JP2000086254A - Manufacture of optical element for ultraviolet rays - Google Patents

Manufacture of optical element for ultraviolet rays

Info

Publication number
JP2000086254A
JP2000086254A JP10263672A JP26367298A JP2000086254A JP 2000086254 A JP2000086254 A JP 2000086254A JP 10263672 A JP10263672 A JP 10263672A JP 26367298 A JP26367298 A JP 26367298A JP 2000086254 A JP2000086254 A JP 2000086254A
Authority
JP
Japan
Prior art keywords
optical element
quartz glass
gas
optical
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10263672A
Other languages
Japanese (ja)
Other versions
JP2000086254A5 (en
JP4192308B2 (en
Inventor
Jun Takano
潤 高野
Mitsumasa Negishi
光正 根岸
Kazuo Kitazawa
和雄 北沢
Hiroaki Iguchi
裕章 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP26367298A priority Critical patent/JP4192308B2/en
Publication of JP2000086254A publication Critical patent/JP2000086254A/en
Publication of JP2000086254A5 publication Critical patent/JP2000086254A5/en
Application granted granted Critical
Publication of JP4192308B2 publication Critical patent/JP4192308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacture by which an optical element for ultraviolet rays can be manufactured while inhibiting reduction in ultraviolet transmissivity of the element. SOLUTION: This manufacture comprises pressing heated and softened quartz glass 1 with molds 2 and 3 which have forming surface shapes nearly the same as those of the optical-functional surfaces of an optical element respectively and to which pressure is applied, to transfer the forming surface shapes of the molds 2 and 3 to the quartz glass 1, wherein the atmosphere used at the time of performing the heating or cooling operation, contains at least gaseous hydrogen and the atmosphere used at the time of performing the forming operation, is vacuum or contains at least gaseous hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外線用光学素子
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical element for ultraviolet light.

【0002】[0002]

【従来の技術】従来、紫外線用光学素子は、例えば、そ
の代表的な材料である石英ガラスを、研削、研磨加工し
て製作していた。使用する波長が紫外線、特に、300
nm以下の紫外線を使用する場合、石英ガラスは透過率
や屈折率の均質性等、求められる特性値が厳しいことか
ら、非常に高価である。
2. Description of the Related Art Conventionally, an optical element for ultraviolet light has been manufactured by grinding and polishing a typical material such as quartz glass. The wavelength used is ultraviolet light, especially 300
When ultraviolet rays of nm or less are used, quartz glass is very expensive because required characteristic values such as uniformity of transmittance and refractive index are severe.

【0003】また、光学素子によっては、研削、研磨加
工により形状を整える場合に、大きな部材から削り出す
必要性が生じ、その場合には無駄な部分が多く、加工時
間のコストと材料のコストが上昇する問題があった。
[0003] In addition, depending on the optical element, it is necessary to cut out a large member when shaping or polishing to form the shape. In this case, there are many useless parts, and the cost of processing time and material cost are reduced. There was a problem of rising.

【0004】[0004]

【発明が解決しようとする課題】そこで、従来から一般
的に行われている、光学ガラスを加熱、軟化させ、光学
機能面、もしくは、光学機能面に近い形状を有する型を
圧力により転写させて光学素子を製造する方法を、石英
ガラス光学素子の製法に試みたが、石英ガラスをその軟
化する温度まで上昇させることにより、新たな問題が発
生した。
Therefore, the optical glass, which has been conventionally generally used, is heated and softened, and a mold having an optical function surface or a shape close to the optical function surface is transferred by pressure. An attempt was made to produce an optical element by a method for producing a quartz glass optical element. However, raising the temperature of the quartz glass to a temperature at which the quartz glass was softened caused a new problem.

【0005】すなわち、一般的に、石英ガラス光学素子
に300nm以下の紫外線を照射すると、素子内部の物
性変化により、急激な透過率の低下が発生することか
ら、この物性変化を抑える働きのある水素分子を、濃度
にして1×1018(個/単位立方cm)以上含有させて
いる。しかしながら、石英ガラスをその軟化する温度ま
で加熱させることにより、水素分子濃度は初期状態の1
/10から1/20程度となり、物性変化を抑制する能
力が極端に下がり、結果的に透過率が下がることが判明
した。
In general, when ultraviolet light of 300 nm or less is irradiated to a quartz glass optical element, a sudden change in transmittance occurs due to a change in physical properties inside the element. Molecules are contained in a concentration of 1 × 10 18 (pieces / unit cubic cm) or more. However, by heating the quartz glass to its softening temperature, the hydrogen molecule concentration is reduced to 1 in the initial state.
From / 10 to about 1/20, it was found that the ability to suppress a change in physical properties was extremely reduced, and as a result, the transmittance was reduced.

【0006】[0006]

【課題を解決するための手段】そこで、透過率の低下を
抑制する石英ガラスを、加熱、軟化させ、光学機能面、
もしくは、光学機能面に近い形状を有する型を圧力によ
り転写させる光学素子の製造方法を石英ガラス光学素子
の製造方法に応用するために、成形中の雰囲気に水素ガ
スを混合させることで、加熱、成形、冷却中に石英ガラ
ス内の水素分子が低減せず、1×1018(個/単位立方
cm)以上を保持していることを突き止めた。
Therefore, quartz glass, which suppresses a decrease in transmittance, is heated and softened to obtain an optically functional surface.
Alternatively, in order to apply a method of manufacturing an optical element for transferring a mold having a shape close to the optical function surface by pressure to a method of manufacturing a quartz glass optical element, by mixing hydrogen gas in the atmosphere during molding, heating, It was ascertained that the hydrogen molecules in the quartz glass did not decrease during molding and cooling, and that they maintained 1 × 10 18 (pieces / unit cubic cm) or more.

【0007】この製法を用いることで、水素分子濃度が
低減する問題は解決し、使用する波長が紫外線、特に、
300nm以下の紫外線を使用する石英ガラス光学素子
を製造することができた。また、この製法によって、大
幅なコストダウンが実現した。
By using this manufacturing method, the problem of reducing the concentration of hydrogen molecules is solved, and the wavelength used is ultraviolet rays, especially,
A quartz glass optical element using ultraviolet rays of 300 nm or less could be manufactured. In addition, a significant cost reduction was realized by this manufacturing method.

【0008】[0008]

【発明の実施の形態】石英ガラスからなる光学素子には
多くの種類があるが、本実施の形態では石英ガラス製の
フライアイレンズの製造方法について、以下に詳細な説
明を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS There are many types of optical elements made of quartz glass. In this embodiment, a method of manufacturing a fly-eye lens made of quartz glass will be described in detail below.

【0009】[0009]

【実施例】石英ガラスを加熱、軟化させた上に、光学機
能面もしくは光学機能面に近い形状を有する型を加圧
し、該機能面もしくは該機能面に近い形状を転写するた
めに、図1に示すような例えば幅30mm×奥行き30
mm×高さ20mmの上下面を研磨加工し、側面は研削
加工した石英ガラス部材1を用意する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS After heating and softening quartz glass, a mold having an optical function surface or a shape close to the optical function surface is pressed to transfer the function surface or a shape close to the function surface. For example, as shown in width 30 mm x depth 30
A quartz glass member 1 is prepared by polishing the upper and lower surfaces of mm × 20 mm in height and grinding the side surfaces.

【0010】そして、この部材1を上型2と下型3との
間に挟むように容器(図示せず)内に設置する。上型2
と下型3は、例えば、タングステンに代表されるような
高温での耐久性を有する焼結体からなり、石英ガラス部
材1と接触する側に、それぞれ光学機能面2a、3aを
有している。ここで、転写される光学機能面2a、3a
は研磨されていることが多いが、光学機能面に近似した
形状を転写する場合は研削面でも代用可能である。
[0010] The member 1 is placed in a container (not shown) so as to be sandwiched between the upper mold 2 and the lower mold 3. Upper mold 2
The lower mold 3 is made of, for example, a sintered body having durability at a high temperature typified by tungsten, and has optical functional surfaces 2a and 3a on the side that contacts the quartz glass member 1, respectively. . Here, the transferred optical functional surfaces 2a, 3a
Is often polished, but when transferring a shape similar to the optical function surface, a ground surface can be used instead.

【0011】本実施形態の成形装置の構成を図2に示
す。成形装置は、加熱および加圧機構を有する本体部1
0と、排気部20、および雰囲気ガス導入部30から形
成される。図1に示した石英ガラス部材1、上型2、下
型3は容器内に配置され、ワーク13として、図2に示
す成形装置に収容される。すなわち、ワーク13は、真
空容器14内の載せ台11の上に設置される。そして、
雰囲気ガス導入用バルブ31を閉とした上で、バルブ2
6を開とし、油回転ポンプ21により真空容器14内の
空気を粗引きする。
FIG. 2 shows the configuration of the molding apparatus according to the present embodiment. The molding device includes a main body 1 having a heating and pressing mechanism.
0, an exhaust part 20, and an atmospheric gas introduction part 30. The quartz glass member 1, the upper mold 2, and the lower mold 3 shown in FIG. 1 are arranged in a container, and are accommodated as a work 13 in the forming apparatus shown in FIG. That is, the work 13 is set on the mounting table 11 in the vacuum container 14. And
After closing the atmosphere gas introduction valve 31, the valve 2
6 is opened, and the air in the vacuum vessel 14 is roughly evacuated by the oil rotary pump 21.

【0012】この粗引き後に、バルブ26を閉とし、バ
ルブ23を開、バルブ24を開とすることで、油拡散ポ
ンプ22により真空容器14内の空気を本引きする。真
空容器14内の真空度を測定する真空計27が、例え
ば、5×10-3Pa以下になったところで、バルブ24
を閉とし、雰囲気ガス導入用バルブ31を開とする。そ
して、例えば、水素ガス80%、アルゴンガス20%の
混合比を有する雰囲気ガスを開いたバルブ31を通して
真空容器31内に導入し、真空容器14の圧力が大気圧
となったところで、ヒータ12による加熱を開始する。
After the rough evacuation, the valve 26 is closed, the valve 23 is opened, and the valve 24 is opened. When the vacuum gauge 27 for measuring the degree of vacuum in the vacuum vessel 14 becomes, for example, 5 × 10 −3 Pa or less, the valve 24
Is closed, and the atmospheric gas introduction valve 31 is opened. Then, for example, an atmosphere gas having a mixture ratio of 80% of hydrogen gas and 20% of argon gas is introduced into the vacuum vessel 31 through the opened valve 31, and when the pressure of the vacuum vessel 14 becomes atmospheric pressure, the heater 12 Start heating.

【0013】ヒータ12による加熱は、例えば、図3に
示すスケジュールで行われる。すなわち、50分で温度
1450℃まで加熱し、10分間保持する。なお、この
際に、真空容器14内には絶えず雰囲気ガスを導入し、
真空計27をチェックしながら内圧が大気圧以上になら
ないようにバルブ25の開閉を行う。また、加圧開始時
間直前(50分から55分)になったところで、再度、
雰囲気ガス導入用バルブ31を閉とした上で、バルブ2
6を開とし、油回転ポンプ21により真空容器14内の
空気を粗引きする。
The heating by the heater 12 is performed, for example, according to the schedule shown in FIG. That is, it is heated to a temperature of 1450 ° C. in 50 minutes and held for 10 minutes. At this time, an atmospheric gas was constantly introduced into the vacuum vessel 14,
While checking the vacuum gauge 27, the valve 25 is opened and closed so that the internal pressure does not exceed the atmospheric pressure. Also, immediately before the pressurization start time (from 50 minutes to 55 minutes), again,
After closing the atmosphere gas introduction valve 31, the valve 2
6 is opened, and the air in the vacuum vessel 14 is roughly evacuated by the oil rotary pump 21.

【0014】この粗引き後に、バルブ26を閉とし、バ
ルブ23を開、バルブ24を開とすることで、油拡散ポ
ンプ22により真空容器14内の空気を本引きする。そ
して、真空容器14内の真空度を測定する真空計27
が、例えば、5×10 -3Pa以下になったところで、加
圧を開始する。加圧をする前に真空容器14内を真空に
するのは、石英ガラス部材1に対して、上型2、およ
び、下型3の光学機能面2a、3aが凹形状を有するた
めである。凹形状を雰囲気中で加圧、成形した場合に
は、凹部中心付近の雰囲気ガスの逃げ道がなく、結果的
に、凹部中心付近に空気たまりが形成され、光学機能面
が得られない。
After this rough evacuation, the valve 26 is closed and the valve 26 is closed.
By opening the valve 23 and the valve 24, the oil diffusion port is opened.
The air in the vacuum vessel 14 is fully drawn by the pump 22. So
Then, a vacuum gauge 27 for measuring the degree of vacuum in the vacuum container 14
Is, for example, 5 × 10 -3When the pressure falls below Pa,
Start pressure. Before applying pressure, evacuate the vacuum vessel 14
What is done is that the upper die 2 and the quartz glass member 1
In addition, the optical function surfaces 2a and 3a of the lower mold 3 have concave shapes.
It is. When pressing and molding a concave shape in an atmosphere
Has no escape route for the atmosphere gas near the center of the recess, resulting in
An air pocket is formed near the center of the concave
Can not be obtained.

【0015】当然のことながら、光学機能面2a、3a
が凸形状を有する場合は、上記のような真空容器14内
を真空にする工程は不必要となる。加圧は1450℃に
保持されてから5分後にシリンダ16が作動され、押圧
軸15を介して、ワーク13の上型2を70kgf/c
2の圧力にて押し下げる。その後、加圧を図3に示す
ように10分間行い、加圧完了時の温度が1100℃と
なるように、60分から温度を下げていく。この時点
で、再度、バルブ24を閉とし、雰囲気ガス導入用バル
ブ31を開とする。その後、ワークを取り出し可能な温
度まで雰囲気ガス中で冷却し、成形が完了する。
Naturally, the optically functional surfaces 2a, 3a
Has a convex shape, the step of evacuating the inside of the vacuum vessel 14 as described above becomes unnecessary. Five minutes after the pressurization is maintained at 1450 ° C., the cylinder 16 is operated, and the upper die 2 of the work 13 is moved to 70 kgf / c via the pressing shaft 15.
Press down at a pressure of m 2 . After that, pressurization is performed for 10 minutes as shown in FIG. At this time, the valve 24 is closed again and the atmospheric gas introduction valve 31 is opened again. Thereafter, the work is cooled in an atmosphere gas to a temperature at which the work can be taken out, and the molding is completed.

【0016】ワーク13を真空容器14から取り出し、
容器(図示せず)から上型2、および、下型3を取り出
すことにより、成形された所望の石英ガラス光学素子が
得られる。なお、成形された石英ガラス光学素子、すな
わち、フライアイレンズの代表的な形状を図4に示す。
上述した製造方法により得られる石英ガラス光学素子は
水素ガスが混合した雰囲気ガス中において加熱されてい
るため、素子内部の水素分子を、濃度にして1×1018
(個/単位立方cm)以上含有させている。この水素分
子の量は、ラマン分光で得られるピークの強度から容易
に計算できる。そのため、300nm以下の紫外線を照
射した場合においても、素子内部の物性変化により、急
激な透過率の低下が発生することはない。
The work 13 is taken out of the vacuum vessel 14,
By taking out the upper mold 2 and the lower mold 3 from a container (not shown), a desired quartz glass optical element formed can be obtained. FIG. 4 shows a typical shape of a formed quartz glass optical element, that is, a fly-eye lens.
Since the quartz glass optical element obtained by the above manufacturing method is heated in an atmosphere gas mixed with hydrogen gas, the concentration of hydrogen molecules in the element is reduced to 1 × 10 18
(Units / unit cubic cm) or more. The amount of this hydrogen molecule can be easily calculated from the intensity of the peak obtained by Raman spectroscopy. Therefore, even when ultraviolet light having a wavelength of 300 nm or less is irradiated, a sharp decrease in transmittance does not occur due to a change in physical properties inside the device.

【0017】得られた石英ガラス光学素子が光学機能面
を有する場合はそのまま使用し、また、光学機能面に近
似された形状を有する場合は、軽い研磨加工で光学機能
面に仕上げることにより、実際の光学系に組み込み、性
能評価をしたところ、光学的性能は十分達成されてい
た。すなわち、従来の研削、研磨加工でしか対応できな
かった石英ガラス光学素子にも、成形加工を適用するこ
とが可能となり、石英ガラス光学素子の製造コストを大
幅に低減することができる。
If the obtained quartz glass optical element has an optically functional surface, it is used as it is, and if it has a shape similar to the optically functional surface, the optically functional surface is finished by light polishing. When the optical system was incorporated into the optical system and the performance was evaluated, the optical performance was sufficiently achieved. That is, the shaping process can be applied to a quartz glass optical element that can only be dealt with by conventional grinding and polishing, and the manufacturing cost of the quartz glass optical element can be greatly reduced.

【0018】なお、以上の実施の形態では、雰囲気ガス
として水素ガス80%、アルゴンガス20%の混合比の
ものを用いたが、雰囲気ガスとしては、アルゴンガスに
代え、それ以外の不活性ガスを混合したり(混合割合
は、水素ガス0.1〜99.9%の間で選択できる)、
もしくは水素ガスのみで用いても良い。
In the above embodiment, a mixture of 80% hydrogen gas and 20% argon gas was used as the atmosphere gas. However, the atmosphere gas was replaced with an inert gas instead of argon gas. (Mixing ratio can be selected from 0.1 to 99.9% of hydrogen gas),
Alternatively, only hydrogen gas may be used.

【0019】[0019]

【発明の効果】以上述べたような石英ガラス光学素子の
成形方法では、加熱、および、冷却時の雰囲気を不活性
ガスと水素ガスとの混合ガス、もしくは、水素ガスと
し、成形時は真空、もしくは、不活性ガスと水素ガスと
の混合ガス、もしくは、水素ガスとしたので、紫外線、
特に、300nm以下の紫外線用の光学素子として透過
率の低下が抑えられ、確実に使用することができる。
According to the method for molding a quartz glass optical element as described above, the atmosphere during heating and cooling is a mixed gas of an inert gas and hydrogen gas, or a hydrogen gas. Or, a mixed gas of an inert gas and hydrogen gas, or a hydrogen gas,
In particular, the transmittance of the optical element for ultraviolet rays having a wavelength of 300 nm or less is suppressed, and the optical element can be reliably used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】成形によりフライアイレンズを得る場合の、設
置状態を説明する図である。
FIG. 1 is a diagram illustrating an installation state when a fly-eye lens is obtained by molding.

【図2】本発明の成形をしている状態を説明する図であ
る。
FIG. 2 is a diagram illustrating a state in which the molding of the present invention is being performed.

【図3】本発明の成形方法の一実施形態における、スケ
ジュールを示した図である。
FIG. 3 is a diagram showing a schedule in one embodiment of the molding method of the present invention.

【図4】本発明の成形方法の一実施形態によって得られ
たフライアイレンズである。
FIG. 4 is a fly-eye lens obtained by one embodiment of the molding method of the present invention.

【符号の説明】[Explanation of symbols]

1:石英ガラス部材 2:上型 2a:上型光学機能面
3:下型 3a:下型光学機能面 10:成形装置本
体部 11:載せ台 12:ヒータ 13:ワーク 1
4:真空容器 15:押圧軸 16:シリンダ 20:
成形装置排気部21:油回転ポンプ 22:油拡散ポン
プ 23:バルブ 24:バルブ 25:バルブ 2
6:バルブ 27:真空計 30:成形装置雰囲気ガス
導入部 31:バルブ
1: quartz glass member 2: upper mold 2a: upper mold optical function surface 3: lower mold 3a: lower mold optical function surface 10: molding apparatus main body 11: mounting table 12: heater 13: work 1
4: vacuum container 15: pressing shaft 16: cylinder 20:
Molding device exhaust unit 21: oil rotary pump 22: oil diffusion pump 23: valve 24: valve 25: valve 2
6: Valve 27: Vacuum gauge 30: Molding device atmosphere gas introduction part 31: Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 裕章 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 Fターム(参考) 4G014 AH00  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroaki Iguchi 3-2-3 Marunouchi, Chiyoda-ku, Tokyo F-term in Nikon Corporation (reference) 4G014 AH00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】紫外線用の光学素子の製造方法において、 光学素子材料を石英ガラスとし、該石英ガラスを加熱、
軟化させた上に、光学機能面もしくは光学機能面に近い
形状を有する型を加圧し、該機能面もしくは該機能面に
近い形状を転写する成形方法であり、 加熱および冷却時の雰囲気を、不活性ガスと水素ガスと
の混合ガスもしくは水素ガスとし、 成形時の雰囲気を、真空もしくは不活性ガスと水素ガス
との混合ガス、もしくは水素ガスのみとする紫外線用光
学素子の製造方法。
1. A method for manufacturing an optical element for ultraviolet light, comprising: forming a quartz glass as an optical element material;
This is a molding method in which, after softening, a mold having an optical functional surface or a shape close to the optical functional surface is pressed to transfer the functional surface or a shape close to the functional surface. A method for producing an optical element for ultraviolet light, wherein a mixed gas of an active gas and a hydrogen gas or a hydrogen gas is used, and the atmosphere during molding is vacuum or a mixed gas of an inert gas and a hydrogen gas, or only a hydrogen gas.
【請求項2】前記混合ガスは、不活性ガスに対する水素
ガスの割合が0.1〜99.9%であることを特徴とす
る請求項1に記載の紫外線用光学素子の製造方法。
2. The method according to claim 1, wherein the mixed gas has a ratio of hydrogen gas to inert gas of 0.1 to 99.9%.
【請求項3】成形が完了した後の石英ガラス光学素子中
に1×1018(個/単位立方cm)以上の水素分子を有
することを特徴とする請求項1もしくは請求項2に記載
の紫外線用光学素子の製造方法。
3. The ultraviolet ray according to claim 1, wherein the quartz glass optical element after completion of molding has hydrogen molecules of 1 × 10 18 (pieces / unit cubic cm) or more. Of manufacturing optical element for use.
JP26367298A 1998-09-17 1998-09-17 Optical element manufacturing method Expired - Lifetime JP4192308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26367298A JP4192308B2 (en) 1998-09-17 1998-09-17 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26367298A JP4192308B2 (en) 1998-09-17 1998-09-17 Optical element manufacturing method

Publications (3)

Publication Number Publication Date
JP2000086254A true JP2000086254A (en) 2000-03-28
JP2000086254A5 JP2000086254A5 (en) 2005-10-27
JP4192308B2 JP4192308B2 (en) 2008-12-10

Family

ID=17392749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26367298A Expired - Lifetime JP4192308B2 (en) 1998-09-17 1998-09-17 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP4192308B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012118175A1 (en) * 2011-03-02 2014-07-07 株式会社ニコン Heat treatment apparatus for optical ceramic material, heat treatment method for optical ceramic material, heat treatment method for synthetic quartz glass, optical system manufacturing method, and exposure apparatus manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012118175A1 (en) * 2011-03-02 2014-07-07 株式会社ニコン Heat treatment apparatus for optical ceramic material, heat treatment method for optical ceramic material, heat treatment method for synthetic quartz glass, optical system manufacturing method, and exposure apparatus manufacturing method
JP6024653B2 (en) * 2011-03-02 2016-11-16 株式会社ニコン Synthetic quartz glass heat treatment apparatus, synthetic quartz glass heat treatment method, optical system manufacturing method, and exposure apparatus manufacturing method

Also Published As

Publication number Publication date
JP4192308B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
EP0401845A2 (en) Optical members and blanks of synthetic silica glass and method for their production
JP2000086254A (en) Manufacture of optical element for ultraviolet rays
JP3821878B2 (en) Release film forming method
US7134298B2 (en) Method of press-forming glass
CN1964923B (en) Method for forming quartz glass
JP4298307B2 (en) Method for processing a mold or form for the manufacture of an ophthalmic lens
JP2001064024A (en) Device for producing optical device
JPH0250059B2 (en)
CN208917068U (en) Mixed-forming device
US5720791A (en) Method of producing an optical lens element
JP2739916B2 (en) Glass blank for manufacturing optical element and method for manufacturing optical element using the same
CN112142304A (en) Die-casting die, shell die-casting system, manufacturing method, shell and electronic equipment
JP5374236B2 (en) Optical element manufacturing method and manufacturing apparatus
JP2739913B2 (en) Glass blank for manufacturing optical element and method for manufacturing optical element using the same
JP3492005B2 (en) Glass optical element molding method
JPS61251526A (en) Production of optical element
JP2934937B2 (en) Method for molding glass optical element and press device used for this method
JPH11116251A (en) Method for forming lens
JP4744046B2 (en) Method for producing synthetic quartz glass material
JPH06340433A (en) Method for molding optical element
JP3149148B2 (en) Optical element molding method
JP3198673B2 (en) Manufacturing method of fly-eye lens
JP2915598B2 (en) Method for producing silica glass for optical use
JPH10330121A (en) Molding of optical element and apparatus therefor
JP2009029654A (en) Method and apparatus for manufacturing optical element, die for molding it and optical element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141003

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141003

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141003

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term