JP2000081307A - Fast, high resolution double heterodyne interferometer - Google Patents

Fast, high resolution double heterodyne interferometer

Info

Publication number
JP2000081307A
JP2000081307A JP10291278A JP29127898A JP2000081307A JP 2000081307 A JP2000081307 A JP 2000081307A JP 10291278 A JP10291278 A JP 10291278A JP 29127898 A JP29127898 A JP 29127898A JP 2000081307 A JP2000081307 A JP 2000081307A
Authority
JP
Japan
Prior art keywords
light
sets
interferometer
heterodyne
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10291278A
Other languages
Japanese (ja)
Inventor
Shiyuuko Yokoyama
修子 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10291278A priority Critical patent/JP2000081307A/en
Publication of JP2000081307A publication Critical patent/JP2000081307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system and an apparatus which achieve a higher resolution while permitting coping with a higher speed of a target by generating a synthetic wavelength a half as much as the wavelength of a laser light of a light source in an optical heterodyne interferometer. SOLUTION: A light source employs lasers with the azimuth of polarization orthogonal to each other and having longitudinal mode frequency intervals different from each other. The light obtained by rotating the light source and the polarization of the light source by 90 deg. is admitted into a heterodyne interferometer to make two sets of interference light. One set is selected from the two sets of interference light depending on the moving direction of a target thereby permitting handling of the measurement of the fast moving target.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ヘテロダイン干渉
測長装置において光源として実際に使用する波長より短
い合成波長を用いると共に、光源固有の搬送周波数より
も高いドップラーシフトを与える高速ヘテロダイン干渉
計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed heterodyne interferometer which uses a synthetic wavelength shorter than the wavelength actually used as a light source in an optical heterodyne interferometer and provides a Doppler shift higher than a carrier frequency inherent to the light source. It is.

【0002】[0002]

【発明が解決しようとする課題】干渉計の分解能は光源
の波長が短い程高くなる。一方干渉計の測定速度は例え
ばゼーマンビート周波数等、レーザ固有の周波数差で制
限される。本発明は実際のレーザの波長よりも短い合成
波長を用いて波長の短い光源を用いたのと等価とし、ま
た低いレーザ固有の周波数を用いて高速のヘテロダイン
干渉計を提供するものである。このような課題を取り扱
ったものは過去に存在しない。
The resolution of an interferometer increases as the wavelength of the light source decreases. On the other hand, the measurement speed of the interferometer is limited by a frequency difference inherent to the laser, such as the Zeeman beat frequency. The present invention provides a high-speed heterodyne interferometer that is equivalent to using a short wavelength light source using a synthetic wavelength shorter than the actual laser wavelength, and using a low laser-specific frequency. No one has dealt with such issues in the past.

【0003】[0003]

【課題を解決するための手段】本発明においては、交互
に直交する偏光方位を持ち、かつ異なった周波数間隔を
持つスペクトルを光源とするが、ここではこのスペクト
ルを3本として説明する。3本のスペクトルのうち両端
の2本と中央を1本のスペクトルを光ヘテロダイン光学
系の2つの光学腕に送り、かつ干渉光の光ビート(2本
のパワスペクトルを持つ)を自乗等の復調をすれば本来
のレーザ光の波長の半分の波長の合成光を得る個とがで
きる。
According to the present invention, a light source has spectra having polarization directions which are alternately orthogonal to each other and have different frequency intervals. Here, three spectra will be described. Of the three spectra, two at both ends and one at the center are sent to the two optical arms of the optical heterodyne optical system, and the optical beat of the interference light (having two power spectra) is demodulated as a square. By doing so, it is possible to obtain a composite light having a wavelength half the wavelength of the original laser light.

【0004】本発明においてはこの合成を行う光を2組
つくり、干渉計の高速化に具えている。すなわち、前記
の3本のスペクトルを有する1組の光と今一つ前記の光
の偏光方向を900°回転した第2の組の光が干渉計の
2つの腕を同時に通過するようにすることとし、2組の
光のうち、干渉腕の高速の変化によるドップラーシフト
により光ヘテロダイン周波数が高くなる側の組のみを選
択切換して取り上げ、高速干渉計を実現する。
[0004] In the present invention, two sets of light to be combined are produced, which is provided for speeding up the interferometer. That is, one set of light having the three spectra and a second set of light, which is obtained by rotating the polarization direction of the other light by 900 °, simultaneously pass through the two arms of the interferometer, Of the two sets of light, only the set on the side where the optical heterodyne frequency becomes high due to Doppler shift due to the high-speed change of the interference arm is selectively switched and picked up to realize a high-speed interferometer.

【0005】上記の選択切換には多くの落し穴、落し山
があるが、この問題はすでに解決されている。Shuk
o Yokoyama et.al.,SPIE,(1
990)P212
The above selection switching has many pitfalls and pits, but this problem has already been solved. Shuk
o Yokoyama et. al. , SPIE, (1
990) P212

【0006】[0006]

【発明の実施の形態】実施の形態を図面を用いて説明す
る。
Embodiments of the present invention will be described with reference to the drawings.

【図1】は本発明の一例である。図中Πと⊥は偏光の方
位を表すが、ここではΠをp,⊥をsと呼ぶ。3モード
レーザのスペクトル2本のpと1本のsから成るとす
る。その光の周波数でν1、ν2、ν3であるとし、該
縦モード間の周波数をf1,f2,とし干渉計の腕の長
さの変化によるドップラーシフトをΔνとする。
FIG. 1 is an example of the present invention. In the figure, Π and ⊥ represent the directions of the polarized light. Here, Π is called p, and ⊥ is called s. It is assumed that the spectrum of the three-mode laser is composed of two p and one s. The frequencies of the light are ν1, ν2, ν3, the frequencies between the longitudinal modes are f1, f2, and the Doppler shift due to a change in the arm length of the interferometer is Δν.

【0007】現実の3モードのHeNeレーザではf1
とf2は大体430MHzf1−f2は500kHz程
度である。このようなレーザ光(a)を非偏光ビーム分
割器BSにより干渉計の2つの光学腕に分割する。移動
鏡M1で反射された光はドップラーシフトを受けそれぞ
れν1±Δν、ν2±Δν、ν3±Δνとなる。偏光方
向は(a)と同じ(c)のようなスペクトルとなる。
In an actual three-mode HeNe laser, f1
And f2 is about 430 MHz f1-f2 is about 500 kHz. Such a laser beam (a) is split by a non-polarized beam splitter BS into two optical arms of the interferometer. The light reflected by the movable mirror M1 receives the Doppler shift, and becomes ν1 ± Δν, ν2 ± Δν, and ν3 ± Δν, respectively. The polarization direction has a spectrum as shown in FIG.

【0008】一方参照鏡M2で反射された光(d)は4
分の1波長板を2度通るので(a)とp、sが逆転した
ものとなる。2つの光学腕を通った光をBSで重ね合わ
せた後、P、sの方位と同じ方位を持つ偏光ビーム分割
器で再び分割するとP成分は ±Δνの同一偏光のスペクトルとなる。f1,f2は4
00MHz以上であり、高速の干渉計といえどもΔνが
この値に近付くことはない。
On the other hand, the light (d) reflected by the reference mirror M2 is 4
Since the light passes through the half-wave plate twice, (a) and p and s are reversed. After the light passing through the two optical arms is superimposed by the BS and then split again by a polarizing beam splitter having the same orientation as P and s, the P component becomes The spectrum has the same polarization of ± Δν. f1 and f2 are 4
Δν does not approach this value even with a high-speed interferometer of at least 00 MHz.

【0009】光の検知器はその周波数に感ずることなく
波動光学では振幅の自乗に感ずるとされている(正確に
は光子数)。従って検知器の出力電流はf1−f2=5
00kHzにΔfが加減算された2本のパワスペクトル
を持つこの電流を自乗検波するとスペクトル(e)につ
いてはf1−f2±2Δf、すなわちs1スペクトル( 得られる。この操作がいわゆるダブルヘテロダインであ
る。この交流信号はΔνが大きくなると0を通り越して
負の値となる。つまり、参照信号として入射光(a)の
一部を取り出し、同様な処理を行ってf1−f2の周波
数を持つ参照信号SRをつくりs1,s2のうち周波数
が負にならない側の交流信号を選び、2つの交流信号の
周波数差、位相差を測定することによって高速干渉計に
対処するものである。
It is said that a wave detector is not sensitive to its frequency but to the square of the amplitude in wave optics (accurately, the number of photons). Therefore, the output current of the detector is f1-f2 = 5.
When this current having two power spectra obtained by adding and subtracting Δf to 00 kHz is square-detected, the spectrum (e) is f1−f2 ± 2Δf, that is, the s1 spectrum ( can get. This operation is so-called double heterodyne. This AC signal passes through 0 and becomes a negative value as Δν increases. That is, a part of the incident light (a) is extracted as a reference signal, and a similar process is performed to create a reference signal SR having a frequency of f1-f2, and an AC signal of s1 and s2 on which the frequency is not negative is selected. It is to deal with a high-speed interferometer by measuring a frequency difference and a phase difference between two AC signals.

【0010】[0010]

【実施例】本発明の実施例を図2に示す。3モードレー
ザ1を出たGのごとき光は、非偏光ビーム分割器2で分
割され、参照鏡3と移動鏡4に向かう。参照鏡に向かっ
た光は4分の1波長板5で偏光方位が900°回転され
た後ビーム分割器2で再び重ねられる。上記の重ねられ
た光は偏光ビーム分割器6で分割され、第1の光検知器
7で第1の光ビート、第2の光検知器8で第2の光ビー
ト、参照光検知器9で参照光ビートが求められる。
FIG. 2 shows an embodiment of the present invention. Light such as G emitted from the three-mode laser 1 is split by the non-polarizing beam splitter 2 and travels to the reference mirror 3 and the moving mirror 4. The light directed to the reference mirror is rotated 900 ° by the quarter-wave plate 5 and then re-overlaid by the beam splitter 2. The superimposed light is split by the polarization beam splitter 6, the first light beat by the first light detector 7, the second light beat by the second light detector 8, and the reference light detector 9. A reference light beat is required.

【0011】さらに第1、第2、参照光ビート2本のパ
ワスペクトルを持つがこれは積算器10で自乗され、単
一のパワスペクトルを持つ第1、第2参照の交流信号と
なる。この第1、第2の交流信号の周波数は移動鏡4の
速さによって変わり、その一方は0点を通り越して負に
ならことがある。そこで、ここでは第1、第2の交流信
号と参照交流信号の差の値を求め、第1、第2のうち参
照交流信号の値より低くならない側を選択し、前記の0
点の通過を防止している。
Further, the first, second, and reference light beats have two power spectra, which are squared by the integrator 10 to become first and second reference AC signals having a single power spectrum. The frequencies of the first and second AC signals vary depending on the speed of the movable mirror 4, and one of the frequencies may become negative beyond the zero point. Therefore, here, the value of the difference between the first and second AC signals and the reference AC signal is obtained, and the first or second side that does not become lower than the value of the reference AC signal is selected.
Prevents the passage of points.

【0012】この防止のため第1、第2の交流信号の切
換を誤りなく行うのが90゜位相シフタ20、周波数差
検出ユニット21、パルス整理ユニット22から構成さ
れる回路である。
To prevent this, the circuit composed of the 90 ° phase shifter 20, the frequency difference detection unit 21, and the pulse arrangement unit 22 switches the first and second AC signals without error.

【0013】切換の行われた交流信号はドップラーシフ
トΔνが400MHzを越えない限り正しい情報を持ち
参照信号との周波数測定器23、位相差測定器24によ
って移動鏡の位置を知ることができる。
The switched AC signal has correct information as long as the Doppler shift Δν does not exceed 400 MHz, and the position of the movable mirror can be known by the frequency measuring device 23 and the phase difference measuring device 24 with respect to the reference signal.

【0014】[0014]

【発明の効果】合成波長をレーザの波長より短くするこ
とにより、光ヘテロダイン干渉計の分解のを上げると共
に、低いレーザ固有のビート間周波数で高速の干渉測長
ができる。さらにこん場合の複数のレーザ光は完全なコ
モンパスでつくられるので波面の不一致の問題は全く発
生しない。
By making the combined wavelength shorter than the wavelength of the laser, the resolution of the optical heterodyne interferometer can be increased, and high-speed interferometric measurement can be performed at a low laser-specific beat-to-beat frequency. Further, in this case, since a plurality of laser beams are formed by a perfect common path, the problem of wavefront mismatch does not occur at all.

【0015】[0015]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の実施形態を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】 本発明の実施例である。FIG. 2 is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、 3モードレーザ 2、 非偏光ビーム分割器 3、 参照鏡 4、 移動鏡 5、 4分の1波長板 6、 偏光ビーム分割器 7、8、9、 光検出器 10、 積算器 20、 90°位相シフタ 21、 周波数差検出ユニット 22、 パルス整理ユニット 23、 U/Dパルスカウンタ 24、 位相差計 1, 3-mode laser 2, non-polarized beam splitter 3, reference mirror 4, moving mirror 5, quarter-wave plate 6, polarized beam splitter 7, 8, 9, photodetector 10, integrator 20, 90 ° Phase shifter 21, Frequency difference detection unit 22, Pulse arrangement unit 23, U / D pulse counter 24, Phase difference meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交互に直交する偏光方位と、互いに異なる
縦モード間周波数を持つ3本以上のスペクトル線から成
るレーザ光を非偏光ビーム分割器有しかつ一方の光学腕
に4分の1波長板を有する光ヘテロダイン干渉計に入射
し、該光ヘテロダイン干渉計の出力光を前記の直交する
偏光方位と同じ方位を有する偏光ビーム分割器で2組の
光ヘテロダイン干渉光に分割し、該分割された2組の光
ヘテロダイン干渉光を第1、第2の2つの光検知器で検
出して2組の光ヘテロダイン信号を作ると共に前記入射
光の一部を取り出し第3の検知器で検出して参照ヘテロ
ダイン信号をつくり、さらにこのようにして得られた3
組のヘテロダイン信号のそれぞれに対し自乗するなどの
方法で復調を行い、復調された参照交流信号波形と前記
2組の交流波形のいずれかとの周波数差、位相差の測定
を行うことを特徴とするヘテロダイン干渉測長装置
1. A laser beam comprising three or more spectral lines having alternately orthogonal polarization directions and mutually different longitudinal inter-mode frequencies has a non-polarized beam splitter, and one optical arm has a quarter wavelength. Incident on an optical heterodyne interferometer having a plate, and splits the output light of the optical heterodyne interferometer into two sets of optical heterodyne interference light with a polarizing beam splitter having the same direction as the orthogonal polarization direction. The two sets of optical heterodyne interference light are detected by first and second two photodetectors to generate two sets of optical heterodyne signals, and a part of the incident light is taken out and detected by a third detector. A reference heterodyne signal was created and the 3
Demodulating by a method such as squaring each of the sets of heterodyne signals, and measuring a frequency difference and a phase difference between the demodulated reference AC signal waveform and one of the two sets of AC waveforms. Heterodyne interferometer
JP10291278A 1998-09-07 1998-09-07 Fast, high resolution double heterodyne interferometer Pending JP2000081307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291278A JP2000081307A (en) 1998-09-07 1998-09-07 Fast, high resolution double heterodyne interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291278A JP2000081307A (en) 1998-09-07 1998-09-07 Fast, high resolution double heterodyne interferometer

Publications (1)

Publication Number Publication Date
JP2000081307A true JP2000081307A (en) 2000-03-21

Family

ID=17766818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291278A Pending JP2000081307A (en) 1998-09-07 1998-09-07 Fast, high resolution double heterodyne interferometer

Country Status (1)

Country Link
JP (1) JP2000081307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014043984A1 (en) * 2012-09-19 2014-03-27 Harbin Institute Of Technology High speed high resolution heterodyne interferometric method and system
CN108007340A (en) * 2017-10-24 2018-05-08 浙江理工大学 The real-time computing technique of nonlinearity erron in the demodulation of phase generated carrier arc tangent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014043984A1 (en) * 2012-09-19 2014-03-27 Harbin Institute Of Technology High speed high resolution heterodyne interferometric method and system
CN108007340A (en) * 2017-10-24 2018-05-08 浙江理工大学 The real-time computing technique of nonlinearity erron in the demodulation of phase generated carrier arc tangent
CN108007340B (en) * 2017-10-24 2019-12-06 浙江理工大学 real-time calculation method for nonlinear error in phase generation carrier arc tangent demodulation

Similar Documents

Publication Publication Date Title
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
JPH01503172A (en) Method and apparatus for two-wavelength interferometry with optical heterodyning and use for position or distance measurement
JPS6270720A (en) Optical phase decoder for interferometer
CN101329162A (en) Difference phase demodulation interference system
JP4286460B2 (en) Laser length measuring instrument and laser length measuring method
US3635552A (en) Optical interferometer
JPH0339605A (en) Optical surface shape measuring instrument
US4346999A (en) Digital heterodyne wavefront analyzer
JP2000081307A (en) Fast, high resolution double heterodyne interferometer
JP3293666B2 (en) Non-contact optical type distance measuring device between two surfaces
US20230062525A1 (en) Heterodyne light source for use in metrology system
JP4536873B2 (en) Three-dimensional shape measuring method and apparatus
JPH08278202A (en) Optical device for polarization analysis and polarization analyzer using the device
US20230069087A1 (en) Digital holography metrology system
JPS59211810A (en) Fine angle measuring apparatus by light heterodyne interference method
JPH11211417A (en) Method and device for measuring light wave interference
JPH06167304A (en) Displacement sensor
JP2866784B2 (en) Vibration detection method
JPH06221808A (en) Distance measuring sensor and measuring method thereby
JPH0712545A (en) Interatomic-force-microscope detection apparatus by differential heterodyne interferometer using optical-fiber array
JPH0579817A (en) Interferometer
JPH02122209A (en) Shape measuring method
JPH09280955A (en) Polarization analytical apparatus using intense stabilized laser
JPH07181205A (en) Optical measuring apparatus
JP2003042710A (en) Optical heterodyne interferometer