
本発明を完成するに至ったものである。
The present invention has been made in view of the problem that the conventional method inevitably indirectly heats the water in a boiler (evaporator) from the outside, so that loss of non-resistance of boiler constituent materials is inevitable. Et al. Have conducted intensive studies on the configuration of the thermal power generation system, and as a result, have maintained the evaporator in a supercritical water state at a temperature of 370 to 450 ° C. and a pressure of 220 to 500 kgf / cm 2. Mix with gas containing
It has been found that the thermal efficiency can be improved by reacting, and that various hydrocarbon materials can be used as the fuel.
The present invention has been completed.

【0008】水の臨界温度と臨界圧力は各々374℃,
220気圧である。これより高温、高圧の水を超臨界水
と呼ぶ。超臨界水は反応溶媒として優れた性質を持つこ
とから、フロンやPCB(ポリクロロビフェニル)等の
難分解性有害物質の超臨界水酸化分解方法が研究されて
いる。超臨界水は、常温の水とは異なり、各種有機物を
溶解し、また空気や酸素等のガスとも相互溶解し、有機
物の酸化反応を促進させる働きをする。
The critical temperature and critical pressure of water are 374 ° C., respectively.
220 atm. Higher temperature and higher pressure water is called supercritical water. Since supercritical water has excellent properties as a reaction solvent, a method for supercritical water oxidation decomposition of hardly decomposable harmful substances such as chlorofluorocarbon and PCB (polychlorobiphenyl) has been studied. Supercritical water differs from water at normal temperature in that it dissolves various organic substances and also inter-dissolves with gases such as air and oxygen, and functions to accelerate the oxidation reaction of organic substances.

【0009】この超臨界水酸化を火力発電に応用すれば
蒸発器内で燃焼反応を起こすことができるので、従来の
ようなボイラに比べ、ボイラ構成材料の無抵抗分の損失
を防ぐことができ、熱効率が向上する。また、石油以外
の燃料、例えば木材や廃プラスチック等をこのシステム
に用いることも可能になる。
If this supercritical water oxidation is applied to thermal power generation, a combustion reaction can be caused in the evaporator, so that loss of the non-resistance component of the boiler constituent material can be prevented as compared with a conventional boiler. , Improve thermal efficiency. It is also possible to use fuels other than petroleum, such as wood and waste plastics, for this system.

【0010】起動時に蒸発器内を超臨界水で満たすため
には、予め常温の水を蒸発器に充填し、外部から加熱す
る方法をとることができる。
In order to fill the inside of the evaporator with supercritical water at the time of start-up, a method of filling the evaporator with normal-temperature water in advance and heating it from the outside can be adopted.

【0011】燃料を蒸発器に投入する手段としては、加
圧ポンプを用いるのが好適である。本システムでは、燃
料の燃焼エネルギーを超臨界水に直接与え、そのエネル
ギーを高温・高圧の水蒸気混合ガス(二酸化炭素等のガ
スを含む)の形で取出すことにより、蒸発器内の平衡状
態が保持される。
As a means for charging the fuel into the evaporator, it is preferable to use a pressure pump. In this system, the equilibrium state in the evaporator is maintained by directly applying the combustion energy of the fuel to the supercritical water and extracting the energy in the form of a high-temperature, high-pressure steam mixed gas (including gas such as carbon dioxide). Is done.

【0012】従来技術と異なり、本システムでは燃料お
よび酸素を超臨界水で満たされた蒸発器内に送り込む必
要があるため、燃料および酸素の加圧装置(ポンプ等)
が必要であるが、このポンプにより消費されるエネルギ
ーは、燃料の燃焼熱の1%に過ぎない。
Unlike the prior art, the present system requires that fuel and oxygen be sent into an evaporator filled with supercritical water, and therefore a fuel and oxygen pressurizing device (such as a pump)
But the energy consumed by this pump is only 1% of the heat of combustion of the fuel.

【0013】[0013]

【発明の実施の形態】以下に図面を参照して、本発明の
実施例について説明し、比較のために比較例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings, and comparative examples will be described for comparison.

【0014】実施例 図1に本発明を実施するのに好適な装置の模式図を示
す。臨界水酸化利用火力発電システムは、蒸発器1とタ
ービン2と復水器3とポンプ4と発電機5とを備えてい
る。
FIG. 1 is a schematic view of an apparatus suitable for carrying out the present invention. The thermal power generation system utilizing critical hydroxylation includes an evaporator 1, a turbine 2, a condenser 3, a pump 4, and a generator 5.

【0015】復水器3の水は加圧手段としてのポンプ4
によって蒸発器1に供給される。蒸発器1内には、炭化
水素材量としての燃料(重油)および酸素が外部から供
給される。蒸発器1内にポンプ4によって供給された水
と燃料(重油)および酸素とが混合され、蒸発器1内に
おいて、これらが反応し発熱する。蒸発器1内の温度は
380℃、圧力は250気圧の超臨界水状態に保持され
るように、蒸発器1に水と燃料(重油)および酸素とが
供給される。蒸発器1から発生する燃焼ガスおよび水蒸
気はタービン2に導かれ、タービン2が駆動され、ター
ビン2によって発電機5が回され発電される。
The water in the condenser 3 is supplied to a pump 4 as a pressurizing means.
Is supplied to the evaporator 1. Fuel (heavy oil) and oxygen as the amount of hydrocarbon material are supplied from the outside into the evaporator 1. Water, fuel (heavy oil) and oxygen supplied by the pump 4 are mixed into the evaporator 1, and they react and generate heat in the evaporator 1. Water, fuel (heavy oil) and oxygen are supplied to the evaporator 1 so that the temperature inside the evaporator 1 is maintained at 380 ° C. and the pressure is 250 atm in a supercritical water state. The combustion gas and steam generated from the evaporator 1 are guided to the turbine 2, which drives the turbine 2, and the generator 2 is turned by the turbine 2 to generate power.

【0016】タービン2出口からの燃焼ガスおよび水蒸
気は復水器3へ導から、復水器3において冷却されて水
と二酸化炭素ガスに分離され、二酸化炭素ガスは排気さ
れ、併せて燃焼により増加した水分も除去される。この
結果、21kWの電力が得られた。
The combustion gas and steam from the outlet of the turbine 2 are led to a condenser 3, cooled in the condenser 3 and separated into water and carbon dioxide gas, and the carbon dioxide gas is exhausted and increased by combustion. The removed water is also removed. As a result, 21 kW of power was obtained.

【0017】次に、以下に本発明の実施形態と比較する
ための比較例を示す。
Next, a comparative example for comparison with the embodiment of the present invention will be described below.

【0018】比較例 図2に従来の火力発電システムの概要を示すブロック図
である。従来の火力発電システムは、蒸発器11とター
ビン12と復水器13とポンプ14と発電機15とを備
えている。
Comparative Example FIG. 2 is a block diagram showing an outline of a conventional thermal power generation system. The conventional thermal power generation system includes an evaporator 11, a turbine 12, a condenser 13, a pump 14, and a generator 15.

【0019】本発明の実施例と同様に復水器13の水を
ポンプ14で蒸発器11に供給した。蒸発器11におい
て実施例の場合と同量の燃料を用い、この燃料を蒸発器
11の外部で燃焼させ発生した熱によって蒸発器11を
加熱した。そして、蒸発器11の内部の温度が380
℃、圧力が250気圧に保持するように水蒸気流量を制
御した。蒸発器11から発生する水蒸気をタービン12
に導いてタービン12を駆動し、発電機15を回して発
電した。タービン12出口からの水蒸気を復水器13に
導き、冷却して水にした。この結果、20kWの電力が
得られた。
The water of the condenser 13 was supplied to the evaporator 11 by the pump 14 in the same manner as in the embodiment of the present invention. The same amount of fuel as in the embodiment was used in the evaporator 11, and the fuel was burned outside the evaporator 11 to heat the evaporator 11 with the generated heat. Then, the temperature inside the evaporator 11 becomes 380
The steam flow rate was controlled so that the pressure was maintained at 250 ° C. and a pressure of 250 atm. The steam generated from the evaporator 11 is supplied to the turbine 12
To drive the turbine 12 and turn the generator 15 to generate power. Steam from the turbine 12 outlet was led to a condenser 13 and cooled to water. As a result, a power of 20 kW was obtained.

【0020】以上、本発明の実施例と比較例とを比較す
るとわかるように、同量の燃料を使用した場合であって
も、蒸発器1内において超臨界水状態を形成し炭化水素
材量としての燃料(重油)および酸素と水を混合し反応
させる場合の方が、蒸発器11の外部で外部燃料させそ
の燃焼熱で蒸発器11を加熱する場合よりも、熱効率が
高いことが認められる。
As can be seen from the comparison between the embodiment of the present invention and the comparative example, even when the same amount of fuel is used, a supercritical water state is formed in the evaporator 1 and the amount of hydrocarbon material is reduced. It is recognized that the case where the fuel (heavy oil) and the oxygen and water are mixed and reacted as described above has a higher thermal efficiency than the case where the fuel is heated externally outside the evaporator 11 to heat the evaporator 11. .

【0021】[0021]

【発明の効果】以上説明したように、本発明の構成によ
れば、蒸発器内で直接的に燃焼反応を起こすことができ
るので、従来のようなボイラに比べ、ボイラ構成材料の
無抵抗分の損失を防ぐことができ、熱効率を向上させる
ことができる。
As described above, according to the structure of the present invention, a combustion reaction can be caused directly in the evaporator. Loss can be prevented, and the thermal efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するのに好適な装置の構成を示す
模式図である。
FIG. 1 is a schematic diagram showing a configuration of a device suitable for carrying out the present invention.

【図2】従来の火力発電システムの概要因である。FIG. 2 is a schematic diagram of a conventional thermal power generation system.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 タービン 3 復水器 4 ポンプ(加圧手段) 5 発電機 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Turbine 3 Condenser 4 Pump (pressurizing means) 5 Generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭化水素材料の燃焼エネルギーを利用して
水蒸気タービンを駆動し電力を得る火力発電システムで
あって、 蒸発器と水蒸気タービンと復水器とポンプと発電機とを
備え、前記復水器の水を前記ポンプによって加圧し前記
蒸発器に供給するとともに前記蒸発器に炭化水素材料か
らなる燃料及び酸素を供給し、前記蒸発器内を温度37
0〜450℃、圧力220〜500kgf/cm2の超
臨界水状態に保持し、前記蒸発器内で炭化水素材料から
なる燃料及び酸素と前記ポンプによって供給される水と
を混合し反応させることを特徴とする火力発電システ
ム。
1. A thermal power generation system for driving a steam turbine using combustion energy of a hydrocarbon material to obtain electric power, comprising: an evaporator, a steam turbine, a condenser, a pump, and a generator. The water in the water dispenser is pressurized by the pump and supplied to the evaporator, and at the same time, fuel and oxygen made of a hydrocarbon material are supplied to the evaporator.
The supercritical water state of 0 to 450 ° C. and the pressure of 220 to 500 kgf / cm 2 is maintained, and the fuel and the hydrocarbon made of the hydrocarbon material and the water supplied by the pump are mixed and reacted in the evaporator. Characteristic thermal power generation system.
JP10256966A 1998-09-10 1998-09-10 Thermal-power generation system Withdrawn JP2000088204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10256966A JP2000088204A (en) 1998-09-10 1998-09-10 Thermal-power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10256966A JP2000088204A (en) 1998-09-10 1998-09-10 Thermal-power generation system

Publications (1)

Publication Number Publication Date
JP2000088204A true JP2000088204A (en) 2000-03-31

Family

ID=17299854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10256966A Withdrawn JP2000088204A (en) 1998-09-10 1998-09-10 Thermal-power generation system

Country Status (1)

Country Link
JP (1) JP2000088204A (en)

Similar Documents

Publication Publication Date Title
JP4842801B2 (en) Cogeneration method and apparatus for gas turbine with post-combustion chamber
JP4594523B2 (en) Fuel cell device and method of generating electrical energy by fuel cell device
US7337612B2 (en) Method for the utilization of energy from cyclic thermochemical processes to produce mechanical energy and plant for this purpose
RU2085754C1 (en) Method of and gas turbine plant for continuous conversion of energy
KR920704368A (en) Apparatus and method for incorporating electrical and mechanical energy
US20070292727A1 (en) Fuel Cell System and Method for Generating Electrical Energy Using a Fuel Cell System
JP4059546B2 (en) Method for producing a combination of synthesis gas and electrical energy
CN1267356A (en) High efficiency reformed methanol gas turbine power plant
CN105518258B (en) Gas turbine unit and operating method thereof
RU2010149770A (en) ENERGY REGENERATION
RU2004101734A (en) MAGNETO-HYDRODYNAMIC METHOD FOR PRODUCING ELECTRIC ENERGY AND SYSTEM FOR ITS IMPLEMENTATION
KR100501481B1 (en) Apparatua
WO2015041555A1 (en) Process and installation for production of synthesis gas
JP5868295B2 (en) Method for environmentally removing air / solvent mixtures
JP2000088204A (en) Thermal-power generation system
CN105745402B (en) The method that energy carrier in cyclic process by reclaiming heat engine carries out energy conversion
JP2022068715A (en) Power generation system
JPH11273701A (en) Fuel cell power generating apparatus
JP2009292661A (en) Hydrogen production apparatus
JPH1113478A (en) Gas generator
JPH0963608A (en) Fuel cell power generating system
JP2001351641A (en) Combined generating element
JP2023071458A (en) gas turbine system
JPH01186761A (en) Power generation device of fuel cell
JP2002075425A (en) Starting method of fuel cell power generating equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110