JP2000086872A - Resin composition having ptc characteristic - Google Patents

Resin composition having ptc characteristic

Info

Publication number
JP2000086872A
JP2000086872A JP10262533A JP26253398A JP2000086872A JP 2000086872 A JP2000086872 A JP 2000086872A JP 10262533 A JP10262533 A JP 10262533A JP 26253398 A JP26253398 A JP 26253398A JP 2000086872 A JP2000086872 A JP 2000086872A
Authority
JP
Japan
Prior art keywords
temperature
polyester resin
ptc
solvent
polyvalent isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10262533A
Other languages
Japanese (ja)
Other versions
JP3312600B2 (en
Inventor
Kiyoshi Kondo
近藤  清
Hiroya Ito
洋哉 伊藤
Chika Moriguchi
千賀 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OUGI KAGAKU KOGYO KK
Original Assignee
OUGI KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OUGI KAGAKU KOGYO KK filed Critical OUGI KAGAKU KOGYO KK
Priority to JP26253398A priority Critical patent/JP3312600B2/en
Publication of JP2000086872A publication Critical patent/JP2000086872A/en
Application granted granted Critical
Publication of JP3312600B2 publication Critical patent/JP3312600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition which can be directly applied to the surface of a substrate to form thereon a wet film capable of easily forming a cured film having excellent adhesion by heating and can give a PTC(positive temperature coefficient) material having an arbitrary set switching temperature by using a base prepared by dissolving or dispersing a solvent-soluble polyester resin having a specified glass transition temperature and a specified amount of a conductive filler in an organic solvent and a curing agent. SOLUTION: This composition comprises a first package being a inky or pasty base prepared by dissolving and dispersing a base polymer being a solvent- soluble polyester resin having a glass transition temperature of 50 deg.C or below and 20-100 pts.vol., per 100 pts.wt. polyester resin, conductive filler (e.g. carbon powder) in an organic solvent (e.g. isophorone) and a second package being a curing agent. It is desirable that the curing agent is selected among aliphatic, aromatic, and alicyclic polyisocyanate compounds. It is desirable that the composition further contains a catalyst (e.g. tert. amine compound) which accelerates the crosslinking reaction of the polyester resin with the polyisocyanate compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の温度領域に
達すると温度の上昇とともに電気抵抗値が正の温度係数
(Positive Temperature Coe
fficient、以下、「PTC」と略記する。)で
急激に増大する特性(以下、「PTC特性」と略記す
る。)を有する樹脂組成物(以下、「PTC組成物」と
略記する。)に関するものである。
[0001] The present invention relates to a positive temperature coefficient (Positive Temperature Coe) having a positive temperature coefficient as the temperature increases when a specific temperature range is reached.
fficient, hereinafter abbreviated as “PTC”. ) (Hereinafter abbreviated as “PTC characteristics”), and a resin composition (hereinafter abbreviated as “PTC composition”).

【0002】[0002]

【従来の技術】PTC組成物は、自己温度調節機能を有
する面状発熱体、回路保護デバイス、ポリスイッチデバ
イス、温度補償回路、温度センサーなどに有用であり、
現在までに数多くのPTC組成物が提案されている。こ
の従来のPTC組成物は、結晶性ポリマーに特定の導電
性充填剤を分散させたものであり、それらは、温度の上
昇による結晶子の融解に伴うポリマーの体積膨張によ
り、電気を流している導電性充填剤の連鎖が切れること
によって抵抗値が増大しPTC特性が発揮されるといわ
れている。従来のPTC組成物の具体例としては、ポリ
エチレン、ポリプロピレン、ポリフッ化ビニリデンなど
のオレフィン系、又はそれと酢酸ビニルあるいはアクリ
ル酸エステルとの共重合体などの結晶性ポリマーに、カ
ーボンブラック又は金属粉末などの導電性充填剤を分散
させたものが代表的であり、例えば、特公昭36−16
338号公報、特公昭42−23288号公報、特開昭
49−82735号公報、特開昭60−31540号公
報、特開昭60−31548号公報、特開昭62−18
1347号公報、特開平1−304704号公報などに
開示されている。上記のような従来のPTC組成物は、
結晶性ポリマーを加熱溶融し、これに熱ロール又はバン
バリーミキサーなどにより導電性充填剤を混練したのち
シート状にプレス成形される。
2. Description of the Related Art PTC compositions are useful for sheet heating elements having a self-temperature control function, circuit protection devices, polyswitch devices, temperature compensation circuits, temperature sensors, and the like.
Many PTC compositions have been proposed to date. This conventional PTC composition is obtained by dispersing a specific conductive filler in a crystalline polymer, and they conduct electricity due to volume expansion of the polymer accompanying melting of crystallites due to an increase in temperature. It is said that the breakage of the chain of the conductive filler increases the resistance value and exhibits PTC characteristics. Specific examples of conventional PTC compositions include polyethylene, polypropylene, olefins such as polyvinylidene fluoride, or crystalline polymers such as copolymers thereof with vinyl acetate or acrylates, and carbon black or metal powder. Representatively, a conductive filler is dispersed therein.
No. 338, JP-B-42-23288, JP-A-49-82735, JP-A-60-31540, JP-A-60-31548, JP-A-62-18
No. 1347, JP-A-1-304704 and the like. Conventional PTC compositions as described above are:
The crystalline polymer is heated and melted, kneaded with a conductive filler by a hot roll or a Banbury mixer or the like, and then pressed into a sheet.

【0003】ところで、PTC組成物のPTC特性の優
劣、並びに実用性は、以下の事項により判断され、実用
に供するためには、これら(1)〜(5)の特性を全て
満足する必要がある。(1)ピーク温度(抵抗が最大に
なる温度;Tp)での抵抗値(Rp)と初期抵抗値(室温
での抵抗値;Ro)との比(Rp/Ro)が大きい、即
ち、抵抗の変化倍率が大きい;(2)抵抗値上昇勾配
(α)が大きい、即ち、PTC立ち上がり後、急激に変
化する;(3)初期抵抗値(Ro)が使用目的に応じた
適当な値である;(4)スイッチ温度(抵抗値が急激に
変化する温度;Ts)が適当な値で、使用目的に応じた
適当な温度で抵抗値が急激に変化する;(5)ピーク温
度(Tp)以後に抵抗値の急激な再降下がない。
[0003] The superiority and practicality of the PTC properties of the PTC composition are judged by the following items, and in order to be put to practical use, it is necessary to satisfy all of the properties (1) to (5). . (1) The ratio (Rp / Ro) of the resistance value (Rp) at the peak temperature (temperature at which the resistance becomes maximum; Tp) to the initial resistance value (resistance value at room temperature; Ro) is large, that is, the resistance Large change rate; (2) large resistance value rise gradient (α), that is, sharp change after PTC rise; (3) initial resistance value (Ro) is an appropriate value according to the intended use; (4) The switch temperature (temperature at which the resistance value rapidly changes; Ts) is an appropriate value, and the resistance value changes rapidly at an appropriate temperature according to the intended use; (5) After the peak temperature (Tp) There is no sudden drop in resistance.

【0004】しかし、従来のPTC組成物は、結晶性ポ
リマー、特にポリオレフィンを加熱溶融して導電性充填
剤を混練する製法上、充填剤の均一分散が難しく、安定
した特性の組成物を得ることが難しく、また、導電性充
填剤の配合量を多くするとPTC特性が消失するか、あ
るいは密着性、可撓性などの物理的特性の劣化が顕著に
なるため、初期抵抗値(Ro)の低いものができない、
更には、スイッチ温度(Ts)は使用するポリマーの融
点で決まり使用目的に応じた調整ができない、といった
問題があり、実用において、大きな制限を受けていた。
[0004] However, the conventional PTC composition is difficult to uniformly disperse the filler due to the manufacturing method of kneading the conductive filler by heating and melting a crystalline polymer, particularly a polyolefin, and obtains a composition having stable characteristics. In addition, if the amount of the conductive filler is increased, the PTC characteristic is lost, or physical characteristics such as adhesion and flexibility are significantly deteriorated, so that the initial resistance (Ro) is low. Can't do things,
Further, there is a problem that the switch temperature (Ts) is determined by the melting point of the polymer to be used and cannot be adjusted according to the purpose of use.

【0005】また、結晶性ポリマーにカーボンなどの導
電性充填剤を分散させた従来のPTC組成物は、通常、
図1に示すような温度−抵抗値特性曲線(CL)を示
す。図1において、Toは室温(25℃)、Tsはスイッ
チ温度(抵抗値が急激に変化する温度)、Tpはピーク
温度(抵抗値が最大になる温度)、Roは初期抵抗値
(室温(To)での抵抗値)、Rsはスイッチ温度(T
s)での抵抗値、Rpはピーク温度(Tp)での抵抗値、
そしてαはスイッチ温度(Ts)以後の温度上昇に伴う
抵抗上昇勾配〔倍/℃〕である。図1から明らかなよう
に、従来のPTC組成物では、ピーク温度(Tp)に達
した後、逆に急激に抵抗値が下がる。これは、融点以上
に昇温されて結晶性ポリマーが溶融すると、その中に分
散された導電性充填剤が再度互いに接触しあい導通する
ことが原因と考えられる。このような性質を有するPT
C組成物は、何らかの要因でピーク温度(Tp)以上に
昇温された場合、自己温度制御機能を失い大電流が流れ
ることになる結果、益々温度が上昇し、ついには焼損に
までつながるおそれがあり、危険である。
A conventional PTC composition in which a conductive filler such as carbon is dispersed in a crystalline polymer is usually used.
2 shows a temperature-resistance characteristic curve (CL) as shown in FIG. In FIG. 1, To is the room temperature (25 ° C.), Ts is the switch temperature (the temperature at which the resistance value changes rapidly), Tp is the peak temperature (the temperature at which the resistance value becomes maximum), and Ro is the initial resistance value (room temperature (To ), Rs is the switch temperature (T
s), Rp is the resistance at peak temperature (Tp),
Α is a resistance rise gradient [times / ° C.] accompanying a temperature rise after the switch temperature (Ts). As is clear from FIG. 1, in the conventional PTC composition, after reaching the peak temperature (Tp), the resistance rapidly decreases. This is considered to be because when the temperature is raised to the melting point or more and the crystalline polymer is melted, the conductive fillers dispersed therein come into contact with each other again to conduct electricity. PT having such properties
When the C composition is heated to a temperature higher than the peak temperature (Tp) for some reason, the self-temperature control function is lost and a large current flows. As a result, the temperature is further increased, which may eventually lead to burnout. Yes, dangerous.

【0006】上記のような、ピーク温度(Tp)に達し
た後に再び急激に抵抗値が下がる性質を改善するため、
従来の結晶性オレフィン樹脂系PTC組成物では、シー
ト状にプレス成形した後、電子線、又はγ線などの放射
線を照射して樹脂を架橋することが行われている。しか
し、このような放射線などの照射は装置が高価であるの
に加えて、条件によっては樹脂に活性ラジカルを残し、
耐熱性、耐久性を著しく劣化させることもあるから、綿
密な条件管理を必要とする。
In order to improve the property that the resistance value suddenly drops after reaching the peak temperature (Tp) as described above,
In a conventional crystalline olefin resin-based PTC composition, after being press-formed into a sheet, irradiation with radiation such as an electron beam or γ-ray is performed to crosslink the resin. However, irradiation with such radiation, in addition to the expensive equipment, leaves active radicals in the resin depending on the conditions,
Since heat resistance and durability may be significantly deteriorated, careful condition management is required.

【0007】また、従来のPTC組成物の大半は、上記
のようにシート状にプレス成形されたものであるが、最
近、実用性を高める目的で、基材に直接塗布可能なイン
ク状又はペースト状のPTC組成物も開示されている。
例えば、特開平6−45105号公報、特開平8−12
0182号公報には、天然ゴム、合成ゴムなどの非晶質
ポリマー、該非晶質ポリマーと相溶性のないポリエチレ
ン、ポリプロピレンなどの結晶性ポリマー粒子、及び導
電性カーボンブラック、グラファイトなどの導電性充填
剤よりなり、溶剤に分散させて塗布形成可能としたPT
C組成物が開示されており、更に、特開平10−183
039号公報には、酢酸ビニルとポリエチレンとの共重
合体(EVA)であって特定の酢酸ビニル含量を有する
ポリマーをベースポリマーとし、これに導電性粒子を含
む自己温度調節ヒータ用印刷インクが開示されている。
[0007] Most of the conventional PTC compositions are press-formed into sheets as described above, but recently, in order to enhance practicality, inks or pastes which can be directly applied to a substrate are used. A PTC composition in the form of a powder is also disclosed.
For example, JP-A-6-45105, JP-A-8-12
No. 182 discloses an amorphous polymer such as natural rubber or synthetic rubber, a crystalline polymer particle such as polyethylene or polypropylene which is incompatible with the amorphous polymer, and a conductive filler such as conductive carbon black and graphite. Consisting of PT
A composition C is disclosed.
No. 039 discloses a printing ink for a self-temperature controlling heater, comprising a copolymer of vinyl acetate and polyethylene (EVA) having a specific vinyl acetate content as a base polymer and containing conductive particles therein. Have been.

【0008】上記のように、オレフィン系などの結晶性
ポリマーをベースポリマーとしてインク状又はペースト
状のPTC組成物を製造するときの最大の難題は、ベー
スポリマーの溶剤可溶性とPTC特性との兼ね合いであ
る。即ち、インク状又はペースト状の組成物とするため
にはベースポリマーを適当な溶剤に溶解することが不可
欠であるが、ポリマーの結晶化度が高いとPTC特性は
優れるが溶剤には溶解し難くなり、逆にポリマーの結晶
化度が低いと溶剤には溶解しやすいがPTC特性は劣る
というように、溶剤可溶性とPTC特性との両者は相反
する結晶性を要求する。つまり、前記特開平6−451
05号公報及び特開平8−120182号公報に開示さ
れたものは、天然ゴム、合成ゴムなどの非晶質ポリマー
に導電性充填剤を分散させた溶液に加えて該非晶質ポリ
マーと相溶性のないオレフィン系結晶性ポリマー粒子を
分散させ、また、前記特開平10−183039号公報
に開示されたものは、溶解に必要とする最小必要量であ
る特定範囲の酢酸ビニル含有量のエチレン−酢酸ビニル
共重合ポリマー(EVA)をベースポリマーとし、これ
に導電性粒子を分散させた後、溶剤を添加してインク化
することによって、非晶質ポリマーの溶剤可溶性と結晶
性ポリマーによるPTC特性とのバランスを図ったもの
であるが、これらのものは、溶剤溶解性とPTC特性と
の各々の特性を単独でみた場合には、いずれの特性も最
適にはなり得ず、溶剤可溶性とPTC特性とのいずれの
点においても必ずしも充分満足し得るものとはいえな
い。
As described above, the greatest difficulty in producing an ink-like or paste-like PTC composition using a crystalline polymer such as an olefin-based polymer as a base polymer is the balance between the solvent solubility of the base polymer and the PTC properties. is there. That is, in order to form an ink-like or paste-like composition, it is essential to dissolve the base polymer in an appropriate solvent. However, if the crystallinity of the polymer is high, the PTC property is excellent, but it is difficult to dissolve in the solvent. Conversely, when the crystallinity of the polymer is low, the polymer is easily dissolved in the solvent but the PTC property is inferior. For example, both the solvent solubility and the PTC property require contradictory crystallinity. That is, Japanese Patent Laid-Open No. 6-451
No. 05 and Japanese Patent Application Laid-Open No. 8-120182 disclose a method in which a conductive filler is dispersed in an amorphous polymer such as a natural rubber or a synthetic rubber, and the amorphous filler is compatible with the amorphous polymer. No olefin-based crystalline polymer particles are dispersed, and those disclosed in the above-mentioned JP-A-10-183039 are ethylene-vinyl acetate having a vinyl acetate content in a specific range which is a minimum required amount for dissolution. A copolymer is used as a base polymer, conductive particles are dispersed in the base polymer, and then a solvent is added to form an ink. Thus, the balance between the solvent solubility of the amorphous polymer and the PTC characteristics of the crystalline polymer is obtained. However, when these properties alone are viewed individually as solvent solubility and PTC properties, none of these properties can be optimized, It can not be said that may not always satisfactory in both respects the agent soluble and PTC characteristics.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、印刷法などにより基材表面に直接塗布成膜すること
ができ、且つ、電子線、又はγ線などの放射線の照射な
どの煩雑な架橋処理をしなくとも優れたPTC特性を有
する面状発熱体や素子(以下、これらを「PTC材料」
と総称する。)を容易に作製することができる樹脂組成
物を提供せんとするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention can be applied directly to a substrate surface by a printing method or the like to form a film, and can be used for irradiation of radiation such as electron beam or γ-ray. A sheet heating element or element having excellent PTC characteristics without complicated cross-linking treatment (hereinafter referred to as “PTC material”
Collectively. ) Is to be provided.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係るPTC特性を有する樹脂組成物は、ガ
ラス転移温度が50℃以下の溶剤可溶性ポリエステル樹
脂をベースポリマーとし、これと該ポリエステル樹脂1
00容量部に対し20〜100容量部の導電性充填剤を
有機溶剤に溶解及び分散させたインク状又はペースト状
の主剤と、硬化剤との2液からなることを特徴とし、前
記インク状又はペースト状の主剤と、硬化剤との2液を
混合したのち、電極を備えた基材に塗布し、これを加熱
して乾燥硬化させることでポリエステル樹脂を架橋させ
てPTC材料を製造する。
In order to achieve the above object, a resin composition having PTC characteristics according to the present invention comprises a solvent-soluble polyester resin having a glass transition temperature of 50 ° C. or lower as a base polymer, and a base resin comprising the same. Polyester resin 1
20 parts by volume to 100 parts by volume of a conductive filler is dissolved and dispersed in an organic solvent in the form of an ink or paste in which an organic solvent is used, and a curing agent, comprising two liquids, After mixing the two liquids of the paste-form base material and the curing agent, the mixture is applied to a substrate provided with electrodes, and heated and dried and cured to crosslink the polyester resin to produce a PTC material.

【0011】本発明のPTC組成物について更に詳細に
説明する。各種の溶剤可溶性ポリエステル樹脂をベース
ポリマーとし、これに粒状の導電性カーボンを分散して
ペースト状とし、このペーストを電極を備えたポリエス
テルフィルムに塗布して乾燥し(図4参照)、塗膜の温
度−抵抗値を測定したところ、図2に示すように、温度
が上昇しても抵抗値がほどんど変化しない特性曲線(C
L−a)、温度の上昇に伴い抵抗値が初期の40〜50
倍程度まで緩やかに上昇し、再び緩やかに降下する特性
曲線(CL−b)及び温度の上昇に伴い抵抗値が初期の
100倍程度まで急激に上昇し、再び急激に降下する特
性曲線(CL−b)の3つのパターンの特性になった。
この場合、使用したポリエステル樹脂が3つのパターン
のどの特性曲線を示すかを調べたところ、例えばポリエ
ステル樹脂のガラス転移温度(Tg)などの樹脂の基本
特性とは特に相関はなかったが、いずれの特性曲線もP
TC材料として必要とされる特性に照らし、実用に適す
るものではなかった。このことから、単にベースポリマ
ーとしてポリエステル樹脂を用いるだけでは、優れたP
TC特性を有する樹脂組成物を得ることはできないこと
が明らかである。
The PTC composition of the present invention will be described in more detail. Various solvent-soluble polyester resins are used as a base polymer, and granular conductive carbon is dispersed in the base polymer to form a paste. The paste is applied to a polyester film provided with electrodes and dried (see FIG. 4). When the temperature-resistance value was measured, as shown in FIG. 2, the characteristic curve (C
La), the resistance value is initially 40 to 50 as the temperature rises.
A characteristic curve (CL-b) that gradually rises up to about twice and gradually falls again, and a characteristic curve (CL-b) in which the resistance value rapidly rises to about 100 times the initial value as the temperature rises and then drops sharply again. The characteristics of the three patterns b) were obtained.
In this case, when the used polyester resin showed which characteristic curve of the three patterns, it was found that there was no particular correlation with the basic characteristics of the resin such as the glass transition temperature (Tg) of the polyester resin. The characteristic curve is also P
In view of the characteristics required as a TC material, it was not suitable for practical use. For this reason, simply using a polyester resin as the base polymer would provide an excellent P
It is clear that a resin composition having TC characteristics cannot be obtained.

【0012】次に、上記と同じカーボン分散ペーストに
少量の多価イソシアネート化合物を混合し、攪拌後、前
記と同様に電極を備えたポリエステルフィルムに塗布
し、加熱硬化した塗膜の温度−抵抗値を測定すると、多
価イソシアネートを混合しない図2の場合とは大きく異
なり、図3に示すような、温度が上昇しても抵抗値がほ
どんど変化しない特性曲線(CL−a)と、温度の上昇
に伴い抵抗値が初期の1000倍以上まで急激に上昇
し、更に温度を上げても初期の1000倍以上の抵抗値
が維持され、実質上絶縁状態となる特性曲線(CL−
d)の2つのパターンの特性曲線になった。この場合、
いずれの特性曲線を示すかは、多価イソシアネート化合
物を混合しない場合に図2に示す3つのパターンのいず
れの特性曲線を示すかとは全く関係なく、ベースポリマ
ーとして使用したポリエステル樹脂のガラス転移温度
(Tg)と関係していることがわかった。即ち、ガラス
転移温度(Tg)が50℃よりも高いポリエステル樹脂
をベースポリマーとしたものは、CL−aの特性曲線の
如く全くPTC特性を示さなかったのに対し、ガラス転
移温度(Tg)が50℃以下のポリエステル樹脂をベー
スポリマーとしたものは、CL−dの特性曲線の如く、
特定温度で極めて急激な抵抗値の上昇が発揮され、その
抵抗値の変化倍率は室温における抵抗値(初期の抵抗
値)の1000倍以上にも達し、更に180℃以上に温
度を上げても初期の抵抗値の1000倍以上の抵抗値に
維持され、実質上絶縁状態を保っていた。即ち、ガラス
転移温度(Tg)が50℃以下のポリエステル樹脂をベ
ースポリマーとし、これに導電性充填剤を分散し、多価
イソシアネート化合物により架橋することにより、放射
線などの照射を必要とすることなく、優れたPTC特性
を有し、しかもスイッチ温度以降、更に昇温しても再び
抵抗値が下がることのないPTC材料を得ることができ
る。
Next, a small amount of a polyvalent isocyanate compound was mixed with the same carbon-dispersed paste as described above, and after stirring, the mixture was applied to a polyester film provided with electrodes in the same manner as described above, and the temperature-resistance value of the heat-cured coating film was applied. 2 is significantly different from the case of FIG. 2 in which the polyvalent isocyanate is not mixed, as shown in FIG. 3, a characteristic curve (CL-a) in which the resistance value hardly changes even when the temperature rises, As the temperature rises, the resistance value rapidly increases to 1000 times or more of the initial value, and even when the temperature is further increased, the resistance value of 1000 times or more of the initial value is maintained, and the characteristic curve (CL-
The characteristic curves of the two patterns d) were obtained. in this case,
Which of the three characteristic patterns shown in FIG. 2 when the polyvalent isocyanate compound is not mixed is completely independent of which characteristic curve is exhibited, and the glass transition temperature of the polyester resin used as the base polymer ( Tg). That is, a polyester resin having a glass transition temperature (Tg) higher than 50 ° C. as a base polymer did not show any PTC characteristics like the characteristic curve of CL-a, whereas the glass transition temperature (Tg) was low. Those using a polyester resin having a temperature of 50 ° C. or lower as a base polymer, like the characteristic curve of CL-d,
At a specific temperature, the resistance value rises extremely sharply, and the rate of change of the resistance value reaches 1000 times or more of the resistance value at room temperature (initial resistance value). Was maintained at 1000 times or more of the resistance value of the above, and substantially maintained an insulating state. That is, by using a polyester resin having a glass transition temperature (Tg) of 50 ° C. or less as a base polymer, dispersing a conductive filler in the base resin, and crosslinking with a polyvalent isocyanate compound, without requiring irradiation with radiation or the like. A PTC material having excellent PTC characteristics and having a resistance value that does not decrease again even when the temperature is further increased after the switch temperature can be obtained.

【0013】本発明のPTC組成物において、多価イソ
シアネート化合物は、ポリエステル分子末端のカルボキ
シル基及び水酸基と反応し、架橋が進むものであるが、
なぜガラス転移温度(Tg)が50℃以下のポリエステ
ル樹脂に限りPTC特性が発揮されるのか、そのメカニ
ズムは未解析である。しかし、その効果は上記のように
驚くほどのものであった。更に、硬化温度を変えるとス
イッチ温度(Ts)の変わることが分かった(図5参
照)。つまり、本発明のPTC組成物は、硬化温度を規
定することにより、任意のスイッチ温度(Ts)を有す
るPTC材料を得ることができる。
In the PTC composition of the present invention, the polyvalent isocyanate compound reacts with a carboxyl group and a hydroxyl group at the terminal of the polyester molecule to promote crosslinking.
The mechanism of why the PTC property is exhibited only for polyester resins having a glass transition temperature (Tg) of 50 ° C. or lower has not been analyzed. However, the effect was surprising as described above. Further, it was found that changing the curing temperature changed the switch temperature (Ts) (see FIG. 5). That is, the PTC composition of the present invention can provide a PTC material having an arbitrary switch temperature (Ts) by defining the curing temperature.

【0014】本発明のPTC組成物におけるベースポリ
マーである溶剤可溶性ポリエステル樹脂は、ポリエチレ
ングリコールテレフタレート又はポリブチレングリコー
ルテレフタレートなどのポリエステルにおける酸成分又
はグリコール成分の一部を他の成分(共重合単量体)に
換えてランダム重合させることによって融点及び結晶性
を低下させて溶解性を付与することにより製造すること
ができる。前記の共重合単量体として使用される酸成分
としては、例えばオルトフタル酸;イソフタル酸;2,
6−ナフタレンジカルボン酸;パラフェニレンジカルボ
ン酸などの芳香族2価カルボン酸、1,4−シクロヘキ
サンジカルボン酸などの脂環式2価カルボン酸、コハク
酸;グルタル酸;アジピン酸;スベリン酸;アゼライン
酸;セバシン酸などの脂肪族2価カルボン酸がある。ま
た、グリコール成分としては、1,2−プロピレングリ
コール;1,4−ブタンジオール;1,5−ペンタンジ
オール;1,6−ヘキサンジオール;ネオペンチルグリ
コールなどの脂肪族2価アルコール、ジエチレングリコ
ール;トリエチレングリコール;ジプロピレングリコー
ル;トリプロピレングリコールなどのポリグリコールが
ある。これら共重合単量体は、単独でも、また2種以上
を組み合わせて使用してもよい。上記のような方法で共
重合を行い溶剤可溶性を付与したポリエステル樹脂は、
多数のメーカーから市販されており、それらの中からガ
ラス転移温度(Tg)が50℃以下で、本発明の目的に
合った適当なものを選んで使用することもできる。しか
も、このベースポリマーとしてのポリエステル樹脂の選
択条件は、上記ガラス転移温度(Tg)のみであり、従
来のインク状又はペースト状のPTC組成物のようじベ
ースポリマーの溶剤可溶性とPTC特性との兼ね合いは
全く配慮する必要はない。なお、上記ポリエステル樹脂
は複数混合して使用してもよい。
The solvent-soluble polyester resin which is the base polymer in the PTC composition of the present invention is a polyester resin such as polyethylene glycol terephthalate or polybutylene glycol terephthalate, which is obtained by converting a part of an acid component or a glycol component to another component (a copolymer monomer). ) Can be produced by lowering the melting point and crystallinity by imparting solubility by random polymerization. Examples of the acid component used as the copolymer monomer include orthophthalic acid; isophthalic acid;
6-naphthalenedicarboxylic acid; aromatic divalent carboxylic acid such as paraphenylenedicarboxylic acid, alicyclic divalent carboxylic acid such as 1,4-cyclohexanedicarboxylic acid, succinic acid; glutaric acid; adipic acid; suberic acid; azelaic acid Aliphatic dicarboxylic acids such as sebacic acid. Examples of the glycol component include 1,2-propylene glycol; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol; aliphatic dihydric alcohols such as neopentyl glycol; diethylene glycol; Glycol; dipropylene glycol; polyglycols such as tripropylene glycol. These copolymer monomers may be used alone or in combination of two or more. Polyester resin copolymerized by the above method to impart solvent solubility,
It is commercially available from a number of manufacturers, and among them, one having a glass transition temperature (Tg) of 50 ° C. or less and suitable for the purpose of the present invention can be used. Moreover, the selection condition of the polyester resin as the base polymer is only the above-mentioned glass transition temperature (Tg), and the balance between the solvent solubility of the conventional base polymer in the form of an ink or a paste and the PTC property is not balanced. You don't need to worry about it. The polyester resin may be used as a mixture of two or more.

【0015】導電性充填剤としては、カーボン粉末、金
属粉末、あるいは金属メッキ粉末など従来公知の各種材
料の中から選択して使用することができる。但し、金属
粉末や金属メッキ粉末を使用する場合は、鉄、銅、アル
ミニウムなどのような酸化しやすい金属は避けることが
好ましい。導電性充填剤の形状としては、ストラクチャ
ーの発達のない0.006〜50μm程度の粒状又は球
状粉末が好ましく、中でも、ファーネスブラック、サー
マルブラック、カーボンビーズなどのカーボン粉末がよ
り好ましい。また、上記導電性充填剤は、単独で使用し
てもよいし、2種以上を混合して使用してもよい。導電
性充填剤の配合量は組成物の初期抵抗値(室温での抵抗
値;Ro)に関係し、充填剤の配合量が多いほど初期抵
抗値(Ro)は低く、配合量が少ないほど初期抵抗値
(Ro)は高くなるので、用途に応じた適性抵抗値を発
揮するように配合量を調整するが、通常、ベースポリマ
ーのポリエステル樹脂100容量部に対して20〜10
0容量部の範囲で配合する。導電性充填剤がカーボン粉
末の場合にはポリエステル樹脂100重量部に対して2
0〜300重量部程度の配合量とすることが好ましい。
本発明でPTC組成物のベースポリマーとして使用する
溶剤可溶性ポリエステル樹脂は、上記カーボンブラック
その他の充填剤の分散性がよく、本発明に係る組成物は
導電性充填剤の配合量に関係なく優れたPTC特性を発
揮することから、上記の範囲内で導電性充填剤の種類並
びに配合量を決めることにより、体積抵抗率0.1〜1
000Ω・cm、導電性充填剤としてカーボン粉末を用
いた場合でも体積抵抗率1〜1000Ω・cmの広範囲
のPTC材料を製造することができる。
As the conductive filler, any of various conventionally known materials such as carbon powder, metal powder and metal plating powder can be used. However, when metal powder or metal plating powder is used, it is preferable to avoid easily oxidizable metals such as iron, copper, and aluminum. As the shape of the conductive filler, a granular or spherical powder having a structure of about 0.006 to 50 μm without development of a structure is preferable, and carbon powder such as furnace black, thermal black and carbon beads is more preferable. Further, the above-mentioned conductive fillers may be used alone or in combination of two or more. The amount of the conductive filler is related to the initial resistance value (resistance at room temperature; Ro) of the composition. The larger the amount of the filler, the lower the initial resistance value (Ro). Since the resistance value (Ro) becomes high, the compounding amount is adjusted so as to exhibit an appropriate resistance value according to the application.
It is blended in the range of 0 volume parts. When the conductive filler is carbon powder, 2 parts per 100 parts by weight of the polyester resin is used.
It is preferable that the amount is about 0 to 300 parts by weight.
The solvent-soluble polyester resin used as the base polymer of the PTC composition in the present invention has a good dispersibility of the carbon black and other fillers, and the composition according to the present invention is excellent regardless of the amount of the conductive filler. Since the PTC characteristics are exhibited, the volume resistivity is determined to be 0.1 to 1 by determining the type and amount of the conductive filler within the above range.
Even if carbon powder is used as the conductive filler, a wide range of PTC materials having a volume resistivity of 1 to 1000 Ω · cm can be produced.

【0016】架橋剤として使用する多価イソシアネート
化合物としては、トルエンジイソシアネート(TD
I);ジアミノジフェニルメタンジイソシアネート(M
DI);1,5−ナフタレンジイソシアネート(ND
I);トルイジンジイソシアネート(TODI);キシ
リレンジイソシアネート(XDI);p−フェニレンジ
イソシアネートなどの芳香族ジイソシアネート、イソホ
ロンジイソシアネート(IDPI);水添XDI;水添
MDIなどの脂環族ジイソシアネート、ヘキサメチレン
ジイソシアネート(HDI);トリメチルヘキサメチレ
ンジイソシアネート(TMDI);1,3,6−ヘキサ
メチレントリイソシアネート;リジンジイソシアネート
(LDI);1,6,11−ウンデカントリイソシアネ
ートなどの脂肪族ジイソシアネート及び脂肪族トリイソ
シアネートのような一般に汎用されている多価イソシア
ネート化合物がある。これらの多価イソシアネート化合
物の使用量は、ポリエステル樹脂100重量部に対して
1〜25重量部、更には、2.5〜20重量部程度が好
ましい。多価イソシアネート化合物の使用量が1重量部
よりも少ないと架橋効果は低く、十分なPTC特性が得
られない。25重量部よりも多い場合は、特性的な支障
は特にないが、あえて多量に使用する必要がない。多価
イソシアネート化合物は、溶剤可溶性ポリエステル樹脂
と導電性充填剤とを有機溶剤に溶解及び分散させて予め
インク状又はペースト状に調製した主剤に、塗布前に混
合し、塗布後に加熱硬化させることが、本発明の効果を
達成するために必須であり、例えば、事前にポリエステ
ル樹脂と多価イソシアネート化合物とを反応させた溶液
を用いて導電性組成物ペーストを作製し、これを塗布乾
燥しても多価イソシアネート化合物を使用した効果はな
い。
As the polyvalent isocyanate compound used as a crosslinking agent, toluene diisocyanate (TD
I); diaminodiphenylmethane diisocyanate (M
DI); 1,5-naphthalenediisocyanate (ND
I); Toluidine diisocyanate (TODI); Xylylene diisocyanate (XDI); Aromatic diisocyanate such as p-phenylene diisocyanate, isophorone diisocyanate (IDPI); Hydrogenated XDI; Alicyclic diisocyanate such as hydrogenated MDI; HDI); trimethylhexamethylene diisocyanate (TMDI); 1,3,6-hexamethylene triisocyanate; lysine diisocyanate (LDI); aliphatic diisocyanates such as 1,6,11-undecane triisocyanate and aliphatic triisocyanates There are generally used polyvalent isocyanate compounds. The amount of these polyvalent isocyanate compounds to be used is preferably about 1 to 25 parts by weight, more preferably about 2.5 to 20 parts by weight, based on 100 parts by weight of the polyester resin. If the amount of the polyvalent isocyanate compound used is less than 1 part by weight, the crosslinking effect is low and sufficient PTC characteristics cannot be obtained. When the amount is more than 25 parts by weight, there is no particular problem, but there is no need to use a large amount. The polyvalent isocyanate compound can be dissolved and dispersed in an organic solvent by dissolving a solvent-soluble polyester resin and a conductive filler into an ink- or paste-based base material, mixed before application, and heat-cured after application. It is essential to achieve the effects of the present invention, for example, to prepare a conductive composition paste using a solution in which a polyester resin and a polyvalent isocyanate compound are reacted in advance, and to apply and dry this paste There is no effect of using a polyvalent isocyanate compound.

【0017】更に、本発明に係るPTC組成物には、ポ
リエステル樹脂と多価イソシアネートとの架橋反応を促
進するために触媒を使用することができる。この触媒と
しては、トリメチルアミン;N,N−ジメチルシクロヘ
キシルアミン;N,N,N',N'−テトラメチルエチレ
ンジアミン;N,N,N',N'−テトラメチルプロパン
1,3−ジアミン;N,N,N',N'−テトラメチルヘ
キサン1,6−ジアミン;N,N,N',N",N"−ペ
ンタメチルジエチレントリアミン;テトラメチルグアニ
ジン;トリエチレンジアミン;N,N−ジメチルピペラ
ジン;N−メチルモルホリン;1,2−ジメチルイミダ
ゾールなどの3級アミン化合物、スタナスオクトエー
ト;ジブチルチンアセテート;ジブチルチンジラウレー
ト;ジブチルチンメルカプチド;ジブチルチンチオカル
ボキシレート;ジブチルチンジマレート;ジオクチルチ
ンメルカプチド;ジオクチルチンチオカルボキシレート
などの有機金属化合物を使用することができる。触媒量
は、少ないと硬化促進効果が低く、多いと多価イソシア
ネート化合物混合後の硬化性組成物のポットライフが短
くなり使い勝手が悪い。従って、触媒の使用量は、硬化
促進効果とポットライフとの両者の兼ね合いから使用触
媒の活性効果に応じて決定するが、通常、ポリエステル
樹脂100重量部に対して0〜0.5重量部程度が好ま
しい。触媒は、予め主剤に混合しておくか、又は主剤に
多価イソシアネート化合物を混合する時に同時に添加し
てもよい。
Furthermore, a catalyst can be used in the PTC composition according to the present invention in order to promote a crosslinking reaction between the polyester resin and the polyvalent isocyanate. Examples of the catalyst include trimethylamine; N, N-dimethylcyclohexylamine; N, N, N ′, N′-tetramethylethylenediamine; N, N, N ′, N′-tetramethylpropane-1,3-diamine; N, N ', N'-tetramethylhexane 1,6-diamine; N, N, N', N ", N"-pentamethyldiethylenetriamine;tetramethylguanidine;triethylenediamine; N, N-dimethylpiperazine; Methylmorpholine; tertiary amine compounds such as 1,2-dimethylimidazole, stannasoctoate; dibutyltin acetate; dibutyltin dilaurate; dibutyltin mercaptide; dibutyltin thiocarboxylate; dibutyltin dimaleate; dioctyltin mercaptide; Organic gold such as dioctyltin thiocarboxylate The compounds can be used. When the amount of the catalyst is small, the effect of promoting the curing is low, and when the amount is large, the pot life of the curable composition after mixing the polyvalent isocyanate compound is short, and the usability is poor. Therefore, the amount of the catalyst used is determined according to the activation effect of the used catalyst in consideration of both the curing acceleration effect and the pot life, but is usually about 0 to 0.5 part by weight based on 100 parts by weight of the polyester resin. Is preferred. The catalyst may be preliminarily mixed with the main component, or may be added at the same time when the polyvalent isocyanate compound is mixed with the main component.

【0018】溶剤は、使用するポリエステル樹脂を溶解
するものの中から、例えばアルコール系の溶剤など多価
イソシアネート化合物と反応する官能基を有するもの以
外のものを使用する。具体例としては、酢酸エチル;酢
酸ブチル;安息香酸メチル;安息香酸エチルなどのエス
テル系溶剤、酢酸セロソルブ;酢酸ブチルセロソルブ;
酢酸カルビトール;酢酸ブチルカルビトールなどのグリ
コールエステル系溶剤、コハク酸ジメチル;コハク酸ジ
エチル;アジピン酸ジメチル;アジピン酸ジエチルなど
の脂肪族2塩基酸エステル系溶剤、アセトン;メチルエ
チルケトン;メチルイソブチルケトン;イソホロンなど
のケトン系溶剤、ジオキサン;テトラヒドロフランなど
の環式エーテル系溶剤などを使用することができる。溶
剤使用量は特に制限はないが、主剤がスクリーン印刷な
どの塗布方法に応じた適正粘度になる量を使用する。通
常、主剤中で30〜60重量%となるように使用され
る。
As the solvent, those which dissolve the polyester resin to be used, other than those having a functional group which reacts with the polyvalent isocyanate compound, such as an alcohol-based solvent, are used. Specific examples include ethyl acetate; butyl acetate; methyl benzoate; ester solvents such as ethyl benzoate; cellosolve acetate; butyl cellosolve acetate;
Carbitol acetate; glycol ester solvents such as butyl carbitol acetate; dimethyl succinate; diethyl succinate; dimethyl adipate; aliphatic dibasic acid ester solvents such as diethyl adipate; acetone; methyl ethyl ketone; methyl isobutyl ketone; isophorone Ketone solvents such as dioxane; and cyclic ether solvents such as tetrahydrofuran can be used. The amount of the solvent used is not particularly limited, but the amount is such that the main agent has an appropriate viscosity according to an application method such as screen printing. Usually, it is used in an amount of 30 to 60% by weight in the main ingredient.

【0019】本発明に係るPTC組成物には、以上の成
分の他に、必要によっては、分散剤、消泡剤、チクソ性
向上剤、レベリング剤などの添加剤を添加してもよい。
If necessary, additives such as a dispersant, an antifoaming agent, a thixotropic agent, and a leveling agent may be added to the PTC composition according to the present invention.

【0020】本発明のPTC組成物によりPTC材料を
製造する方法を説明する。主剤は、20〜40%のポリ
エステル樹脂溶液に所定量の導電性充填剤、及び必要に
より硬化触媒、その他の添加剤を配合し、3本ロールミ
ル又はプラネタリーミキサーなどの混合機でよく混練
後、必要によっては溶剤を更に加えて適正粘度に調整す
る。使用にあたっては、先ず、主剤の必要量を計量分取
し、この主剤中の樹脂分100重量部に対して2.5〜
20重量部の多価イソシアネート化合物(通常、主剤1
00重量部に対して0.5〜5重量部)を加えてよく攪
拌した後、電極を備えた基材に塗布する。塗布方法は、
スクリーン印刷、ステンシル印刷、ロールコーター、グ
ラビアコーター、ハケ塗りなどの通常の塗布方法を採用
することができる。塗布後、オーブン炉で加熱し、乾燥
及び硬化を行う。硬化後の塗膜のスイッチ温度(Ts)
は、使用したポリエステル樹脂、導電性充填剤の種類及
びその配合割合により変わるが、硬化温度によっても大
きく変わるので、所定のスイッチ温度(Ts)を有する
硬化塗膜を得るためにはオーブン炉を所定温度に管理し
て行う必要がある。乾燥、硬化時間は、硬化温度、硬化
促進触媒の種類及び添加量により異なるが、通常3〜1
5時間を要する。
A method for producing a PTC material from the PTC composition of the present invention will be described. The main agent is a 20 to 40% polyester resin solution, a predetermined amount of conductive filler, and if necessary, a curing catalyst, and other additives are blended and kneaded well with a mixer such as a three-roll mill or a planetary mixer. If necessary, a solvent is further added to adjust the viscosity to an appropriate value. In use, first, the required amount of the main agent is measured and fractionated, and 2.5 to 2.5 parts by weight based on 100 parts by weight of the resin component in the main agent.
20 parts by weight of a polyvalent isocyanate compound (usually,
(0.5 to 5 parts by weight with respect to 00 parts by weight), and after stirring well, the mixture is applied to a substrate provided with electrodes. The application method is
Usual coating methods such as screen printing, stencil printing, roll coater, gravure coater, brush coating and the like can be employed. After the application, the coating is heated in an oven furnace to perform drying and curing. Switch temperature of cured coating (Ts)
Depends on the type of the polyester resin and the conductive filler used and the compounding ratio thereof, but varies greatly depending on the curing temperature. Therefore, in order to obtain a cured coating film having a predetermined switch temperature (Ts), the oven furnace is required to have a predetermined temperature. It is necessary to control the temperature. Drying and curing times vary depending on the curing temperature, the type and amount of the curing accelerating catalyst, but usually from 3 to 1
It takes 5 hours.

【0021】本発明に使用する溶剤可溶性ポリエステル
樹脂は、他の分野では有機あるいは無機の多くの基材に
対する密着性がよく、可撓性、耐候性、熱安定性に優れ
た接着剤や塗料用途に広く使用されている。従って、同
じこのポリエステル樹脂をベースポリマーとする本発明
に係るPTC組成物も、ポリエステルフィルム、ポリイ
ミドフィルム、ポリ塩化ビニルなどのプラスチック、又
はセラミック、ガラスなどの無機材料、あるいは木材、
繊維などとの密着性がよく、これら広範囲の材料を基材
として使用することができる。基材の電極形成方法は金
属箔の貼り付け、又はエッチング、導電ペーストの印刷
などがあるが、特に限定するものではない。
The solvent-soluble polyester resin used in the present invention has good adhesion to many organic or inorganic substrates in other fields, and is used for adhesives and coatings excellent in flexibility, weather resistance and heat stability. Widely used for. Therefore, the PTC composition according to the present invention using the same polyester resin as a base polymer is also a polyester film, a polyimide film, plastics such as polyvinyl chloride, or ceramics, inorganic materials such as glass, or wood,
It has good adhesion to fibers and the like, and these wide-ranging materials can be used as a base material. Examples of the method for forming an electrode on a base material include, but are not limited to, attaching a metal foil, etching, and printing a conductive paste.

【0022】[0022]

【実施例】次に実施例を挙げて本発明を具体的に説明す
るが、これらの実施例は何ら本発明を制限するものでは
ない。
EXAMPLES Next, the present invention will be specifically described with reference to examples, but these examples do not limit the present invention at all.

【0023】実施例1〜7、比較例1〜13 表1に示す、ガラス転移温度(Tg)が異なる10種類
の溶剤可溶性ポリエステル樹脂100重量部の36%イ
ソホロン溶液に、粒径0.09μmのサーマルブラック
(旭カーボン(株))100重量部及びジブチルチンラ
ウレート0.10重量部を配合し、3本ロールミルで混
練してペーストを調製した。このペーストをそのまま、
又はこのペーストを主剤としてこれに10重量部の多価
イソシアネート化合物(住友バイエル(株)商品名;ス
ミジュールL)を硬化剤として混合した後、図4に示し
たような、30mmの距離をおいて対設した幅2.5m
m、厚さ10μmの1対の帯状の銀電極を備えた厚さ1
88μmのポリエステルフィルム(PETフィルム)に
幅30mmにわたって塗布し(図中の斜線部分)、オー
ブン炉で80℃、12時間加熱して乾燥硬化した後の電
極間のPTC特性を測定し、結果を表1に示した。
Examples 1 to 7 and Comparative Examples 1 to 13 As shown in Table 1, 100% by weight of a 10% solvent-soluble polyester resin having a different glass transition temperature (Tg) was added to a 36% isophorone solution having a particle size of 0.09 μm. 100 parts by weight of thermal black (Asahi Carbon Co., Ltd.) and 0.10 parts by weight of dibutyltin laurate were blended and kneaded with a three-roll mill to prepare a paste. This paste
Alternatively, this paste is used as a base material, and 10 parts by weight of a polyvalent isocyanate compound (Sumitomo Bayer Co., Ltd .; Sumidur L) is mixed as a curing agent, and then a distance of 30 mm as shown in FIG. 2.5m width opposite
m, a pair of strip-shaped silver electrodes having a thickness of 10 μm and a thickness of 1
The PTC characteristics between the electrodes were measured after applying to an 88 μm polyester film (PET film) over a width of 30 mm (shaded area in the figure), heating in an oven furnace at 80 ° C. for 12 hours, and drying and curing. 1 is shown.

【0024】[0024]

【表1】 [Table 1]

【0025】尚、表1中の記号の意味は下記のとおりで
ある。 Ro:初期抵抗値(室温での抵抗値)。 Ts:スイッチ温度(抵抗値が急激に変化する温度)。 Tp:ピーク温度(抵抗値が最大になる温度)、但し
「>」印はスイッチ温度(Ts)以後、温度−抵抗値の
変曲温度なく上昇。 Mc:ピーク温度(Tp)での変化倍率(Rp/Ro、Rp
はTpでの抵抗値)、但し、Tpが「>」印の場合はTs
よりも20℃高い温度での抵抗値(Rs+20)の変化倍率
(Rs+20/Ro)を採った。 α:スイッチ温度以後の温度上昇に伴う抵抗値上昇勾
配。 Dc:ピーク温度(Tp)よりも50℃高い温度での抵抗
値(Rp+50)の変化倍率(Rp+50/Ro)、但し、Tpが
「>」印の場合はTsよりも80℃高い温度での抵抗値
(Rs+80)の変化倍率(Rs+80/Ro)を採った。 CL−a〜d:図1及び図2に示す特性曲線である。
The meanings of the symbols in Table 1 are as follows. Ro: Initial resistance value (resistance value at room temperature). Ts: switch temperature (temperature at which the resistance value changes rapidly). Tp: peak temperature (temperature at which the resistance value becomes maximum), where the symbol “>” rises after the switch temperature (Ts) without inflection temperature of temperature-resistance value. Mc: change rate (Rp / Ro, Rp) at peak temperature (Tp)
Is the resistance value at Tp), however, when Tp is a “>” mark, Ts
The change ratio (Rs + 20 / Ro) of the resistance value (Rs + 20) at a temperature higher by 20 ° C. than that was obtained. α: Resistance value rise gradient accompanying temperature rise after the switch temperature. Dc: change rate (Rp + 50 / Ro) of the resistance value (Rp + 50) at a temperature 50 ° C. higher than the peak temperature (Tp), where Tp is 80 ° C. higher than Ts when Tp is a “>” mark The change ratio (Rs + 80 / Ro) of the resistance value (Rs + 80) at the temperature was taken. CL-a to d: characteristic curves shown in FIGS. 1 and 2.

【0026】表1に示した結果のとおり、比較例1〜
7、9、11及び13のように硬化剤を混合しないもの
は、PTC特性を全く示さないか(特性曲線CL−
a)、PTC特性を示しても抵抗値の変化が緩慢である
か(特性曲線CL−b)、又はピーク温度を超えた後の
抵抗値の再降下が大きかった(CL−c)。これに対
し、実施例1〜7のように硬化剤を配合し、且つガラス
転移温度(Tg)が50℃以下のポリエステル樹脂を使
用したものは、極めてシャープな抵抗値変化を示した
(特性曲線CL−d)。しかし、硬化剤を配合したもの
の中でも、比較例8、10及び12のように、ガラス転
移温度(Tg)が50℃よりも高いポリエステル樹脂を
使用したものは、全くPTC特性を示さなかった(特性
曲線CL−a)。
As shown in Table 1, Comparative Examples 1 to
Those which do not contain a curing agent such as 7, 9, 11 and 13 show no PTC characteristics at all (characteristic curve CL-
a), the change of the resistance value was slow even if the PTC characteristic was exhibited (characteristic curve CL-b), or the resistance value dropped after exceeding the peak temperature was large (CL-c). On the other hand, those using a polyester resin having a glass transition temperature (Tg) of 50 ° C. or less as shown in Examples 1 to 7 showed an extremely sharp change in resistance value (characteristic curve). CL-d). However, among those containing a curing agent, those using a polyester resin having a glass transition temperature (Tg) higher than 50 ° C., such as Comparative Examples 8, 10 and 12, did not show any PTC characteristics (characteristics). Curve CL-a).

【0027】実施例8〜12、比較例14〜16 ガラス転移温度(Tg)が6℃の溶剤可溶性ポリエステ
ル樹脂(東洋紡(株)商品名;バイロン300)100
重量部の36%イソホロン溶液に、粒径0.09μmの
サーマルブラック(旭カーボン(株))100重量部及
びジブチルチンラウレート0.10重量部を配合し、3
本ロールミルで混練してペーストを調製した。このペー
ストに表2に示す所定量の多価イソシアネート化合物
(住友バイエル(株)商品名;スミジュールL)を硬化
剤として混合した後、前記と同様に図4に示した銀電極
を備えたポリエステルフィルムに塗布し、オーブン炉で
80℃、12時間加熱して乾燥硬化した後の電極間のP
TC特性を測定し、結果を表4に示した。尚、比較例1
6は、先ずポリエステル樹脂溶液にジブチルチンラウレ
ート及び2.5重量部の多価イソシアネート化合物を混
合し、80℃12時間加熱攪拌して反応させた溶液に1
00重量部のサーマルブラックを配合してペーストを調
製し、前記と同様に図4に示した銀電極を備えたポリエ
ステルフィルムに塗布し、オーブン炉で80℃、1時間
加熱して乾燥した後の電極間のPTC特性を測定した。
表中の記号は表1の場合と同様である。
Examples 8 to 12 and Comparative Examples 14 to 16 A solvent-soluble polyester resin having a glass transition temperature (Tg) of 6 ° C. (trade name of Toyobo Co., Ltd .; Byron 300) 100
100 parts by weight of thermal black (Asahi Carbon Co., Ltd.) having a particle size of 0.09 μm and 0.10 parts by weight of dibutyltin laurate were mixed with 36 parts by weight of a 36% isophorone solution.
The paste was prepared by kneading with this roll mill. After a predetermined amount of a polyvalent isocyanate compound (Sumitomo Bayer Corp .; Sumidule L) shown in Table 2 was mixed with this paste as a curing agent, the polyester having the silver electrode shown in FIG. After coating on a film and heating and drying at 80 ° C. for 12 hours in an oven furnace, P
The TC characteristics were measured, and the results are shown in Table 4. Comparative Example 1
6 is a solution obtained by first mixing dibutyltin laurate and 2.5 parts by weight of a polyisocyanate compound with a polyester resin solution, and heating and stirring the mixture at 80 ° C. for 12 hours.
A paste was prepared by blending 00 parts by weight of thermal black, applied to a polyester film provided with silver electrodes shown in FIG. 4 in the same manner as described above, and dried by heating at 80 ° C. for 1 hour in an oven furnace. The PTC characteristics between the electrodes were measured.
The symbols in the table are the same as in Table 1.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示した結果のとおり、比較例14,
15のように、多価イソシアネート化合物の量が1重量
部よりも少ないと、ピーク温度を超えた後に抵抗値の再
降下が見られ(特性曲線CL−c)、多価イソシアネー
ト化合物を配合した効果は不充分であった。これに対
し、実施例8〜12のように、多価イソシアネート化合
物を1重量部以上用いた場合には、抵抗値の再降下は見
られなくなるとともに、抵抗値の変化がシャープになり
優れたPTC特性が得られた(特性曲線CL−d)。し
かし、多価イソシアネート化合物を反応させて基材への
塗布前に架橋を終えたポリエステル樹脂を使用した比較
例16では、多価イソシアネート化合物を使用した効果
は全く表れなかった。このことから、多価イソシアネー
ト化合物を使用する効果は、ポリエステル樹脂の架橋を
基材への塗布後に行うことにより、はじめて発揮される
ことがわかる。
As shown in Table 2, Comparative Example 14
When the amount of the polyvalent isocyanate compound is less than 1 part by weight as in 15, the resistance value drops again after exceeding the peak temperature (characteristic curve CL-c), and the effect of blending the polyvalent isocyanate compound is obtained. Was inadequate. On the other hand, when the polyvalent isocyanate compound is used in an amount of 1 part by weight or more as in Examples 8 to 12, the resistance value does not drop again, and the change in the resistance value becomes sharp, resulting in an excellent PTC. Characteristics were obtained (characteristic curve CL-d). However, in Comparative Example 16 using a polyester resin which had been crosslinked before being applied to a substrate by reacting with a polyvalent isocyanate compound, the effect of using the polyvalent isocyanate compound did not appear at all. This indicates that the effect of using the polyvalent isocyanate compound is exhibited only when the crosslinking of the polyester resin is performed after application to the substrate.

【0030】実施例13 実施例8〜12と同じペーストに硬化剤として多価イソ
シアネート化合物(住友バイエル(株)商品名;スミジ
ュールN350)10重量部を混合し、前記と同様に図
4に示した銀電極を備えたポリエステルフィルムに塗布
した後、オーブン炉の温度(硬化温度)及び硬化時間を
表3に示すように変えて乾燥硬化させた後の電極間のP
TC特性を測定し、結果を表3に示した。尚、表中の特
性曲線〜は図5に示したものである。
Example 13 The same paste as in Examples 8 to 12 was mixed with 10 parts by weight of a polyvalent isocyanate compound (trade name of Sumitomo Bayer Co., Ltd .; Sumidur N350) as a curing agent, and as shown in FIG. After being applied to a polyester film provided with a silver electrode, the temperature (curing temperature) of the oven furnace and the curing time were changed as shown in Table 3 to obtain the P between the electrodes after drying and curing.
The TC characteristics were measured, and the results are shown in Table 3. The characteristic curves 1 to 3 in the table are shown in FIG.

【0031】[0031]

【表3】 [Table 3]

【0032】表3及び図5に示したとおり、スイッチ温
度(Ts)はオーブン炉の温度により変わる。従って、
このオーブン炉の温度、即ち、乾燥硬化温度を規定する
ことにより、広範囲での任意のスイッチ温度(Ts)を
有するPTC材料を製造することができる。
As shown in Table 3 and FIG. 5, the switch temperature (Ts) changes depending on the oven furnace temperature. Therefore,
By defining the oven furnace temperature, that is, the drying / curing temperature, a PTC material having a wide range of arbitrary switch temperatures (Ts) can be produced.

【0033】[0033]

【発明の効果】以上のように、本発明に係るPTC特性
を有する樹脂組成物は、ガラス転移温度が50℃以下で
ある溶剤可溶性ポリエステル樹脂をベースポリマーとす
る主剤と硬化剤との2液型のインク状又はペースト状で
あることから、スクリーン印刷法などの汎用の塗布法に
より基材に直接、膜を形成して、しかも高価な装置を用
いた放射線などの照射による架橋処理が不要で綿密な条
件管理を必要とせず、PTC素子や自己温度調節機能を
有する面状発熱体などの各種PTC材料を簡単に製造す
ることができる。また、この組成物は、硬化温度を変え
るだけで抵抗値が急激に変化するスイッチ温度を任意に
設定できることから、広い分野で利用できる。さらに、
硬化膜は多くの有機又は無機基材との密着性に優れ、可
撓性、耐候性、熱安定性にも優れたものである。
As described above, the resin composition having PTC characteristics according to the present invention is a two-pack type of a base resin and a curing agent having a solvent-soluble polyester resin having a glass transition temperature of 50 ° C. or lower as a base polymer. Since it is in the form of an ink or paste, a film can be formed directly on the substrate by a general-purpose coating method such as screen printing, and cross-linking treatment by irradiation with radiation using an expensive device is not necessary. Various PTC materials such as a PTC element and a planar heating element having a self-temperature control function can be easily manufactured without requiring any special condition management. In addition, this composition can be used in a wide range of fields because the switch temperature at which the resistance value changes rapidly only by changing the curing temperature can be arbitrarily set. further,
The cured film has excellent adhesion to many organic or inorganic substrates, and also has excellent flexibility, weather resistance, and thermal stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来のPTC組成物の温度−抵抗値特性曲線
を示すグラフ。
FIG. 1 is a graph showing a temperature-resistance characteristic curve of a conventional PTC composition.

【図2】 ポリエステル樹脂を架橋させていない樹脂組
成物の温度−抵抗値特性曲線を示すグラフ。
FIG. 2 is a graph showing a temperature-resistance characteristic curve of a resin composition in which a polyester resin is not crosslinked.

【図3】 ポリエステル樹脂を架橋させた樹脂組成物の
温度−抵抗値特性曲線を示すグラフ。
FIG. 3 is a graph showing a temperature-resistance characteristic curve of a resin composition obtained by crosslinking a polyester resin.

【図4】 組成物のPTC特性測定試験の説明図。FIG. 4 is an explanatory view of a PTC property measurement test of the composition.

【図5】 本発明のPTC組成物の硬化温度の違いによ
るスイッチ温度の違いを示す温度−抵抗変化倍率特性を
示すグラフ。
FIG. 5 is a graph showing a temperature-resistance change magnification characteristic showing a difference in switch temperature due to a difference in curing temperature of the PTC composition of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森口 千賀 兵庫県尼崎市西長洲町2丁目5番30号 扇 化学工業株式会社内 Fターム(参考) 3K092 PP20 QB18 QB21 QB76 VV40 4J002 CF041 CF051 CF061 CF071 CF081 DA036 DA066 EN028 EN038 EN048 ER007 EU118 EU138 EU238 EZ048 FD116 FD147 FD158 GQ00  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Chiga Moriguchi 2-5-30 Nishi-Nagasu-cho, Amagasaki-shi, Hyogo F-term in Ogi Chemical Industry Co., Ltd. (Reference) DA036 DA066 EN028 EN038 EN048 ER007 EU118 EU138 EU238 EZ048 FD116 FD147 FD158 GQ00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガラス転移温度が50℃以下の溶剤可溶
性ポリエステル樹脂をベースポリマーとし、これと該ポ
リエステル樹脂100容量部に対し20〜100容量部
の導電性充填剤とを有機溶剤に溶解及び分散させたイン
ク状又はペースト状の主剤と、硬化剤との2液からなる
ことを特徴とするPTC特性を有する樹脂組成物。
1. A solvent-soluble polyester resin having a glass transition temperature of 50 ° C. or lower is used as a base polymer, and this and a conductive filler in an amount of 20 to 100 parts by volume per 100 parts by volume of the polyester resin are dissolved and dispersed in an organic solvent. A resin composition having PTC characteristics, comprising two liquids of a cured ink or paste base material and a curing agent.
【請求項2】 前記硬化剤が脂肪族系多価イソシアネー
ト、芳香族系多価イソシアネート及び脂環族系多価イソ
シアネートからなる多価イソシアネート化合物の群から
選択されるものである請求項1記載の樹脂組成物。
2. The polyisocyanate compound according to claim 1, wherein the curing agent is selected from the group consisting of a polyvalent isocyanate compound comprising an aliphatic polyvalent isocyanate, an aromatic polyvalent isocyanate and an alicyclic polyvalent isocyanate. Resin composition.
【請求項3】 ポリエステル樹脂と多価イソシアネート
との架橋反応を促進する触媒を含む請求項2記載の樹脂
組成物。
3. The resin composition according to claim 2, further comprising a catalyst for promoting a crosslinking reaction between the polyester resin and the polyvalent isocyanate.
【請求項4】 前記触媒が3級アミン化合物及び有機金
属化合物からなる群から選択されるものである請求項3
記載の樹脂組成物。
4. The catalyst according to claim 3, wherein said catalyst is selected from the group consisting of tertiary amine compounds and organometallic compounds.
The resin composition as described in the above.
【請求項5】 ガラス転移温度が50℃以下の溶剤可溶
性ポリエステル樹脂をベースポリマーとし、これと該ポ
リエステル樹脂100容量部に対し20〜100容量部
の導電性充填剤とを有機溶剤に溶解及び分散させたイン
ク状又はペースト状の主剤と、硬化剤との2液を混合
し、加熱硬化した架橋硬化物からなるPTC特性を有す
る樹脂組成物。
5. A solvent-soluble polyester resin having a glass transition temperature of 50 ° C. or lower is used as a base polymer, and this and 20 to 100 parts by volume of a conductive filler per 100 parts by volume of the polyester resin are dissolved and dispersed in an organic solvent. A resin composition having a PTC characteristic comprising a crosslinked cured product obtained by mixing two liquids of a cured ink or paste-based main agent and a curing agent, and then heating and curing the mixture.
JP26253398A 1998-09-17 1998-09-17 Resin composition having PTC properties Expired - Fee Related JP3312600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26253398A JP3312600B2 (en) 1998-09-17 1998-09-17 Resin composition having PTC properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26253398A JP3312600B2 (en) 1998-09-17 1998-09-17 Resin composition having PTC properties

Publications (2)

Publication Number Publication Date
JP2000086872A true JP2000086872A (en) 2000-03-28
JP3312600B2 JP3312600B2 (en) 2002-08-12

Family

ID=17377131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26253398A Expired - Fee Related JP3312600B2 (en) 1998-09-17 1998-09-17 Resin composition having PTC properties

Country Status (1)

Country Link
JP (1) JP3312600B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093329A1 (en) * 2004-03-25 2005-10-06 Intellectual Property Bank Corp. Heater panel for indoor heating and indoor heating structure
JP2009507330A (en) 2005-07-12 2009-02-19 カーボニック・ヒート・コーポレイション Plate type heater and manufacturing method thereof
JPWO2008133073A1 (en) * 2007-04-18 2010-07-22 東洋紡績株式会社 Conductive paste, printed circuit using the same, and planar heating element
WO2011153489A2 (en) * 2010-06-04 2011-12-08 Robert Parker Self regulating electric heaters
US20120241685A1 (en) * 2011-03-21 2012-09-27 Chemscitech Inc Method for adjusting the switching temperature of PTC ink composition and PTC ink composition
JP2015101087A (en) * 2013-11-27 2015-06-04 昭生 荒木 Thermochromic writing instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119205A1 (en) 2014-02-06 2015-08-13 独立行政法人科学技術振興機構 Resin composition for temperature sensor, element for temperature sensor, temperature sensor, and method for producing element for temperature sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093329A1 (en) * 2004-03-25 2005-10-06 Intellectual Property Bank Corp. Heater panel for indoor heating and indoor heating structure
JP2009507330A (en) 2005-07-12 2009-02-19 カーボニック・ヒート・コーポレイション Plate type heater and manufacturing method thereof
JPWO2008133073A1 (en) * 2007-04-18 2010-07-22 東洋紡績株式会社 Conductive paste, printed circuit using the same, and planar heating element
WO2011153489A2 (en) * 2010-06-04 2011-12-08 Robert Parker Self regulating electric heaters
WO2011153489A3 (en) * 2010-06-04 2012-04-05 Robert Parker Self regulating electric heaters
US8481898B2 (en) 2010-06-04 2013-07-09 Robert Parker Self regulating electric heaters
US20120241685A1 (en) * 2011-03-21 2012-09-27 Chemscitech Inc Method for adjusting the switching temperature of PTC ink composition and PTC ink composition
JP2015101087A (en) * 2013-11-27 2015-06-04 昭生 荒木 Thermochromic writing instrument

Also Published As

Publication number Publication date
JP3312600B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JPS6239678A (en) Polymer thick film ink and its use
US20150361287A1 (en) Electrically conductive PTC screen printable ink with double switching temperatures and method of making the same
CN107004476A (en) Positive temperature coefficient composition
US10077372B2 (en) Electrically conductive PTC screen printable ink with double switching temperatures and method of making the same
JP5370357B2 (en) Conductive paste for sheet heating element, printed circuit using the same, sheet heating element
JP6412106B2 (en) Polymer thick film positive temperature coefficient carbon composition
JP3312600B2 (en) Resin composition having PTC properties
TW201840752A (en) Silver paste for flexible substrate
US5057245A (en) Fast curing and storage stable thermoset polymer thick film compositions
US20130193384A1 (en) Polymer thick film positive temperature coefficient carbon composition
JP3564758B2 (en)   PTC composition
JP2661944B2 (en) Coated articles
JP2001013015A (en) Filmy pressure sensitive sensor and semiconductor pressure sensitive ink for it
JP2018135422A (en) Hot-melt adhesive composition and laminate
JP2001011354A (en) Printing ink for self-temperature control heater
US20060043343A1 (en) Polymer composition and film having positive temperature coefficient
JP2008260897A (en) Electrically conductive composition, process for producing electrically conductive material and antistatic material
US5139819A (en) Fast curing and storage stable thermoset polymer thick film compositions
JPH11144848A (en) Ptc heating element and its manufacture
WO1990003651A1 (en) Conductive polymer composition
JP2021174747A (en) PTC resistor and planar heating element
JP4701932B2 (en) Resistor
US11401433B2 (en) Electrically conductive PTC screen printable ink composition with low inrush current and high NTC onset temperature
JP2002343606A (en) Polymer ptc composition and polymer ptc element
JP2008269876A (en) Conductive paste, printed circuit using the same, and flat heating body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees