JP2000081548A - Parts for optical signal transmission and reception - Google Patents

Parts for optical signal transmission and reception

Info

Publication number
JP2000081548A
JP2000081548A JP24961198A JP24961198A JP2000081548A JP 2000081548 A JP2000081548 A JP 2000081548A JP 24961198 A JP24961198 A JP 24961198A JP 24961198 A JP24961198 A JP 24961198A JP 2000081548 A JP2000081548 A JP 2000081548A
Authority
JP
Japan
Prior art keywords
optical
waveguide
emitting element
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24961198A
Other languages
Japanese (ja)
Inventor
Toshihiko Takano
俊彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP24961198A priority Critical patent/JP2000081548A/en
Publication of JP2000081548A publication Critical patent/JP2000081548A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid trouble that a light emitting element is made unstable by returning of the reflected return light from the ends of waveguide to the light emitting element by working the end face of the optical waveguide for coupling the light emitting element diagonally with the optical axis and working the end face of the optical waveguide for coupling a photodetector perpendicularly to the optical axis. SOLUTION: The end face of the optical waveguide 1 for coupling the light emitting element 2 is worked diagonally at θ=5 to 20 deg. with the optical axis. As a result, the return light to the light emitting element 2 is decreased. A working method includes diagonal cutting by a dicing saw and diagonal polishing of the end faces of the waveguides. When θ is below 5 deg., the return light to the light emitting element 2 increases. Otherwise, in the case of diagonal cutting by the dicing saw. When θ exceeds 20 deg., the distance between the light emitting element 2 and the optical waveguide 1 increases and the coupling loss increases. The end face of the optical waveguide 1 coupling the photodetector 4 is worked perpendicularly to the optical axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光LA
N、光計測制御等における機器装置間での光信号伝送に
用いる光電気信号変換用の光送受信用部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical communication and optical LA.
The present invention relates to an optical transmission / reception component for photoelectric signal conversion used for optical signal transmission between device devices in optical measurement control and the like.

【0002】[0002]

【従来の技術】電子機器装置間で光信号を送信または受
信するための部品(光送受信用部品)として、従来、ミ
ラーやレンズなどの光学部品と発光素子、受光素子を組
合せ、これに光信号を入出力するための光ファイバが結
合された構造の、各種の光送受信用部品が開発されてい
る。しかしながら、これら従来の光送受信用部品は、多
数の光学部品を空間的に配置し、光軸合わせして製作す
る必要があるため量産性に難があり、また、多数の光学
部品を個別に配置したものであるので、振動や衝撃、温
度変化など環境特性に問題があった。さらに、多数の光
学部品を空間的に配置することから、小型化が難しかっ
た。
2. Description of the Related Art Conventionally, optical components such as mirrors and lenses, light emitting elements and light receiving elements have been combined as components for transmitting or receiving optical signals between electronic equipment devices (optical transmitting and receiving components). Various optical transmitting and receiving components having a structure in which optical fibers for inputting and outputting data are coupled have been developed. However, these conventional optical transmission / reception components require a large number of optical components to be spatially arranged and manufactured with their optical axes aligned, so that mass production is difficult, and a large number of optical components are individually arranged. Therefore, there was a problem in environmental characteristics such as vibration, impact, and temperature change. Furthermore, since a large number of optical components are spatially arranged, miniaturization has been difficult.

【0003】これらの従来の問題を解決し、より小型
で、信頼性の高い光送受信用部品として、高分子フィル
ムを用いた光導波路(高分子光導波路)の端部に、光信
号入出力のための光ファイバと発光素子および受光素子
とを接続固定して一体となしたものが提案されている
(特開平6-34833 号公報、特開平6-75141 号公報、特願
平8-329779号公報、特願平9-288374号公報)。これらの
中で特に、特願平8-329779号公報および特願平9-288374
号公報は、導波路端部と受発光素子とが空間を隔てて光
学的に結合された光送受信用部品に関するものであり、
導波路と素子とが切り離されたことにより、温度サイク
ルなど耐環境性が著しく向上し、極めて信頼性の高い光
送受信用部品が得られている。
[0003] To solve these conventional problems, as a smaller and more reliable optical transmitting / receiving component, an optical signal input / output for optical signal input / output is provided at an end of an optical waveguide (polymer optical waveguide) using a polymer film. For this purpose, an optical fiber, a light emitting element and a light receiving element are connected and fixed to be integrated (Japanese Patent Application Laid-Open Nos. 6-34833, 6-75141, and 8-329779). Gazette, Japanese Patent Application No. 9-288374). Among them, in particular, Japanese Patent Application Nos. 8-329779 and 9-288374.
The publication relates to a light transmitting / receiving component in which a waveguide end and a light receiving / emitting element are optically coupled with a space therebetween,
By separating the waveguide and the element, environmental resistance such as temperature cycling is remarkably improved, and an extremely reliable optical transmitting and receiving component is obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、導波路
と受発光素子とを空間を隔てて結合したこれらの光送受
信用部品では、発光素子からの光が一部導波路端部で反
射して発光素子自身に戻ることにより、発光が不安定と
なり、結果としてノイズレベルが大きくなるという課題
が見いだされた。
However, in these optical transmitting and receiving parts in which the waveguide and the light receiving / emitting element are coupled with a space therebetween, light from the light emitting element is partially reflected at the end of the waveguide to emit light. It has been found that returning to the element itself makes the light emission unstable, resulting in an increase in noise level.

【0005】このような反射戻り光の影響を回避するた
めには、発光素子と対向する導波路端面からの反射戻り
光が素子に直接入らないようにすることが有効である。
この手段としては、反射自体を遮断するために該端面の
導波路部以外を黒色塗膜などで覆う方法や該端面を光軸
に対して斜めに加工する方法がある。図1に、導波路端
面全体を斜めに加工する場合を示した。図1において、
符号1は片端が角度θだけ斜めに加工された光導波路、
符号2は発光素子(通常、レンズと組み合わせて使用さ
れる)、符号3は発光素子(2)から出射され、光導波路
(1) の端面により反射された反射戻り光である。この図
において、反射戻り光(3) は、入射光と2θの角度だけ
ずれた方向に戻るため、角度θをある程度以上大きくす
ることにより、発光素子(2) 自身への戻り光の大幅な低
減が可能となる。
In order to avoid the influence of such reflected return light, it is effective to prevent the reflected return light from the waveguide end face facing the light emitting element from directly entering the element.
As this means, there is a method of covering the end face other than the waveguide portion with a black coating film or the like to block the reflection itself, or a method of processing the end face obliquely with respect to the optical axis. FIG. 1 shows a case where the entire waveguide end face is processed obliquely. In FIG.
Reference numeral 1 denotes an optical waveguide in which one end is processed at an angle θ.
Reference numeral 2 denotes a light emitting element (usually used in combination with a lens), and reference numeral 3 denotes light emitted from the light emitting element (2), and an optical waveguide.
This is the reflected return light reflected by the end face of (1). In this figure, the reflected return light (3) returns in a direction shifted by an angle of 2θ from the incident light. Therefore, by increasing the angle θ to a certain degree or more, the return light to the light emitting element (2) itself is greatly reduced. Becomes possible.

【0006】しかしながら、一つの導波路端面に発光素
子だけではなく、受光素子も結合する光送受信用部品で
あって、その端面における導波路の光軸が互いに平行な
場合には、端面全体を斜めに加工すると、受光素子に対
向する導波路端部から受光素子へ向かう光が、導波路端
面で屈折することにより大きく方向を変えるため、受光
素子に十分集光するためには、導波路と受光素子の相対
位置を個々にそれぞれ調整する必要が生じ、簡便かつ合
理的な製造ができないという課題が生じた。
[0006] However, in the case of an optical transmission / reception component in which not only a light emitting element but also a light receiving element is coupled to one waveguide end face, and the optical axes of the waveguides at the end faces are parallel to each other, the entire end face is oblique. When light is processed, the light traveling from the end of the waveguide facing the light receiving element to the light receiving element changes its direction largely by refraction at the waveguide end face. It has been necessary to adjust the relative positions of the elements individually, and a problem has arisen that simple and rational production cannot be performed.

【0007】[0007]

【課題を解決するための手段】本発明者らは、光導波路
の一端面に露出する複数の導波路端に、空間を隔てて少
なくとも一つの発光素子および少なくとも一つの受光素
子を結合する光送受信用部品の場合に適した光導波路端
面の加工方法について鋭意検討を行った結果完成したも
のである。すなわち、本発明は、所定間隔の導波路端を
一端面に有する光導波路と該一端面の先に空間を隔てて
少なくとも一つの発光素子および少なくとも一つの受光
素子を該導波路と各々光学的に結合してなる光送受信用
部品であって、該発光素子を結合する該導波路端部分の
該光導波路端面は光軸に対して 5〜20度斜めに加工して
なり、該受光素子を結合する該導波路端部分の該光導波
路端面は光軸に対して垂直に加工してなる光送受信用部
品である。
Means for Solving the Problems The present inventors have proposed an optical transmission / reception device that couples at least one light emitting element and at least one light receiving element to a plurality of waveguide ends exposed at one end face of an optical waveguide with a space therebetween. It has been completed as a result of intensive studies on a method of processing the end face of the optical waveguide suitable for a component for use. That is, according to the present invention, an optical waveguide having waveguide ends at predetermined intervals on one end face, and at least one light emitting element and at least one light receiving element separated from the one end face by a space are optically connected to the waveguide. An optical transmission / reception component formed by coupling, wherein an end face of the optical waveguide at an end portion of the waveguide that couples the light emitting element is processed at an angle of 5 to 20 degrees with respect to an optical axis to couple the light receiving element. The end face of the optical waveguide at the end portion of the waveguide is an optical transmission / reception component that is processed perpendicular to the optical axis.

【0008】本発明を具体的に示したのが図2である。
図2において、符号1が光導波路、符号2が発光素子、
符号4が受光素子である。すなわち、本発明は、所定間
隔の導波路端を一端面に有する光導波路(1) と該一端面
の先に空間を隔てて少なくとも一つの発光素子(2) およ
び少なくとも一つの受光素子(4) を該導波路と各々光学
的に結合してなる光送受信用部品であって、該発光素子
を結合する該導波路端部分の該光導波路端面は光軸に対
してθ=5〜20度斜めに加工してなり、該受光素子を結
合する該導波路端部分の該光導波路端面は光軸に対して
垂直に加工してなる光送受信用部品である。
FIG. 2 specifically shows the present invention.
In FIG. 2, reference numeral 1 denotes an optical waveguide, reference numeral 2 denotes a light emitting element,
Reference numeral 4 denotes a light receiving element. That is, the present invention provides an optical waveguide (1) having waveguide ends at predetermined intervals on one end surface and at least one light-emitting element (2) and at least one light-receiving element (4) separated from the one end face by a space. Are optically coupled to the waveguide, respectively, wherein the optical waveguide end face of the waveguide end portion coupling the light emitting element is inclined at θ = 5 to 20 degrees with respect to the optical axis. The optical waveguide end face of the waveguide end portion that couples the light receiving element is an optical transmitting / receiving component that is processed perpendicular to the optical axis.

【0009】図2のごとく発光素子と結合する光導波路
部分の端面を斜めにするのではなく、図3のように全体
に斜めにした場合は、以下の不都合が生じるので、好ま
しくない。すなわち、光導波路部分の端面が斜めになっ
ていると、光導波路端面から出射した光が曲がるため、
受光素子の中心軸と発光素子の中心軸のピッチdが、光
導波路端面と受光素子の位置によって異なってくる。換
言すれば、発光素子の位置調整を厳密に行う必要があ
る。一方、本発明からなる構造の場合は、受光素子の中
心軸と発光素子の中心軸のピッチdが、光導波路と受光
素子の距離によらず一定であるから、調芯作業が非常に
容易である。
If the end face of the optical waveguide portion to be coupled to the light emitting element is not inclined as shown in FIG. 2, but is inclined as a whole as shown in FIG. 3, the following inconvenience occurs, which is not preferable. That is, if the end face of the optical waveguide portion is inclined, the light emitted from the end face of the optical waveguide is bent,
The pitch d between the central axis of the light receiving element and the central axis of the light emitting element differs depending on the position of the end face of the optical waveguide and the position of the light receiving element. In other words, it is necessary to strictly adjust the position of the light emitting element. On the other hand, in the case of the structure according to the present invention, the pitch d between the central axis of the light receiving element and the central axis of the light emitting element is constant irrespective of the distance between the optical waveguide and the light receiving element. is there.

【0010】本発明を実施するに際し、発光素子を結合
する導波路端部分の端面の、光軸に対しての角度θは 5
度以上、20度以下に加工することが好ましい。このよう
な構造を採用することによって発光素子自身への戻り光
が大幅に低減可能となり、発光素子の安定化が図られ
る。また、導波路と受光素子の相対位置を厳密に調整す
る必要もない。該加工方法としては、ダイシングソーに
よる斜め切断(導波路面に対して垂直方向の切断)、該
導波路端面の斜め研削 (治具を用いて斜め固定しての研
磨) が挙げられる。θが 5度未満になると発光素子への
反射戻り光が増加するので好ましくない。また、ダイシ
ングソーによる斜め切断の場合、θが20度を越えると、
発光素子と光導波路との距離が長くなり、結合損失が増
えるので好ましくない。
In practicing the present invention, the angle θ of the end face of the end portion of the waveguide connecting the light emitting element to the optical axis is 5 °.
It is preferable to process to not less than 20 degrees. By employing such a structure, return light to the light emitting element itself can be significantly reduced, and the light emitting element can be stabilized. Also, there is no need to strictly adjust the relative position between the waveguide and the light receiving element. Examples of the processing method include oblique cutting with a dicing saw (cutting in a direction perpendicular to the waveguide surface), and oblique grinding of the end surface of the waveguide (polishing with a diagonally fixed jig). If θ is less than 5 degrees, reflected return light to the light emitting element increases, which is not preferable. Also, in the case of oblique cutting with a dicing saw, if θ exceeds 20 degrees,
It is not preferable because the distance between the light emitting element and the optical waveguide becomes longer and the coupling loss increases.

【0011】本発明を実施するに際し、光導波路に特に
制限はないが、量産性に鑑み、ソルベントキャスト法に
より製造された高分子光導波路が特に好ましい。また、
本発明は、発光素子がレーザーダイオードであり、その
発光側前方に集光用レンズを備えたものである光送受信
用部品に対して特に有効である。本発明の光導波路とし
ては、伝送路と結合させる一つの導波路端とその対面に
複数の分岐導波路端を有する1:N(Nは2以上の整
数)型、複数の光伝送路と結合させる複数の導波路端と
その対面に複数の導波路端を有するM:N(M、Nは2
以上の整数)型、さらに、光伝送路と一端面およびその
対向端面とで結合する少なくとも一つの幹線導波路と、
該幹線導波路から分岐する少なくとも2本で1対の分岐
導波路端面とを有するものが挙げられる。
In practicing the present invention, the optical waveguide is not particularly limited, but in view of mass productivity, a polymer optical waveguide manufactured by a solvent casting method is particularly preferable. Also,
INDUSTRIAL APPLICABILITY The present invention is particularly effective for an optical transmission / reception component in which a light emitting element is a laser diode and a light collecting lens is provided in front of the light emitting element. The optical waveguide of the present invention is a 1: N (N is an integer of 2 or more) type having one waveguide end to be coupled to a transmission line and a plurality of branch waveguide ends on the opposite surface, and is coupled to a plurality of optical transmission lines. M: N (where M and N are equal to 2) having a plurality of waveguide ends to be
The above integer) type, further, at least one trunk waveguide coupled with the optical transmission line at one end face and its opposite end face;
One having at least two branches branched from the main waveguide and a pair of branch waveguide end faces is exemplified.

【0012】[0012]

【実施例】以下、実施例により本発明の光送受信用部品
についてさらに詳しく説明する。なお、以下の例は具体
的に説明するためのものであって、本発明の実施態様や
発明範囲を限定するものではない。
EXAMPLES Hereinafter, the optical transmission / reception component of the present invention will be described in more detail with reference to examples. The following examples are for the purpose of specifically explaining, and do not limit the embodiments and the scope of the present invention.

【0013】実施例1:コア径50μmの光ファイバ用光
送受信用部品の作製 図4に本発明からなる示される光ファイバ用光送受信用
部品を示した。符号11はキャンタイプのフォトダイオー
ド(PD:浜松ホトニクス(株)製 S5972)、符号12は
波長0.78μmのキャンタイプのレーザーダイオード(L
D:ローム(株)製 RLD78PIT)、符号13は集光レンズと
しての2mmφのロッドレンズ(0.78μm用、0.25ピッ
チ)、符号14はLD(12)とロッドレンズ(13)を収納する
ためのステンレス製シース(内径2.05mmφ、外径6mm
φ、長さ8mm)、符号15がコア径50μmの光ファイバ用
2 分岐光導波路、符号16が光導波路を上下ガラス板で挟
み込んだ光導波路プレート、符号17が、ステンレス製の
支持缶体、符号18がレセプタクル、符号19がレセプタク
ル(18)と支持缶体(17)を固定するための固定用リングで
ある。
Example 1: Fabrication of optical fiber transmitting / receiving component for optical fiber having a core diameter of 50 μm FIG. 4 shows an optical fiber transmitting / receiving component according to the present invention. Reference numeral 11 denotes a can type photodiode (PD: S5972 manufactured by Hamamatsu Photonics Co., Ltd.), and reference numeral 12 denotes a can type laser diode (L: 0.78 μm).
D: RLD78PIT manufactured by ROHM Co., Ltd., reference numeral 13 is a 2 mmφ rod lens (for 0.78 μm, 0.25 pitch) as a condenser lens, and reference numeral 14 is stainless steel for storing the LD (12) and the rod lens (13). Sheath (2.05mmφ inside diameter, 6mm outside diameter)
φ, length 8mm), symbol 15 is for optical fiber with core diameter 50μm
2 Branched optical waveguide, reference numeral 16 is an optical waveguide plate sandwiching the optical waveguide between upper and lower glass plates, reference numeral 17 is a stainless steel support can, reference numeral 18 is a receptacle, reference numeral 19 is a receptacle (18) and a support can (17). This is a fixing ring for fixing).

【0014】(缶体(17)の作製)光部品を支持するため
の缶体(17)の外形は、左右長23mm、上下幅20mm、高さ9
mmであり、その左側壁は厚さ3.5mm で、光レセプタクル
固定用の貫通孔を形成してなり、一方、右側壁は厚さ 6
mmで、受光素子および発光素子固定用の孔を形成してな
り、内部には、2分岐光導波路プレート(16)の収納部を
有する。また光導波路プレート(16)と受光素子(11)が缶
体(17)に収納された場合、光導波路(15)の光軸と受光素
子(11)との光軸とが一致するような精度で缶体(17)が製
造されている。また、さらに缶体(17)の4隅には部品固
定用のネジ孔を設けてなる。組立後は、これらネジ孔よ
り内側にステンレス製の蓋を接着固定し、内部の気密性
を保持する構造となっている。
(Preparation of Can Body (17)) The outer shape of the can body (17) for supporting an optical component has a left-right length of 23 mm, a vertical width of 20 mm, and a height of 9 mm.
mm, the left side wall of which is 3.5 mm thick and has a through hole for fixing the optical receptacle, while the right side wall has a thickness of 6 mm.
A hole for fixing the light receiving element and the light emitting element is formed in mm, and has a storage portion for the two-branch optical waveguide plate (16) inside. Also, when the optical waveguide plate (16) and the light receiving element (11) are housed in the can (17), the accuracy is such that the optical axis of the optical waveguide (15) matches the optical axis of the light receiving element (11). The can body (17) is manufactured. Further, screw holes for fixing components are provided at four corners of the can body (17). After assembling, a stainless steel lid is adhesively fixed inside these screw holes to maintain the airtightness inside.

【0015】(2分岐光導波路(15)、回路プレート(16)
の作製)光導波路の寸法は、フィルム厚さ40μm、伝搬
方向の長さ12mm、分岐導波路の間隔6mmとし、導波路端
部における幅は1本側、分岐側ともに40μmとして、以
下のように作製した。すなわち、ビスフェノールZから
合成されたポリカーボネート樹脂(三菱ガス化学(株)
製、商品名:ユーピロンZ)、光重合性モノマーとして
アクリル酸トリフルオロエチル、および増感剤としてベ
ンゾインエチルエーテルを用いて、選択光重合法(特公
昭56ー3522 号公報、特開平3-156407号公報)により光導
波路フィルムを作製した。
(2 branch optical waveguide (15), circuit plate (16)
Production) The dimensions of the optical waveguide were as follows: the film thickness was 40 μm, the length in the propagation direction was 12 mm, the interval between the branch waveguides was 6 mm, and the width at the waveguide end was 40 μm on both the single side and the branch side, as follows. Produced. That is, a polycarbonate resin synthesized from bisphenol Z (Mitsubishi Gas Chemical Co., Ltd.)
And trade name: Iupilon Z), using trifluoroethyl acrylate as a photopolymerizable monomer and benzoin ethyl ether as a sensitizer (JP-B-56-3522, JP-A-3-156407). JP-A No. 1993) to produce an optical waveguide film.

【0016】次いで、屈折率 1.56 の接着剤を用いて、
この光導波路フィルムの両面に厚さ1.5mmのガラス板を
接着固定した後、所定の大きさに切断し、2分岐光導波
路とした。ついで、2 分岐光導波路側の1 ポート部分を
12度斜めのダイシングソーにてカットした。
Next, using an adhesive having a refractive index of 1.56,
A glass plate having a thickness of 1.5 mm was bonded and fixed to both sides of the optical waveguide film, and then cut into a predetermined size to obtain a two-branch optical waveguide. Next, the 1-port portion on the 2-branch optical waveguide side is
It was cut with a dicing saw that was 12 degrees diagonally.

【0017】(光レセプタクル(18)の作製)全長18.5m
m、支持缶体(17)への差し込み部の外径5.99mm、長さ7m
mの光レセプタクル(18)を作製した。ここに、光レセプ
タクル(18)内部には、フェルール付き光ファイバが挿入
され、このフェルールの端部と光コネクタ側のフェルー
ル端部とが接触するように構成され、また、反対側の端
部も同様に、光導波路と接触するように構成されたもの
である。また、光レセプタクル(18)を最適な位置で缶体
(17)に接着固定するため、内径6.01mm、外径9mm、厚さ
2.5mmの固定用リング(19)を用意した。
(Preparation of Optical Receptacle (18)) Total Length 18.5m
m, outer diameter of insertion part to support can body (17) 5.99mm, length 7m
m optical receptacle (18) was fabricated. Here, an optical fiber with a ferrule is inserted inside the optical receptacle (18), and the end of the ferrule is configured to be in contact with the ferrule end on the optical connector side, and the opposite end is also provided. Similarly, it is configured to be in contact with the optical waveguide. In addition, the optical receptacle (18) can be
(17) For fixing by adhesive, inner diameter 6.01mm, outer diameter 9mm, thickness
A 2.5 mm fixing ring (19) was prepared.

【0018】(受光素子(11)および発光素子(12))発光
素子(12)は、集光レンズと一体化してステンレス製シー
ス(14)(内径2.05mmφ、外径6mmφ、長さ8mm)内部に
納めた。
(Light receiving element (11) and light emitting element (12)) The light emitting element (12) is integrated with a condenser lens and has a stainless steel sheath (14) (inner diameter 2.05 mmφ, outer diameter 6 mmφ, length 8 mm) inside. I put it in

【0019】(光送受信用部品の組立)まず、上記受光
素子(11)を缶体(17)の貫通孔部分に接着固定した。次
に、光レセプタクル(18)に予め固定用リング(19)を通し
ておき、その光導波路プレート(16)に接続する側を外側
から缶体(17) の貫通孔に挿入し、缶体内部に配置した
光導波路プレート(16)と対向させ、これらを光学ステー
ジ上に保持した。その後、波長0.85μmのLED光源の
光を、50/125GI光ファイバを用いて光レセプタクル(18)
に接続し、缶体(17) に固定された受光素子(11)をモニ
ターとして光レセプタクル(18)の位置を調整し、光強度
が最も大きくなる位置で、光レセプタクル(18)と光導波
路プレート(16)とを接着固定した。
(Assembling of Optical Transmitting / Receiving Parts) First, the light receiving element (11) was bonded and fixed to the through hole of the can (17). Next, the fixing ring (19) is passed through the optical receptacle (18) in advance, and the side connected to the optical waveguide plate (16) is inserted into the through hole of the can (17) from the outside, and placed inside the can. And placed on an optical stage. After that, the light from the LED light source with a wavelength of 0.85 μm is transmitted to the optical receptacle (18) using a 50 / 125GI optical fiber.
And adjust the position of the optical receptacle (18) using the light receiving element (11) fixed to the can body (17) as a monitor, and at the position where the light intensity is maximized, the optical receptacle (18) and the optical waveguide plate (16) was adhered and fixed.

【0020】次に、光レセプタクル(18)に接続したLE
D光源からの光ファイバを外し、光パワーメーターから
導いた光ファイバにつなぎ替えた。この状態で発光素子
(12)を発光させ、光レセプタクル(18)と一体になった光
導波路プレート(16)と発光素子(12)との相対位置を調整
して、光強度が最も大きくなる位置で、固定用リング(1
9)を介して缶体(17) と光レセプタクル(18)、およびを
発光素子(12)と一体となったステンレス製シース部分(1
4)接着固定した。この光導波路プレート(16)とステンレ
ス製シース部分(14)との位置調整に要する時間は、5個
の製造の平均で3分であった。
Next, the LE connected to the optical receptacle (18)
The optical fiber from the D light source was removed and replaced with an optical fiber led from an optical power meter. In this state the light emitting element
(12) emits light, and adjusts the relative position between the optical waveguide plate (16) integrated with the optical receptacle (18) and the light emitting element (12). (1
9) through a can body (17), an optical receptacle (18), and a stainless steel sheath portion (1) integrated with the light emitting element (12).
4) Adhesively fixed. The time required for adjusting the position of the optical waveguide plate (16) and the stainless sheath portion (14) was 3 minutes on average for the manufacture of five pieces.

【0021】比較例1:コア径50μmの光ファイバ用光
送受信用部品の作製 実施例1とまったく同様にして、コア径50μmの光ファ
イバ用光送受信用部品を5 台を製造した。ただし、光導
波路プレート(16)は図3 のごとく、全体を12度の角度で
斜めに切断したものを用いた。また、缶体(17)と受光素
子(11)はあらかじめ接着固定するのではなく、光レセプ
タクル(18)と一体になった光導波路プレート(16)とステ
ンレス製シース部分(14)との位置調整を行う際に、同時
に受光素子の位置調整もおこなった。受光素子の位置調
整を実施しない場合、実施例1と同等の性能が得られな
かった。この結果、光レセプタクル(18)と一体になった
光導波路プレート(16)、受光素子(11)、およびステンレ
ス製シース部分(14)との位置調節に要する時間は、5個
の製造の平均11分であった。
Comparative Example 1 Production of Optical Transmitting / Receiving Parts for Optical Fiber with 50 μm Core Diameter Five optical transmitting / receiving components for optical fiber having a 50 μm core diameter were manufactured in exactly the same manner as in Example 1. However, as shown in FIG. 3, the optical waveguide plate (16) was used by cutting the whole obliquely at an angle of 12 degrees. Also, the can body (17) and the light receiving element (11) are not bonded and fixed in advance, but the position adjustment between the optical waveguide plate (16) integrated with the optical receptacle (18) and the stainless sheath part (14). Was performed, the position of the light receiving element was also adjusted at the same time. When the position adjustment of the light receiving element was not performed, the same performance as that of Example 1 was not obtained. As a result, the time required for adjusting the positions of the optical waveguide plate (16), the light receiving element (11), and the stainless steel sheath portion (14) integrated with the optical receptacle (18) is an average of 11 times for manufacturing five pieces. Minutes.

【0022】[0022]

【発明の効果】導波路と受発光素子とを空間を隔てて結
合した光送受信用部品において、組み立て作業の簡便性
が維持されたまま、導波路端部からの反射戻り光が発光
素子自身に戻ることにより発光素子が不安定となる、と
いう不具合が回避できる。
As described above, in an optical transmitting / receiving component in which a waveguide and a light receiving / emitting element are coupled with a space therebetween, reflected light returning from the end of the waveguide is transmitted to the light emitting element itself while maintaining the simplicity of the assembling work. The problem that the light emitting element becomes unstable by returning can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】斜めにカットされている端面に光が入射した場
合の、反射した光の位置関係を示す模式図
FIG. 1 is a schematic diagram showing a positional relationship between reflected light when light is incident on an obliquely cut end surface.

【図2】本発明を具体的に示すための光送受信用部品の
一例を示す模式図
FIG. 2 is a schematic view showing an example of an optical transmitting / receiving component for specifically illustrating the present invention.

【図3】本発明の効果と比較するため、光導波路端面全
体を斜め加工した光送受信用部品の一例を示す模式図
FIG. 3 is a schematic view showing an example of an optical transmission / reception component in which the entire end face of the optical waveguide is obliquely processed for comparison with the effect of the present invention.

【図4】実施例1における光送受信用部品の平面図FIG. 4 is a plan view of an optical transceiver component according to the first embodiment.

【符号の説明】[Explanation of symbols]

1:光導波路プレート、2:発光素子、3:反射戻り
光、4:受光素子、11:受光素子、12:発光素子、
13:ロッドレンズ、14:ステンレス製シース、1
5:光導波路、16:光導波路プレート、17:支持缶
体、18:レセプタクル、19:固定用リング
1: optical waveguide plate, 2: light emitting element, 3: reflected return light, 4: light receiving element, 11: light receiving element, 12: light emitting element,
13: rod lens, 14: stainless steel sheath, 1
5: Optical waveguide, 16: Optical waveguide plate, 17: Support can, 18: Receptacle, 19: Fixing ring

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定間隔の導波路端を一端面に有する光
導波路と該一端面の先に空間を隔てて少なくとも一つの
発光素子および少なくとも一つの受光素子を該導波路と
各々光学的に結合してなる光送受信用部品であって、該
発光素子を結合する該導波路端部分の該光導波路端面は
光軸に対して 5〜20度斜めに加工してなり、該受光素子
を結合する該導波路端部分の該光導波路端面は光軸に対
して垂直に加工してなる光送受信用部品。
1. An optical waveguide having waveguide ends at predetermined ends on one end, and at least one light-emitting element and at least one light-receiving element optically coupled to the end of the one end with a space therebetween. An optical transmission / reception component comprising: an end face of the optical waveguide at an end portion of the waveguide for coupling the light emitting element, which is processed at an angle of 5 to 20 degrees with respect to an optical axis to couple the light receiving element; An optical transmission / reception component in which an end face of the optical waveguide at an end portion of the waveguide is processed perpendicular to an optical axis.
【請求項2】 該光導波路が、ソルベントキャスト法に
より製造された高分子光導波路である請求項1記載の光
送受信用部品。
2. The optical transmitting / receiving component according to claim 1, wherein the optical waveguide is a polymer optical waveguide manufactured by a solvent casting method.
【請求項3】 該発光素子がレーザーダイオードであ
り、その発光側前方に集光用レンズを備えたものである
請求項1記載の光送受信用部品。
3. The optical transmitting / receiving component according to claim 1, wherein the light emitting element is a laser diode, and a light condensing lens is provided in front of the laser diode.
【請求項4】 該光導波路が、伝送路と結合させる一つ
の導波路端とその対面に複数の分岐導波路端を有する
1:N(Nは2以上の整数)型である請求項1記載の光
送受信用部品。
4. The optical waveguide according to claim 1, wherein the optical waveguide is a 1: N (N is an integer of 2 or more) type having one waveguide end to be coupled to the transmission line and a plurality of branch waveguide ends on the opposite surface. Parts for optical transmission and reception.
【請求項5】 該光導波路が、複数の光伝送路と結合さ
せる複数の導波路端とその対面に複数の導波路端を有す
るM:N(M、Nは2以上の整数)型である請求項1記
載の光送受信用部品。
5. An M: N (M and N are integers of 2 or more) type optical waveguide having a plurality of waveguide ends coupled to a plurality of optical transmission lines and a plurality of waveguide ends on opposite sides thereof. The optical transmitting / receiving component according to claim 1.
【請求項6】 該光導波路が、光伝送路と一端面および
その対向端面とで結合する少なくとも一つの幹線導波路
と、該幹線導波路から分岐する少なくとも2本で1対の
分岐導波路端面とを有する請求項1記載の光送受信用部
品。
6. An optical waveguide comprising: at least one trunk waveguide coupled to an optical transmission line at one end face and its opposite end face; and at least two pairs of branch waveguide end faces branched from the trunk waveguide. The optical transmission / reception component according to claim 1, comprising:
JP24961198A 1998-09-03 1998-09-03 Parts for optical signal transmission and reception Pending JP2000081548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24961198A JP2000081548A (en) 1998-09-03 1998-09-03 Parts for optical signal transmission and reception

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24961198A JP2000081548A (en) 1998-09-03 1998-09-03 Parts for optical signal transmission and reception

Publications (1)

Publication Number Publication Date
JP2000081548A true JP2000081548A (en) 2000-03-21

Family

ID=17195615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24961198A Pending JP2000081548A (en) 1998-09-03 1998-09-03 Parts for optical signal transmission and reception

Country Status (1)

Country Link
JP (1) JP2000081548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022249A (en) * 2010-07-16 2012-02-02 Enplas Corp Optical reception module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022249A (en) * 2010-07-16 2012-02-02 Enplas Corp Optical reception module

Similar Documents

Publication Publication Date Title
JP5238651B2 (en) Optical path changing member, optical connection method
US8380075B2 (en) Optical transceiver module
US6913400B2 (en) Optoelectric module for multi-fiber arrays
US5546212A (en) Optical module for two-way transmission
US6901221B1 (en) Method and apparatus for improved optical elements for vertical PCB fiber optic modules
US20030210866A1 (en) Optical transceiver module and optical communications system using the same
US20080226228A1 (en) Optical system connection structure, optical component, and optical communication module
KR20090101246A (en) Dual-lensed unitary optical receiver assembly
KR20120029673A (en) Optical transmitter, optical receiver for passive alignment of parts and method for passive alignment of parts
US20070092178A1 (en) Micro-optical device
JP2006344915A (en) Optical unit
JP2001154066A (en) Optical system unit for optical transceiver
JP5313983B2 (en) Optical module
JP2000258664A (en) Method for connecting optical fiber and photoelectric component and device therefor
TW200428057A (en) Photo module
US7013056B2 (en) Bi-directional transceiver module based on silicon optic bench
US20200174207A1 (en) Electro-optical device
JP4433730B2 (en) Optical filter holding member and optical transmission / reception module
US7083333B2 (en) Optical packages and methods to manufacture the same
CA2359002C (en) Optoelectric module for multi-fiber arrays
US20090032984A1 (en) Method for manufacturing an optical fiber with filter and method for batch manufacturing optical fibers with filter
JP2001324654A (en) Assembling method for bidirectional, optical communication device and bidirectional optical communication device
JP2000081548A (en) Parts for optical signal transmission and reception
JP2006084890A (en) Optical connection device
JP3452120B2 (en) Optical module and optical transceiver