JP2000081359A - Measurement method using secondary electron multiplication element and device using secondary electron multiplication element - Google Patents

Measurement method using secondary electron multiplication element and device using secondary electron multiplication element

Info

Publication number
JP2000081359A
JP2000081359A JP10251311A JP25131198A JP2000081359A JP 2000081359 A JP2000081359 A JP 2000081359A JP 10251311 A JP10251311 A JP 10251311A JP 25131198 A JP25131198 A JP 25131198A JP 2000081359 A JP2000081359 A JP 2000081359A
Authority
JP
Japan
Prior art keywords
secondary electron
neutral particles
light
measured
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10251311A
Other languages
Japanese (ja)
Other versions
JP4216375B2 (en
Inventor
Hitoshi Akimichi
斉 秋道
Kiyouko Takeuchi
協子 竹内
Yasushi Tsuji
泰 辻
Ichiro Arakawa
一郎 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP25131198A priority Critical patent/JP4216375B2/en
Publication of JP2000081359A publication Critical patent/JP2000081359A/en
Application granted granted Critical
Publication of JP4216375B2 publication Critical patent/JP4216375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To maintain accurate measurement without recalibrating a measurement system during use by using the ratio of an initial intensity value where light intensity is measured to light intensity value during use at the initial stage of the installation of a secondary electron multiplication element. SOLUTION: A vacuum measurement part 1 is composed of an ion generation part 3 and an ion detection part 4 that oppose each other via a cylindrical electrode 2. The ion detection part 4 is composed by a secondary electron multiplication element, and a negative high voltage from a DC high-voltage power supply 10 is applied to an entrance part 4b of a trumpet-shaped secondary electron multiplication element. The measurement value of a particle such as a charged particle being measured is multiplied, as a correction coefficient, by a ratio A/B between an initial intensity value A that is obtained by measuring the intensity of light such as soft X rays at the initial stage of the installation of the secondary electron multiplication element and an intensity value B of light being measured during use, thus performing accurate measurement without calibrating a measurement system by stopping measurement. The method can be effectively applied to the measurement of a vacuum pressure and surface analysis, and efficiency is improved by providing an operation device for executing the correction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空圧の測定、質
量分析や試料の表面状態の分析に使用される二次電子増
倍素子の感度を補正する方法及び二次電子増倍素子を使
用した真空成膜装置やアッシング装置等の真空処理装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for compensating the sensitivity of a secondary electron multiplier used for measuring vacuum pressure, mass spectrometry, and analyzing the surface condition of a sample, and uses the secondary electron multiplier. The present invention relates to a vacuum processing apparatus such as a vacuum deposition apparatus and an ashing apparatus.

【0002】[0002]

【従来の技術】従来、各種の真空処理装置、例えば、ス
パッタリング装置、真空蒸着装置、CVD装置、MBE
装置などの真空成膜装置、或いは、アッシング装置、イ
オン注入装置、酸化拡散装置には、電離真空圧力計、4
極子形質量分析計などの真空圧力計や、オージェ電子分
光(AES)、X線光電子分光(XPS)、紫外光電子
分光(UPS)、電子損失分光(EELS)などの表面
分析装置が取り付けられており、半導体、液晶などの生
産品の品質の維持と向上に重要な役割を担っている。
2. Description of the Related Art Conventionally, various vacuum processing apparatuses such as a sputtering apparatus, a vacuum evaporation apparatus, a CVD apparatus, and an MBE.
Vacuum film forming apparatus such as an ashing apparatus, an ion implantation apparatus, and an oxidation diffusion apparatus include an ionization vacuum pressure gauge,
A vacuum pressure gauge such as a polar mass spectrometer and a surface analyzer such as Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and electron loss spectroscopy (EELS) are installed. It plays an important role in maintaining and improving the quality of products such as semiconductors and liquid crystals.

【0003】このような真空圧力計や表面分析装置に
は、イオン、電子の荷電粒子を中性粒子や励起中性粒
子、軟X線等の光と共に発生させる生成部と、これら粒
子が測定管や試料と衝突して発生するイオン、電子、中
性粒子、励起中性粒子、軟X線等の光を捕捉して増幅す
る二次電子増倍素子とが設けられ、該二次電子増倍素子
には入射したイオン、電子、中性粒子、励起中性粒子、
軟X線等の光により生じる二次電子の個数等を検出して
真空圧力や表面状態を測定する測定器が接続される。該
二次電子増倍素子には、連続増倍式のセラトロン、チャ
ンネルトロン、多段式増倍管などが使用されており、微
量なイオン、電子、中性粒子、励起中性粒子、軟X線等
の光の計測に利用されている。これらの素子は、その表
面が二次電子を放出しやすいベリリウム酸化物、マグネ
シウム酸化物、セラミック半導体などの材料で作られて
おり、これに入射するイオンや電子の荷電粒子、中性粒
子、励起中性粒子、軟X線等の光などを電子に変換し、
さらに増幅するもので、非常に少ない電流値の測定に好
都合である。表面分析装置や、真空圧力計などでは、測
定対象となる表面や空間に、イオンや電子の荷電粒子、
中性粒子、光などを入射させ、放出された荷電粒子、中
性粒子、光などを測定している。通常は荷電粒子、中性
粒子、光などのうちの必要なものを測定し、その他のも
のはノイズの原因となるために、何らかの方法で取り除
いている。
[0003] Such a vacuum pressure gauge or surface analyzer includes a generator for generating charged particles of ions and electrons together with light such as neutral particles, excited neutral particles, and soft X-rays. And a secondary electron multiplier for capturing and amplifying light such as ions, electrons, neutral particles, excited neutral particles, and soft X-rays generated by collision with the sample and the secondary electron multiplier. In the device, incident ions, electrons, neutral particles, excited neutral particles,
A measuring instrument for detecting the number of secondary electrons generated by light such as soft X-rays and measuring the vacuum pressure and surface state is connected. The secondary electron multiplier uses a continuous intensifier type seratron, a channeltron, a multi-stage intensifier, and the like, and a small amount of ions, electrons, neutral particles, excited neutral particles, and soft X-rays. It is used for measurement of light such as. These devices are made of materials such as beryllium oxide, magnesium oxide, and ceramic semiconductors, whose surfaces tend to emit secondary electrons, and charge ions, electrons, and neutral particles, Converts light such as neutral particles and soft X-rays into electrons,
It further amplifies, which is convenient for measuring a very small current value. In surface analyzers and vacuum pressure gauges, charged particles such as ions and electrons
Neutral particles, light, etc. are made incident, and the emitted charged particles, neutral particles, light, etc. are measured. Usually, necessary ones such as charged particles, neutral particles, and light are measured, and others are removed by some method because they cause noise.

【0004】[0004]

【発明が解決しようとする課題】近年、半導体や液晶な
どの品質を更に向上させる要望を満足したり、新しい製
品の開発のために、表面分析装置や真空圧力計の定量的
な測定が求められているが、従来の真空圧力計では、環
境や使用時間により、その状態が変化しやすく、正確な
定量測定をするためには、測定系を1〜3ヶ月間隔で校
正する必要がある。その原因は、二次電子増倍素子が、
その表面に水、酸素、水素などが吸着したり、温度、湿
度などの環境の変化、動作電圧の変化などによって、そ
の検出効率や増幅率が大きく変化するためであり、その
ままでは正確な測定を行えない。頻繁に該素子を校正す
ればその正確さを維持できるが、そのためには使用中の
真空処理装置等を停止して該素子を取り出し、新たに校
正装置に取り付ける作業を行うので、時間と費用がかか
る欠点があった。
In recent years, in order to satisfy the demand for further improving the quality of semiconductors and liquid crystals, etc., and to develop new products, quantitative measurement of surface analyzers and vacuum pressure gauges has been required. However, in the conventional vacuum pressure gauge, the state tends to change depending on the environment and the use time, and it is necessary to calibrate the measurement system at intervals of one to three months in order to perform accurate quantitative measurement. The reason is that the secondary electron multiplier element
This is because water, oxygen, hydrogen, etc. adsorb on the surface, changes in the environment such as temperature and humidity, and changes in operating voltage greatly change the detection efficiency and amplification factor. I can't. If the element is calibrated frequently, the accuracy can be maintained, but for that purpose, the vacuum processing device or the like in use is stopped, the element is taken out, and the work of attaching it to the new calibration apparatus is performed, so that time and cost are increased. There was such a drawback.

【0005】本発明は、二次電子増倍素子の測定系を使
用中に再校正することなく正確な測定を維持できる方法
を提供すること及び二次電子増倍素子の感度の校正のた
めに運転が停止されることがない真空処理装置を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION The present invention provides a method for maintaining accurate measurement without recalibrating a measurement system of a secondary electron multiplier during use, and for calibrating the sensitivity of a secondary electron multiplier. It is an object of the present invention to provide a vacuum processing apparatus whose operation is not stopped.

【0006】[0006]

【課題を解決するための手段】本発明では、真空中に設
けた二次電子増倍素子の設置初期に軟X線等の光による
強度を測定した初期強度値Aと、該素子の測定使用中に
測定した該光の強度値Bとの比A/Bを、該素子で測定
される荷電粒子等の粒子の測定値に補正係数として乗ず
ることにより、測定を停止して測定系を校正することな
く正確な測定を行え、上記した目的が達成される。本発
明の手段は、真空圧の測定及び表面分析に有効に適用で
き、真空処理装置に設けた電子、イオン、中性粒子及び
励起中性粒子などの強度を計測する計測装置にこの補正
を実行する演算装置を設けることにより、該処理装置を
効率良く運転できる。
According to the present invention, an initial intensity value A obtained by measuring the intensity of light such as soft X-rays at the initial stage of installing a secondary electron multiplier provided in a vacuum, The measurement is stopped and the measurement system is calibrated by multiplying the ratio A / B of the light intensity value B measured therein to the measured value of particles such as charged particles measured by the element as a correction coefficient. The measurement can be performed accurately without the above, and the above-mentioned object is achieved. The means of the present invention can be effectively applied to vacuum pressure measurement and surface analysis, and performs this correction on a measuring device provided in a vacuum processing device for measuring the intensity of electrons, ions, neutral particles, and excited neutral particles. By providing an arithmetic device that performs the processing, the processing device can be operated efficiently.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を図面に基づ
き説明すると、図1は極高真空中に設けられてその真空
圧を測定する極高真空用電離真空計に本発明を適用した
実施例を示すもので、これに於いて符号1は円筒電極2
を介して対向するイオン生成部3とイオン検出部4とで
構成された真空測定部、5、5は該円筒電極2の両端に
設けた円盤電極である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the present invention applied to an ultrahigh vacuum ionization gauge provided in an ultrahigh vacuum and measuring the vacuum pressure. In this embodiment, reference numeral 1 denotes a cylindrical electrode 2
Vacuum measuring units 5, 5 and 5 composed of an ion generating unit 3 and an ion detecting unit 4 which face each other are disk electrodes provided at both ends of the cylindrical electrode 2.

【0008】該イオン生成部3は、例えばPtクラッド
Mo線で作成され、両端部が開放された直径約12m
m、長さ約15mmの筒形グリッドの集電子電極6と、
加熱用電源7からの直流電流で加熱される該集電子電極
6の外部側方に設けたWフィラメントからなる熱陰極型
の電子ビーム源8とで構成した。該円筒電極2はベッセ
ルボックス(Bessel-Box)型のエネルギーフィルターと
称されるもので、該集電子電極6の中心軸線に合致して
設けられ、該円筒電極2の内部には、該イオン生成部3
からイオンや電子の荷電粒子と共に放出される光や中性
粒子、高速のイオン、軟X線を除去するために、円盤電
極5に形成したイオン導入用の穴5aよりも直径がやや
大きい円盤形の邪魔板9を設け、これに該円筒電極2と
同電位を与えるようにした。
The ion generator 3 is made of, for example, a Pt clad Mo wire and has a diameter of about 12 m with both ends open.
m, a collector electrode 6 of a cylindrical grid having a length of about 15 mm,
A hot cathode type electron beam source 8 composed of a W filament provided on the outer side of the current collecting electrode 6 heated by a direct current from a heating power source 7. The cylindrical electrode 2 is referred to as a Bessel-Box type energy filter, and is provided so as to coincide with the central axis of the current collecting electrode 6. Part 3
To remove light, neutral particles, high-speed ions, and soft X-rays emitted together with charged particles such as ions and electrons from the disk, the disk shape is slightly larger than the ion introduction hole 5a formed in the disk electrode 5. The baffle 9 is provided, and the same potential as that of the cylindrical electrode 2 is applied to the baffle 9.

【0009】該イオン検出部4は、図示のようなチャン
ネルトロン、或いはセラトロン、マルチチャンネルプレ
ート(MCP)などの二次電子増倍素子で構成され、図
示の例ではラッパ状に拡がる二次電子増倍素子4の入口
部分4bに直流高圧電源10により負の高電圧を印加
し、二次電子増倍素子4の出口部4aからの出力をプリ
アンプ11を介してパルスカウンターの計測装置12に
接続した。該二次電子増倍素子4は、内面が二次電子を
放出しやすいベリリウム酸化物、マグネシウム酸化物、
セラミック半導体などの物質で形成され、その内部に入
射した電子、イオン、励起中性粒子、光は表面に衝突し
て2個以上の電子に変換され、更にその電子が表面と衝
突を重ねる度に2個以上の電子に増倍される。各円盤電
極5の前方又は後方に、アース電位のイオン引出電極1
3、13を設けるようにした。
The ion detector 4 is composed of a secondary electron multiplier such as a channeltron, a seratron, or a multi-channel plate (MCP) as shown in the figure. A negative high voltage was applied to the inlet 4b of the multiplier 4 by the DC high-voltage power supply 10, and the output from the outlet 4a of the secondary electron multiplier 4 was connected to the pulse counter measuring device 12 via the preamplifier 11. . The secondary electron multiplier 4 has a beryllium oxide, a magnesium oxide, whose inner surface easily emits secondary electrons,
Electrons, ions, excited neutral particles, and light that are formed of a material such as a ceramic semiconductor collide with the surface and are converted into two or more electrons. Each time the electrons collide with the surface, It is multiplied to two or more electrons. In front of or behind each disk electrode 5, an ion extraction electrode 1 having a ground potential
3 and 13 are provided.

【0010】該集電子電極6は、例えば10Vの第1直
流電源14と例えば100Vの第2直流電源15を介し
てアースに接続し、該集電子電極6と電子ビーム源8と
の間に該第2直流電源15の電位差を与え、該電子ビー
ム源8が発生する熱電子を該集電子電極6内へ吸引する
ようにした。また、該円筒電極2、円盤電極5及び邪魔
板9のアースとの電位差を調整するために、これらを可
変の直流電源16を介してアースに接続し、該円筒電極
2及び邪魔板9と円盤電極5との間にバイアス電源17
により例えば225Vの電位差を与えるようにした。
The collector electrode 6 is connected to the ground via a first DC power supply 14 of, for example, 10 V and a second DC power supply 15 of, for example, 100 V, and is connected between the collector electrode 6 and the electron beam source 8. A potential difference of the second DC power supply 15 was given to attract thermoelectrons generated by the electron beam source 8 into the collector electrode 6. In order to adjust the potential difference between the cylindrical electrode 2, the disk electrode 5 and the baffle plate 9 and the ground, these are connected to a ground via a variable DC power supply 16, and the cylindrical electrode 2 and the baffle plate 9 are connected to the ground. Bias power supply 17 between electrode 5
Thus, a potential difference of, for example, 225 V is applied.

【0011】以上の構成は、従来の二次電子増倍素子を
備えた真空圧力計の構成と同様であり、該真空測定部1
を真空中に設け、電子ビーム源8を加熱すると、これに
より発生する熱電子が集電子電極6の円筒内に集まり、
そこに存在する気体分子に衝突して気体イオンが生成さ
れ、そのイオンはイオン引出電極13により円筒電極2
を介してイオン検出部4の二次電子増倍素子4の入口部
分4bへと導かれる。該二次電子増倍素子4内でイオン
の入射による電子が増幅され、パルスカウント法或いは
直流法により計測装置12によりそのイオン強度(イオ
ン電流)が計測され、これを圧力に換算することにより
真空圧が測定される。
The above configuration is the same as the configuration of a conventional vacuum pressure gauge having a secondary electron multiplier, and
Is provided in a vacuum, and when the electron beam source 8 is heated, the thermoelectrons generated by this are collected in the cylinder of the collector electrode 6,
Gas ions are generated by colliding with gas molecules existing there, and the ions are generated by the ion extraction electrode 13.
To the entrance 4b of the secondary electron multiplier 4 of the ion detector 4. The electrons are amplified by the incidence of ions in the secondary electron multiplier 4, and the ion intensity (ion current) is measured by the measuring device 12 by a pulse count method or a direct current method, and is converted into a pressure to obtain a vacuum. The pressure is measured.

【0012】該二次電子増倍素子4は、前記したように
その表面が二次電子を放出しやすいベリリウム酸化物等
の材料で作られており、そこに水、酸素、水素などが吸
着したり、温度、湿度などの環境の変化や動作電圧が変
化することなどが原因で、その検出効率や増幅率が大き
く変化してしまい、正確な測定を行うにはその測定を停
止して測定系の校正が必要になるが、本発明によれば、
該二次電子増倍素子4を設置して使用開始する初期、即
ちその表面が新鮮であるうちに、該イオン生成部3から
放射される軟X線の光だけが該二次電子増倍素子4へ入
射する条件のときの初期強度値Aを測定し、この値を真
空圧の測定中に該光だけが該二次電子増倍素子4に入射
する条件での強度値Bを該増倍素子4で測定してその比
A/Bを求め、この値を補正係数として該素子4で測定
した荷電粒子等の粒子の測定強度値に乗じることで、該
素子4の検出効率や増幅率が変化しても正確な測定が行
える。
As described above, the surface of the secondary electron multiplier 4 is made of a material such as beryllium oxide which easily emits secondary electrons, and water, oxygen, hydrogen and the like are adsorbed thereon. For example, the detection efficiency and amplification factor may change significantly due to changes in the environment such as temperature, humidity, etc., or the operating voltage may change.To perform accurate measurement, stop the measurement and Calibration is required, but according to the present invention,
Initially, when the secondary electron multiplier 4 is installed and started to be used, that is, while the surface is fresh, only the soft X-ray light emitted from the ion generator 3 emits the secondary electron multiplier. The initial intensity value A under the condition of incidence on the secondary electron multiplier 4 is measured, and this value is multiplied by the intensity value B under the condition that only the light is incident on the secondary electron multiplier 4 during the measurement of the vacuum pressure. By measuring the ratio A / B by measuring with the element 4 and multiplying the measured intensity value of particles such as charged particles measured with the element 4 as a correction coefficient, the detection efficiency and the amplification factor of the element 4 can be improved. Accurate measurement can be performed even if it changes.

【0013】これを更に説明すると、イオン生成部3で
は電子ビーム源8から加速放出される熱電子の衝撃によ
り集電子電極6内の気体分子が電離し、測定目的物とな
る気体イオンが生成されるが、これと同時に該集電子電
極6の表面が熱電子で衝撃されて軟X線の光が放出され
る。この光が直接或いは円筒電極2内で反射して二次電
子増倍素子4に入射すると、光電効果により二次電子が
その内部で放出され、これが測定目的のイオン以外の擬
似的なイオン電流として計測される。この軟X線による
擬似的なイオン電流強度は、真空容器内の真空圧力には
依存せず、測定には雑音であって取り除かれるべきもの
であるが、図2に見られるように真空圧力計の感度すな
わち二次電子増倍素子4の表面状態に直線的に比例する
ものであることが分かった。本発明は、この現象を利用
して二次電子増倍素子4の表面状態等の変化で測定感度
が変化する不都合を解消するもので、まず、真空圧力の
測定可能な状態に或いは後記のような表面分析可能な状
態に二次電子増倍素子4を設置した初期に、可変の直流
電源16を調整して測定系の各電極3、9の電位を変
え、該素子4にイオンが入射せず軟X線が入射するよう
に制御すると、イオン生成部3で発生する光が該素子4
に入射し、該光の強度が初期強度値Aとして測定でき
る。そして、イオン生成部3からイオンを該素子4へ導
き、該素子4内で増幅される二次電子をパルスカウント
法などにより計測し、圧力に換算して通常の真空圧力測
定や表面分析などの測定を行う。測定環境や時間の経過
で該素子4の検出効率や二次電子増幅率が変化するた
め、感度が変化して測定の正確さが失われてくるが、そ
の測定中の適当な時期に該直流電源16を調整して該素
子4にイオンが入射せず軟X線が入射するように制御す
ると、この時点に於ける軟X線の強度を測定することが
できる。その強度値Bと初期強度値Aの比A/Bは感度
の比であり、これを補正係数としてそれ以後にイオンを
入射させて真空圧力を測定したときの測定強度値に乗ず
れば、感度の変化を補正した正確な真空圧力を求めるこ
とができる。この強度値Bは、電源16の電圧を一時的
に変化させるだけで測定でき、補正係数を測定強度値に
乗ずる演算は演算装置18を計測装置12に付設して行
えるから、従来のように感度が変化した二次電子増倍素
子を取り外して感度の再校正をする必要がなく、時間と
費用が節約できる。尚、強度値Bは真空圧の測定に支障
をもたらさない適当な時間をおいて頻繁に行うことが望
ましい。
More specifically, in the ion generator 3, gas molecules in the collector electrode 6 are ionized by the impact of thermionic electrons accelerated and emitted from the electron beam source 8, and gas ions to be measured are generated. However, at the same time, the surface of the collector electrode 6 is bombarded with thermionic electrons to emit soft X-ray light. When this light is reflected directly or inside the cylindrical electrode 2 and enters the secondary electron multiplier 4, secondary electrons are emitted inside the secondary electron multiplier 4 by the photoelectric effect, and this is generated as a pseudo ion current other than the ion for measurement. Measured. The pseudo ion current intensity due to this soft X-ray does not depend on the vacuum pressure in the vacuum vessel and is a noise to be measured and should be removed. However, as shown in FIG. , That is, linearly proportional to the surface state of the secondary electron multiplier 4. The present invention uses this phenomenon to eliminate the inconvenience that the measurement sensitivity changes due to a change in the surface state or the like of the secondary electron multiplier 4. First, the state in which the vacuum pressure can be measured or as described below. At the initial stage of installing the secondary electron multiplier 4 in a state where the surface analysis can be performed, the variable DC power supply 16 is adjusted to change the potentials of the electrodes 3 and 9 of the measurement system, and ions are incident on the element 4. When control is performed so that soft X-rays enter, the light generated by the ion generator 3 is
And the intensity of the light can be measured as an initial intensity value A. Then, ions are guided from the ion generation unit 3 to the element 4, the secondary electrons amplified in the element 4 are measured by a pulse count method or the like, and converted into pressure to convert the pressure into a normal vacuum pressure measurement or surface analysis. Perform the measurement. Since the detection efficiency and the secondary electron amplification factor of the element 4 change with the measurement environment and the passage of time, the sensitivity changes and the accuracy of the measurement is lost. When the power supply 16 is adjusted so that soft X-rays enter the element 4 without entering ions, the intensity of the soft X-rays at this time can be measured. The ratio A / B of the intensity value B and the initial intensity value A is a ratio of sensitivity, and if this is used as a correction coefficient and multiplied by a measured intensity value when a vacuum pressure is measured by subsequently injecting ions, the sensitivity becomes It is possible to obtain an accurate vacuum pressure corrected for the change in the pressure. The intensity value B can be measured only by temporarily changing the voltage of the power supply 16, and the operation of multiplying the correction coefficient by the measured intensity value can be performed by attaching the arithmetic device 18 to the measuring device 12, so that the sensitivity can be increased as in the conventional case. There is no need to remove the secondary electron multiplier having changed and recalibrate the sensitivity, saving time and money. It is desirable that the intensity value B is frequently measured after an appropriate time that does not hinder the measurement of the vacuum pressure.

【0014】二次電子増倍素子はオージェ電子分光型、
X線光電分光型、紫外光電子分光型、電子損失分光型、
電子損失分光型などの表面分析法にも使用され、この場
合も二次電子増倍素子の感度が変化すると正確な分析を
行えなくなる不都合がある。表面分析の方法は、図3に
示すように、真空中に置かれた試料19の表面にイオン
生成部20から加速したイオン、電子、中性粒子、励起
中性粒子、軟X線などの光を衝突させ、該表面からその
衝撃で放出されるイオン、電子、中性粒子、励起中性粒
子、軟X線などの光を二次電子増倍素子21で捕捉して
分析する方法で、この方法に於いて、該素子21の表面
が新鮮な設置初期に、イオン生成部20から放射された
或いは別個に設けた粒子源から軟X線等の光を該表面に
向けて放射し、初期強度値Aを計測しておく。このあと
本来の表面分析、即ちイオン生成部20から該表面へイ
オン、電子、中性粒子、励起中性粒子、軟X線などの光
を衝突させ、該表面から放射されるイオン、電子、中性
粒子、励起中性粒子、軟X線などの光を該素子21に入
射させて表面分析する。そして、この表面分析中に、イ
オン生成部20を軟X線等の光を該表面に向けて照射す
るように一時的に調整するか、或いは別個に設けた光源
から軟X線などの光を該表面に向けて照射し、該素子2
1でその時点に於いて検出できる測定強度Bを計測し、
前記と同様にA/Bの補正係数を求め、その後に行われ
る表面分析の測定強度値にその補正係数を乗じることに
より正確な表面分析が行える。尚、異なる種類の試料1
9を表面分析する場合、試料19を設置後、改めて表面
分析を行う直前に、上記と同様の方法で初期強度値Aを
測定しておき、表面分析中に同様の方法で補正係数を求
めればよい。
The secondary electron multiplier is an Auger electron spectroscopy type,
X-ray photoelectric spectroscopy, ultraviolet photoelectron spectroscopy, electron loss spectroscopy,
It is also used for surface analysis methods such as electron loss spectroscopy, and in this case, if the sensitivity of the secondary electron multiplier changes, accurate analysis cannot be performed. As shown in FIG. 3, the surface analysis method is based on the method of accelerating ions, electrons, neutral particles, excited neutral particles, and soft X-rays on the surface of a sample 19 placed in a vacuum. The secondary electron multiplier 21 captures and analyzes ions, electrons, neutral particles, excited neutral particles, and soft X-rays emitted from the surface by the impact. In the method, when the surface of the element 21 is freshly installed, light such as soft X-rays emitted from the ion generator 20 or from a separately provided particle source is emitted toward the surface at the initial stage of installation, and the initial intensity is increased. The value A is measured. Thereafter, the original surface analysis, that is, light such as ions, electrons, neutral particles, excited neutral particles, and soft X-rays collide from the ion generating section 20 to the surface, and ions, electrons, and medium emitted from the surface are irradiated. Light such as neutral particles, excited neutral particles, and soft X-rays are made incident on the element 21 for surface analysis. Then, during this surface analysis, the ion generation unit 20 is temporarily adjusted so that light such as soft X-rays is directed toward the surface, or light such as soft X-rays is supplied from a separately provided light source. Irradiate toward the surface, and the device 2
In step 1, the measurement intensity B that can be detected at that time is measured,
In the same manner as described above, an accurate surface analysis can be performed by obtaining an A / B correction coefficient and multiplying the measured intensity value of the surface analysis performed thereafter by the correction coefficient. In addition, different types of sample 1
In the case where the surface analysis of 9 is performed, the initial intensity value A is measured by the same method as described above immediately after performing the surface analysis again after the sample 19 is set, and the correction coefficient is obtained by the same method during the surface analysis. Good.

【0015】本発明の方法は、図4に示した4極子型質
量分析計の真空圧力計に適用することも可能であり、こ
の場合は、イオンと共に軟X線を発生するイオン生成部
22からイオン引出電極23によりイオンを引き出し、
ロッド状の4極子24間を通過させることにより所定の
イオンのみを二次電子増倍素子25へ入射させ、真空圧
を測定するが、引出電極23と4極子24の電位を調整
することにより、該素子25にイオン生成部22からイ
オンを除いて軟X線のみを入射させることができるの
で、前記と同様に該素子25を設置した初期と測定使用
中に夫々軟X線のみを入射させて初期強度値Aと強度値
Bを測定し、その比をイオンの測定強度値に補正係数と
して乗じることにより該素子25の感度の変化を補正し
て正確な真空圧を測定できる。
The method of the present invention can also be applied to the vacuum pressure gauge of the quadrupole mass spectrometer shown in FIG. 4, and in this case, the ion generating unit 22 that generates soft X-rays together with ions. Ions are extracted by the ion extraction electrode 23,
Only predetermined ions are made to enter the secondary electron multiplier 25 by passing between the rod-shaped quadrupoles 24, and the vacuum pressure is measured. By adjusting the potential of the extraction electrode 23 and the quadrupole 24, Since only soft X-rays can be incident on the element 25 except for the ions from the ion generation unit 22, only the soft X-rays can be incident on the element 25 at the initial stage and during the measurement use, respectively, as described above. By measuring the initial intensity value A and the intensity value B and multiplying the ratio of the measured intensity value of the ions as a correction coefficient, a change in the sensitivity of the element 25 can be corrected and an accurate vacuum pressure can be measured.

【0016】スパッタリング装置、真空蒸着装置、エッ
チング装置、アッシング装置、CVD装置、イオン注入
装置、酸化拡散装置、分子線エピタキシャル装置などの
真空処理装置には、製品の品質維持や品質向上のために
真空圧力計や表面分析装置が組み込まれており、図1に
示した構成の真空圧力計、或いは図3とこれに関連した
説明に基づく表面分析装置をこのような真空処理装置に
組み込むことにより、二次電子増倍素子の感度が変化し
ても正確な測定を行え、該真空処理装置の運転を停止す
ることなく真空処理を続けることが可能になり、品質及
び生産性を向上させることができる。図5は、ターゲッ
ト26をRF電極27に取り付け、基板28と対向して
設けたスパッタリング装置に図1の構成の真空圧力計2
9を組み込んだ実施例であり、図6は、ヒータ30で加
熱された基板31に各種元素のセルを備えた蒸発源32
からの蒸発物質を蒸着する分子線エピタキシャル装置に
図4の構成の4極子型質量分析計の真空圧力計33と図
3及びこれに関連した説明の構成を有するオージェ電子
分光表面分析装置34を組み込んだ実施例である。
A vacuum processing apparatus such as a sputtering apparatus, a vacuum deposition apparatus, an etching apparatus, an ashing apparatus, a CVD apparatus, an ion implantation apparatus, an oxidation diffusion apparatus, and a molecular beam epitaxy apparatus has a vacuum for maintaining and improving the quality of products. A pressure gauge and a surface analyzer are incorporated. By incorporating a vacuum pressure gauge having the structure shown in FIG. 1 or a surface analyzer based on FIG. Accurate measurement can be performed even if the sensitivity of the secondary electron multiplier changes, and vacuum processing can be continued without stopping the operation of the vacuum processing apparatus, thereby improving quality and productivity. FIG. 5 shows a vacuum pressure gauge 2 having the configuration shown in FIG. 1 attached to a sputtering device provided with a target 26 attached to an RF electrode 27 and opposed to a substrate 28.
FIG. 6 shows an evaporation source 32 having cells of various elements on a substrate 31 heated by a heater 30.
The vacuum pressure gauge 33 of the quadrupole mass spectrometer having the configuration shown in FIG. 4 and the Auger electron spectroscopy surface analyzer 34 having the configuration shown in FIG. This is an embodiment.

【0017】[0017]

【実施例】真新しい二次電子増倍素子4を備えた図1の
構成の極高真空用電離真空計を一定真空圧の真空空間に
取り付け、その円筒電極2、円盤電極5、及び邪魔板9
に接続した可変の直流電源16の電圧を走査すると、計
測装置12に図7に示したイオンの強度分布が測定され
た。この直流電源16の電圧が約70Vのときは、真空
空間の気体イオンの強度が測定できるので、真空圧力計
として機能させ得る。また、その電圧を140Vに設定
すると、イオン生成部3で生成されたイオンは二次電子
増倍素子4に入射することがなくなり、軟X線による強
度のみが測定され、その測定された値30カウント/秒
を初期強度値Aとした。この後その電圧を70Vに戻
し、真空空間の真空圧の測定を続け、約500時間後に
再び電圧を140Vとして軟X線のみを該素子4に入射
させ、測定した値20カウント/秒を強度値Bとした。
このあと電圧を70Vに戻し真空圧の測定強度値に演算
装置18で演算した1.5の補正係数を乗じながら約2
000時間真空圧の測定を続けた。この間の測定強度値
は200カウント/秒でこれを換算した真空圧は1×1
-9Paで、この真空空間の設定圧と殆ど変わりがなか
った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrahigh vacuum ionization gauge having the configuration shown in FIG. 1 equipped with a brand-new secondary electron multiplier 4 is mounted in a vacuum space of a constant vacuum pressure, and its cylindrical electrode 2, disk electrode 5 and baffle plate 9 are mounted.
When the voltage of the variable DC power supply 16 connected to was scanned, the measurement device 12 measured the ion intensity distribution shown in FIG. When the voltage of the DC power supply 16 is about 70 V, the strength of the gas ions in the vacuum space can be measured, so that it can function as a vacuum pressure gauge. When the voltage is set to 140 V, the ions generated by the ion generator 3 do not enter the secondary electron multiplier 4, and only the intensity by the soft X-ray is measured. The count / second was defined as the initial intensity value A. Thereafter, the voltage was returned to 70 V, and the measurement of the vacuum pressure in the vacuum space was continued. After about 500 hours, the voltage was again set to 140 V and only the soft X-rays were incident on the element 4, and the measured value was 20 counts / sec. B.
Thereafter, the voltage is returned to 70 V, and the measured intensity value of the vacuum pressure is multiplied by a correction coefficient of 1.5 calculated by the arithmetic unit 18 to about 2
The measurement of the vacuum pressure was continued for 000 hours. The measured intensity value during this period was 200 counts / second, and the converted vacuum pressure was 1 × 1.
At 0 -9 Pa, there was almost no difference from the set pressure of this vacuum space.

【0018】比較のため、この空間に図1の構成の極高
真空用電離真空計を取り付け、これの直流電源16を7
0Vに固定したまま連続約3500時間の真空圧の測定
を続けたところ、パルスカウント値は当初は上記の初期
強度値と同じ200カウント/秒であったが、次第に低
い測定強度値を示すようになり、最後には30カウント
/秒になった。真空空間の圧力は一定に維持されている
ので、その低下分は二次電子増倍素子の感度の変化によ
るものである。
For comparison, an ionization gauge for ultra-high vacuum having the structure shown in FIG.
When the measurement of the vacuum pressure was continued for about 3500 hours while keeping the voltage at 0 V, the pulse count value was initially 200 counts / sec, which was the same as the above-mentioned initial intensity value. And finally at 30 counts / sec. Since the pressure in the vacuum space is kept constant, the decrease is due to a change in the sensitivity of the secondary electron multiplier.

【0019】[0019]

【発明の効果】以上のように本発明によるときは、二次
電子増倍素子の設置初期に軟X線等の光による強度を測
定した初期強度値Aと、該素子の測定使用中に測定した
該光による強度値Bとの比A/Bを、該素子の測定強度
値に補正係数として乗ずるようにしたので、該二次電子
増倍素子を使用状態のまま簡単にその感度の変化を補正
することができ、実際にその補正のために要する時間は
ごく短いので本来の測定を殆ど妨げない等の効果があ
り、二次電子増倍素子を使用する各種の計測装置に適用
でき、真空処理装置の運転効率を向上させることができ
る効果がある。
As described above, according to the present invention, the initial intensity value A obtained by measuring the intensity of light such as soft X-rays at the initial stage of the installation of the secondary electron multiplier, and the value measured during the use of the device. Since the ratio A / B to the intensity value B due to the light is multiplied as a correction coefficient to the measured intensity value of the element, the change in the sensitivity of the secondary electron multiplier element can be easily performed while the element is in use. It can be corrected, and the time required for the correction is very short, so it has the effect that it hardly disturbs the original measurement.It can be applied to various measuring devices using secondary electron multipliers, There is an effect that the operation efficiency of the processing device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す線図FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】二次電子増倍素子の軟X線と感度の関係を示す
分布図
FIG. 2 is a distribution diagram showing a relationship between soft X-rays and sensitivity of a secondary electron multiplier.

【図3】本発明を表面分析装置に適用した場合の説明図FIG. 3 is an explanatory diagram when the present invention is applied to a surface analyzer.

【図4】本発明を4極子型質量分析計に適用した場合の
説明図
FIG. 4 is an explanatory diagram when the present invention is applied to a quadrupole mass spectrometer.

【図5】本発明を適用したスパッタリング装置の切断側
面図
FIG. 5 is a cut side view of a sputtering apparatus to which the present invention is applied.

【図6】本発明を適用した分子線エピタキシャル装置の
切断側面図
FIG. 6 is a cut side view of a molecular beam epitaxy apparatus to which the present invention is applied.

【図7】本発明の初期強度値を求めるための分布図FIG. 7 is a distribution diagram for obtaining an initial intensity value according to the present invention.

【符号の説明】[Explanation of symbols]

2 円筒電極、3・20 イオン生成部、4・21 イ
オン検出部(二次電子倍増素子)、5 円盤電極、6
集電子電極、8 電子ビーム源、9 邪魔板、12 計
測装置、13 イオン引出電極、16 可変の直流電
源、19 試料、29・33 真空圧力計、31 基
板、32 蒸発源、34 オージェ電子分光表面分析装
置、
2 Cylindrical electrode, 3.20 ion generation section, 4.21 ion detection section (secondary electron multiplier), 5 disk electrode, 6
Collector electrode, 8 electron beam source, 9 baffle plate, 12 measuring device, 13 ion extraction electrode, 16 variable DC power supply, 19 samples, 29/33 vacuum pressure gauge, 31 substrate, 32 evaporation source, 34 Auger electron spectroscopy surface Analysis equipment,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 泰 神奈川県茅ヶ崎市萩園2500番地 株式会社 アルバック・コーポレートセンター内 (72)発明者 荒川 一郎 東京都豊島区目白1−2−8 G5−304 Fターム(参考) 2F055 AA11 BB01 BB08 CC47 DD20 EE40 FF11 FF45  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasushi Yasushi 2500 Hagizono, Chigasaki-shi, Kanagawa Inside ULVAC Corporate Center (72) Inventor Ichiro Arakawa G5-304 F-term 1-2-8 Mejiro, Toshima-ku, Tokyo (Reference) 2F055 AA11 BB01 BB08 CC47 DD20 EE40 FF11 FF45

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】真空中に設置した二次電子増倍素子の設置
初期に軟X線等の光の強度を測定した初期強度値Aと、
該素子の測定使用中に測定した該光の強度値Bとの比A
/Bを、該素子で測定される電子、イオン、中性粒子及
び励起中性粒子などの粒子の測定強度値に補正係数とし
て乗ずることを特徴とする二次電子増倍素子を使用した
測定方法。
1. An initial intensity value A obtained by measuring the intensity of light such as soft X-rays at the initial stage of installation of a secondary electron multiplier mounted in a vacuum.
Ratio A of the light intensity value B measured during use of the device during use
/ B is multiplied as a correction coefficient by a measured intensity value of particles such as electrons, ions, neutral particles and excited neutral particles measured by the device as a correction coefficient. .
【請求項2】真空中に電子、イオン、中性粒子及び励起
中性粒子などの粒子とともに軟X線等の光を放射するイ
オン生成部と二次電子増倍素子を対向して設け、該イオ
ン生成部にて生成する電子、イオン、中性粒子及び励起
中性粒子を二次電子増倍素子で増幅し、該素子で計測さ
れた信号強度から真空圧を測定する方法に於いて、該二
次電子増倍素子の設置初期に該イオン生成部からの光の
強度を該素子で計測した初期強度値Aと、該素子の測定
使用中の該光の強度値Bとの比A/Bを、該素子で測定
した電子、イオン、中性粒子及び励起中性粒子などの粒
子の強度値に補正係数として乗ずることを特徴とする二
次電子増倍素子を使用した測定方法。
2. A secondary electron multiplier is provided in vacuum with an ion generator for emitting light such as soft X-rays together with particles such as electrons, ions, neutral particles and excited neutral particles, and a secondary electron multiplier. In a method of amplifying electrons, ions, neutral particles, and excited neutral particles generated by an ion generation unit with a secondary electron multiplier, and measuring a vacuum pressure from a signal intensity measured by the element, The ratio A / B of an initial intensity value A obtained by measuring the intensity of light from the ion generating section at the initial stage of the installation of the secondary electron multiplier and the intensity B of the light during measurement of the element. Is multiplied as a correction coefficient by the intensity value of particles such as electrons, ions, neutral particles and excited neutral particles measured by the device as a correction coefficient.
【請求項3】真空中に電子、イオン、中性粒子及び励起
中性粒子などとともに軟X線等の光を放射するイオン生
成部と二次電子増倍素子を対向して設けると共に該イオ
ン生成部と二次電子増倍素子の間にエネルギーフィルタ
ーを設け、該イオン生成部にて生成する電子、イオン、
中性粒子及び励起中性粒子などを該エネルギーフィルタ
ーで分離して二次電子増倍素子に入射させ、該素子で計
測された信号強度から真空圧を測定する方法に於いて、
該二次電子増倍素子の設置初期に測定した該光の初期強
度値Aと、該素子の測定使用中に計測した該光の強度値
Bとの比A/Bを、該素子で測定した電子、イオン、中
性粒子及び励起中性粒子などの強度値に補正係数として
乗ずることにより真空圧を測定することを特徴とする二
次電子増倍素子を使用した測定方法。
3. A secondary electron multiplying element and an ion generating section for emitting light such as soft X-rays together with electrons, ions, neutral particles and excited neutral particles in a vacuum. An energy filter is provided between the section and the secondary electron multiplier, and electrons, ions,
Neutral particles and excited neutral particles and the like are separated by the energy filter and incident on the secondary electron multiplier, in a method of measuring the vacuum pressure from the signal intensity measured by the element,
The ratio A / B of the initial intensity value A of the light measured at the initial stage of the installation of the secondary electron multiplier and the intensity B of the light measured during the measurement of the device was measured with the device. A measurement method using a secondary electron multiplier, wherein a vacuum pressure is measured by multiplying an intensity value of electrons, ions, neutral particles, excited neutral particles, and the like as a correction coefficient.
【請求項4】真空中に設けた試料の表面に、軟X線等の
光、電子、イオン、中性粒子及び励起中性粒子などの粒
子を照射し、この照射で該表面から放射される軟X線等
の光、電子、イオン、中性粒子、励起中性粒子などの粒
子を二次電子増倍素子で捕捉してその強度を測定するこ
とにより該表面を分析する方法に於いて、該二次電子増
倍素子の設置初期に該表面または該試料と同種の標準試
料の表面に該光または電子、イオン、中性粒子、励起中
性粒子などの粒子を照射してその放射した軟X線等の光
を該素子へ入射させて測定した初期強度値Aと、該素子
を使用しての該試料の分析中に該光を照射して該素子で
測定された該光の強度値Bとの比A/Bを、該素子で分
析中に測定した強度値に補正係数として乗ずることを特
徴とする二次電子増倍素子を使用した測定方法。
4. A surface of a sample provided in a vacuum is irradiated with light such as soft X-rays, particles such as electrons, ions, neutral particles and excited neutral particles, and the surface is radiated by the irradiation. In a method of analyzing the surface by capturing particles such as soft X-rays, light, electrons, ions, neutral particles, and excited neutral particles with a secondary electron multiplier and measuring the intensity thereof, In the initial stage of installation of the secondary electron multiplier, the surface or the surface of a standard sample of the same kind as the sample is irradiated with the light or particles such as electrons, ions, neutral particles, and excited neutral particles, and the emitted soft An initial intensity value A measured by irradiating light such as X-rays on the element; and an intensity value of the light measured by the element by irradiating the light during analysis of the sample using the element. B: multiplying the intensity value measured during analysis with the element by a ratio A / B with B as a correction coefficient. Measurements using multiple elements.
【請求項5】成膜その他の処理を施す基板を設けた真空
処理室内へ連通する真空容器中に、電子、イオン、中性
粒子及び励起中性粒子などの粒子とともに軟X線等の光
を放射するイオン生成部と二次電子増倍素子を対向して
設け、該イオン生成部にて生成した電子、イオン、中性
粒子及び励起中性粒子などを該二次電子増倍素子で捕捉
してその強度を計測する計測装置を備えた真空処理装置
に於いて、該計測装置に、該二次電子増倍素子の設置初
期に測定した該光による初期強度値Aと、該素子を使用
しての計測中に測定した該光による強度値Bとの比A/
Bを、該素子で測定した電子、イオン、中性粒子及び励
起中性粒子などの強度値に補正係数として乗ずる演算装
置を設けたことを特徴とする二次電子増倍素子を使用し
た真空処理装置。
5. A light source such as soft X-rays, together with particles such as electrons, ions, neutral particles and excited neutral particles, is placed in a vacuum vessel communicating with a vacuum processing chamber provided with a substrate for performing film formation and other processing. A radiating ion generator and a secondary electron multiplier are provided to face each other, and electrons, ions, neutral particles and excited neutral particles generated by the ion generator are captured by the secondary electron multiplier. In a vacuum processing apparatus provided with a measuring device for measuring the intensity, the initial intensity value A of the light measured at the initial stage of installation of the secondary electron multiplier and the device are used. Ratio with the intensity value B by the light measured during the measurement
Vacuum processing using a secondary electron multiplier, wherein an arithmetic unit for multiplying B as a correction coefficient by an intensity value of electrons, ions, neutral particles and excited neutral particles measured by the element is provided. apparatus.
【請求項6】成膜その他の処理を施す基板を設けた真空
処理室に、該基板の表面に向けて電子、イオン、中性粒
子及び励起中性粒子などの粒子または軟X線等の光を放
射する照射装置と、この照射により該基板から放射され
る軟X線等の光、電子、イオン、中性粒子及び励起中性
粒子などを捕捉する二次電子増倍素子を設けた真空処理
装置に於いて、該二次電子増倍素子に、該二次電子増倍
素子の設置初期に該表面または該試料と同種の標準試料
の表面に該光を照射してその放射した軟X線等の光を該
素子へ入射させて測定した初期強度値Aと、該素子を使
用しての計測中に該表面から放射した軟X線等の光を測
定した強度値Bとの比A/Bを、該素子で測定した電
子、イオン、中性粒子及び励起中性粒子などの粒子の測
定値に補正係数として乗ずる演算装置を設けたことを特
徴とする二次電子増倍素子を使用した真空処理装置。
6. A vacuum processing chamber provided with a substrate on which film formation or other processing is performed is directed toward a surface of the substrate, such as particles such as electrons, ions, neutral particles, and excited neutral particles, or light such as soft X-rays. Vacuum treatment provided with an irradiation device that emits light and a secondary electron multiplier that captures light, electrons, ions, neutral particles, excited neutral particles, and the like such as soft X-rays emitted from the substrate by this irradiation. In the apparatus, the secondary electron multiplier is irradiated with the light on the surface or the surface of a standard sample of the same kind as the sample at the initial stage of the installation of the secondary electron multiplier, and the soft X-rays emitted from the surface are irradiated. Ratio of the initial intensity value A measured by irradiating the element with light and the intensity value B obtained by measuring light such as soft X-rays emitted from the surface during measurement using the element. B is used as a correction coefficient for the measured values of particles such as electrons, ions, neutral particles and excited neutral particles measured by the device. Vacuum processing apparatus using the secondary electron multiplying device characterized by an arithmetic unit is provided to be multiplied.
JP25131198A 1998-09-04 1998-09-04 Measuring method using secondary electron multiplier and apparatus using secondary electron multiplier Expired - Lifetime JP4216375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25131198A JP4216375B2 (en) 1998-09-04 1998-09-04 Measuring method using secondary electron multiplier and apparatus using secondary electron multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25131198A JP4216375B2 (en) 1998-09-04 1998-09-04 Measuring method using secondary electron multiplier and apparatus using secondary electron multiplier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008207324A Division JP4714768B2 (en) 2008-08-11 2008-08-11 Measuring method using secondary electron multiplier and apparatus using secondary electron multiplier

Publications (2)

Publication Number Publication Date
JP2000081359A true JP2000081359A (en) 2000-03-21
JP4216375B2 JP4216375B2 (en) 2009-01-28

Family

ID=17220927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25131198A Expired - Lifetime JP4216375B2 (en) 1998-09-04 1998-09-04 Measuring method using secondary electron multiplier and apparatus using secondary electron multiplier

Country Status (1)

Country Link
JP (1) JP4216375B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126171A (en) * 2004-10-26 2006-05-18 Robert Bosch Gmbh Measuring method of combustion chamber pressure
DE102008010118A1 (en) * 2008-02-20 2009-09-24 Bruker Daltonik Gmbh Adjustment of detector gain in mass spectrometers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126171A (en) * 2004-10-26 2006-05-18 Robert Bosch Gmbh Measuring method of combustion chamber pressure
DE102008010118A1 (en) * 2008-02-20 2009-09-24 Bruker Daltonik Gmbh Adjustment of detector gain in mass spectrometers
US8536519B2 (en) 2008-02-20 2013-09-17 Bruker Daltonik Gmbh Adjusting the detector amplification in mass spectrometers
DE102008010118B4 (en) * 2008-02-20 2014-08-28 Bruker Daltonik Gmbh Adjustment of detector gain in mass spectrometers

Also Published As

Publication number Publication date
JP4216375B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
US10930480B2 (en) Ion detectors and methods of using them
US7332714B2 (en) Quadrupole mass spectrometer and vacuum device using the same
EP0970504B1 (en) Time of flight mass spectrometer and dual gain detector therefor
US20060237641A1 (en) Method for controlling space charge-driven ion instabilities in electron impact ion sources
Dietz Basic properties of electron multiplier ion detection and pulse counting methods in mass spectrometry
US4058724A (en) Ion Scattering spectrometer with two analyzers preferably in tandem
US9412576B2 (en) Ion trap mass spectrometer using cold electron source
Green et al. Enhanced proton flux in the MeV range by defocused laser irradiation
Baldwin et al. Time‐of‐Flight Electron Velocity Spectrometer
US4110625A (en) Method and apparatus for monitoring the dose of ion implanted into a target by counting emitted X-rays
JP4216375B2 (en) Measuring method using secondary electron multiplier and apparatus using secondary electron multiplier
Reagan et al. Mass‐dependent effects of channel electron multipliers in residual gas analyzers
JP4714768B2 (en) Measuring method using secondary electron multiplier and apparatus using secondary electron multiplier
JP3740853B2 (en) Mass spectrometer
Sawatzky et al. Method for Studying Sputtered Particles by Emission Spectroscopy
JPH09243579A (en) Surface analyzer
Cvejanović et al. Single ionization of calcium by electron impact
EP0932184B1 (en) Ion collector assembly
Lafyatis et al. Experimental apparatus for measurements of electron impact excitation
US20240128070A1 (en) Multimode ion detector with wide dynamic range and automatic mode switching
JP3574279B2 (en) Ultra high vacuum gauge
Monteiro et al. The performance of the GPSC/MSGC hybrid detector with argon-xenon gas mixtures
JP4221235B2 (en) Ion attachment mass spectrometry method, negative ion measurement method, and mass spectrometer
JP2001312994A (en) Electron spectroscope
JP3055159B2 (en) Neutral particle mass spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term