JP2000080623A - Permeable breakwater - Google Patents

Permeable breakwater

Info

Publication number
JP2000080623A
JP2000080623A JP10203894A JP20389498A JP2000080623A JP 2000080623 A JP2000080623 A JP 2000080623A JP 10203894 A JP10203894 A JP 10203894A JP 20389498 A JP20389498 A JP 20389498A JP 2000080623 A JP2000080623 A JP 2000080623A
Authority
JP
Japan
Prior art keywords
opening
port
projecting
water
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10203894A
Other languages
Japanese (ja)
Inventor
Takeshi Hashimoto
剛 橋本
Akihide Tada
彰秀 多田
Nagataka Itosu
長敬 糸▲列▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP10203894A priority Critical patent/JP2000080623A/en
Publication of JP2000080623A publication Critical patent/JP2000080623A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve or maintain water quality in a harbor by providing a permeable breakwater for exchanging seawater in the harbor more costlessly and more efficiently as compared with a conventional permeable breakwater. SOLUTION: Open and protruded pipes 4, 4a, 4b communicating with opening parts 3, 3a, 3b are provided on permeable breakwaters 1, 1a, 1b having one or more horizontally opening parts 3, 3a, 3b of horizontally and perpendicularly different arrangement. Sea water is led through the opening parts 3, 3a, 3b and the open and protruded pipes 4, 4a, 4b to control a conducting amount of water by appropriately selecting an aperture, a shape, and a depth of the opening part 3, 3a, 3b and the open and protruded pipes 4, 4a, 4b, a direction and a length of the open and protruded pipes 4, 4a, 4b, for maintaining a water circulation in a harbor, so that the sea water can be efficiently exchanged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、防波堤内側の防波
した港内側への導水を行い、水質の改善を図る透過式防
波堤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission type breakwater for improving water quality by guiding water to the inside of a breakwater port inside a breakwater.

【0002】[0002]

【従来の技術】閉鎖性の高い港湾や漁港では、港内外の
海水交換が円滑に行われず、港内の水質が悪化して大き
な問題となっている。特に、港内の一部を蓄養場として
利用することがある漁港では、悪化した水質が出荷待ち
の魚介類の品質に悪影響を及ぼすため、魚介類の出荷額
が下がったりしてしまうといった問題がある。
2. Description of the Related Art In a highly closed port or fishing port, the exchange of seawater inside and outside the port is not performed smoothly, and the water quality in the port deteriorates, which is a serious problem. Especially in fishing ports where a part of the harbor is used as a farm, there is a problem that the deteriorated water quality has an adverse effect on the quality of seafood that is waiting to be shipped, and the amount of seafood shipped may decrease. .

【0003】このため、近年、港内外での海水交換の重
要性が認識され、潮汐エネルギーを利用して港内外の海
水交換を促進する透過式防波堤や、波浪エネルギーを港
内外の水位差に変換して港外の海水を港内に供給する導
水式防波堤等が、港湾・漁港の建設に積極的に導入さ
れ、それらの有効性が現地実証実験により報告されてい
る。
For this reason, in recent years, the importance of seawater exchange inside and outside the port has been recognized, and a permeable breakwater that promotes seawater exchange inside and outside the port using tidal energy, and conversion of wave energy into water level difference inside and outside the port. Water-conducting breakwaters that supply seawater outside the port into the port have been actively introduced into the construction of harbors and fishing ports, and their effectiveness has been reported through field trials.

【0004】図10は、従来の透過式防波堤の一例(消
波ブロック被覆型有孔堤)を示す斜視図である。図11
は、従来の透過式防波堤の一例(横並び型潜堤付海水導
入工)を示す斜視図である。図10、図11に示される
ような従来の透過式防波堤は、ともに、港外の波浪エネ
ルギーを利用して、防波堤を境に港外側の平均水位を上
昇させることにより、港内に海水を一方的に導水するも
のである。
FIG. 10 is a perspective view showing an example of a conventional transparent breakwater (wave-dissipating block-covered perforated levee). FIG.
FIG. 1 is a perspective view showing an example of a conventional transmission type breakwater (seawater introduction work with a horizontal type submerged breakwater). Both of the conventional transmission breakwaters as shown in FIGS. 10 and 11 use seawater energy outside the harbor to raise the average water level outside the harbor at the breakwater, so that seawater is unilaterally supplied into the harbor. It is the one that leads to water.

【0005】図10に示される透過式防波堤の水面下の
部分には、港内外に亘る水の移動を可能とする開口部が
設けられている。また、防波堤の港外側には消波ブロッ
クが多数設置されている。これら消波ブロックは、港外
側水位を港内側水位よりも高く維持するとともに、港内
の静穏性を確保するためのものである。
[0005] In a portion below the water surface of the transmission type breakwater shown in Fig. 10, an opening is provided for allowing water to move inside and outside the port. Many breakwater blocks are installed outside the breakwater port. These wave-dissipating blocks are intended to maintain the water level outside the port higher than the water level inside the port and to ensure quietness inside the port.

【0006】前記開口部の断面積の大きさの度合い(開
口率)は、海水交換量を決定する支配的パラメータであ
る。また、港外側から港内側に亘る該開口部の長さ、即
ち堤幅が波の透過率を決定する支配的パラメータであ
り、この堤幅を大きくするほど波の透過率は小さくでき
る。従って、透過率が高い長周期性の透過波波高をも小
さく抑えるため、あるいは港外側で波高の大きな波が卓
越する港において港内の静穏度を保つためには堤幅を大
きく設定するなどの措置により波の透過率を小さくする
必要がある。
The degree of the cross-sectional area of the opening (opening ratio) is a dominant parameter that determines the amount of seawater exchange. In addition, the length of the opening from the outside of the port to the inside of the port, that is, the bank width is a dominant parameter that determines the wave transmittance, and the wave transmittance can be reduced as the bank width is increased. Therefore, in order to keep the wave height of long-period transmitted waves with high transmittance low, or to maintain the calmness of the harbor at the port where large waves are dominant outside the port, measures such as setting a wide dike width are necessary. Therefore, it is necessary to reduce the wave transmittance.

【0007】一方、図11に示される透過式防波堤で
は、港外側の直立堤と若干離間した位置に天端水深の異
なる複数の潜堤が設けられている。また、これら潜堤と
直立堤との間の空間は、遊水部である。該遊水部は、各
々の前記潜堤に対応してそれぞれしきり壁によってしき
られている。直立堤の港内側には貯水部が設けられてい
る。また、遊水部から貯水部への導水が可能なように導
水管が設けられ、貯水部から港内側への導水が可能なよ
うに配水管が設けられている。
On the other hand, in the transmission type breakwater shown in FIG. 11, a plurality of submerged embankments having different top-end water depths are provided at positions slightly separated from the upright embankment outside the harbor. Further, the space between the submerged embankment and the upright embankment is a retarding section. The water retarding section is defined by a partition wall corresponding to each of the submerged embankments. A water storage section is provided inside the port of the upright bank. In addition, a water pipe is provided so that water can be guided from the retarding section to the water storage section, and a water distribution pipe is provided so that water can be guided from the water storage section to the inside of the port.

【0008】この透過式防波堤では、港外側から伝播し
てきた波浪によって、該遊水部で水位上昇が生じること
で該遊水部に海水の溜まりができ、この海水が前記導水
管を通して前記貯水部へと導水され該貯水部に貯まる。
さらに、該貯水部の水が前記配水管を通して港内側に流
れ込むことで港内側への一方的な導水ができる。
[0008] In this transmission type breakwater, seawater accumulates in the water retarding portion due to the rise of the water level in the water retarding portion due to the waves propagating from the outside of the port, and the seawater flows into the water storage portion through the water conduit. Water is guided and stored in the water storage section.
Further, the water in the water reservoir flows into the port through the water distribution pipe, so that the water can be unilaterally guided to the port interior.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
従来の透過式防波堤では次のような問題があった。図1
0に示されるような従来の透過式防波堤では、前記消波
ブロックを設置する必要があるため、コスト・手間がか
かるといった問題があった。さらに、上述したように港
外側で高波浪が卓越する港において、港内の静穏性を確
保するためには堤幅を大きくする必要があるが、この場
合、必然的に堤体の断面積も大きくなり建設コストがか
かるといった問題があった。加えて、堤幅の拡大によっ
て港内側の利用面積は当然狭くなり、利用可能な水域面
積が減少するといった問題もあった。また、建設コスト
の問題から、堤幅を小さく設けることしかできない場合
には、長周期性の波の透過波高が大きくなるため波あた
りの強い場所には適用できないので、防波堤の設置場所
が制限されるといった問題があった。
However, the above-mentioned conventional breakwater has the following problems. FIG.
In the case of a conventional transmission type breakwater as shown in FIG. 0, there is a problem that it is necessary to install the wave-breaking block, so that cost and labor are required. Furthermore, as described above, in a port where high waves prevail outside the port, it is necessary to increase the width of the levee in order to ensure calmness in the port, but in this case, the cross-sectional area of the levee body is inevitably large. There was a problem that the construction cost was high. In addition, there is also a problem that the use area inside the harbor is narrowed due to the increase of the dike width, and the available water area decreases. In addition, if the embankment width can only be reduced due to construction cost, the transmitted wave height of long-period waves increases, so this method cannot be applied to places with strong perimeter waves. Problem.

【0010】一方、図11に示されるような従来の透過
式防波堤では、前記潜堤や前記遊水部をしきるしきり壁
等の構造物を設置する必要があるため建設コストがかか
るといった問題があった。また、海水交換の度合いは直
立堤の港外側水位に左右される導水量のみに依存してい
るが、低波浪時、および、潮位差が大きな港での低潮時
等では直立堤の港外側水位を高く保つことが困難である
ため導水量が減少し、海水交換がなされないために港内
の海水が停滞してしまうといった問題があった。また、
潮位差が大きな港において逆に高潮時には水面が潜堤か
ら大きく上に離れてしまい、ほとんど導水作用が得られ
ないといった問題があった。従って、卓越する波浪の波
高が小さい港や、潮位差が大きい港では設置の意義が薄
れるために、設置場所が制限されることになるといった
問題があった。
On the other hand, in the case of the conventional transmission type breakwater as shown in FIG. 11, there is a problem that the construction cost is increased because it is necessary to install a structure such as a submerged wall and a partition wall which divides the water-reservation section. . In addition, the degree of seawater exchange depends only on the amount of water transfer that depends on the water level outside the port of the upright levee, but during low waves and low tide at ports with large tidal differences, etc. However, it is difficult to keep the seawater high, so that the amount of water conveyance is reduced, and seawater in the port is stagnated because seawater is not exchanged. Also,
On the other hand, in a port with a large difference in tide, the water surface is far above the submerged levee at the time of storm surge, and there is a problem that almost no water conveyance effect can be obtained. Therefore, there is a problem that the installation place is limited in a port where the wave height of the dominant waves is small or a port where the tide level difference is large, because the significance of the installation is reduced.

【0011】そこで、本発明の目的は、港内の水循環を
維持することで海水交換を円滑にすることであるととも
に、この目的を達成するための海水交換機能を備えた透
過式防波堤を提供することでもある。本発明で提供しよ
うとする透過式防波堤は、港内の海水交換を高めるため
に従来の透過式防波堤のような消波ブロックや潜堤等を
設置する必要が無く、また、港内静穏度を確保するため
(透過率を小さくするため)に堤幅を大きくする必要が
無いため、建設コストの低減が図れる。さらに、堤幅お
よび堤体断面積の大幅な縮小により、利用可能な港内水
域を広く確保することを可能とするものである。
It is an object of the present invention to facilitate seawater exchange by maintaining water circulation in a port, and to provide a transmissive breakwater having a seawater exchange function for achieving this object. But also. The transmission type breakwater to be provided by the present invention does not require the installation of a wave-blocking block or a submergence like a conventional transmission type breakwater in order to enhance seawater exchange in the port, and also secures the calmness in the port. For this reason, it is not necessary to increase the width of the embankment (to reduce the transmittance), so that the construction cost can be reduced. Furthermore, the significant reduction of the embankment width and embankment cross-sectional area will make it possible to secure a wide available port water area.

【0012】[0012]

【課題を解決するための手段】以上の課題の解決手段と
して、請求項1記載の発明は、港内外に亘って貫通した
開口部を有する透過式防波堤であって、前記開口部と連
通され、港内側に突出した開口突出管を備えたこと、を
特徴としている。
According to a first aspect of the present invention, there is provided a transmissive breakwater having an opening penetrating the inside and outside of a port, wherein the breakwater communicates with the opening. It is characterized by having an opening projecting pipe projecting inside the port.

【0013】前記開口部は、例えば、円筒状のものが挙
げられるが、該開口部は、この他にも、内部が貫通され
てさえいれば任意のいかなる形状でもよい、例えば、断
面形状が四角で筒状のものでもよい。さらに、前記開口
部の開口面積も適宜変更可能である。
The opening may be, for example, a cylindrical one. The opening may have any other shape as long as the inside is penetrated. For example, the opening may have a square cross section. And may be cylindrical. Further, the opening area of the opening can be appropriately changed.

【0014】前記開口突出管は、例えば、円筒状のもの
が挙げられるが、該開口突出管は、この他にも、内部が
貫通されてさえいれば任意のいかなる形状でもよい、例
えば、断面形状が四角で筒状のものでもよい。さらに、
前記開口突出管の開口面積も適宜変更可能である。
The open projecting tube is, for example, a cylindrical one. The open projecting tube may have any other shape as long as the inside is penetrated. May be square and cylindrical. further,
The opening area of the opening projecting tube can also be appropriately changed.

【0015】前記開口部および前記開口突出管は、例え
ば、ともに1つずつ備えることが挙げられるが、ともに
同数の複数個ずつ備えてもよい。また、前記開口部およ
び前記開口突出管の設置水深も適宜変更可能である。
The opening and the projecting tube may be provided, for example, one by one, but may be provided by a plurality of the same number. In addition, the installation water depth of the opening and the opening projecting pipe can be appropriately changed.

【0016】ここで、本発明に係る透過式防波堤による
作用を説明するために、水理模型を用いた水理実験の結
果の概要を示す。
Here, in order to explain the effect of the transmission type breakwater according to the present invention, an outline of the results of a hydraulic experiment using a hydraulic model will be described.

【0017】実験は、一定水深の下で開口突出管の口
径、設置水深、突出長および設置方向(港内側か港外側
かのいずれか)を変化させて実施した。港外側に設置し
た波高計のデータから合田の方法(入反射分離法)を用
いて入射波の波高を算定するとともに、港内側に設置し
た波高計で透過波の波高を計測した。また、2本の電磁
流速計を用いて、開口突出管の出入口部中央における流
速を計測した。
The experiment was carried out under a constant water depth while changing the diameter of the opening projecting pipe, the installation water depth, the projection length, and the installation direction (either inside the port or outside the port). The wave height of the incident wave was calculated from the data of the wave gauge installed outside the harbor using the Goda method (incident reflection separation method), and the wave height of the transmitted wave was measured by the wave height meter installed inside the harbor. In addition, the flow velocity at the center of the entrance and exit of the projecting pipe was measured using two electromagnetic flowmeters.

【0018】実験の結果、入射波の波形勾配(=入射波
の波高/入射波の波長)の値が小さい程、また入射波の
波長が大きくなるほど透過率は増大する事が分かった。
また、開口突出管の突出長の増大に伴って透過率の値は
低下する事が分かった。さらに、開口突出管の突出長が
一定の場合について、開口突出管が港内側に突出するよ
うに設置されている場合の方が透過率は大きくなること
が分かった。
As a result of the experiment, it has been found that the transmittance increases as the value of the waveform gradient of the incident wave (= wave height of the incident wave / wavelength of the incident wave) decreases and as the wavelength of the incident wave increases.
Further, it was found that the transmittance value decreased with an increase in the projection length of the opening projection tube. Furthermore, it was found that, when the projecting length of the opening projecting pipe is constant, the transmittance becomes larger when the opening projecting pipe is installed so as to project inside the port.

【0019】さらに、開口突出管の口径が小さくなるほ
ど、入射波の透過を抑制できることが分かった。つま
り、開口突出管の口径は従来の透過式防波堤における開
口率に相当するものであると考えられる。このように、
透過式防波堤の透過率は、開口突出管の突出長やその口
径および突出方向に依存する。
Further, it has been found that the smaller the diameter of the projecting tube, the more the transmission of the incident wave can be suppressed. That is, it is considered that the diameter of the opening projecting pipe corresponds to the opening ratio in the conventional transmission type breakwater. in this way,
The transmittance of the transmission type breakwater depends on the projection length of the opening projecting pipe, its diameter, and the projecting direction.

【0020】また、入射波の波形勾配Hi/Lが大きい
領域(短周期の入射波)ほど開口突出管の設置水深の変
化に伴う透過率の相違が大きくなることが分かった。一
方、入射波の波形勾配Hi/Lが小さい領域(長周期の
入射波)では、開口突出管の設置水深の変化に伴う透過
率の相違はほとんど認められないことが分かった。した
がって、開口突出管の設置水深は短周期の波では透過を
抑制する因子であるものの、長周期の波に対しては透過
を抑制する主要な因子ではないと考えられる。
Further, it was found that the difference in transmittance with the change in the installation water depth of the opening projecting pipe became larger in the region where the incident wave waveform gradient Hi / L was larger (short-period incident wave). On the other hand, it was found that in a region where the waveform gradient Hi / L of the incident wave was small (long-period incident wave), almost no difference in transmittance due to a change in the installation water depth of the projecting pipe was observed. Therefore, it is considered that the installation water depth of the opening protruding pipe is a factor that suppresses transmission for short-period waves, but is not a main factor that suppresses transmission for long-period waves.

【0021】さらに、開口突出管の口径が小さくなるほ
ど、開口突出管の突出長が小さくなるほど、港内側開口
部における最大流速の値は増大することが分かった。つ
まり、導水量は開口突出管の口径や、開口突出管の突出
長に依存する。
Further, it was found that the smaller the diameter of the projecting pipe and the shorter the projecting length of the projecting pipe, the larger the value of the maximum flow velocity at the port inner opening. That is, the amount of water conduction depends on the diameter of the projecting pipe and the length of the projecting pipe.

【0022】請求項1記載の発明によれば、前記開口部
および該開口突出管を通して、港外から港内への導水を
行える。導水量は開口部および開口突出管の口径、開口
突出管の突出長、開口部および開口突出管の形状、開口
部および開口突出管の設置水深、並びに開口部および開
口突出管の設置数量を適宜変更することで調節できる。
According to the first aspect of the present invention, water can be guided from outside the port to the port through the opening and the opening projecting pipe. The amount of water conduction depends on the diameter of the opening and the projecting tube, the projecting length of the projecting tube, the shape of the opening and projecting tube, the installation depth of the projecting opening and the projecting tube, and the quantity of the projecting opening and projecting tube. It can be adjusted by changing.

【0023】また、波の透過率は、開口突出管の口径、
突出長に依存するため、防波堤の堤幅を拡大しないで
も、前記開口突出管の突出長を適宜変更することで、波
の透過率を調節できる。よって、前記開口突出管の突出
長を大きく設定することで透過率を小さくし、透過率の
高い長周期性の波に対しても透過波の波高を小さく抑え
ることができ、高波浪が卓越する港においても港内での
静穏度を保つことができる。一方、短周期性の波に対し
ては、設置水深を調節することでも透過率を調節するこ
とができる。加えて、前記開口部、前記開口突出管が水
中に没していれば潮汐による海水交換を行えるため、例
えば、潮位差が大きい港においても適用できる。
The wave transmittance is determined by the diameter of the projecting pipe,
Since it depends on the projecting length, the wave transmittance can be adjusted by appropriately changing the projecting length of the opening projecting pipe without increasing the width of the breakwater. Therefore, by setting the projecting length of the opening projecting tube large, the transmittance can be reduced, and the wave height of the transmitted wave can be suppressed even for a long-period wave having a high transmittance, so that high waves are prominent. Even in the harbor, calmness in the harbor can be maintained. On the other hand, for short-period waves, the transmittance can also be adjusted by adjusting the installation water depth. In addition, if the opening and the projecting pipe are submerged in the water, seawater can be exchanged by tide, so that the present invention can be applied to, for example, a port having a large tidal difference.

【0024】さらに、透過率を小さくするために堤幅を
拡大する必要がないため、建設コストが低減できるとと
もに、堤幅拡大による利用可能な港内水域の減縮を回避
できる。加えて、透過率を小さくするため並びに海水交
換量を維持するために堤体の安定性に必要な量以上の消
波ブロックや潜堤等の構造物を設置する必要がないた
め、建設コストが低減できる。
Further, since it is not necessary to increase the width of the embankment in order to reduce the transmittance, the construction cost can be reduced, and the reduction of the available port water area due to the expansion of the embankment width can be avoided. In addition, there is no need to install structures such as wave-dissipating blocks and submerged levee more than necessary for the stability of the embankment in order to reduce the transmittance and maintain the amount of seawater exchange. Can be reduced.

【0025】請求項2記載の発明は、港内外に亘って貫
通した開口部を有する透過式防波堤であって、前記開口
部と連通され、港外側に突出した開口突出管を備えたこ
と、を特徴としている。
According to a second aspect of the present invention, there is provided a transmissive breakwater having an opening penetrating inside and outside a port, comprising an opening projecting pipe communicating with the opening and projecting outside the port. Features.

【0026】請求項2における前記開口部、前記開口突
出管の形状は、それぞれ請求項1における前記開口部、
前記開口突出管と同様である。さらに、請求項2におけ
る前記開口部および前記開口突出管の開口面積も適宜変
更可能である。
In the second aspect, the shape of the opening and the shape of the opening protruding tube are respectively the same as those of the first aspect,
It is the same as the opening projecting tube. Further, the opening area of the opening and the opening projecting tube in claim 2 can be appropriately changed.

【0027】請求項2における前記開口部および前記開
口突出管は、例えば、ともに1つずつ備えることが挙げ
られるが、ともに同数の複数個ずつ備えてもよい。ま
た、前記開口部および前記開口突出管の設置水深も適宜
変更可能である。
In the second aspect, the opening portion and the opening protruding tube may be provided, for example, one by one, but may be provided by the same number of each. In addition, the installation water depth of the opening and the opening projecting pipe can be appropriately changed.

【0028】請求項2記載の発明によれば、請求項1記
載の発明と同様に前記開口部および該開口突出管を通し
て、港外から港内への導水を行える。導水量は開口部お
よび開口突出管の口径、開口突出管の突出長、開口部お
よび開口突出管の形状、開口部および開口突出管の設置
水深、および開口部および開口突出管の設置数量を適宜
変更することで調節できる。
According to the second aspect of the present invention, similarly to the first aspect of the present invention, water can be guided from outside the port to the inside of the port through the opening and the opening projecting pipe. The amount of water conduction depends on the diameter of the opening and the projecting tube, the projecting length of the projecting tube, the shape of the opening and the projecting tube, the installation depth of the projecting tube and the projecting tube, and the quantity of the projecting tube and the projecting tube. It can be adjusted by changing.

【0029】また、請求項1記載の発明と同様に、前記
開口突出管の突出長を大きく設定することで透過率を小
さくし、透過率の高い長周期性の波に対しても透過波の
波高を小さく抑えることができ、高波浪が卓越する港に
おいても港内での静穏度を保つことができる。一方、短
周期性の波に対しては、設置水深を調節することでも透
過率を調節することができる。
Further, similarly to the first aspect of the present invention, the transmittance is reduced by setting the projecting length of the opening projecting tube to be large, and the transmitted wave is not affected by a long-period wave having a high transmittance. The wave height can be kept small, and calmness in the harbor can be maintained even in a port where high waves are dominant. On the other hand, for short-period waves, the transmittance can also be adjusted by adjusting the installation water depth.

【0030】さらに、透過率を小さくするために堤幅を
拡大する必要がないため、建設コストが低減できるとと
もに、堤幅拡大による利用可能な港内水域の減縮を回避
できる。加えて、透過率を小さくするため並びに海水交
換量を維持するために堤体の安定性に必要な量以上の消
波ブロックや潜堤等の構造物を設置する必要がないた
め、建設コストが低減できる。
Further, since it is not necessary to increase the width of the bank to reduce the transmittance, the construction cost can be reduced, and the reduction of the available water area in the port due to the wide bank can be avoided. In addition, there is no need to install structures such as wave-dissipating blocks and submerged levee more than necessary for the stability of the embankment in order to reduce the transmittance and maintain the amount of seawater exchange. Can be reduced.

【0031】ただし、請求項2記載の発明においては、
開口突出管が港外側に突出しているので、請求項1記載
の発明のように開口突出管が港内側に突出している場合
よりも、波の透過率を小さくできる。
However, in the second aspect of the present invention,
Since the opening projecting pipe projects to the outside of the harbor, the wave transmittance can be made smaller than in the case where the opening projecting pipe projects to the inside of the port.

【0032】請求項3記載の発明は、港内外に亘って貫
通した第一の開口部と、この第一の開口部と水平位置を
違えて配置された第二の開口部とを有する透過式防波堤
であって、前記第一の開口部と連通され、港内側に突出
した第一の開口突出管と、前記第二の開口部と連通さ
れ、港外側に突出した第二の開口突出管と、を備えたこ
と、を特徴としている。
According to a third aspect of the present invention, there is provided a transmission type having a first opening penetrating inside and outside a port, and a second opening arranged at a different horizontal position from the first opening. A breakwater, wherein the first opening is connected to the first opening and projects to the inside of the port; and the second opening is connected to the second opening and projects to the outside of the port. , Is provided.

【0033】請求項3における前記第一・第二の開口
部、前記第一・第二の開口突出管の形状は、それぞれ請
求項1または請求項2における前記開口部、前記開口突
出管と同様である。さらに、前記第一・第二の開口部、
前記第一・第二の開口突出管の開口面積や設置水深もそ
れぞれ適宜変更可能である。
The shapes of the first and second openings and the first and second opening projecting tubes in the third aspect are the same as those of the first and second openings in the first and second aspects, respectively. It is. Further, the first and second openings,
The opening area and installation water depth of the first and second opening projecting pipes can also be appropriately changed.

【0034】前記第一の開口部および前記第一の開口突
出管は、例えば、ともに1つずつ備えることが挙げられ
るが、ともに同数の複数個ずつ備えてもよい。前記第一
の開口部および前記第一の開口突出管をともに複数個ず
つ備える場合は、形状・寸法・設置水深は各々適宜に変
更可能である。また、前記第二の開口部および前記第二
の開口突出管についても同様である。
The first opening and the first opening protruding tube may be provided, for example, one by one, but may be provided by the same number of a plurality each. When both the first opening and the first opening projecting pipe are provided, a shape, a size, and an installation water depth can be appropriately changed. The same applies to the second opening and the second opening projecting tube.

【0035】請求項3記載の発明によれば、前記第一の
開口部および前記第一の開口突出管は、請求項1記載の
発明と同様の作用が得られ、前記第二の開口部および前
記第二の開口突出管は、請求項2記載の発明と同様の作
用が得られる。
According to the third aspect of the present invention, the first opening and the first opening protruding tube have the same effects as the first aspect of the invention, and the second opening and the first opening protruding tube have the same functions. The second opening projecting tube has the same effect as the second aspect of the invention.

【0036】さらに、港外側に突出する開口突出管より
港内側に突出する開口突出管の方が、波の透過率が高
く、港内側への導水量が多いため、前記第一の開口突出
管から導水された水の流れに沿って港内での水の流れを
生じさせることができる。ここに、前記第二の開口部お
よび前記第二の開口突出管では、港内外への通水量およ
び方向の制御が可能である。従って、港内での水の循環
が維持されるとともに、港内外の水の交換を円滑に行う
ことができる。
Further, since the open projecting pipe projecting inward from the port has a higher wave transmittance and a larger amount of water flowing into the port than the open projecting pipe projecting outward from the port, the first open projecting pipe is used. The flow of water in the port can be generated along the flow of water conducted from the port. Here, in the second opening and the second opening protruding pipe, it is possible to control the amount and direction of water flowing into and out of the port. Therefore, the circulation of water in the port can be maintained, and the exchange of water in and out of the port can be performed smoothly.

【0037】請求項4記載の発明は、請求項3記載の透
過式防波堤であって、前記第一の開口突出管が、前記第
二の開口突出管よりも大口径であること、を特徴として
いる。
According to a fourth aspect of the present invention, there is provided the transmission breakwater according to the third aspect, wherein the first projecting pipe has a larger diameter than the second projecting pipe. I have.

【0038】請求項4記載の発明によれば、前記第一の
開口突出管が、前記第二の開口突出管よりも大口径であ
るので、前記第一の開口突出管からの導水量の方が多く
なり、より円滑に港内での水の循環を行うことができ、
海水交換も効果的に行われる。
According to the fourth aspect of the present invention, since the diameter of the first projecting pipe is larger than that of the second projecting pipe, the amount of water conducted from the first projecting pipe is smaller. And water can be more smoothly circulated in the harbor,
Seawater exchange is also effective.

【0039】[0039]

【発明の実施の形態】以下に、本発明に係る実施の形態
例を図1から図3に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described below with reference to FIGS.

【0040】図1は、本発明に係る透過式防波堤を示す
概略斜視図、図2の(a)は本発明に係る透過式防波堤
を示す概略正面図、(b)は(a)の側面図、図3は本
発明に係る透過式防波堤の適用例を示す概略平面図であ
る。
FIG. 1 is a schematic perspective view showing a transmission type breakwater according to the present invention, FIG. 2 (a) is a schematic front view showing a transmission type breakwater according to the present invention, and FIG. 2 (b) is a side view of FIG. FIG. 3 is a schematic plan view showing an application example of the transmission type breakwater according to the present invention.

【0041】図1に示されるように、透過式防波堤1
は、堤体2、堤体2を港内外に貫通する開口部3、該開
口部3と連通された開口突出管4により概略構成されて
いる。該開口部3は、例えば、円筒状のものである。該
開口突出管4も、例えば、円筒状のものである。
As shown in FIG. 1, the transmission breakwater 1
Is generally constituted by an embankment body 2, an opening 3 penetrating the embankment body 2 into and out of the port, and an opening projecting pipe 4 communicated with the opening 3. The opening 3 is, for example, cylindrical. The opening projecting tube 4 is also, for example, cylindrical.

【0042】このような透過式防波堤1と同様の透過式
防波堤1a、1bが、例えば図3に示されるように互い
の水平位置を違えて設けられている。透過式防波堤1a
の開口突出管4aは港内側に突出し、透過式防波堤1b
の開口突出管4bは港外側に突出している。また、開口
突出管4aは開口突出管4bよりも大口径となってい
る。さらに、開口部3aも開口部3bよりも大口径とな
っている。
The transmission type breakwaters 1a and 1b similar to the transmission type breakwater 1 are provided at different horizontal positions, for example, as shown in FIG. Transmissive breakwater 1a
The projecting pipe 4a projects from the inside of the harbor and is a transparent breakwater 1b.
The opening projecting pipe 4b projects outside the port. The opening projecting tube 4a has a larger diameter than the opening projecting tube 4b. Further, the opening 3a also has a larger diameter than the opening 3b.

【0043】ここで、本発明に係る透過式防波堤による
作用・効果を説明する前に、水理模型を用いた水理実験
結果の詳細を示す。
Here, before describing the operation and effect of the transmission type breakwater according to the present invention, details of hydraulic experiment results using a hydraulic model will be described.

【0044】実験は2次元造波水槽(長さ65m×幅
1.0m×高さ1.6m)を用いて行った。アクリル性
の水理模型は、想定した実機スケールの1/20の大き
さとした。表1に水理模型の諸元を示す。
The experiment was performed using a two-dimensional wave-making water tank (length 65 m × width 1.0 m × height 1.6 m). The acrylic hydraulic model had a size of 1/20 of the assumed actual scale. Table 1 shows the specifications of the hydraulic model.

【表1】 図4は水理実験に用いた水理模型等を示す概略側面図で
ある。水理模型は図示しない造波板より30mの地点に
設置し、港外側と港内側との水の交換は開口突出管50
および開口部51を通してのみ行われるようにした。ま
た、波の透過に伴う港内側の著しい水位上昇を防止する
ため、越流の可能な遮水壁52を模型より後方25mの
位置に設置し、その前面に消波材53を設置した。表2
に実験条件を示す。
[Table 1] FIG. 4 is a schematic side view showing a hydraulic model and the like used in the hydraulic experiment. The hydraulic model is installed at a point 30 m from a wave plate (not shown).
And through the opening 51 only. In order to prevent a significant rise in the water level inside the harbor due to the transmission of waves, a water-blocking wall 52 capable of overflowing was installed at a position 25 m behind the model, and a wave-absorbing material 53 was installed in front of the wall. Table 2
Shows the experimental conditions.

【表2】 実験は、一定水深(h=40cm)の下で開口突出管5
0の口径d、設置水深hs、突出長lおよび突出方向
(港内側か港外側かのいずれか)並びに入射波の条件を
変化させて実施した。港外側に設置した波高計57,5
8のデータから合田の方法(入反射分離法)を用いて入
射波の波高Hiを算定するとともに、港内側に設置した
波高計54で透過波の波高Htを計測した。また、2本
の電磁流速計55,56を用いて、開口突出管50の出
入口部中央における流速を計測した。さらに、開口突出
管50および開口部51の内部の上下に一定の間隔で波
圧計を埋込み、圧力分布の計測も行った。データ収集
は、サンプリング周波数50Hzで90秒間行った。
[Table 2] The experiment was carried out under a constant water depth (h = 40 cm).
The measurement was performed by changing the aperture d of 0, the installation depth hs, the projection length l, the projection direction (either inside the port or outside the port), and the conditions of the incident wave. Wave height meter 57,5 installed outside the port
The wave height Hi of the incident wave was calculated from the data of No. 8 using the Goda method (incident reflection separation method), and the wave height Ht of the transmitted wave was measured by the wave height meter 54 installed inside the port. Further, the flow velocity at the center of the entrance and exit of the projecting pipe 50 was measured using two electromagnetic flowmeters 55 and 56. Further, wave pressure gauges were embedded at predetermined intervals above and below the opening protruding tube 50 and the opening 51, and pressure distribution was measured. Data collection was performed at a sampling frequency of 50 Hz for 90 seconds.

【0045】図5は水理模型の開口突出管50の口径d
が16cm、設置水深hsが18cmの場合の実験結果
を示す図である。この図5には、突出長lおよび突出方
向を実験パラメータとして変化させたときの透過率Kt
(=Ht/Hi)と入射波の波形勾配Hi/Lとの関係
がプロットされている。図5より、入射波の波形勾配H
i/Lの値が小さい程、また入射波の波長Lが大きくな
るほど透過率Ktは増大している事が伺える。特に、長
周期波側では透過波の波高Htが入射波の波高Hiの2
割未満まで小さくなっており、港内の静穏度は十分に保
たれるものと判断できる。また、突出長lの増大に伴っ
て透過率Ktの値は低下しているばかりでなく、開口突
出管50と開口部51との長さの和(=l+B)が2倍
になると透過率が1/2程度に低減される事も確認され
た。さらに、突出長lが一定の場合については、開口突
出管50が港内側に突出するように設置されている場合
の方が透過率Ktが大きい値となっている。換言すれ
ば、透過率Ktは、突出長lや開口突出管50と開口部
51との長さの和(=l+B)および突出方向に大きく
依存しているものと考えられる。
FIG. 5 shows the diameter d of the projecting pipe 50 of the hydraulic model.
FIG. 9 is a diagram showing experimental results when the setting water depth is 16 cm and the installation water depth hs is 18 cm. FIG. 5 shows the transmittance Kt when the protrusion length l and the protrusion direction are changed as experimental parameters.
The relationship between (= Ht / Hi) and the waveform gradient Hi / L of the incident wave is plotted. From FIG. 5, the waveform gradient H of the incident wave is shown.
It can be seen that the transmittance Kt increases as the value of i / L decreases and as the wavelength L of the incident wave increases. In particular, on the long-period wave side, the wave height Ht of the transmitted wave is equal to the wave height Hi of the incident wave.
It has been reduced to less than a percentage, and it can be judged that the calmness inside the port is sufficiently maintained. In addition, not only does the value of the transmittance Kt decrease with an increase in the projection length l, but also the transmittance increases when the sum of the lengths of the opening projecting tube 50 and the opening 51 (= l + B) doubles. It was also confirmed that it was reduced to about 1/2. Further, when the projection length l is constant, the transmittance Kt is larger when the opening projecting pipe 50 is installed so as to project inside the port. In other words, it is considered that the transmittance Kt largely depends on the protrusion length l, the sum of the lengths of the opening protrusion tube 50 and the opening 51 (= 1 + B), and the protrusion direction.

【0046】図6は、水理模型の開口突出管50の突出
長lが0cmの場合の透過率特性を口径dおよび設置水
深hs毎にプロットした図である。開口突出管50の口
径dが16cmのときの透過率Ktに注目してみると、
設置水深hsが大きいほど透過率Ktの値は小さくなっ
ている。また、入射波の波形勾配Hi/Lが大きい領域
(短周期の入射波)ほど設置水深hsの変化に伴う透過
率Ktの相違が大きくなっている。一方、入射波の波形
勾配Hi/Lが小さい領域(長周期の入射波)では、上
述の相違はほとんど認められない。したがって、開口突
出管50の設置水深hsは長周期波の透過を抑制する主
要な因子ではないものと考えられる。
FIG. 6 is a diagram plotting the transmittance characteristics when the projecting length 1 of the opening projecting pipe 50 of the hydraulic model is 0 cm for each of the aperture d and the installation water depth hs. Focusing on the transmittance Kt when the diameter d of the opening projecting tube 50 is 16 cm,
The value of the transmittance Kt decreases as the installation water depth hs increases. Further, the difference in transmittance Kt accompanying a change in the installation water depth hs increases in a region where the waveform gradient Hi / L of the incident wave is large (an incident wave having a short period). On the other hand, in a region where the waveform gradient Hi / L of the incident wave is small (long-period incident wave), the above difference is hardly recognized. Therefore, it is considered that the installation water depth hs of the opening projecting pipe 50 is not a main factor for suppressing transmission of long-period waves.

【0047】図7は、水理模型の開口突出管の突出長l
=20cmの場合の透過率特性を示す図である。図7は
図6と同様にdおよびhsを実験パラメータとして変化
させたときの実験結果である。口径がd=10cmの場
合の透過率特性は、d=16cmの場合の特性と比較し
て半減している事が認められる。この事から、開口突出
管50の口径dは入射波の透過を抑制する上で有効なパ
ラメータであり、従来の透過式防波堤における開口率に
相当するものであると思われる。以上の実験結果から、
透過式防波堤の透過率Ktは、開口突出管50の突出長
lやその口径dおよび設置方向に大きく依存しているこ
とが明らかである。
FIG. 7 shows the projection length l of the opening projection pipe of the hydraulic model.
It is a figure which shows the transmittance | permeability characteristic at the time of = 20cm. FIG. 7 shows an experimental result when d and hs are changed as experimental parameters as in FIG. It is recognized that the transmittance characteristics when the aperture is d = 10 cm are halved compared to the characteristics when d = 16 cm. From this fact, it is considered that the diameter d of the opening projecting pipe 50 is an effective parameter for suppressing transmission of an incident wave, and corresponds to an aperture ratio in a conventional transmission type breakwater. From the above experimental results,
It is apparent that the transmittance Kt of the transmission type breakwater greatly depends on the projection length l of the opening projection pipe 50, its diameter d, and the installation direction.

【0048】図8の(a)は、開口突出管50の形状お
よび設置条件をパラメータとして変化させた場合の港内
側開口部における最大流速Vxと入射波の波形勾配Hi
/Lとの関係をプロットしたものである。港内側開口部
における最大流速Vxは、造波板からの再反射波の影響
を受けないデータを対象に、波周期Tで移動平均処理し
たものの中の最大値である。図より、Hiが一定の場合
には入射波の波形勾配Hi/Lの値が小さいほど、すな
わち入射波の波長Lが大きくなるほど港内側開口部にお
ける最大流速Vxは増大することが確認できる。また、
入射波の波高Hiが大きいほど港内側開口部における最
大流速Vxの値も増加しており、港内側開口部の流速は
入射波の水粒子が有するエネルギーに依存していること
もわかる。開口突出管50の形状の違いに着目すると、
その直径dおよびその全長(=l+B)が小さくなる場
合に港内側開口部における最大流速Vxの値は増大して
いる。このことは、同一の条件の入射波では、開口突出
管50内を透過する際の摩擦損失および管内海水の体積
に依存して流速が減少しているものと解釈できる。この
ような入射波の波形勾配Hi/Lに対する港内側開口部
における最大流速Vxの定性的な傾向は、図8の(b)
に示される無次元流速Ut(港内側開口部における最大
流速Vxを微小振幅波理論に基づく進行波の港外側開口
部中央における水粒子の水平最大流速(Uimx)で除
した無次元量)と入射波の波形勾配Hi/Lとの関係で
も同様に確認できる。特に、入射波の波形勾配Hi/L
が0.02より小さな長周期側の入射波に着目すれば、
港内側開口部の最大流速VxはUimxの1.10〜
1.35倍程度まで大きくなっており、港内側開口部の
最大流速Vxの特性は微小振幅波理論に基づくUimx
だけでは説明しきれない要因も含まれているものと考え
られる。さらに、開口突出管50の設置水深hsの増大
に伴い、図8の(a)より港内側開口部の最大流速Vx
は減少することが分かる。これは、設置水深hsが大き
いほど港外側の開口部におけるUimxも減少するため
と考えられる。
FIG. 8A shows the maximum flow velocity Vx and the waveform gradient Hi of the incident wave at the port inner opening when the shape and the installation conditions of the opening projecting pipe 50 are changed as parameters.
/ L is plotted. The maximum flow velocity Vx at the port inside opening is the maximum value obtained by subjecting the data not affected by the re-reflected wave from the wave plate to the moving average processing at the wave period T. From the figure, it can be confirmed that when Hi is constant, the maximum flow velocity Vx at the port inner opening increases as the value of the waveform gradient Hi / L of the incident wave decreases, that is, as the wavelength L of the incident wave increases. Also,
As the wave height Hi of the incident wave increases, the value of the maximum flow velocity Vx at the port inner opening also increases, and it is also understood that the flow velocity at the port inner opening depends on the energy of the water particles of the incident wave. Focusing on the difference in the shape of the opening projecting tube 50,
When the diameter d and the total length (= 1 + B) become smaller, the value of the maximum flow velocity Vx at the port inside opening increases. This can be interpreted as that the flow rate of the incident wave under the same conditions is reduced depending on the friction loss and the volume of seawater in the pipe when passing through the pipe 50. The qualitative tendency of the maximum flow velocity Vx at the port inner opening with respect to the waveform gradient Hi / L of the incident wave is shown in FIG.
And the dimensionless flow velocity Ut (the dimensionless amount obtained by dividing the maximum flow velocity Vx at the port inside opening by the horizontal maximum flow velocity (Uimx) of water particles at the center of the port outside opening of the traveling wave based on the small amplitude wave theory) The relationship with the waveform gradient Hi / L can be similarly confirmed. In particular, the waveform gradient Hi / L of the incident wave
Focusing on the incident wave on the long cycle side where is smaller than 0.02,
The maximum flow velocity Vx at the port inside opening is 1.10 of Uimx.
The characteristic of the maximum flow velocity Vx at the port inner opening is Uimx based on the small amplitude wave theory.
It is considered that some factors cannot be explained by themselves. Further, with the increase in the installation water depth hs of the opening projecting pipe 50, the maximum flow velocity Vx at the port inside opening is shown from FIG.
Is found to decrease. This is probably because the larger the installation depth hs, the smaller the Uimx in the opening outside the port.

【0049】図9は開口突出管50の開口部の形状およ
び設置条件を一定にした場合のVmとη/hとの関係を
示す図である。ここで、Vmは港内側開口部の流速を入
射波1波毎に平均した流速、ηは港外側の静水面から自
由水面までの高さを入射波1波毎に平均した水位であ
る。入射波の周期Tが実験パラメータとして採用されて
いる図9に基づけば、Vmはη/hの増大および波周期
Tの減少に伴って増加する傾向を有していることがわか
る。
FIG. 9 is a diagram showing the relationship between Vm and η / h when the shape of the opening of the opening projecting tube 50 and the installation conditions are kept constant. Here, Vm is the flow velocity obtained by averaging the flow velocity at the port inside opening for each incident wave, and η is the water level obtained by averaging the height from the still water surface to the free water surface outside the port for each incident wave. Based on FIG. 9 in which the period T of the incident wave is adopted as an experimental parameter, it can be seen that Vm has a tendency to increase as η / h increases and the wave period T decreases.

【0050】本発明に係る透過式防波堤1a、1bによ
れば、前記開口部3a、3bおよび前記開口突出管4
a、4bを通して港外から港内への導水を行える。よっ
て港内の海水交換を行うことができ、港内の水質改善を
図れる。
According to the transmission type breakwaters 1a and 1b according to the present invention, the openings 3a and 3b and the opening projecting pipe 4 are provided.
Water can be guided from outside the port to the inside of the port through a and 4b. Therefore, the seawater can be exchanged in the port, and the water quality in the port can be improved.

【0051】また、上記の実験結果から類推できるよう
に、導水量は開口突出管4a、4bの口径や、開口突出
管4a、4bの突出長を適宜変更することで調節でき
る。
Further, as can be inferred from the above experimental results, the amount of water can be adjusted by appropriately changing the diameters of the projecting pipes 4a and 4b and the projecting lengths of the projecting pipes 4a and 4b.

【0052】波の透過率は、開口突出管4a、4bの口
径や突出長に依存するため、防波堤の堤幅を拡大しない
でも、開口突出管4a、4bの突出長を適宜変更するこ
とで、波の透過率を調節できる。よって、開口突出管4
a、4bの突出長を大きく設定することで透過率を小さ
くし、透過率の高い長周期性の波に対しても透過波の波
高を小さく抑えることができ、高波浪が卓越する港にお
いても港内での静穏度を保つことができる。一方、短周
期性の波に対しては、開口突出管4a、4bの設置水深
を調節することでも透過率を調節することができる。
Since the transmittance of the waves depends on the diameter and the projecting length of the projecting pipes 4a and 4b, the projecting length of the projecting pipes 4a and 4b can be appropriately changed without increasing the width of the breakwater. The wave transmittance can be adjusted. Therefore, the opening projecting pipe 4
By setting the protrusion lengths of a and 4b large, the transmittance can be reduced, and the wave height of the transmitted wave can be suppressed even for a long-period wave having a high transmittance, and even in a port where high waves are dominant. The calm in the harbor can be maintained. On the other hand, for short-periodic waves, the transmittance can also be adjusted by adjusting the installation depth of the opening projecting pipes 4a and 4b.

【0053】さらに、透過率を小さくするために堤幅を
拡大する必要がないため、建設コストが低減できるとと
もに、堤幅拡大による利用可能な港内水域の減縮を回避
できる。加えて、透過率を小さくするため並びに海水交
換量を維持するために堤体の安定性に必要な量以上の消
波ブロックや潜堤等の構造物を設置する必要がないた
め、建設コストが低減できる。
Further, since it is not necessary to increase the width of the embankment to reduce the transmittance, the construction cost can be reduced, and the reduction of the available port water area due to the expansion of the embankment width can be avoided. In addition, there is no need to install structures such as wave-dissipating blocks and submerged levee more than necessary for the stability of the embankment in order to reduce the transmittance and maintain the amount of seawater exchange. Can be reduced.

【0054】加えて、港外側に突出する開口突出管4b
より港内側に突出する開口突出管4aの方が、透過率が
高く、港内側への導水量が多いため、開口突出管4aか
ら導水された水の流れに沿って港内での水の流れを生じ
させることができ(図3の矢印A)る。また、開口突出
管1aからの導水量を含めた港内の水収支により、開口
突出管1bにおいて、通水を港内側あるいは港外側へ制
御することができる。従って、港内での水の循環(港内
循環)を円滑に行えるとともに、港内外の水の交換を効
果的に行うことができる。さらに、開口突出管1aを、
開口突出管1bよりも大口径とすることにより、開口突
出管1aからの流入量が、開口突出管1bのそれよりも
多くなるため、より円滑に港内での水の循環が行われる
ことになり、海水交換が促進される。従って、港内の水
質改善あるいは水質維持を効果的に行うことができる。
In addition, an opening projecting pipe 4b projecting outside the port
Since the opening projecting pipe 4a projecting more toward the inside of the port has a higher transmittance and a large amount of water flowing into the port inside, the flow of water in the port along the flow of water guided from the opening projecting pipe 4a is reduced. (Arrow A in FIG. 3). In addition, the water flow in the port including the amount of water conducted from the opening projecting pipe 1a can control the flow of water to the inside or outside of the port in the opening projecting pipe 1b. Therefore, the circulation of water in the port (circulation in the port) can be performed smoothly, and the exchange of water inside and outside the port can be effectively performed. Further, the opening projecting tube 1a is
By making the diameter larger than that of the opening projecting pipe 1b, the inflow from the opening projecting pipe 1a becomes larger than that of the opening projecting pipe 1b, so that the water can be more smoothly circulated in the port. , Seawater exchange is promoted. Therefore, it is possible to effectively improve or maintain the water quality in the port.

【0055】なお、上記の実施の形態例(図3)では、
第一の開口部、第一の開口突出管、第二の開口部、第二
の開口突出管をそれぞれ1つずつ備える構成としたが、
これらの数は適宜変更可能である。さらに、第一・第二
の開口部、第一・第二の開口突出管の長さ、形状、設置
水深を変えることでも導水量を変化させることも可能で
ある。加えて、一つの開口部に対して、港内側に突出す
る開口突出管と、港外側に突出する開口突出管の両方を
設けることとしてもよい。この場合、港内側に突出する
開口突出管と、港外側に突出する開口突出管との長さは
同一でもよいし、差が生じてもかまわない。また、実施
の形態例のように第一の開口突出管と第二の開口突出管
とをともに備える場合は、必ずしも第一の開口突出管を
第二の開口突出管よりも大口径にする必要はなく、例え
ば、同一の口径にしてもよく、また、場合によっては、
第二の開口突出管の方を大口径にしても良い。つまり、
設置海域、港湾形状、管理者並びに利用者の要望等によ
って、開口部および開口突出管の配置や形状等は適宜に
変更可能である。
In the above embodiment (FIG. 3),
Although the first opening, the first opening protruding tube, the second opening, and the second opening protruding tube are provided one by one,
These numbers can be changed as appropriate. Furthermore, it is also possible to change the amount of water introduction by changing the length, shape, and installation water depth of the first and second openings and the first and second opening projecting pipes. In addition, for one opening, both an opening projecting pipe projecting inside the port and an opening projecting tube projecting outside the port may be provided. In this case, the length of the opening projecting pipe projecting to the inside of the port and the length of the opening projecting pipe projecting to the outside of the port may be the same, or a difference may occur. Further, when both the first opening projecting tube and the second opening projecting tube are provided as in the embodiment, it is necessary to make the first opening projecting tube larger in diameter than the second opening projecting tube. However, for example, the diameter may be the same, and in some cases,
The second projecting tube may have a larger diameter. That is,
The arrangement and shape of the opening and the opening projecting pipe can be appropriately changed according to the installation sea area, the shape of the port, the demands of the manager and the user, and the like.

【0056】[0056]

【発明の効果】請求項1記載の発明に係る透過式防波堤
によれば、前記開口部および該開口突出管を通して、港
外から港内への導水を行える。よって港内の海水交換を
行うことができ、港内の水質改善あるいは水質維持を図
れる。導水量は開口部および開口突出管の口径、開口突
出管の突出長、開口部および開口突出管の形状、開口部
および開口突出管の設置水深、並びに開口部および開口
突出管の設置数量を適宜変更することで調節できる。
According to the transmission type breakwater according to the first aspect of the present invention, water can be guided from outside the port into the port through the opening and the projecting pipe. Therefore, the seawater can be exchanged in the port, and the water quality in the port can be improved or maintained. The amount of water conduction depends on the diameter of the opening and the projecting tube, the projecting length of the projecting tube, the shape of the opening and projecting tube, the installation depth of the projecting opening and the projecting tube, and the quantity of the projecting opening and projecting tube. It can be adjusted by changing.

【0057】また、前記開口突出管の突出長を適宜調節
することで、透過率を調節することができ、例えば、波
あたりの強い場所でも港内での静穏度を保つことができ
る。なお、短周期性の波に対しては、設置水深を調節す
ることでも透過率を調節することができる。
The transmittance can be adjusted by appropriately adjusting the projection length of the opening projection tube. For example, the degree of calmness in a harbor can be maintained even in a place where waves are strong. For short-period waves, the transmittance can also be adjusted by adjusting the installation water depth.

【0058】加えて、前記開口部、前記開口突出管が水
中に没していれば潮汐による海水交換を行えるため、例
えば、潮位差が大きい港においても適用できる。
In addition, if the opening and the projecting pipe are submerged in the water, seawater can be exchanged by the tide, so that the present invention can be applied to, for example, a port having a large difference in tide level.

【0059】さらに、透過率を小さくするために堤幅を
拡大する必要がないため、建設コストが低減できるとと
もに、堤幅拡大による利用可能な港内水域の減縮を回避
できる。加えて、透過率を小さくするため並びに海水交
換量を維持するために堤体の安定性に必要な量以上の消
波ブロックや潜堤等の構造物を設置する必要がないた
め、建設コストが低減できる。
Further, since it is not necessary to increase the width of the embankment in order to reduce the transmittance, the construction cost can be reduced, and the reduction of the available port water area due to the expansion of the embankment width can be avoided. In addition, there is no need to install structures such as wave-dissipating blocks and submerged levee more than necessary for the stability of the embankment in order to reduce the transmittance and maintain the amount of seawater exchange. Can be reduced.

【0060】請求項2記載の発明に係る透過式防波堤に
よれば、請求項1記載の発明とほぼ同様の効果が得られ
る。ただし、請求項2記載の発明においては、開口突出
管が港外側に突出しているので、請求項1記載の発明の
ように開口突出管が港内側に突出している場合よりも透
過率を小さくできる。
According to the transmission type breakwater according to the second aspect of the invention, substantially the same effects as those of the first aspect of the invention can be obtained. However, in the second aspect of the invention, since the opening projecting pipe projects to the outside of the port, the transmittance can be made smaller than when the opening projecting pipe projects to the inside of the port as in the first aspect of the invention. .

【0061】請求項3記載の発明に係る透過式防波堤に
よれば、港外側に突出する開口突出管より港内側に突出
する開口突出管の方が、透過率が高く、港内側への導水
量が多いため、前記第一の開口突出管から導水された水
の流れに沿って港内での水の流れを生じさせることがで
きるので、港内での水の循環が維持されるとともに、港
内外の水の交換を円滑に行うことができる。従って、水
質の改善あるいは維持を効果的に行うことができる。
According to the transmission type breakwater according to the third aspect of the present invention, the open projecting pipe projecting inward from the port has a higher transmittance than the open projecting pipe projecting outward from the port, and the amount of water introduced into the port is improved. Because there are many, the flow of water in the port can be generated along the flow of water guided from the first opening projecting pipe, so that water circulation in the port is maintained, and Exchange of water can be performed smoothly. Therefore, improvement or maintenance of water quality can be effectively performed.

【0062】請求項4記載の発明に係る透過式防波堤に
よれば、前記第一の開口突出管が、前記第二の開口突出
管よりも大口径であるので、前記第二の開口突出管より
も前記第一の開口突出管における港内への入水がより多
くなるため、より円滑に港内での水の循環を行うことが
できる。従って、水質の改善あるいは維持をより効果的
に行うことができる。
According to the transmission type breakwater according to the fourth aspect of the present invention, since the first opening projecting pipe has a larger diameter than the second opening projecting pipe, the first opening projecting pipe has a larger diameter than the second opening projecting pipe. Also, since more water enters the port through the first opening projecting pipe, the water can be more smoothly circulated in the port. Therefore, improvement or maintenance of water quality can be performed more effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る透過式防波堤を示す概略斜視図で
ある。
FIG. 1 is a schematic perspective view showing a transmission type breakwater according to the present invention.

【図2】(a)は本発明に係る透過式防波堤を示す概略
正面図、(b)は(a)の側面図である。
FIG. 2A is a schematic front view showing a transmission type breakwater according to the present invention, and FIG. 2B is a side view of FIG.

【図3】本発明に係る透過式防波堤の適用例を示す概略
平面図である。
FIG. 3 is a schematic plan view showing an application example of a transmission type breakwater according to the present invention.

【図4】水理実験に用いた水理模型等を示す概略側面図
である。
FIG. 4 is a schematic side view showing a hydraulic model and the like used in a hydraulic experiment.

【図5】水理模型の開口突出管の口径が16cm、設置
水深が18cmの場合の実験結果を示す図である。
FIG. 5 is a view showing an experimental result in a case where a diameter of an opening projecting pipe of a hydraulic model is 16 cm and an installation water depth is 18 cm.

【図6】水理模型の開口突出管の突出長が0cmの場合
の透過率特性を口径および設置水深毎にプロットした図
である。
FIG. 6 is a diagram in which the transmittance characteristics when the protrusion length of the opening protrusion pipe of the hydraulic model is 0 cm are plotted for each diameter and installation water depth.

【図7】水理模型の開口突出管の突出長が20cmの場
合の透過率特性を示す図である。
FIG. 7 is a diagram showing transmittance characteristics when the opening length of the opening projecting pipe of the hydraulic model is 20 cm.

【図8】(a)は開口突出管の形状および設置条件を変
化させた場合の港内側開口部における最大流速と入射波
の波形勾配との関係を示す図、(b)は無次元流速(港
内側開口部における最大流速を微小振幅波理論に基づく
進行波の港外側開口部中央における水粒子の水平最大流
速で除した無次元量)と入射波の波形勾配との関係を示
す図である。
8A is a diagram showing the relationship between the maximum flow velocity and the incident wave waveform gradient at the port inside opening when the shape of the projecting pipe and the installation conditions are changed, and FIG. FIG. 9 is a diagram showing a relationship between a maximum velocity at an inner port opening and a dimensionless quantity obtained by dividing a maximum velocity of a water particle at a center of an outer port opening of a traveling wave based on a small amplitude wave theory) and a waveform gradient of an incident wave. .

【図9】図9は開口突出管の開口部の形状および設置条
件を一定にした場合の、港内側開口部の流速を入射波1
波毎に平均した流速と、港外側の静水面から自由水面ま
での高さを入射波1波毎に平均した水位を水深で除した
値との関係を示す図である。
FIG. 9 is a graph showing the flow rate of the incident wave 1 at the port inner opening when the shape and installation conditions of the opening of the projecting pipe are constant.
It is a figure which shows the relationship between the flow velocity averaged for every wave, and the value which divided the water level which averaged the height from the still water surface outside a port to the free water surface for every incident wave by the water depth.

【図10】従来の透過式防波堤の一例(消波ブロック被
覆型有孔堤)を示す斜視図である。
FIG. 10 is a perspective view showing an example of a conventional transmission type breakwater (wave-dissipating block-covered perforated breakwater).

【図11】従来の透過式防波堤の一例(横並び型潜堤付
海水導入工)を示す斜視図である。
FIG. 11 is a perspective view showing an example of a conventional transmission type breakwater (seawater introduction work with side-by-side submerged levee).

【符号の説明】[Explanation of symbols]

1 透過式防波堤 1a 透過式防波堤 1b 透過式防波堤 3 開口部 3a 第一の開口部 3b 第二の開口部 4 開口突出管 4a 第一の開口突出管 4b 第二の開口突出管 REFERENCE SIGNS LIST 1 transmission type breakwater 1a transmission type breakwater 1b transmission type breakwater 3 opening 3a first opening 3b second opening 4 opening projecting tube 4a first opening projecting tube 4b second opening projecting tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】港内外に亘って貫通した開口部を有する透
過式防波堤であって、 前記開口部と連通され、港内側に突出した開口突出管を
備えたこと、を特徴とする透過式防波堤。
1. A transmission type breakwater having an opening penetrating both inside and outside a port, comprising: an opening projecting pipe communicating with the opening and protruding inside the port. .
【請求項2】港内外に亘って貫通した開口部を有する透
過式防波堤であって、 前記開口部と連通され、港外側に突出した開口突出管を
備えたこと、を特徴とする透過式防波堤。
2. A penetrating breakwater having an opening penetrating inside and outside a port, comprising: an opening projecting pipe communicating with the opening and protruding outside the port. .
【請求項3】港内外に亘って貫通した第一の開口部と、
この第一の開口部と水平位置を違えて配置された第二の
開口部とを有する透過式防波堤であって、 前記第一の開口部と連通され、港内側に突出した第一の
開口突出管と、 前記第二の開口部と連通され、港外側に突出した第二の
開口突出管と、を備えたこと、を特徴とする透過式防波
堤。
3. A first opening penetrating inside and outside the port,
A transmissive breakwater having the first opening and a second opening arranged at a different horizontal position, wherein the first opening is communicated with the first opening and protrudes inside the port. A transmission type breakwater, comprising: a pipe; and a second opening protruding pipe that is communicated with the second opening and protrudes outside the port.
【請求項4】前記第一の開口突出管が、前記第二の開口
突出管よりも大口径であること、を特徴とする請求項3
記載の透過式防波堤。
4. The apparatus according to claim 3, wherein said first projecting pipe has a larger diameter than said second projecting pipe.
The see-through breakwater described.
JP10203894A 1998-07-01 1998-07-17 Permeable breakwater Pending JP2000080623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10203894A JP2000080623A (en) 1998-07-01 1998-07-17 Permeable breakwater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-186482 1998-07-01
JP18648298 1998-07-01
JP10203894A JP2000080623A (en) 1998-07-01 1998-07-17 Permeable breakwater

Publications (1)

Publication Number Publication Date
JP2000080623A true JP2000080623A (en) 2000-03-21

Family

ID=26503801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10203894A Pending JP2000080623A (en) 1998-07-01 1998-07-17 Permeable breakwater

Country Status (1)

Country Link
JP (1) JP2000080623A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003757A (en) * 2003-06-10 2005-01-06 Stanley Electric Co Ltd Method for manufacturing dielectric film with controlled thickness, liquid crystal element and method for manufacturing liquid crystal element
WO2009049464A1 (en) * 2007-10-19 2009-04-23 Gushi Luo Breakwater
RU2537900C1 (en) * 2013-08-06 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for cleaning of stagnant waters of water areas of bays and gulfs
RU2562210C1 (en) * 2014-11-17 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for cleaning of water areas of bays and gulfs with multiangular inner screw surface of pipelines
RU2564493C1 (en) * 2014-11-17 2015-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for cleaning of stagnant waters of bay areas and gulfs via pipelines with triangular inner screw surface
RU2579223C1 (en) * 2014-12-29 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for cleaning stagnant waters of coves and bays of the pipeline with a wavy inner helical surface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003757A (en) * 2003-06-10 2005-01-06 Stanley Electric Co Ltd Method for manufacturing dielectric film with controlled thickness, liquid crystal element and method for manufacturing liquid crystal element
JP4725830B2 (en) * 2003-06-10 2011-07-13 スタンレー電気株式会社 Method for manufacturing dielectric film with controlled thickness, liquid crystal element, and method for manufacturing liquid crystal element
WO2009049464A1 (en) * 2007-10-19 2009-04-23 Gushi Luo Breakwater
RU2537900C1 (en) * 2013-08-06 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for cleaning of stagnant waters of water areas of bays and gulfs
RU2562210C1 (en) * 2014-11-17 2015-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for cleaning of water areas of bays and gulfs with multiangular inner screw surface of pipelines
RU2564493C1 (en) * 2014-11-17 2015-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for cleaning of stagnant waters of bay areas and gulfs via pipelines with triangular inner screw surface
RU2579223C1 (en) * 2014-12-29 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for cleaning stagnant waters of coves and bays of the pipeline with a wavy inner helical surface

Similar Documents

Publication Publication Date Title
Uijttewaal Effects of groyne layout on the flow in groyne fields: Laboratory experiments
US20160053454A1 (en) Floating breakwater
JP2000080623A (en) Permeable breakwater
He et al. An experimental study of a rectangular floating breakwater with vertical plates as wave-dissipating components
Raudkivi et al. Reduction of sand demand for shore protection
Müller et al. Visualisation of flow conditions inside a shoreline wave power-station
Eaton et al. A conceptual model for meander initiation in bedload‐dominated streams
KR20000038337A (en) Wave-absorbing system using horizontal punching plate
Yan et al. Hydrodynamic adjustment subject to a submerged canopy partially obstructing a flume: Implications for junction flow behaviour
JP5067658B2 (en) Vertical mixing promotion equipment
JP2011122314A (en) Seawater exchange-hastening wave absorbing dyke
JP3909343B2 (en) Seawater exchange promotion type breakwater
Dyer Estuarine flow interaction with topography lateral and longitudinal effects
JPH0686724B2 (en) Seawater AC breakwater
KR100212344B1 (en) Penetration type breakwater structure
JPH0561406B2 (en)
KR100469903B1 (en) Seashore structure
OHMURA et al. Excitation of vortex induced currents by piston mode wave resonance in double-curtain walled breakwaters
Brevik Partial wave damping in pneumatic breakwaters
Mao et al. Research on the Protective Effect of Twin-groyne Arrangement on Riverbank
JP3304697B2 (en) Breakwater with seawater exchange function
JPH1025726A (en) Permeation type wave breaking structure
van de Kreeke Increasing the mean current in coastal channels
JPH07324319A (en) Penetrating-type wave dissipating structure
JP4370374B2 (en) Seawater exchange type breakwater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717