JP2000087293A - Base sheet for electronic apparatus made of nickel plating aluminum base composite material and its production - Google Patents

Base sheet for electronic apparatus made of nickel plating aluminum base composite material and its production

Info

Publication number
JP2000087293A
JP2000087293A JP26300298A JP26300298A JP2000087293A JP 2000087293 A JP2000087293 A JP 2000087293A JP 26300298 A JP26300298 A JP 26300298A JP 26300298 A JP26300298 A JP 26300298A JP 2000087293 A JP2000087293 A JP 2000087293A
Authority
JP
Japan
Prior art keywords
composite material
layer
aluminum
alloy
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26300298A
Other languages
Japanese (ja)
Inventor
Tomiharu Okita
富晴 沖田
Junji Ninomiya
淳司 二宮
Akira Matsuda
晃 松田
Morimasa Tanimoto
守正 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP26300298A priority Critical patent/JP2000087293A/en
Publication of JP2000087293A publication Critical patent/JP2000087293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a base sheet capable of obtaining good solderability, free from the excessive spread of solder and exhibiting suitable solder wettability by plating the surface of an aluminum base composite material with an Ni metallic layer or an Ni-P alloy layer to the thickness above the specified one as a substrate and plating the surface with Ni-Co, Ni-Co-B and Ni-B alloy layers to the thickness above the specified one as surface layers. SOLUTION: The surface of an aluminum base composite material is plated with an Ni metallic layer or an Ni-P alloy layer to >=3 μm thickness as a substrate, and the surface is preferably plated with one or more kinds among an Ni-Co alloy layer, an Ni-Co-B alloy layer and an Ni-B alloy layer to >=0.01 μm thickness as surface layers. Next, it is subjected to deaerating treatment of executing heating at a temp. rising rate of <=200 deg.C/hr in a reducing or nonoxidizing atmosphere or in a vacuum and executing holding at 200 to 500 deg.C for a prescribed time. The substrate increases the adhesion of the surface layers with the aluminum base composite material and improves the corrosion resistance of the aluminum base composite material, and in the surface layers, good solderability can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、良好な半田付性が
得られかつ余分に半田が広がらない、適度な半田濡れ性
を示すNiめっきアルミ基複合材製電子機器用ベース板
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a base plate for an electronic device made of a Ni-plated aluminum-based composite material, which exhibits good solderability and does not spread excessive solder, exhibits a proper solder wettability, and a method of manufacturing the same. About.

【0002】[0002]

【従来の技術】アルミ基複合材は、アルミニウムまたは
アルミニウム合金に繊維状または粒子状のセラッミクス
やカーボンなどを分散させた複合材で、従来より強度や
耐磨耗性を要する分野に用いられてきたが、最近、その
低熱膨張性、高熱伝導性の特長を生かして発熱し易い大
容量IGBT(Insulated Gate Bipolar Transister) モ
ジュールの基板などにも採用されだした。ところで、前
記基板にはSiチップなどを搭載したDBC基板(Dire
ct Bonding Copper:セラミックス板にCuを被覆した基
板)が半田付けされるが、アルミ基複合材は半田付性が
悪いため、アルミ基複合材の半田付部分にNiをめっき
して半田付性を改善している(特開平5−86481号
公報)。
2. Description of the Related Art Aluminum-based composite materials are composite materials obtained by dispersing fibrous or particulate ceramics or carbon in aluminum or an aluminum alloy, and have been used in fields requiring strength and wear resistance. Recently, however, it has been adopted as a substrate for large-capacity IGBT (Insulated Gate Bipolar Transister) modules that easily generate heat by utilizing its features of low thermal expansion and high thermal conductivity. By the way, as the substrate, a DBC substrate (Dire
ct Bonding Copper: A board with a ceramic plate coated with Cu) is soldered. However, since the aluminum-based composite material has poor solderability, Ni is plated on the soldered portion of the aluminum-based composite material to improve solderability. It has been improved (JP-A-5-86481).

【0003】しかし、前記Niめっき層は、大気中に1
週間程度放置しておくと半田付けに有害な酸化皮膜が生
成するが、この酸化皮膜は半田付け時に塗布する塩素系
フラックスにより除去され、半田付けはほぼ良好になさ
れる。ところで、近年、環境保護の面から、前記塩素系
フラックスは使用が控えられる傾向にあり、それに代わ
って低塩素系フラックスや松脂を主成分とするフラック
スが用いられるようになり、さらには、フラックスを用
いずに、水素ガス雰囲気炉、窒素と水素の混合ガス雰囲
気炉、または不活性ガス雰囲気炉中で半田付けするノン
フラックス半田付法が開発されている。
[0003] However, the Ni plating layer is not exposed to the air.
If left for about a week, an oxide film harmful to soldering is formed, but this oxide film is removed by the chlorine-based flux applied at the time of soldering, and soldering is performed almost satisfactorily. By the way, in recent years, from the viewpoint of environmental protection, the use of the chlorine-based flux has tended to be refrained, and instead, a low-chlorine-based flux or a flux containing rosin as a main component has been used. A non-flux soldering method has been developed in which soldering is performed without using a furnace in a hydrogen gas atmosphere furnace, a mixed gas atmosphere furnace of nitrogen and hydrogen, or an inert gas atmosphere furnace.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記ノンフラ
ックス半田付法には、塩素系フラックスほどの脱酸作用
がないため少しでも酸化皮膜が存在すると半田濡れ性が
低下して半田付性が悪化するという問題がある。例え
ば、実際に工場で、Niめっきアルミ基複合材を大気中
に1週間放置したのち、DBC基板を共晶はんだ(Sn
−37wt%Pb)を用い還元性雰囲気(水素−10vol%窒
素)炉内で半田付けすると、非接合(濡れない)箇所や
フィレット(半田の肉盛り部分)が形成されない箇所が
生じたりする。このため半田濡れ性の良い表面処理方法
が盛んに研究されている。一方、半田濡れ性が良すぎる
場合は、半田を無用とする領域にまで半田が広がって外
観不良や機能の低下を招くため、レジスト(エポキシ樹
脂など)でマスクして半田の広がりを抑えており、生産
性が阻害されるという問題がある。
However, in the above-mentioned non-flux soldering method, since there is no deoxidizing effect as much as that of chlorine-based flux, the presence of a small amount of an oxide film deteriorates solder wettability and deteriorates solderability. There is a problem of doing. For example, after a Ni-plated aluminum-based composite material is left in the air for one week in a factory, a DBC substrate is eutectic soldered (Sn).
When soldering is performed in a reducing atmosphere (hydrogen-10 vol% nitrogen) furnace using (-37 wt% Pb), a non-joined (non-wetting) portion or a portion where a fillet (build-up portion of solder) is not formed may occur. For this reason, surface treatment methods with good solder wettability have been actively studied. On the other hand, if the solder wettability is too good, the solder spreads to the area where the solder is not needed, causing poor appearance and reduced function. Therefore, the spread of the solder is suppressed by masking with a resist (epoxy resin or the like). However, there is a problem that productivity is hindered.

【0005】このようなことから、本発明者等はノンフ
ラックス半田付法においても良好な半田付性が得られか
つ余分に半田が広がらない、適度な半田濡れ性を示すア
ルミ基複合材の表面処理方法について研究を行い、その
結果アルミ基複合材に所定のNi合金をめっきすること
により適度な半田濡れ性が得られることを知見し、さら
に研究を進めて本発明を完成させるに至った。本発明
は、良好な半田付性が得られかつ余分に半田が広がらな
い、適度な半田濡れ性を示すNiめっきアルミ基複合材
製電子機器用ベース板およびその製造方法の提供を目的
とする。
[0005] From the above, the present inventors have found that the surface of an aluminum-based composite material which exhibits good solderability even in the non-flux soldering method, does not spread excessive solder, and exhibits appropriate solder wettability. Research was conducted on the treatment method, and as a result, it was found that an appropriate solder wettability can be obtained by plating a predetermined Ni alloy on the aluminum-based composite material, and further research was advanced to complete the present invention. An object of the present invention is to provide a base plate for electronic equipment made of a Ni-plated aluminum-based composite material, which exhibits good solderability and does not spread excessive solder and exhibits appropriate solder wettability, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
アルミ基複合材上に下地層としてNi金属層またはNi
−P合金層が厚さ3μm以上にめっきされ、その上に表
面層としてNi−Co合金層、Ni−Co−B合金層、
またはNi−B合金層のうちの少なくとも1層が厚さ
0.01μm以上にめっきされていることを特徴とする
Niめっきアルミ基複合材製電子機器用ベース板であ
る。
According to the first aspect of the present invention,
Ni metal layer or Ni as underlayer on aluminum matrix composite
-P alloy layer is plated to a thickness of 3 μm or more, and Ni-Co alloy layer, Ni-Co-B alloy layer as a surface layer thereon,
Alternatively, a base plate for electronic equipment made of a Ni-plated aluminum-based composite material, wherein at least one of the Ni-B alloy layers is plated to a thickness of 0.01 μm or more.

【0007】請求項2記載の発明は、アルミ基複合材上
に下地層としてNi金属層またはNi−P合金層を厚さ
3μm以上にめっきし、その上に表面層としてNi−C
o合金層、Ni−Co−B合金層またはNi−B合金層
のうちの少なくとも1層を厚さ0.01μm以上にめっ
きし、次いで還元性雰囲気、非酸化性雰囲気、または真
空中で、1時間あたり200℃以下の昇温速度で加熱し
て200〜500℃の温度に所定時間保持する脱気処理
を施すことを特徴とするアルミ基複合材製電子機器用ベ
ース板の製造方法である。
According to a second aspect of the present invention, a Ni metal layer or a Ni—P alloy layer is plated as an underlayer on an aluminum-based composite material to a thickness of 3 μm or more, and a Ni—C layer is formed thereon as a surface layer.
o alloy layer, Ni—Co—B alloy layer or at least one of the Ni—B alloy layers is plated to a thickness of 0.01 μm or more, and then plated in a reducing atmosphere, a non-oxidizing atmosphere, or a vacuum. A method for producing a base plate for an electronic device made of an aluminum-based composite material, comprising performing a deaeration process of heating at a heating rate of 200 ° C. or less per hour and maintaining the temperature at 200 to 500 ° C. for a predetermined time.

【0008】[0008]

【発明の実施の形態】請求項1記載の発明において、ア
ルミ基複合材上にめっきされるNi金属またはNi−P
合金の下地層は、表面層のアルミ基複合材との密着性を
高め、さらにアルミ基複合材全面にめっきすることによ
りアルミ基複合材の耐食性を改善する。また前記表面層
は、Ni−Co合金層、Ni−Co−B合金層、または
Ni−B合金層の少なくとも1種から構成され、いずれ
の合金層も良好な半田付性が得られかつ余分に半田が広
がらない、適度な半田濡れ性を示すものである。
DETAILED DESCRIPTION OF THE INVENTION In the invention as set forth in claim 1, Ni metal or Ni-P plated on an aluminum-based composite material is used.
The base layer of the alloy enhances the adhesion of the surface layer to the aluminum-based composite material, and improves the corrosion resistance of the aluminum-based composite material by plating over the entire surface of the aluminum-based composite material. The surface layer is composed of at least one of a Ni-Co alloy layer, a Ni-Co-B alloy layer, and a Ni-B alloy layer. It does not spread the solder and shows appropriate solder wettability.

【0009】前記下地層のNi−P合金層のPの含有量
は5〜15wt%において、その下地層としての効果が最
も良く発揮される。また表面層のNi−Co合金層、N
i−Co−B合金層またはNi−B合金層におけるC
o、Bの含有量は、それぞれ10〜30wt%、1〜5wt
%において表面層としての効果が最も良く発揮される。
When the P content of the Ni—P alloy layer of the underlayer is 5 to 15 wt%, the effect of the underlayer is best exhibited. Also, a Ni—Co alloy layer of the surface layer, N
C in i-Co-B alloy layer or Ni-B alloy layer
The contents of o and B are 10 to 30 wt% and 1 to 5 wt%, respectively.
%, The effect as the surface layer is best exhibited.

【0010】この発明において、前記下地層の厚さを3
μm以上に規定する理由は、3μm未満ではアルミ基複
合材の素地が露出する場合があり下地層としての役目を
果たさなくなる恐れがあるためで、特には5μm以上の
厚さが望ましい。一方、下地層が厚すぎると熱抵抗が増
加して放熱性が低下し、またコストアップの原因にもな
るので20μm以下が望ましい。この発明において、前
記表面層の厚さを0.01μm以上に規定する理由は、
0.01μm未満ではその効果が十分に得られないため
で、特に望ましい厚さは0.02μm以上である。表面
層の厚さは5μmより厚くてもその効果が飽和し不経済
であり、5μm以下が望ましい。前記表面層は複数の合
金層で形成しても同様の効果が得られる。また下層はN
i金属層およびNi−P合金層で形成しても差し支えな
い。
In the present invention, the thickness of the underlayer is preferably 3
The reason why the thickness is specified to be not less than 3 μm is that if the thickness is less than 3 μm, the base of the aluminum-based composite material may be exposed and may not serve as a base layer. On the other hand, if the underlayer is too thick, the thermal resistance increases, the heat radiation property decreases, and the cost increases. In the present invention, the reason for defining the thickness of the surface layer to be 0.01 μm or more is as follows.
If the thickness is less than 0.01 μm, the effect cannot be sufficiently obtained. Therefore, a particularly desirable thickness is 0.02 μm or more. If the thickness of the surface layer is more than 5 μm, the effect is saturated and uneconomical, and the thickness is preferably 5 μm or less. The same effect can be obtained even if the surface layer is formed of a plurality of alloy layers. The lower layer is N
It may be formed of an i-metal layer and a Ni-P alloy layer.

【0011】この発明において、アルミ基複合材のマト
リックスとなるアルミには、純Al、またはAl−Si
合金、Al−Mg合金など任意のアルミ合金が用いら
れ、また分散材にはSiC、AlN、ZrO2 、Si3
4 、SiO2 などのセラミックス、またはカーボンな
どの繊維または粒子が用いられ、前記Al合金と分散材
の組合わせは任意である。前記アルミ基複合材は熱伝導
性に優れ、また熱膨張係数が小さいため電子機器ベース
板として用いた場合に、電子機器の発熱が良好に放散さ
れる。特に、Al−Si合金とカーボン繊維は熱膨張係
数がともに小さく、かつ相互に近似しているため、両者
により構成されるAl基複合材はAlマトリックスと分
散材との間に剥がれが生じ難くアルミ基複合材の信頼性
が高い。またAl−Si合金は湯流れ性が良いため高品
質なアルミ基複合材が得られる。熱膨張係数が小さい分
散材としては、カーボン繊維(粒子)の他、SiC、A
lN、ZrO2などの繊維(粒子)が挙げられる。
In the present invention, aluminum serving as a matrix of the aluminum-based composite material includes pure Al or Al--Si
Any aluminum alloy such as an alloy or an Al—Mg alloy is used, and SiC, AlN, ZrO 2 , Si 3
Ceramics such as N 4 and SiO 2 or fibers or particles such as carbon are used, and the combination of the Al alloy and the dispersing material is optional. Since the aluminum-based composite material has excellent thermal conductivity and a small coefficient of thermal expansion, when used as an electronic device base plate, heat generated by the electronic device is radiated well. In particular, since the Al-Si alloy and the carbon fiber both have a small coefficient of thermal expansion and are close to each other, the Al-based composite material composed of the two materials is hardly peeled off between the Al matrix and the dispersing material, and the aluminum alloy is hardly peeled off. High reliability of the base composite material. In addition, since the Al-Si alloy has good flowability, a high-quality aluminum-based composite material can be obtained. Examples of the dispersant having a small coefficient of thermal expansion include SiC, A in addition to carbon fiber (particles).
Fibers (particles) such as 1N and ZrO 2 are exemplified.

【0012】請求項2記載の発明は、アルミ基複合材上
に下地層および表面層をめっきしたのち、還元性雰囲
気、非酸化性雰囲気、または真空中で所定の加熱条件で
脱気処理する(即ち、アルミ基複合材に浸透しためっき
液などを除去する)Niめっきアルミ基複合材製電子機
器用ベース板の製造方法で、この製造方法によれば、表
面層が変質せず、適度な半田濡れ性が得られる。前記脱
気処理には、水素ガス雰囲気炉、窒素と水素の混合ガス
雰囲気炉、非酸化性雰囲気炉、真空炉などが用いられ
る。
According to a second aspect of the present invention, after a base layer and a surface layer are plated on an aluminum-based composite material, a deaeration treatment is performed under a predetermined heating condition in a reducing atmosphere, a non-oxidizing atmosphere, or a vacuum ( That is, a plating solution that has penetrated into the aluminum-based composite material is removed.) This is a method for manufacturing a base plate for electronic equipment made of a Ni-plated aluminum-based composite material. Wettability is obtained. For the deaeration treatment, a hydrogen gas atmosphere furnace, a mixed gas atmosphere furnace of nitrogen and hydrogen, a non-oxidizing atmosphere furnace, a vacuum furnace, or the like is used.

【0013】この発明において、前記脱気処理での昇温
速度を1時間あたり200℃以下に規定する理由は、2
00℃を超えるとアルミ基複合材に浸透しためっき液な
どが急激に蒸発してめっき層に膨れが生じるためであ
る。また前記脱気処理での加熱温度を200〜500℃
に規定する理由は、200℃未満ではアルミ基複合材に
浸透しためっき液などが除去されず、500℃を超える
温度ではアルミ基複合材が変質したり、溶けだしたりす
るためである。また炉から取出す温度が100℃を超え
ると、表面層が変質したりする恐れがあるため、100
℃以下の温度まで炉内冷却するのが良い。前記脱気処理
を還元性雰囲気、非酸化性雰囲気、または真空中で行う
理由は、Ni−Co合金層などの表面層の酸化、変質を
防止するためである。
In the present invention, the reason why the rate of temperature rise in the degassing treatment is set to 200 ° C. or less per hour is as follows.
If the temperature exceeds 00 ° C., the plating solution or the like that has permeated the aluminum-based composite material will rapidly evaporate and the plating layer will swell. In addition, the heating temperature in the deaeration treatment is 200 to 500 ° C.
The reason for this is that if the temperature is lower than 200 ° C., the plating solution or the like that has permeated the aluminum-based composite material is not removed, and if the temperature exceeds 500 ° C., the aluminum-based composite material is altered or melts. If the temperature taken out of the furnace exceeds 100 ° C., the surface layer may be deteriorated.
It is preferable to cool the inside of the furnace to a temperature of not more than ° C. The reason why the deaeration treatment is performed in a reducing atmosphere, a non-oxidizing atmosphere, or a vacuum is to prevent oxidation and deterioration of a surface layer such as a Ni—Co alloy layer.

【0014】前記アルミ基複合材上の下地層および表面
層は、電解めっき法、無電解めっき法などの湿式めっき
法により形成するのが簡便かつ低コストで望ましいが、
PVD法、CVD法などにより形成することも可能で、
この場合は脱気処理が不要である。
The underlayer and the surface layer on the aluminum-based composite material are preferably formed by a wet plating method such as an electrolytic plating method or an electroless plating method at a simple and low cost.
It can be formed by PVD method, CVD method, etc.
In this case, degassing is not required.

【0015】[0015]

〔Ni電解めっき〕[Ni electrolytic plating]

めっき液:NiSO4240g/リットル、NiCl2 45g/リットル、
3 BO3 30g/リットル、添加剤A−1(10ml/リットル),A−2
(1ml/リットル)(A-1,A-2 は上村工業(株)製)。 めっき条件:5A/dm2 、液温55℃、めっき厚さ1
0μmのときの通電時間12分。 〔Ni−Co合金電解めっき〕 めっき液:NiSO4180g/リットル、CoSO4 60g/リットル、
NiCl2 45g/リットル、H3 BO4 30g/リットル。 めっき条件:5A/dm2 、液温55℃、めっき厚さ
0.5μmのときの通電時間30秒。 〔Ni−Co−B合金無電解めっき〕 めっき液:NiCl2 10g/リットル、CoCl2 45g/リットル、
NH4 Cl12g/リットル、 (C2 5)4 NBr45g/リットル、N
3 160cc/リットル、NaBH41g/リットル。 めっき条件:温度40〜45℃の液中に浸漬、めっき厚
さ0.5μmのときの浸漬時間10分。 〔Ni−B合金電解めっき〕 めっき液:NiSO4 240g/リットル 、NiCl2 45g/リット
ル、H3 BO4 30g/リットル、トリメチルアミンボラン 3g/リ
ットル。 めっき条件:1A/dm2 、液温55℃、めっき厚さ
0.5μmのときの通電時間3分。 〔脱気処理〕100%水素ガス雰囲気炉使用、昇温速度
50℃/時間、保持温度300℃、保持時間 1時間、
80℃まで炉冷。
Plating solution: NiSO 4 240 g / liter, NiCl 2 45 g / liter,
H 3 BO 3 30g / l, additive A-1 (10ml / l), A-2
(1 ml / liter) (A-1, A-2 are manufactured by Uemura Kogyo Co., Ltd.). Plating conditions: 5A / dm 2 , solution temperature 55 ° C, plating thickness 1
12 minutes of energization time at 0 μm. [Ni-Co alloy electrolytic plating] Plating solution: NiSO 4 180 g / liter, CoSO 4 60 g / liter,
NiCl 2 45 g / l, H 3 BO 4 30 g / l. Plating conditions: 5 A / dm 2 , solution temperature 55 ° C., plating time 0.5 μm, energization time 30 seconds. [Ni-Co-B alloy electroless plating] Plating solution: NiCl 2 10 g / liter, CoCl 2 45 g / liter,
NH 4 Cl 12 g / liter, (C 2 H 5 ) 4 NBr 45 g / liter, N
H 3 160 cc / liter, NaBH 4 1 g / liter. Plating conditions: immersion in a solution at a temperature of 40 to 45 ° C., immersion time 10 minutes when plating thickness is 0.5 μm. [Ni-B alloy electroless plating] Plating liquid: NiSO 4 240 g / l, NiCl 2 45 g / l, H 3 BO 4 30g / l, trimethylamine borane 3 g / l. Plating conditions: 1 A / dm 2 , solution temperature 55 ° C., plating thickness 0.5 μm, energization time 3 minutes. [Deaeration treatment] Using a 100% hydrogen gas atmosphere furnace, heating rate 50 ° C / hour, holding temperature 300 ° C, holding time 1 hour,
Furnace cooled to 80 ° C.

【0016】(比較例1)下地層厚さ、表面層厚さ、脱
気処理条件を、本発明規定外とした他は、実施例1と同
じ方法によりアルミ基複合材製電子機器ベース板を製造
した。
Comparative Example 1 An electronic device base plate made of an aluminum-based composite material was manufactured in the same manner as in Example 1 except that the thickness of the underlayer, the thickness of the surface layer, and the deaeration conditions were not specified by the present invention. Manufactured.

【0017】実施例1または比較例1で製造した各々の
Niめっきアルミ基複合材について、半田広がり比およ
び半田濡れ角度を測定して半田付性を総合評価した。N
iをめっきしただけの従来材についても同様の測定、評
価を行った。なお、半田広がり比は、Niめっきアルミ
基複合材上に板半田を載せ、これを100%水素ガス雰
囲気炉中で、昇温速度40℃/hr、加熱条件300℃
×30分で加熱し、加熱後の半田面積を加熱前の半田面
積で除して求めた。前記板半田には、厚さ0.2mm、
幅16mm、長さ30mmのPb−50wt%Sn合金を
用いた。また半田の濡れ角度は、図1に示すように、ア
ルミ基複合材1上に、下地層2を介して形成された表面
層3上に溶融半田を流し、凝固後の半田4の中心を通る
任意の縦断面の両縁部の表面がNiめっき層2表面とな
す角度αとβの平均値で表した。合格基準は、半田広が
り比は1〜1.5、半田濡れ角度は30度以下とした。
結果を表1〜3に示す。
With respect to each of the Ni-plated aluminum-based composite materials produced in Example 1 or Comparative Example 1, the solder spread ratio and the solder wetting angle were measured to comprehensively evaluate the solderability. N
The same measurement and evaluation were performed on a conventional material in which only i was plated. In addition, the solder spread ratio was as follows. A plate solder was placed on a Ni-plated aluminum-based composite material, and this was heated in a 100% hydrogen gas atmosphere furnace at a heating rate of 40 ° C./hr and heating conditions of 300 ° C.
Heating was performed for 30 minutes, and the solder area after heating was divided by the solder area before heating. The plate solder has a thickness of 0.2 mm,
A Pb-50 wt% Sn alloy having a width of 16 mm and a length of 30 mm was used. As shown in FIG. 1, the solder wetting angle is such that molten solder flows on the surface layer 3 formed on the aluminum-based composite material 1 via the base layer 2 and passes through the center of the solidified solder 4. The average value of the angles α and β formed by the surfaces of both edges of an arbitrary longitudinal section with the surface of the Ni plating layer 2 was shown. Acceptance criteria were a solder spread ratio of 1 to 1.5 and a solder wetting angle of 30 degrees or less.
The results are shown in Tables 1 to 3.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】表1〜3より明らかなように、本発明例
(実施例1)のNo.1〜23は、いずれも半田の広がり比
(半田濡れ性)および半田の濡れ角度が合格基準を満足
し、総合的に優れるものであった。また表面層が剥離す
るようなこともなかった。これに対し、比較例1の No.
24〜28、従来材のNo.29 は、いずれも半田の広がり比
(半田濡れ性)および半田の濡れ角度が合格基準を下回
り、総合的に劣るものであった。またNo.24,25は表面層
に部分的に剥離が認められた。これは下地層が薄かった
ためである。
As is clear from Tables 1 to 3, Nos. 1 to 23 of the present invention (Example 1) all satisfy the acceptance criteria with respect to the solder spread ratio (solder wettability) and the solder wetting angle. It was excellent overall. Also, the surface layer did not peel off. In contrast, No. 1 of Comparative Example 1
24 to 28, and No. 29 of the conventional material, the spread ratio of the solder (solder wettability) and the wettability angle of the solder were lower than the acceptance criteria, and were inferior overall. In Nos. 24 and 25, peeling was partially observed in the surface layer. This is because the underlayer was thin.

【0022】(実施例2)Al−12wt%Si−1wt%
Mg−1wt%Cu合金にSiC繊維を60vol%分散させ
たアルミ基複合材(厚さ3mm、幅90mm、縦150
mm)にNi−5wt%P合金を無電解めっきし、その上
にNi−Co合金、Ni−Co−B合金、またはNi−
B合金を電解めっきし、最後に脱気処理してアルミ基複
合材製電子機器用ベース板を製造した。下地層および表
面層のめっき厚さ、および脱気処理条件は、本発明規定
内で種々に変化させた。Ni−5wt%P合金めっき以外
は実施例1と同じ方法により製造した。Ni−P合金の
無電解めっき条件を下記に示す。 〔Ni−P合金無電解めっき〕 めっき液:上村工業(株)製DX−M(100ml/リットル)、D
X−A(50ml/リットル) 。 めっき条件:液温90℃、めっき厚さ10μmのときの
浸漬時間30分。
Example 2 Al-12 wt% Si-1 wt%
Aluminum-based composite material (thickness 3 mm, width 90 mm, length 150 mm) in which 60 vol% of SiC fibers are dispersed in a Mg-1 wt% Cu alloy
mm) is electroless-plated with a Ni-5 wt% P alloy, and Ni-Co alloy, Ni-Co-B alloy, or Ni-
The B alloy was electroplated and finally degassed to produce an aluminum-based composite electronic device base plate. The plating thickness of the underlayer and the surface layer, and the deaeration conditions were variously changed within the range of the present invention. Except for Ni-5 wt% P alloy plating, it was manufactured in the same manner as in Example 1. The electroless plating conditions of the Ni-P alloy are shown below. [Ni-P alloy electroless plating] Plating solution: DX-M (100 ml / liter) manufactured by Uemura Kogyo Co., Ltd.
X-A (50 ml / liter). Plating conditions: immersion time 30 minutes at a liquid temperature of 90 ° C. and a plating thickness of 10 μm.

【0023】(比較例2)下地層および表面層のめっき
厚さ、および脱気処理条件を、本発明規定外とした他
は、実施例2と同じ方法によりアルミ基複合材製電子機
器ベース板を製造した。
(Comparative Example 2) An aluminum-based composite electronic device base plate was manufactured in the same manner as in Example 2 except that the plating thickness of the underlayer and the surface layer and the deaeration conditions were outside the scope of the present invention. Was manufactured.

【0024】実施例2または比較例2で製造した各々の
Niめっきアルミ基複合材について、半田広がり比およ
び半田濡れ角度を測定して半田付性を総合評価した。N
iをめっきしただけの従来材についても同様の測定、評
価を行った。なお、半田広がり比は、Niめっきアルミ
基複合材上に板半田を載せ、これを窒素90vol%と水素
10vol%の混合ガス炉中で、昇温速度40℃/hr、加
熱条件400℃×30分で加熱し、加熱冷却後の半田面
積を加熱前の半田面積で除して求めた。前記板半田に
は、厚さ0.2mm、幅16mm、長さ30mmのZn
−10wt%Al合金を用いた。また半田の濡れ角度は、
実施例1と同じ方法により測定、評価した。合格基準
は、半田広がり比は1〜1.5、半田濡れ角度は30度
以下とした。結果を表4〜6に示す。
With respect to each of the Ni-plated aluminum-based composite materials produced in Example 2 or Comparative Example 2, the solder spread ratio and the solder wetting angle were measured to comprehensively evaluate the solderability. N
The same measurement and evaluation were performed on a conventional material in which only i was plated. The spread ratio of the solder was determined by placing a plate solder on a Ni-plated aluminum-based composite material, and heating it in a mixed gas furnace of 90 vol% nitrogen and 10 vol% hydrogen at a heating rate of 40 ° C / hr and heating conditions of 400 ° C x 30 ° C. And the solder area after heating and cooling was divided by the solder area before heating. The plate solder has a thickness of 0.2 mm, a width of 16 mm, and a length of 30 mm.
An -10 wt% Al alloy was used. The solder wetting angle is
The measurement and evaluation were performed in the same manner as in Example 1. Acceptance criteria were a solder spread ratio of 1 to 1.5 and a solder wetting angle of 30 degrees or less. The results are shown in Tables 4 to 6.

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 [Table 6]

【0028】表4〜6より明らかなように、本発明例
(実施例2)の No.41〜63は、めっき層の膨れが認めら
れず、また半田の広がりの合格基準を満足し総合的に半
田付性に優れるものであった。また表面層が剥離するよ
うなこともなかった。これに対し、比較例2の No.64〜
68および従来材の No.69は、いずれも合格基準を下回
り、半田付性は総合的に劣った。またNo.64,65は表面層
に部分的に剥離が認められた。これは下地層が薄かった
ためである。
As is clear from Tables 4 to 6, in Nos. 41 to 63 of the present invention (Example 2), no swelling of the plating layer was recognized, and the solder spread was satisfied. And had excellent solderability. Also, the surface layer did not peel off. On the other hand, Nos. 64 to
Both No. 68 and No. 69 of the conventional material were below the acceptance criteria, and the solderability was totally poor. In Nos. 64 and 65, peeling was partially observed in the surface layer. This is because the underlayer was thin.

【0029】[0029]

【発明の効果】以上に述べたように、本発明のアルミ基
複合材製電子機器用ベース板は、アルミ基複合材上にN
i層が適正な厚さに下地めっきされ、その上にNi−C
o合金層、Ni−Co−B合金層またはNi−B合金層
の表面層が適正な厚さにめっきされているので、前記表
面層はアルミ基複合材に良好に密着し、かつ前記表面層
は適度な半田濡れ性を示すため、良好な半田付性が得ら
れるうえ、余分な半田広がりが抑制されて半田付け工数
の削減並びにコスト低減が図れる。また前記本発明のベ
ース板は、下地層および表面層を所定厚さにめっきした
のち、還元性雰囲気、非酸化性雰囲気、または真空中で
所定の加熱条件で脱気処理を施すことにより容易に製造
できる。依って、発熱し易い大容量IGBTモジュール
の基板などに有用で、工業上顕著な効果を奏する。
As described above, the base plate for an electronic device made of an aluminum-based composite material according to the present invention has an N-based composite material on an aluminum-based composite material.
The i-layer is plated with an appropriate thickness, and Ni-C
Since the surface layer of the o-alloy layer, the Ni-Co-B alloy layer or the Ni-B alloy layer is plated to an appropriate thickness, the surface layer adheres well to the aluminum-based composite material, and the surface layer Exhibits appropriate solder wettability, so that good solderability can be obtained and unnecessary solder spread is suppressed, so that the number of soldering steps and cost can be reduced. Further, the base plate of the present invention can be easily formed by plating a base layer and a surface layer to a predetermined thickness and then performing deaeration treatment under a predetermined heating condition in a reducing atmosphere, a non-oxidizing atmosphere, or a vacuum. Can be manufactured. Therefore, it is useful for a substrate of a large-capacity IGBT module which easily generates heat, and has an industrially remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半田の濡れ角度の説明図である。FIG. 1 is an explanatory diagram of a wetting angle of solder.

【符号の説明】[Explanation of symbols]

1 アルミ基複合材 2 下地層 3 表面層 4 凝固後の半田 α、β凝固後の半田の縁部表面のNiめっき層表面とな
す角度
DESCRIPTION OF SYMBOLS 1 Aluminum-based composite material 2 Underlayer 3 Surface layer 4 Solder after solidification α, β Angle between the edge surface of solder after solidification and Ni plating layer surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷本 守正 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 Fターム(参考) 4K024 AA03 AA14 AB02 BA06 BB09 BB11 BC01 DA04 DA06 DA07 DA08 DB01 GA14 4K044 AA06 AB02 BA06 BB03 BC08 CA04 CA18 CA62  ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Morimasa Tanimoto 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. F-term (reference) 4K024 AA03 AA14 AB02 BA06 BB09 BB11 BC01 DA04 DA06 DA07 DA08 DB01 GA14 4K044 AA06 AB02 BA06 BB03 BC08 CA04 CA18 CA62

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミ基複合材上に下地層としてNi金
属層またはNi−P合金層が厚さ3μm以上にめっきさ
れ、その上に表面層としてNi−Co合金層、Ni−C
o−B合金層、またはNi−B合金層のうちの少なくと
も1層が厚さ0.01μm以上にめっきされていること
を特徴とするNiめっきアルミ基複合材製電子機器用ベ
ース板。
A Ni metal layer or a Ni-P alloy layer is plated as an underlayer on an aluminum-based composite material to a thickness of 3 μm or more, and a Ni—Co alloy layer or a Ni—C is formed thereon as a surface layer.
A base plate for electronic equipment made of a Ni-plated aluminum-based composite material, wherein at least one of the o-B alloy layer and the Ni-B alloy layer is plated to a thickness of 0.01 μm or more.
【請求項2】 アルミ基複合材上に下地層としてNi金
属層またはNi−P合金層を厚さ3μm以上にめっき
し、その上に表面層としてNi−Co合金層、Ni−C
o−B合金層またはNi−B合金層のうちの少なくとも
1層を厚さ0.01μm以上にめっきし、次いで還元性
雰囲気、非酸化性雰囲気、または真空中で、1時間あた
り200℃以下の昇温速度で加熱して200〜500℃
の温度に所定時間保持する脱気処理を施すことを特徴と
するアルミ基複合材製電子機器用ベース板の製造方法。
2. An aluminum base composite material is plated with a Ni metal layer or a Ni—P alloy layer to a thickness of 3 μm or more as a base layer, and a Ni—Co alloy layer or a Ni—C layer is formed thereon as a surface layer.
At least one layer of the o-B alloy layer or the Ni-B alloy layer is plated to a thickness of 0.01 μm or more, and then reduced to 200 ° C. or less per hour in a reducing atmosphere, a non-oxidizing atmosphere, or a vacuum. 200-500 ° C by heating at heating rate
A method for producing a base plate for an electronic device made of an aluminum-based composite material, comprising performing a deaeration treatment for maintaining the temperature at a predetermined temperature for a predetermined time.
JP26300298A 1998-09-17 1998-09-17 Base sheet for electronic apparatus made of nickel plating aluminum base composite material and its production Pending JP2000087293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26300298A JP2000087293A (en) 1998-09-17 1998-09-17 Base sheet for electronic apparatus made of nickel plating aluminum base composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26300298A JP2000087293A (en) 1998-09-17 1998-09-17 Base sheet for electronic apparatus made of nickel plating aluminum base composite material and its production

Publications (1)

Publication Number Publication Date
JP2000087293A true JP2000087293A (en) 2000-03-28

Family

ID=17383538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26300298A Pending JP2000087293A (en) 1998-09-17 1998-09-17 Base sheet for electronic apparatus made of nickel plating aluminum base composite material and its production

Country Status (1)

Country Link
JP (1) JP2000087293A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342593A (en) * 2000-06-01 2001-12-14 Tsuneki Mekki Kogyo Kk Contact member and manufacturing method
US7632112B2 (en) 2004-12-03 2009-12-15 Murata Manufacturing Co., Ltd. Electrical contact component, coaxial connector, and electrical circuit device including the same
CN102864456A (en) * 2012-09-05 2013-01-09 忻峰 Aluminum alloy engine anti-corrosion treatment method
CN104028716A (en) * 2014-06-19 2014-09-10 马鞍山马钢表面工程技术有限公司 Method for using Ni-Co-W alloy electroplate liquid to repair nickel-plated combined crystallizer narrow plate in electroplating manner
WO2017209279A1 (en) * 2016-06-03 2017-12-07 古河電気工業株式会社 Surface treatment material, production method thereof, and component formed using surface treatment material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342593A (en) * 2000-06-01 2001-12-14 Tsuneki Mekki Kogyo Kk Contact member and manufacturing method
US7632112B2 (en) 2004-12-03 2009-12-15 Murata Manufacturing Co., Ltd. Electrical contact component, coaxial connector, and electrical circuit device including the same
CN102864456A (en) * 2012-09-05 2013-01-09 忻峰 Aluminum alloy engine anti-corrosion treatment method
CN104028716A (en) * 2014-06-19 2014-09-10 马鞍山马钢表面工程技术有限公司 Method for using Ni-Co-W alloy electroplate liquid to repair nickel-plated combined crystallizer narrow plate in electroplating manner
CN104028716B (en) * 2014-06-19 2016-03-23 马鞍山马钢表面工程技术有限公司 The method of nickel plating fourplatemold narrow boards is repaired with the plating of Ni-Co-W alloy plating liquid
WO2017209279A1 (en) * 2016-06-03 2017-12-07 古河電気工業株式会社 Surface treatment material, production method thereof, and component formed using surface treatment material
JP6279170B1 (en) * 2016-06-03 2018-02-14 古河電気工業株式会社 Surface treatment material, method for producing the same, and component formed using the surface treatment material

Similar Documents

Publication Publication Date Title
US6745930B2 (en) Method of attaching a body made of metal matrix composite (MMC) material or copper to a ceramic member
JP4159897B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
WO2011027820A1 (en) Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component
JP2018157173A (en) Method for manufacturing power module, power module, method for manufacturing electronic component, and electronic component
JPH10150124A (en) Heat generating semiconductor device mounting composite substrate and semiconductor device using the substrate
JP2000087293A (en) Base sheet for electronic apparatus made of nickel plating aluminum base composite material and its production
JP2000096288A (en) Nickel-plated aluminum base composite material excellent in solderability and production of the nickel- plated aluminum base composite material
JP2000087291A (en) Base sheet for electronic apparatus made of aluminum base composite material and its production
JP6031784B2 (en) Power module substrate and manufacturing method thereof
JP7014695B2 (en) Conductive materials, molded products and electronic components
JP2011082502A (en) Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module
JP6386310B2 (en) Pretreatment method for plating Al-Cu joint
JP4362600B2 (en) Metal-ceramic bonding member
Yoon et al. Mechanical reliability of Sn-Ag BGA solder joints with various electroless Ni-P and Ni-B plating layers
JP2002307165A (en) Brazing method
JP3766411B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
JPH11354699A (en) Semiconductor heat sink and its manufacture
JP4409356B2 (en) Manufacturing method of surface-treated Al plate for heat sink
JP2006206945A (en) SURFACE-TREATED Al SHEET HAVING EXCELLENT SOLDERABILITY WITH LOW MELTING POINT
JP6621353B2 (en) Heat resistant ceramic circuit board
JP5004414B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
JP4461268B2 (en) Semiconductor device component, manufacturing method thereof, and semiconductor device using the same
JPH01301866A (en) Formation of metallic layer on aluminum nitride surface
JP3538664B2 (en) Coating method of Ti-based material
KR101576505B1 (en) Brazing method of attaching titanium-based alloy to base steel using wet plating