JP2000080430A - Aluminum alloy for casting - Google Patents

Aluminum alloy for casting

Info

Publication number
JP2000080430A
JP2000080430A JP10245288A JP24528898A JP2000080430A JP 2000080430 A JP2000080430 A JP 2000080430A JP 10245288 A JP10245288 A JP 10245288A JP 24528898 A JP24528898 A JP 24528898A JP 2000080430 A JP2000080430 A JP 2000080430A
Authority
JP
Japan
Prior art keywords
carbon
titanium
amt
compositional
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10245288A
Other languages
Japanese (ja)
Other versions
JP4126576B2 (en
Inventor
Kenji Sato
健二 佐藤
Hiroshi Hagimoto
浩志 萩元
Yasuhiro Kato
泰弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANRITSUKU KK
Tokyo Metropolitan Government
Original Assignee
SANRITSUKU KK
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANRITSUKU KK, Tokyo Metropolitan Government filed Critical SANRITSUKU KK
Priority to JP24528898A priority Critical patent/JP4126576B2/en
Publication of JP2000080430A publication Critical patent/JP2000080430A/en
Application granted granted Critical
Publication of JP4126576B2 publication Critical patent/JP4126576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy in which the Al3Ti structure formed in the solidifying stage is refined, thereby shrinkage cavities are reduced, plastic working is hardly needed, and cracking is hard to be generated even if plastic working is executed, to pure aluminum contg. inevitable impurities, by specifying the compositional amt. of carbon and the compositional amt. of titanium with respect to pure aluminum with inevitable impurities. SOLUTION: In an Al-Ti-C aluminum alloy for casting, based on pure aluminum contg. inevitable impurities, the compositional amt. of carbon is controlled to 0.1 to 1.5 wt.%, and the compositional amt. of titanium lies in the range in which the value subtracted four times of the carbon compositional amt. (weight%) from the titanium compositional amt. (weight%) is made 1.6 to 13 wt.%. In this aluminum alloy for casting, the Al3Ti structure formed in the solidifying stage is refined and uniformized, so that shrinkage cavities in the cast product can remarkably be reduced to improve the productive yield, furthermore, defects in the product are few, the quality and strength are improved, and cracking in the product is hard to be generated even if plastic working is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳造用アルミニウ
ム合金に関し、特にAl-Ti−C系の鋳造用アルミニ
ウム合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting aluminum alloy, and more particularly to an Al-Ti-C casting aluminum alloy.

【0002】[0002]

【従来の技術】Al-Ti系合金は、アルミニウム合金
鋳物における金属組織の微細化を図ることを目的として
チタン(Ti)を添加するための母合金として使用され
たり、蒸着膜作成用スパッタリングターゲットとして使
用され、また高強度・高弾性・高温強度の軽量構造材料
として注目されている。他方、Al-Ti系合金は、凝
固開始温度と凝固終了温度の幅が数百Kとかなり大きい
ため、凝固過程でチタン化アルミ(Al3Ti)組織が
粗大に成長しやすく、その結果、引け巣が多く発生し、
鋳造製品の製造歩留まりが悪かった。加えて、上記引け
巣を押し潰すべく、鋳造した製品を熱間で塑性加工を行
なう手間が掛かり、更には、粗大なAl3Ti組織の存
在により塑性加工中に製品の割れが発生しやすいため、
再加熱−再加工を何回か繰り返す必要があった。
2. Description of the Related Art Al-Ti alloys are used as a master alloy for adding titanium (Ti) for the purpose of miniaturizing a metal structure in an aluminum alloy casting, or as a sputtering target for forming a deposited film. It is used and is attracting attention as a lightweight structural material with high strength, high elasticity and high temperature strength. On the other hand, since the range between the solidification start temperature and the solidification end temperature is considerably large at several hundred K in the Al-Ti alloy, the aluminum titanate (Al 3 Ti) structure tends to grow coarsely in the solidification process. Many nests,
The production yield of cast products was poor. In addition, in order to crush the shrinkage cavities, it takes time to perform hot plastic working on the cast product, and furthermore, the presence of a coarse Al 3 Ti structure tends to cause cracking of the product during plastic working. ,
Reheating-reworking had to be repeated several times.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような現
状に鑑みてなされたものであり、凝固過程で生成される
Al3Ti組織が微細化され、以って引け巣を減少させ
て製造歩留まりを向上させることができると共に、塑性
加工をほとんど必要とせず、塑性加工しても製品の割れ
が発生し難い鋳造用アルミニウム合金を提供せんとする
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and the Al 3 Ti structure produced in the solidification process is refined, thereby reducing the shrinkage cavity. An object of the present invention is to provide an aluminum alloy for casting that can improve the yield, hardly requires plastic working, and hardly causes cracks in products even when plastic working is performed.

【0004】[0004]

【課題を解決するための手段】斯かる目的を達成する本
発明の鋳造用アルミニウム合金は、不可避的不純物を含
む純アルミニウムに対して、炭素組成量を0.1wt%
〜1.5wt%とし、チタン組成量をチタン組成量(w
t%)から4倍の炭素組成量(wt%)を差し引いた値
が1.6wt%〜13wt%となる範囲としてなる事を
特徴としたものである。
The aluminum alloy for casting of the present invention, which achieves the above object, has a carbon content of 0.1 wt% based on pure aluminum containing unavoidable impurities.
To 1.5 wt%, and the titanium composition amount (w
(t%) minus four times the amount of carbon composition (wt%) is in the range of 1.6 wt% to 13 wt%.

【0005】[0005]

【発明の実施の形態】以下、本発明の具体的な実施例を
詳細に説明する。Al-Ti系合金は、チタン化アルミ
(Al3Ti)からなる金属間化合物を強化相とするイ
ンサイチュ(In−situ)複合材料であり、弾性率
が高く、高温強度特性に優れているが、反面、凝固過程
でAl3Ti組織が粗大に成長しやすい。また、チタン
(Ti)は鋳造した製品の金属組織を微細化する効果を
もたらし、鋳造用アルミニウム合金の有効な添加成分で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described in detail. The Al-Ti alloy is an in-situ (In-situ) composite material having an intermetallic compound made of aluminum titanate (Al 3 Ti) as a strengthening phase, and has a high elastic modulus and excellent high-temperature strength characteristics. On the other hand, the Al 3 Ti structure tends to grow coarsely during the solidification process. Further, titanium (Ti) has an effect of refining the metal structure of a cast product, and is an effective additive component of an aluminum alloy for casting.

【0006】Al-Ti系合金において凝固過程で生成
されるAl3Ti組織の制御には、凝固速度による制御
と、合金元素の添加による手法が考えられる。そこで、
本発明者等は種々の元素添加によるAl3Ti組織の微
細化効果について検証した。
In order to control the Al 3 Ti structure generated in the solidification process in the Al—Ti alloy, a method based on a solidification rate and a method by adding an alloy element are considered. Therefore,
The present inventors have verified the effect of miniaturizing the Al 3 Ti structure by adding various elements.

【0007】高純度アルミニウム(99.999%)と高純度
チタン(99.97%)に、添加元素としてジルコニウム
(Zr),モリブデン(Mo),クロム(Cr),タン
タル(Ta),ホウ素(B),炭素(C)を配合し、A
l-5wt%Ti-1wt%Me(添加元素)を目標組成
にして、高周波誘導溶解炉を用いてアルミナるつぼ中で
溶解し、高純度アルゴンガスで脱ガス処理後、Vブロッ
ク状黒鉛鋳型に1473Kで鋳込んだ。その結果、炭素
(C)を添加した場合のAl3Ti組織の微細化に及ぼ
す影響がもっとも大きかった。
[0007] In addition to high-purity aluminum (99.999%) and high-purity titanium (99.97%), zirconium (Zr), molybdenum (Mo), chromium (Cr), tantalum (Ta), boron (B), carbon ( C)
1-5 wt% Ti-1 wt% Me (additional element) was melted in an alumina crucible using a high-frequency induction melting furnace with a target composition and degassed with high-purity argon gas. Cast in. As a result, the effect of adding carbon (C) on the refinement of the Al 3 Ti structure was greatest.

【0008】そこで、上記高純度アルミニウムと高純度
チタンに高純度黒鉛(99.99%)を添加して、高周波誘
導真空溶解炉を用いて減圧アルゴンガス雰囲気でアルミ
ナるつぼ中で溶解し、炭素組成量が0.07〜1wt%
の範囲のAl-5wt%Ti-C系合金を作製し、Vブロ
ック状黒鉛鋳型に1473Kで鋳込んだ。得られた試料
は、試料底部から45mmの位置で切断し、切断面を鏡
面研磨したのち光学顕微鏡で組織観察を行なうと共に、
EPMA及びX線回折を用いて晶出相の同定を行なっ
た。また、試料合金中の炭素(C)は、燃焼赤外線吸収
法で定量した。ちなみに、試料底部から45mmの位置
の凝固速度は、20K/s〜25K/sである。
Therefore, high-purity graphite (99.99%) is added to the high-purity aluminum and high-purity titanium, and is melted in an alumina crucible under a reduced-pressure argon gas atmosphere using a high-frequency induction vacuum melting furnace to reduce the carbon composition. 0.07-1 wt%
Was prepared and cast into a V-block graphite mold at 1473K. The obtained sample was cut at a position 45 mm from the bottom of the sample, the cut surface was mirror-polished, and the structure was observed with an optical microscope.
The crystallized phase was identified using EPMA and X-ray diffraction. Further, carbon (C) in the sample alloy was quantified by a combustion infrared absorption method. Incidentally, the solidification rate at a position 45 mm from the bottom of the sample is 20 K / s to 25 K / s.

【0009】上記検証の結果、Al-5wt%Ti-C系
合金中の炭素組成量が0.4wt%以上になるとAl3
Ti組織の微細化に及ぼす影響が顕著となり、組成量の
増加に伴ってAl3Ti組織の微細化が進む傾向にあっ
た。しかし乍ら、炭素組成量が1.0wt%以上になる
と、アルミニウム炭化物(Al43)が生成されてくる
ので、炭素組成量を1.0wt%以上にすることは好ま
しくない。
As a result of the above verification, when the carbon composition in the Al-5 wt% Ti-C based alloy becomes 0.4 wt% or more, Al 3
The effect on the refinement of the Ti structure became remarkable, and the refinement of the Al 3 Ti structure tended to progress as the composition amount increased. However, when the carbon content is 1.0 wt% or more, aluminum carbide (Al 4 C 3 ) is generated, so that it is not preferable to make the carbon content 1.0 wt% or more.

【0010】図1に、Al-5wt%Ti-C系合金の凝
固組織を示す。この図1において、灰色針状に見えるの
がAl3Ti組織であり、灰色粒状に見えるのがTiC
組織である。ちなみに、図1の(a)は炭素を添加する
前(Al-5wt%Ti)の凝固組織を示し、図1の
(b)はAl-5wt%Ti-0.4wt%C合金の凝固
組織を示す。この図1からも、炭素を添加することによ
りAl3Ti組織が顕著に微細化されることが良く理解
される。
FIG. 1 shows a solidified structure of an Al-5 wt% Ti-C alloy. In FIG. 1, the gray needle-like structure is the Al 3 Ti structure, and the gray granular structure is the TiC structure.
Organization. Incidentally, FIG. 1A shows the solidification structure before adding carbon (Al-5 wt% Ti), and FIG. 1B shows the solidification structure of Al-5 wt% Ti-0.4 wt% C alloy. Show. FIG. 1 also clearly shows that the addition of carbon significantly reduces the Al 3 Ti structure.

【0011】次に、Al-Ti-C系合金において炭素組
成量が異なる鋳物の金属組織から、顕微鏡写真(図1参
照)で針状に観察されるAl3Tiの単位面積当りの個
数と長さを調べた。顕微鏡写真で針状に観察されるAl
3Tiの単位面積当りの個数と長さは、Al-Ti-C系
合金における金属組織の微細さを示す指標となる。その
結果を図2に示す。この測定結果から、炭素組成量の増
加に伴って、Al3Tiの単位面積当たりの個数は増加
するが、Al3Ti結晶の長さは短くなることが解っ
た。
Next, the number and length of Al 3 Ti per unit area, which are observed in a micrograph (see FIG. 1) in the form of needles, from the metal structures of castings having different carbon compositions in the Al—Ti—C alloy. I checked. Needle-like Al observed in a micrograph
3 The number and length per unit area of Ti is indicative of the fineness of the metal structure in the Al-Ti-C alloy. The result is shown in FIG. From this measurement result, it was found that the number of Al 3 Ti per unit area increased, but the length of the Al 3 Ti crystal became shorter as the carbon composition amount increased.

【0012】また、上記の得られた試料をEPMA及び
X線回折した結果から、Al3Tiの他にチタン炭化物
(TiC)の生成が認められた。この事から、チタン炭
化物(TiC)の生成がAl3Tiの核生成ないしは成
長に大きな影響を与えているものと推察される。
From the results of EPMA and X-ray diffraction of the obtained sample, formation of titanium carbide (TiC) in addition to Al 3 Ti was confirmed. This suggests that the formation of titanium carbide (TiC) greatly affects the nucleation or growth of Al 3 Ti.

【0013】そこで次に、Al-Ti系合金と炭素
(C)における反応生成物について検討した。Al-T
i系合金と炭素(C)における反応生成物は、温度とチ
タン組成量によって異なり、下記の表1に示した通り、
温度が高い(1273K)場合にはチタン組成量が少な
い(0.5wt%)時に,逆に温度が低い(973K)
場合にはチタン組成量が比較的多い(4.3wt%)時
にそれぞれアルミニウム炭化物(Al43)が生成され
る。また、1173K以上の温度では、チタン組成量が
2.0wt%未満ではアルミニウム炭化物(Al43
が生成され、チタン組成量が2.0wt%以上の時にチ
タン炭化物(TiC)が生成される。この中で、アルミ
ニウム炭化物(Al43)は、潮解性があり工業用材料
として不都合であるが、チタン炭化物(TiC)は有効
である。
[0013] Next, the reaction products of the Al-Ti alloy and carbon (C) were examined. Al-T
The reaction product between the i-based alloy and carbon (C) varies depending on the temperature and the titanium content, and as shown in Table 1 below,
When the temperature is high (1273K), the temperature is low (973K) when the titanium composition is small (0.5wt%).
In this case, aluminum carbide (Al 4 C 3 ) is generated when the titanium composition is relatively large (4.3 wt%). At a temperature of 1173 K or higher, aluminum carbide (Al 4 C 3 ) is used when the titanium composition is less than 2.0 wt%.
Is generated, and titanium carbide (TiC) is generated when the titanium composition amount is 2.0 wt% or more. Among them, aluminum carbide (Al 4 C 3 ) has deliquescence and is inconvenient as an industrial material, but titanium carbide (TiC) is effective.

【0014】[0014]

【表1】 Ti(wt%) 0.5 2.0 2.8 4.3 温度(K) 973 Al43 Al43 Al43 Al43 1073 Al43 Al43 Al43 Al43 1173 Al43 TiC TiC TiC 1273 Al43 TiC TiC TiC Table 1 Ti (wt%) 0.5 2.0 2.8 4.3 Temperature (K) 973 Al 4 C 3 Al 4 C 3 Al 4 C 3 Al 4 C 3 1073 Al 4 C 3 Al 4 C 3 Al 4 C 3 Al 4 C 3 1173 Al 4 C 3 TiC TiC TiC 1273 Al 4 C 3 TiC TiC TiC

【0015】ちなみに、Al-Ti系合金と炭素(C)
が反応してチタン炭化物(TiC)が生成される場合、
その重量比はチタン(Ti)1に対して炭素(C)が4
となるので、溶融したAl-Ti系合金の残チタン組成
量(wt%)は、チタン組成量(wt%)から4倍の炭
素組成量(wt%)を差し引いた値となる。他方、Al
-5wt%Ti-C系合金の検証例では、炭素組成量が
1.0wt%以上になるとアルミニウム炭化物(Al4
3)が生成され、炭素組成量が0.76wt%以下で
はチタン炭化物(TiC)が生成される。これより、4
倍の炭素組成量(wt%)を差し引いたチタン組成量
(wt%)は、炭素組成量が0.76wt%の場合には
1.96wt%となり、炭素組成量が1.0wt%の場
合には1.0wt%となるため、チタンの下限組成量を
1.6wt%とした。
By the way, Al-Ti alloy and carbon (C)
Reacts to form titanium carbide (TiC),
The weight ratio is such that carbon (C) is 4 with respect to titanium (Ti) 1.
Therefore, the residual titanium composition amount (wt%) of the molten Al—Ti alloy is a value obtained by subtracting the carbon composition amount (wt%) four times from the titanium composition amount (wt%). On the other hand, Al
In a verification example of a Ti-5C-based alloy of -5 wt%, when the carbon content becomes 1.0 wt% or more, aluminum carbide (Al 4
C 3 ) is produced, and when the carbon content is 0.76 wt% or less, titanium carbide (TiC) is produced. From this, 4
The titanium composition (wt%) obtained by subtracting twice the carbon composition (wt%) becomes 1.96 wt% when the carbon composition is 0.76 wt%, and becomes 1.096 wt% when the carbon composition is 1.0 wt%. Is 1.0 wt%, so the lower limit composition amount of titanium was 1.6 wt%.

【0016】一方、チタンの組成量が22wt%になる
と、組織全体に占めるAl3Tiの割合が約50vol
%となり、チタンの組成量が22wt%以上では凝固途
中での溶融金属の補給性が悪くなって鋳造した製品の引
け巣が大きくなるが、この鋳造性を考慮し固相線直上の
固相率が30vol%以下となりうるチタンの組成量の
上限値を13wt%未満とした。
On the other hand, when the composition amount of titanium becomes 22 wt%, the proportion of Al 3 Ti in the entire structure becomes about 50 vol.
%, The replenishing ability of the molten metal during solidification becomes worse and the shrinkage cavities of the cast product become large when the titanium content is 22 wt% or more. Is set to less than 13% by weight of the composition amount of titanium which can be 30% by volume or less.

【0017】また、Al-Ti合金において炭素を添加
する場合、実際問題としてこの合金の溶解過程で2wt
%以上の炭素(例えば黒鉛)を完全に溶解させるために
は、長時間を要するだけでなく、(アルミナ)るつぼに
溶浸が著しく進むので、炭素の上限組成量を、安全上1
時間程度の保持時間内で溶解することが可能な量、すな
わち1.5wt%とした。
In addition, when carbon is added to an Al—Ti alloy, as a practical problem, 2 wt.
% In order to completely dissolve carbon (eg, graphite), it takes not only a long time, but also infiltration into an (alumina) crucible proceeds remarkably.
An amount capable of dissolving within a holding time of about an hour, that is, 1.5 wt%.

【0018】次に、Al-5wt%Ti-C系合金におい
て炭素組成量(wt%)が異なる鋳物の引け巣をX線透
過試験により判定した。上記Vブロック状黒鉛鋳型で鋳
造した試料を底部から50mmの位置で切断し、切断面
における直径10mmの円内に存在する欠陥数をカウン
トした。測定結果を、下記の表2に示す。
Next, shrinkage cavities of castings having different carbon compositions (wt%) in the Al-5 wt% Ti-C alloy were determined by an X-ray transmission test. The sample cast with the V-block graphite mold was cut at a position 50 mm from the bottom, and the number of defects existing in a circle having a diameter of 10 mm on the cut surface was counted. The measurement results are shown in Table 2 below.

【表2】 炭素組成量(wt%) 0 0.07 0.11 0.38 0.76 欠陥数(個) 32 3 0 0 0 この測定結果から、Al-Ti-C系合金における炭素組
成量が0.07wt%以上になると、欠陥数すなわち引
け巣が著しく減少し、0.11wt%以上になると欠陥
がなくなってしまうことが理解される。この検証結果か
ら、炭素組成量の下限組成量を0.1wt%とした。
[Table 2] Carbon composition (wt%) 0 0.07 0.11 0.38 0.76 Number of defects (pieces) 32 300 0 From these measurement results, when the carbon composition in the Al-Ti-C-based alloy becomes 0.07 wt% or more. It is understood that the number of defects, that is, shrinkage cavities is remarkably reduced, and the defects disappear when the content exceeds 0.11 wt%. From this verification result, the lower limit composition amount of the carbon composition amount was set to 0.1 wt%.

【0019】以上の検証結果から、純アルミニウムに対
して、炭素組成量を0.1wt%〜1.5wt%とし、
チタン組成量をチタン組成量(wt%)から4倍の炭素
組成量(wt%)を差し引いた値が1.6wt%〜13
wt%となる範囲とした。
From the above verification results, the carbon composition was set to 0.1 wt% to 1.5 wt% with respect to pure aluminum,
The value obtained by subtracting the carbon composition (wt%) four times the titanium composition (wt%) from the titanium composition (wt%) is 1.6 wt% to 13 wt%.
wt%.

【0020】[0020]

【発明の効果】本発明の鋳造用アルミニウム合金は以上
説明したとおり、凝固過程で生成されるAl3Ti組織
が微細化・均一化されるので、鋳造した製品の引け巣を
大幅に減少させて製造歩留まりを向上させることができ
ると共に、材料欠陥が少なく品質・強度が向上し、且つ
塑性加工しても製品の割れが発生し難くくなり、加工工
数の低減化と製品歩留まりの向上を期することが出来
る。
As described above, in the aluminum alloy for casting of the present invention, since the Al 3 Ti structure generated in the solidification process is refined and homogenized, shrinkage cavities of the cast product are greatly reduced. It is possible to improve the production yield, improve the quality and strength with few material defects, and make it difficult for the product to crack even when subjected to plastic working, thereby reducing the number of processing steps and improving the product yield. I can do it.

【0021】しかも、鋳造した製品の引け巣を大幅に減
少させることが出来るので、従来のように塑性加工をほ
とんど必要としないと同時に、棒状・板状・ブロック状
或いはニアネット等、任意の形状に鋳造することが可能
となる。
Further, since shrinkage cavities of the cast product can be greatly reduced, plastic working is hardly required unlike the conventional case, and at the same time, any shape such as a bar, plate, block, or near net can be obtained. Can be cast.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)は炭素を添加する前(Al-5wt%
Ti)の凝固組織を示し、(b)はAl-5wt%Ti-
0.4wt%C合金の凝固組織を示す。
FIG. 1A shows a state before carbon is added (Al-5 wt%).
(B) shows an Al-5 wt% Ti-
1 shows a solidification structure of a 0.4 wt% C alloy.

【図2】 Al-Ti-C系合金において炭素組成量が異
なる鋳物の金属組織から、顕微鏡写真で針状に観察され
るAl3Tiの単位面積当りの個数と長さを調べた結果
を示すグラフ。
FIG. 2 shows the results of examining the number and length of Al 3 Ti per unit area observed in a micrograph from the metallographic structures of castings having different carbon compositions in an Al—Ti—C-based alloy. Graph.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 泰弘 東京都大田区京浜島2−8−9 株式会社 サンリック内 Fターム(参考) 4K029 BA23 DC04 DC08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuhiro Kato 2-8-9 Keihinjima, Ota-ku, Tokyo Sanrick Co., Ltd. F-term (reference) 4K029 BA23 DC04 DC08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 不可避的不純物を含む純アルミニウムに
対して、炭素組成量を0.1wt%〜1.5wt%と
し、チタン組成量をチタン組成量(wt%)から4倍の
炭素組成量(wt%)を差し引いた値が1.6wt%〜
13wt%となる範囲としてなる事を特徴とする鋳造用
アルミニウム合金。
1. A pure aluminum containing unavoidable impurities with a carbon composition of 0.1 wt% to 1.5 wt%, and a titanium composition of 4 times the carbon composition (wt%). wt%) is 1.6 wt% or more.
An aluminum alloy for casting, characterized by being in a range of 13 wt%.
JP24528898A 1998-08-31 1998-08-31 Aluminum alloy for casting Expired - Fee Related JP4126576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24528898A JP4126576B2 (en) 1998-08-31 1998-08-31 Aluminum alloy for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24528898A JP4126576B2 (en) 1998-08-31 1998-08-31 Aluminum alloy for casting

Publications (2)

Publication Number Publication Date
JP2000080430A true JP2000080430A (en) 2000-03-21
JP4126576B2 JP4126576B2 (en) 2008-07-30

Family

ID=17131444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24528898A Expired - Fee Related JP4126576B2 (en) 1998-08-31 1998-08-31 Aluminum alloy for casting

Country Status (1)

Country Link
JP (1) JP4126576B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018796A (en) * 2014-05-02 2015-11-04 现代自动车株式会社 High-elasticity aluminum alloy and method of manufacturing the same
CN107354330A (en) * 2017-07-13 2017-11-17 兰州理工大学 A kind of preparation method of Al Ti C intermediate alloys
CN109055792A (en) * 2018-09-21 2018-12-21 兰州理工大学 A method of preparing Al-Ti-C intermediate alloy
CN111363936A (en) * 2020-03-19 2020-07-03 兰州理工大学 Al-Ti-C-La intermediate alloy reinforced A356 composite material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018796A (en) * 2014-05-02 2015-11-04 现代自动车株式会社 High-elasticity aluminum alloy and method of manufacturing the same
KR20150126474A (en) * 2014-05-02 2015-11-12 현대자동차주식회사 High elastic aluminum alloy
KR101601413B1 (en) * 2014-05-02 2016-03-09 현대자동차주식회사 High elastic aluminum alloy
US10392681B2 (en) 2014-05-02 2019-08-27 Hyundai Motor Company High-elasticity aluminum alloy and method of manufacturing the same
US11066729B2 (en) 2014-05-02 2021-07-20 Hyundai Motor Company High-elasticity aluminum alloy and method of manufacturing the same
DE102014221432B4 (en) 2014-05-02 2022-12-29 Hyundai Motor Company Highly elastic aluminum alloy and method for its manufacture
CN107354330A (en) * 2017-07-13 2017-11-17 兰州理工大学 A kind of preparation method of Al Ti C intermediate alloys
CN109055792A (en) * 2018-09-21 2018-12-21 兰州理工大学 A method of preparing Al-Ti-C intermediate alloy
CN111363936A (en) * 2020-03-19 2020-07-03 兰州理工大学 Al-Ti-C-La intermediate alloy reinforced A356 composite material and preparation method thereof

Also Published As

Publication number Publication date
JP4126576B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4653388B2 (en) Yttrium modified amorphous alloy
JP4750353B2 (en) Tantalum amorphous alloy
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
JPH11513439A (en) Method for reducing the formation of platelet-shaped primary beta phase in iron-containing AlSi alloys, especially Al-Si-Mn-Fe alloys
JP2597770B2 (en) Niobium-chromium-containing titanium aluminide castable by boron addition
KR20120136360A (en) Aluminium-copper alloy for casting
AU6418800A (en) Semi-solid concentration processing of metallic alloys
JP3379111B2 (en) Titanium aluminide for precision casting
JPH0776399B2 (en) Niobium-containing titanium aluminide rendered castable by boron inoculation
JPH0776398B2 (en) Method for producing titanium aluminide containing niobium and boron
JP2000080430A (en) Aluminum alloy for casting
US20230203622A1 (en) Aluminum-Scandium Composite, Aluminum-Scandium Composite Sputtering Target And Methods Of Making
JPH089761B2 (en) Process for producing titanium aluminide containing chromium, niobium and boron
JPH0617210A (en) Production of aluminized titanium containing chromium, tantalum and boron
CN114457267A (en) Special high-strength aluminum alloy for SLM (Selective laser melting) and SLM forming method thereof
JP2007154284A (en) High rigidity iron based alloy
JP2012026040A (en) High-rigidity iron-based alloy
TWI838965B (en) Manufacturing method of titanium-aluminum intermetallic metal
JP3744729B2 (en) High strength solidified aluminum alloy
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility
JP3744713B2 (en) High strength solidified aluminum alloy
JP2901345B2 (en) Titanium-aluminum intermetallic compound sheet and method for producing the same
JP2762886B2 (en) Method for producing Nb-Al intermetallic compound
JP4292070B2 (en) High toughness Al alloy casting and method for producing the same
JPH07316683A (en) Blank for rolling titanium-aluminum alloy and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees