JP2000086572A - Production of acetic anhydride - Google Patents

Production of acetic anhydride

Info

Publication number
JP2000086572A
JP2000086572A JP10261607A JP26160798A JP2000086572A JP 2000086572 A JP2000086572 A JP 2000086572A JP 10261607 A JP10261607 A JP 10261607A JP 26160798 A JP26160798 A JP 26160798A JP 2000086572 A JP2000086572 A JP 2000086572A
Authority
JP
Japan
Prior art keywords
reaction
acetic acid
oxygen
acetic anhydride
solid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10261607A
Other languages
Japanese (ja)
Inventor
Atsushi Okamoto
淳 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10261607A priority Critical patent/JP2000086572A/en
Publication of JP2000086572A publication Critical patent/JP2000086572A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a simple method for producing acetic anhydride under a extremely mild condition by reacting acetic acid with oxygen in the presence of a solid catalyst. SOLUTION: Acetic acid is reacted with oxygen (molecular oxygen, such as the pure oxygen, air, a diluted product obtained by diluting them with a gas inert to the reaction) in the presence of a solid catalyst (preferably the solid catalyst containing palladium) preferably in a vapor phase at 80-300 deg.C, preferably 120-250 deg.C reaction temperature under a normal pressure to 1.0 MPa pressure, preferably the normal pressure to 0.5 MPa pressure, at 200-20,000 hr-1 gas space velocity when the reaction is carried out by a flow-through type vapor phase catalytic reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酢酸から無水酢酸を
製造する方法に関する。無水酢酸は酢酸セルロースの製
造や医薬品、殺虫剤、除草剤の中間体製造に用いられる
有用な化合物である。
[0001] The present invention relates to a method for producing acetic anhydride from acetic acid. Acetic anhydride is a useful compound used in the production of cellulose acetate and in the production of intermediates for pharmaceuticals, pesticides and herbicides.

【0002】[0002]

【従来の技術】無水酢酸の製造方法としては以下の方法
が公知である。(a)アセトアルデヒドを液相酸素酸化
する方法(米国特許2225486号公報、米国特許2
514041号公報、ドイツ特許867689号公報
等)。(b)ケテンと酢酸を反応させる方法(ドイツ特
許1076090号公報)。(c)ジメチルエーテル及
び/または酢酸メチルを一酸化炭素によってカルボニル
化する方法(特開昭51−115403号公報、特開昭
55−28980号公報、特開昭56−10132号公
報等)。しかしながら(a)の方法では無水酢酸の他に
同程度の酢酸を副生するため選択性に劣り、且つ反応条
件によって爆発性の過酢酸が系内に蓄積する欠点を持
つ。(b)の方法ではアセトンまたは酢酸を650〜7
50℃の著しい高温条件下で熱分解させてケテンを得る
ために耐熱性の反応器と高温熱源を必要とし好ましくな
い。(c)の方法ではハロゲン化合物と共に数十気圧の
高圧条件下でカルボニル化反応が行われるために耐腐食
性、且つ耐圧性の反応器材質が要求される欠点を持つ。
2. Description of the Related Art The following method is known as a method for producing acetic anhydride. (A) A method of oxidizing acetaldehyde in liquid phase oxygen (US Pat. No. 2,225,486, US Pat.
No. 5,140,041, German Patent No. 867689, etc.). (B) A method of reacting ketene with acetic acid (DE 1076090). (C) A method of carbonylating dimethyl ether and / or methyl acetate with carbon monoxide (JP-A-51-115403, JP-A-55-28980, JP-A-56-10132, etc.). However, the method (a) has a drawback of poor selectivity because it produces by-produced acetic acid in addition to acetic anhydride, and has the disadvantage that explosive peracetic acid accumulates in the system depending on the reaction conditions. In the method (b), acetone or acetic acid is added in the amount of 650-7.
In order to obtain ketene by pyrolysis under a remarkably high temperature condition of 50 ° C., a heat-resistant reactor and a high-temperature heat source are required, which is not preferable. The method (c) has a drawback that a corrosion-resistant and pressure-resistant reactor material is required because the carbonylation reaction is performed under high pressure conditions of several tens of atmospheres together with the halogen compound.

【0003】また無水酢酸をアセチル化剤、脱水剤等に
用いた場合には一般に副生物として酢酸が得られるが、
酢酸以外の原料から無水酢酸を製造する上記の(a)及
び(c)の方法では、更に別個の反応操作を行ってアセ
トアルデヒドまたは酢酸メチルに転化しなければ循環的
な利用ができない欠点を有していた。
When acetic anhydride is used as an acetylating agent, a dehydrating agent, etc., acetic acid is generally obtained as a by-product.
The above-mentioned methods (a) and (c) for producing acetic anhydride from a raw material other than acetic acid have the disadvantage that they cannot be recycled unless a separate reaction operation is carried out to convert to acetaldehyde or methyl acetate. I was

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
技術における上記のような課題を回避し、且つ効率の良
い無水酢酸の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing acetic anhydride which avoids the above-mentioned problems in the prior art and is efficient.

【0005】[0005]

【課題を解決するための手段】本発明者は、かかる上記
の課題を回避し、且つ効率的な製造方法を確立するため
に鋭意検討を行った結果、固体触媒の存在下、酢酸を酸
素により酸化的に反応させることにより無水酢酸が生成
することを見いだし、本発明に到った。即ち、本発明は
固体触媒の存在下、酢酸と酸素を反応させることを特徴
とする無水酢酸の製造方法である。
Means for Solving the Problems The present inventors have made intensive studies to avoid the above-mentioned problems and establish an efficient production method. As a result, acetic acid was converted to oxygen in the presence of a solid catalyst. It has been found that oxidative reaction produces acetic anhydride, which has led to the present invention. That is, the present invention is a method for producing acetic anhydride, which comprises reacting acetic acid with oxygen in the presence of a solid catalyst.

【0006】[0006]

【発明の実施の形態】本発明による無水酢酸を生成する
反応は下式で表される。 3CH3COOH + 2O2 → (CH3CO)2O + 2CO2 + 3H2O 本発明に用いられる酢酸は、その製造方法に特に制限は
なく従来公知な方法で製造されたものを用いることがで
きる。また無水酢酸をアセチル化剤、脱水剤等に用いた
場合に副生する酢酸であっても何ら差し支えない。本発
明に用いられる酢酸は酢酸のみで反応に用いることも可
能であるが、適当な溶媒で希釈されたものを用いること
もできる。酢酸の供給速度や溶媒希釈の場合の希釈比に
ついて特に制限はなく、反応形式や反応条件によって好
適値が選ばれる。溶媒の例としてはケトン化合物、エー
テル化合物、エステル化合物、脂肪族炭化水素、芳香族
炭化水素等があげられる。
DETAILED DESCRIPTION OF THE INVENTION The reaction for producing acetic anhydride according to the present invention is represented by the following formula. 3CH 3 COOH + 2O 2 → (CH 3 CO) 2 O + 2CO 2 + 3H 2 O The acetic acid used in the present invention is not particularly limited in its production method, and acetic acid produced by a conventionally known method may be used. it can. When acetic anhydride is used as an acetylating agent, a dehydrating agent, or the like, acetic acid produced as a by-product may be used. The acetic acid used in the present invention may be used for the reaction with acetic acid alone, but may be used diluted with an appropriate solvent. There are no particular restrictions on the feed rate of acetic acid or the dilution ratio in the case of solvent dilution, and a suitable value is selected depending on the reaction type and reaction conditions. Examples of the solvent include ketone compounds, ether compounds, ester compounds, aliphatic hydrocarbons, aromatic hydrocarbons and the like.

【0007】本発明に用いられる酸素は分子状酸素であ
れば、その由来や濃度について特に制限はない。例えば
純酸素ガスや空気または、これらのガスを反応に不活性
なガス成分で希釈したもの等を用いることができる。酸
素ガスの供給速度や不活性ガス希釈の場合の希釈比につ
いて特に制限はなく、反応形式や反応条件によって好適
値が選ばれる。不活性ガスの例としては窒素、アルゴ
ン、ヘリウム、二酸化炭素等があげられる。本発明に用
いられる固体触媒としては従来公知の酸素酸化反応に活
性を有する固体触媒を用いることができるが、特に30
0℃以下の低い反応温度で有効に酸化反応を行うことが
できる触媒成分としてパラジウムを含有する触媒が好適
である。
The origin and concentration of oxygen used in the present invention are not particularly limited as long as it is molecular oxygen. For example, pure oxygen gas, air, or those obtained by diluting these gases with a gas component inert to the reaction can be used. The supply rate of oxygen gas and the dilution ratio in the case of inert gas dilution are not particularly limited, and a suitable value is selected depending on the reaction type and reaction conditions. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide and the like. As the solid catalyst used in the present invention, a conventionally known solid catalyst having an activity in an oxygen oxidation reaction can be used.
A catalyst containing palladium is preferable as a catalyst component capable of effectively performing an oxidation reaction at a low reaction temperature of 0 ° C. or lower.

【0008】本発明に用いられるパラジウム触媒はパラ
ジウム元素が含有されておればよく、その出発物質及び
製造方法に特に制限はない。出発物質の例としてはパラ
ジウム元素の酸化物、水酸化物、ハロゲン化物、硝酸
塩、酢酸塩または各種錯体化合物等があげられる。また
触媒の製造方法には混練法、共沈法、担持法等の従来公
知の固体触媒の製造方法を用いることができる。特にパ
ラジウム成分を有効に利用する見地から担持による製造
方法が好ましい。担持法で用いられる触媒担体は通常の
担持触媒の製造に用いられるものであれば特に制限はな
く、例として活性炭、シリカ、アルミナ、けい藻土等が
挙げられる。また、本発明に用いられるパラジウム触媒
中のパラジウム含有量に特に制限はないが0.1〜20
wt%、好ましくは0.3〜5wt%の範囲が有効であ
る。
[0008] The palladium catalyst used in the present invention only needs to contain a palladium element, and there is no particular limitation on the starting material and production method. Examples of starting materials include oxides, hydroxides, halides, nitrates, acetates and various complex compounds of the element palladium. As a method for producing the catalyst, a conventionally known method for producing a solid catalyst such as a kneading method, a coprecipitation method, or a supporting method can be used. Particularly, from the viewpoint of effectively utilizing the palladium component, a production method by carrying is preferred. The catalyst carrier used in the supporting method is not particularly limited as long as it is used for producing a normal supported catalyst, and examples thereof include activated carbon, silica, alumina, diatomaceous earth and the like. The palladium content in the palladium catalyst used in the present invention is not particularly limited, but may be 0.1 to 20.
wt%, preferably in the range of 0.3-5 wt% is effective.

【0009】本発明に用いられるパラジウム触媒は、触
媒製造の工程中または反応前に必要に応じて焼成処理、
還元処理等を行うことが望ましい。焼成処理は、その方
法に特に制限はなく、一般に焼成炉内に静置または流動
させ空気または不活性ガス雰囲気下に200〜1300
℃の温度範囲で処理することが好ましい。還元処理は常
法のパラジウムの還元方法を採用することができ、常温
〜500℃の温度範囲でヒドラジンによる還元処理、ア
ルカリ性ホルマリン水溶液による還元処理、水素ガス等
による還元処理等が有効である。
The palladium catalyst used in the present invention may be calcined, if necessary, during the catalyst production process or before the reaction.
It is desirable to perform a reduction treatment or the like. The calcination treatment is not particularly limited, and is generally performed by leaving it still or flowing in a calcination furnace under an air or inert gas atmosphere.
The treatment is preferably performed in a temperature range of ° C. For the reduction treatment, a conventional palladium reduction method can be adopted, and a reduction treatment with hydrazine, a reduction treatment with an aqueous alkaline formalin solution, a reduction treatment with hydrogen gas or the like is effective in a temperature range from room temperature to 500 ° C.

【0010】本発明に用いられる固体触媒の形状に特に
制限はなく、粉末、粗粒子、打錠成形ペレット、押出成
形ペレット等の形状で使用することができる。また、本
発明に用いられる固体触媒の使用方法は、固体触媒を用
いる通常の反応方法であれば特に制限はなく、固定床、
流動床、懸濁床の状態で反応に用いることができる。本
発明に用いられる反応形式に特に制限はなく、流通式、
回分式いずれの形式も用いることができるが、本発明の
反応においては無水酢酸と共に水が生成し両化合物間の
反応によって酢酸が副生するおそれがあり、これらが混
合、接触した状態で加熱されるのを極力避ける方法とし
て流通式の反応形式を用いることが好ましく、特に気相
接触型の流通方式が好ましい。また、反応後は両化合物
間の反応による酢酸の副生を回避するために生成した無
水酢酸と水を迅速に分離することが望ましく、従来公知
の方法によって分離することができる。
The shape of the solid catalyst used in the present invention is not particularly limited, and it can be used in the form of powder, coarse particles, tableted pellets, extruded pellets and the like. The method of using the solid catalyst used in the present invention is not particularly limited as long as it is a normal reaction method using a solid catalyst, and a fixed bed,
It can be used for the reaction in the state of a fluidized bed or a suspension bed. There is no particular limitation on the reaction format used in the present invention, flow type,
Any type of batch type can be used, but in the reaction of the present invention, water may be generated together with acetic anhydride, and acetic acid may be by-produced by the reaction between the two compounds. It is preferable to use a flow-type reaction system as a method of minimizing the reaction, and particularly preferable is a gas-phase contact type flow system. After the reaction, it is desirable to quickly separate acetic anhydride and water generated in order to avoid by-product of acetic acid due to the reaction between the two compounds, and the separation can be performed by a conventionally known method.

【0011】本発明に用いられる反応条件は、反応温度
については80〜300℃、好ましくは120〜250
℃の範囲が適当である。反応圧力は常圧〜1.0MPa 、
好ましくは常圧〜0.5MPa の範囲が適当である。反応
を流通式気相接触反応で行う場合にはガス空間速度20
0〜20000hr-1の範囲が適当である。
The reaction conditions used in the present invention are as follows: the reaction temperature is 80 to 300 ° C., preferably 120 to 250 ° C.
A range of ° C is appropriate. The reaction pressure is from normal pressure to 1.0 MPa,
Preferably, the pressure is in the range of normal pressure to 0.5 MPa. When the reaction is carried out by a flow-type gas phase contact reaction, the gas hourly space velocity is 20.
The range of 0 to 20000 hr -1 is appropriate.

【0012】[0012]

【実施例】本発明について以下に実施例をあげて具体的
に説明するが、本発明はこれらの実施例に制限されるも
のではない。なお各実施例について以下の値の算出には
下式を用いて評価を行った。 酢酸転化率=〔供給酢酸−未反応酢酸〕/供給酢酸×10
0(%) 無水酢酸収率= 3×生成無水酢酸(mol) /供給酢酸(mo
l) ×100(%) 無水酢酸選択率=収率/転化率×100(%)
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The following values were calculated for each example using the following equation. Acetic acid conversion rate = [supply acetic acid-unreacted acetic acid] / supply acetic acid x 10
0 (%) Yield of acetic anhydride = 3 x acetic anhydride (mol) / acetic acid supplied (mo
l) x 100 (%) Acetic anhydride selectivity = yield / conversion x 100 (%)

【0013】実施例1 酸化アルミニウム(商品名:ネオビードGB-13 、水沢化
学株式会社製)に酢酸パラジウムをアセトン溶液から含
浸担持し、水素/窒素混合ガス(組成比1/3)を用いて15
0 ℃、3時間還元処理することによって1wt% パラジウ
ム担持酸化アルミニウム触媒を調製した。この触媒をガ
ラス反応器に充填し、常圧下で170 ℃に外部加熱しなが
ら空気1.37 L/hr(STP 換算) 及び酢酸(和光純薬特級試
薬、純度>99.7%) を気化器を経由して触媒層へ供給し
た。約3時間反応を行って反応器出口に取り付けた氷水
トラップで捕集した生成液をGC装置で分析した。その
結果を表1に示した。また、触媒層の温度分布が安定し
た後に氷水トラップ出口で約15分間採集した生成ガスを
GC装置で分析した。その結果を表2に示した。
EXAMPLE 1 Palladium acetate was impregnated and supported on aluminum oxide (trade name: Neo Bead GB-13, manufactured by Mizusawa Chemical Co., Ltd.) from an acetone solution, and mixed with hydrogen / nitrogen mixed gas (composition ratio: 1/3).
A 1 wt% palladium-supported aluminum oxide catalyst was prepared by reducing at 0 ° C. for 3 hours. This catalyst was charged into a glass reactor, and while air was externally heated to 170 ° C under normal pressure, 1.37 L / hr of air (STP conversion) and acetic acid (Wako Pure Chemicals special grade reagent, purity> 99.7%) were passed through a vaporizer. It was supplied to the catalyst layer. The reaction was carried out for about 3 hours, and the product liquid collected by an ice water trap attached to the outlet of the reactor was analyzed by a GC device. The results are shown in Table 1. After the temperature distribution of the catalyst layer was stabilized, the generated gas collected at the outlet of the ice water trap for about 15 minutes was analyzed by a GC device. The results are shown in Table 2.

【0014】実施例2 実施例1で調製した1wt%パラジウム担持酸化アルミニウ
ム触媒を用い、反応器の外部加熱温度を175 ℃にした以
外は実施例1と同様に触媒活性試験を行った。結果を表
1及び表2に示した。
Example 2 A catalytic activity test was carried out in the same manner as in Example 1 except that the 1 wt% palladium-supported aluminum oxide catalyst prepared in Example 1 was used and the external heating temperature of the reactor was set at 175 ° C. The results are shown in Tables 1 and 2.

【0015】実施例3 酸化アルミニウム(商品名:ACBM-1 、触媒化成株式会社
製)を触媒担体に用いた以外は実施例1と同様にして1w
t%パラジウム担持酸化アルミニウム触媒を調製した。こ
れを用い、反応器の外部加熱温度を165 ℃にした以外は
実施例1と同様に触媒活性試験を行った。結果を表1及
び表2に示した。
Example 3 1w was obtained in the same manner as in Example 1 except that aluminum oxide (trade name: ACBM-1, manufactured by Catalyst Chemicals, Inc.) was used as a catalyst carrier.
An aluminum oxide catalyst supported on t% palladium was prepared. Using this, a catalytic activity test was conducted in the same manner as in Example 1 except that the external heating temperature of the reactor was 165 ° C. The results are shown in Tables 1 and 2.

【0016】実施例4 実施例3で調製した1wt%パラジウム担持酸化アルミニウ
ム触媒を用い、反応器の外部加熱温度を170℃にした以
外は実施例1と同様に触媒活性試験を行った。結果を表
1及び表2に示した。
Example 4 A catalytic activity test was carried out in the same manner as in Example 1 except that the 1 wt% palladium-supported aluminum oxide catalyst prepared in Example 3 was used and the external heating temperature of the reactor was 170 ° C. The results are shown in Tables 1 and 2.

【0017】実施例5 実施例3で調製した1wt%パラジウム担持酸化アルミニウ
ム触媒を用い、反応器の外部加熱温度を175 ℃にした以
外は実施例1と同様に触媒活性試験を行った。結果を表
1及び表2に示した。
Example 5 A catalytic activity test was carried out in the same manner as in Example 1 except that the 1% by weight palladium-supported aluminum oxide catalyst prepared in Example 3 was used and the external heating temperature of the reactor was 175 ° C. The results are shown in Tables 1 and 2.

【0018】[0018]

【表1】 表1 実施例 1 2 3 4 5 触媒量(g) 4.2 4.2 3.3 3.3 3.3 酢酸供給速度(g/h) 4.6 4.6 4.1 4.1 4.1 加熱温度(℃) 170 175 165 170 175 触媒層温度(℃) 177 189 〜207 173 187 190 〜191 酢酸転化率(%) 5.5 14.0 11.9 15.8 16.6 無水酢酸選択率(%) 87.9 62.0 53.6 78.6 77.6 無水酢酸収率(%) 4.8 8.7 6.4 12.4 12.9 注:触媒層温度=反応温度 TABLE 1 Example 1 2 3 4 5 catalyst weight (g) 4.2 4.2 3.3 3.3 3.3 acetic acid feed rate (g / h) 4.6 4.6 4.1 4.1 4.1 heating temperature (℃) 170 175 165 170 175 catalyst layer temperature ( ° C) 177 189 to 207 173 187 187 to 191 Acetic acid conversion (%) 5.5 14.0 11.9 15.8 16.6 Acetic anhydride selectivity (%) 87.9 62.0 53.6 78.6 77.6 Acetic anhydride yield (%) 4.8 8.7 6.4 12.4 12.9 Note: Catalyst layer Temperature = reaction temperature

【0019】[0019]

【表2】 表2 実施例 1 2 3 4 5 O2消費速度(mmol/h) 6.5 13 6.2 12 13 CO2生成速度(mmol/h) 5.3 14 5.4 10 10 CO 生成速度(mmol/h) 0.0 0.1 0.0 0.0 0.0 CH4生成速度(mmol/h) 0.0 0.1 0.0 0.0 0.0O2消費速度/CO2生成速度比 1.2 0.93 1.1 1.2 1.3 TABLE 2 Example 1 2 3 4 5 O 2 consumption rate (mmol / h) 6.5 13 6.2 12 13 CO 2 production rate (mmol / h) 5.3 14 5.4 10 10 CO production rate (mmol / h) 0.0 0.1 0.0 0.0 0.0 CH 4 generation rate (mmol / h) 0.0 0.1 0.0 0.0 0.0 O 2 consumption rate / CO 2 generation rate ratio 1.2 0.93 1.1 1.2 1.3

【0020】[0020]

【発明の効果】本発明によれば高温高圧の反応条件を必
要とせず、極めて穏やかな条件下に酢酸と酸素を反応さ
せることによって、しかも簡便な方法で無水酢酸を製造
することができる。
According to the present invention, acetic anhydride can be produced by a simple method by reacting acetic acid and oxygen under extremely mild conditions without requiring high-temperature and high-pressure reaction conditions.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体触媒の存在下、酢酸と酸素を反応さ
せることを特徴とする無水酢酸の製造方法。
1. A method for producing acetic anhydride, comprising reacting acetic acid with oxygen in the presence of a solid catalyst.
【請求項2】 気相において、反応温度80〜300℃
で反応させる請求項1記載の方法。
2. A reaction temperature of 80 to 300 ° C. in a gas phase.
The method according to claim 1, wherein the reaction is carried out.
【請求項3】 パラジウムを含有する固体触媒を用いる
請求項1又は請求項2記載の方法。
3. The method according to claim 1, wherein a solid catalyst containing palladium is used.
JP10261607A 1998-09-16 1998-09-16 Production of acetic anhydride Pending JP2000086572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10261607A JP2000086572A (en) 1998-09-16 1998-09-16 Production of acetic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10261607A JP2000086572A (en) 1998-09-16 1998-09-16 Production of acetic anhydride

Publications (1)

Publication Number Publication Date
JP2000086572A true JP2000086572A (en) 2000-03-28

Family

ID=17364262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10261607A Pending JP2000086572A (en) 1998-09-16 1998-09-16 Production of acetic anhydride

Country Status (1)

Country Link
JP (1) JP2000086572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075490A (en) * 2019-11-11 2021-05-20 ポリプラスチックス株式会社 Method for producing acetic anhydride with copper and/or copper oxide as catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075490A (en) * 2019-11-11 2021-05-20 ポリプラスチックス株式会社 Method for producing acetic anhydride with copper and/or copper oxide as catalyst
JP7412138B2 (en) 2019-11-11 2024-01-12 ポリプラスチックス株式会社 Method for producing acetic anhydride using copper and/or copper oxide as a catalyst

Similar Documents

Publication Publication Date Title
AU2000250690B2 (en) Process for the production of vinyl acetate
KR100847716B1 (en) Oxidation process for the production of alkenes and carboxylic acids
EP1043064B1 (en) Mixed metal oxide catalyst and use thereof in oxidation reactions
AU2000249242B2 (en) Integrated process for the production of vinyl acetate
JP2000063326A (en) Improved production of vinyl acetate
AU2000249242A1 (en) Integrated process for the production of vinyl acetate
EP1201630B1 (en) Oxidation process for the production of alkenes and carboxylic acids
US3739020A (en) Preparation of carboxylic acids
US7368599B2 (en) Ethane oxidation catalyst and process utilising the catalyst
US4835308A (en) Process for producing trimellitic acid
KR100978775B1 (en) Mixed metal oxide catalyst and process for production of acetic acid
JP2000086572A (en) Production of acetic anhydride
US4510320A (en) Preparation of aliphatic carboxylic acid esters
EP1101753A1 (en) Process for producing adipic acid
JPH04297445A (en) Production of carbonic acid diester
JPH06157416A (en) Production of glyoxylic acid ester
KR100689647B1 (en) Integrated process for the production of vinyl acetate
JPH08301815A (en) Production of glyoxylic acid ester
JPH04297443A (en) Production of carbonic acid diester
JPH04139152A (en) Production of carbonate diester
ZA200210054B (en) Intergrated process for the production of vinyl ecetate.
JPH04297444A (en) Production of carbonic acid diester
ZA200210060B (en) Process for the production of vinyl acetate.
JP2002537220A (en) Catalyst system for one-stage gas-phase production of acetic acid from ethylene
JPH04139153A (en) Production of carbonate diester