JP2000079761A - Optical information recording medium, recording method, and manufacture of optical information recording medium - Google Patents

Optical information recording medium, recording method, and manufacture of optical information recording medium

Info

Publication number
JP2000079761A
JP2000079761A JP11181249A JP18124999A JP2000079761A JP 2000079761 A JP2000079761 A JP 2000079761A JP 11181249 A JP11181249 A JP 11181249A JP 18124999 A JP18124999 A JP 18124999A JP 2000079761 A JP2000079761 A JP 2000079761A
Authority
JP
Japan
Prior art keywords
recording
layer
recording layer
recording medium
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11181249A
Other languages
Japanese (ja)
Other versions
JP3419347B2 (en
Inventor
Natsuko Nobukuni
奈津子 信國
Michikazu Horie
通和 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP18124999A priority Critical patent/JP3419347B2/en
Publication of JP2000079761A publication Critical patent/JP2000079761A/en
Application granted granted Critical
Publication of JP3419347B2 publication Critical patent/JP3419347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the initial crystallization while making the most of the phase change rewritability of an eutectic composition, and reduce a jitter as a disk property by forming a phase change type optical recording layer to be a composition represented by a specified composition formula. SOLUTION: A phase change type optical recording layer is formed to be a composition represented by the formula. In this case, in the formula, X represents at least one kind from among Ag, Au, Pd, Pt or Zn, M represents at least one kind from among Sn, Ge, Si and Pb, and 0.0<=α<=0.1, 0.5<=δ<=0.7, 0.15<=ε<=0.4, 0.03<=β+γ<=0.25, and α+β+γ+δ+ε=0.1 are satisfied. Among them, X has an effect to facilitate the initialization of an amorphous membrane right after a membrane formation. Then, by limiting the composition in such a manner, when an override is performed at most at approx. 6 times of a CD line speed, as a CD-E which has an interchangeability especially with CD, the composition can be selectively used as a composition which is excellent in overwrite durability and age-stability repeatedly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザー光照射に
よる相変化によって生じる反射率差または反射光位相差
を利用した記録消去可能な光学的情報記録用媒体及びそ
の記録方法、製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recordable and erasable optical information recording medium utilizing a reflectance difference or a reflected light phase difference caused by a phase change caused by laser light irradiation, and a recording method and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光ディスクには再生専用型、光記録可能
型、書換可能型があり、再生専用型はビデオディスク、
オーディオディスク、さらには大容量コンピューター用
ディスクメモリーとしてすでに実用化している。相変化
型の光ディスクでは相変化前後で反射率または反射光の
位相が変化することを利用するものであり、外部磁界を
必要とせず反射光量の違いを検出して再生を行う。相変
化型は光磁気型と比較すると、磁石を必要としない、光
学系が単純である等の理由によりドライブ作製が容易
で、小型化、低コスト化にも有利である。さらに、レー
ザー光のパワーを変調するだけで、記録・消去が可能で
あり、消去と再記録を単一ビームで同時に行う、1ビー
ムオーバーライトも可能であるという利点を有する。
2. Description of the Related Art Optical discs include a read-only type, an optical recordable type, and a rewritable type.
It has already been put to practical use as an audio disk, and even as a large-capacity computer disk memory. The phase change type optical disk utilizes the fact that the reflectance or the phase of the reflected light changes before and after the phase change, and does not require an external magnetic field to detect the difference in the amount of reflected light and perform reproduction. Compared to the magneto-optical type, the phase-change type is advantageous in that the drive can be easily manufactured due to the fact that a magnet is not required and the optical system is simple, and that the size and cost can be reduced. Further, there is an advantage that recording / erasing can be performed only by modulating the power of the laser beam, and one-beam overwriting, in which erasing and re-recording are performed simultaneously with a single beam, is also possible.

【0003】1ビームオーバーライト可能な相変化記録
方式では、記録膜を非晶質化させることによって記録ビ
ットを形成し、結晶化させることによって消去を行う場
合が一般的である。この場合、as−depo状態はア
モルファスである場合が一般的であるため、初期状態を
結晶状態とするためにディスク全面を短時間で結晶化す
る必要がある。この工程を初期結晶化と呼ぶ。通常この
初期結晶化は数十〜百ミクロン程度に絞ったレーザービ
ームを回転するディスクに照射することにより行なう。
In a phase change recording method capable of one-beam overwriting, it is general that a recording bit is formed by amorphizing a recording film, and erasing is performed by crystallization. In this case, since the as-depo state is generally amorphous, it is necessary to crystallize the entire surface of the disk in a short time in order to make the initial state a crystalline state. This step is called initial crystallization. Usually, this initial crystallization is performed by irradiating a rotating disk with a laser beam focused to several tens to hundreds of microns.

【0004】光ディスクの記録層材料について、従来、
共晶組成近傍の合金材料は非晶質形成能は高いものの、
結晶化の際に相分離を伴うため、100nsec未満の
短時間の加熱では結晶化できず、オーバーライト可能な
光記録媒体の記録層として不適当であると考えられてき
た。特に、GeSbTe系3元合金に注目した場合、T
85Ge15共晶組成近傍では実用的な結晶化速度は得ら
れていない。一方、Sb70Te30共晶組成近傍では、反
射率変化のみをモニタした極めて初歩的な方法であるけ
れども、Sbx Te1-x (0.58<x<0.75)2
元合金が結晶−非晶質状態間で繰り返し記録消去可能で
あることは米国特許5015548号に開示されてい
る。
Conventionally, regarding the recording layer material of an optical disc,
Alloy materials near the eutectic composition have high amorphous forming ability,
Since crystallization involves phase separation, it cannot be crystallized by heating for a short time of less than 100 nsec, and has been considered to be unsuitable as a recording layer of an overwritable optical recording medium. In particular, when attention is paid to a GeSbTe-based ternary alloy, T
e 85 Ge 15 practical crystallization rate in eutectic composition near has not been obtained. On the other hand, in the vicinity of the Sb 70 Te 30 eutectic composition, although it is an extremely rudimentary method in which only the change in reflectance is monitored, Sb x Te 1-x (0.58 <x <0.75) 2
U.S. Pat. No. 5,015,548 discloses that the original alloy can be repeatedly recorded and erased between a crystalline state and an amorphous state.

【0005】本発明者らは、単純化のためSbTeから
なる2元合金に注目し、従来の説にとらわれず共晶組成
近傍の結晶化/非晶質化特性につき、より高密度記録に
適した光ディスク評価機を用い、マーク長記録への適性
の観点から再検討を行なった。その結果、Sb70Te30
共晶組成近傍のSbTe合金を主成分とする記録層は初
期結晶化は困難であるものの、一旦初期結晶化してしま
えば以後の非晶質−結晶相変化による記録消去は極めて
高速に行なうことができることを見出した。
The present inventors have focused on a binary alloy composed of SbTe for simplicity, and are not bound by the conventional theory. Regarding the crystallization / amorphization characteristics near the eutectic composition, the present invention is more suitable for high-density recording. The optical disk evaluation machine was used to reconsider the suitability for mark length recording. As a result, Sb 70 Te 30
Although the initial crystallization of the recording layer mainly composed of the SbTe alloy in the vicinity of the eutectic composition is difficult, once the initial crystallization is performed, the subsequent recording and erasing by the amorphous-crystalline phase change can be performed at extremely high speed. I found what I could do.

【0006】本発明者らの知見によれば、このような共
晶組成近傍の材料を用いる最大の利点は、非晶質マーク
の周辺部あるいは、消去されたマーク内に初期化状態と
反射率の異なる粗大グレインが生じにくいということで
ある。これは、結晶成長が相分離によって律速されてい
る共晶点近傍の合金に特有の現象である。しかしなが
ら、このような材料は、固相での結晶化速度を高めよう
とすると、非晶質マークを形成する際の再凝固時の再結
晶速度まで極端に速くなってしまい、溶融領域の外周部
が再結晶化して非晶質マークの形成が不十分になりやす
いという問題がある。すなわち共晶点近傍では、結晶化
速度は相分離のための原子の拡散速度によって支配され
ており、拡散速度が最大となる融点直下まで加熱しない
と結晶化による高速消去ができないのである。また、現
在広く使用されているGeTe−Sb2 Te3 疑似2元
合金組成近傍の記録層にくらべて、高結晶化速度が得ら
れる温度範囲が狭く、かつ、高温に偏っている。従っ
て、高結晶化速度と十分な大きさの非晶質マークの形成
とを両立させるためには、再凝固時、融点近傍での冷却
速度をとりわけ大きくしてやる必要があった。
According to the findings of the present inventors, the greatest advantage of using such a material near the eutectic composition is that the initialized state and the reflectance in the peripheral portion of the amorphous mark or in the erased mark are considered. Are unlikely to occur. This is a phenomenon peculiar to an alloy near the eutectic point where crystal growth is controlled by phase separation. However, if such a material is used to increase the crystallization speed in the solid phase, the recrystallization speed during resolidification when forming an amorphous mark becomes extremely high, and the outer peripheral portion of the molten region is increased. However, there is a problem that the recrystallization tends to cause insufficient formation of the amorphous mark. That is, in the vicinity of the eutectic point, the crystallization speed is governed by the diffusion speed of atoms for phase separation, and high-speed erasure by crystallization cannot be performed unless the material is heated to just below the melting point where the diffusion speed is maximized. Further, as compared with the recording layer of the GeTe-Sb 2 Te 3 pseudo-binary alloy composition near that are widely used today, it is narrow temperature range higher crystallization rate is obtained, and is biased to a high temperature. Therefore, in order to achieve both a high crystallization rate and formation of a sufficiently large amorphous mark, it is necessary to particularly increase the cooling rate near the melting point during resolidification.

【0007】本発明者等はさらにこの共晶組成近傍でG
eもしくはInを添加した3元系材料につき評価したと
ころ、SbTe共晶近傍のGeSbTe系3元合金は、
特定の記録パルスパターンを用いた場合、繰り返しオー
バーライトにおいて広く知られているGeTe−Sb2
Te3 疑似2元合金近傍の材料より劣化が少ない、ある
いは、マーク長記録したときのマークエッジのジッタが
小さいという利点があることを見出した。また、結晶化
温度がSb70Te302元共晶合金より高く、経時安定性
に優れていることもわかった。しかしながら、成膜によ
ってできた非晶質膜をいったん全面結晶化し初期化する
のがSbTe共晶合金に比べても極めて困難なため、実
際上、量産には不向きであった。
[0007] The present inventors have further found that near this eutectic composition, G
When the ternary material to which e or In was added was evaluated, the GeSbTe ternary alloy in the vicinity of the SbTe eutectic was:
When a specific recording pulse pattern is used, GeTe-Sb 2 widely known in repeated overwriting is used.
It has been found that there is an advantage that the deterioration is smaller than that of the material near the Te 3 pseudo binary alloy, or the jitter of the mark edge when the mark length is recorded is small. Further, it was also found that the crystallization temperature was higher than that of the Sb 70 Te 30 binary eutectic alloy, and the stability with time was excellent. However, it is extremely difficult to once crystallize and initialize the entire surface of the amorphous film formed by the film formation as compared with the SbTe eutectic alloy, and thus it is not suitable for mass production.

【0008】これらの問題を解決するために、Sb70
30に第3元素を加えた文献としては特開平1−115
685号公報、特開平1−115686号公報、特開平
1−251342号公報、特開平1−303643号公
報等が挙げられるが、添加元素についてとりわけどれが
有効であり、また2元素以上を同時に添加し4元系以上
とすることについては開示されていない。その他、この
共晶組成を含むSbTe2元系に第3元素を添加した例
として、特開平1−100745号公報、特開平1−1
00746号公報、特開平1−100747号公報、特
開平1−100748号公報があげられる。しかし、こ
れら一連の公知文献ではSb40Te60金属化合物組成も
母体として含まれており、必ずしもSb70Te30共晶組
成に注目したものではなく、よって、Sb70Te30共晶
組成特有の問題点である初期化の困難さや、経時安定性
の不十分さを解決してより信頼性の高い実用的な媒体を
形成する方法に関して開示されていない。
In order to solve these problems, Sb 70 T
JP as documents added third element e 30 1-115
No. 685, JP-A-1-115686, JP-A-1-251342, JP-A-1-303643, etc., are particularly effective as additional elements, and two or more elements are simultaneously added. However, there is no disclosure of a quaternary system or more. Other examples of adding a third element to a SbTe binary system containing this eutectic composition are disclosed in JP-A-1-100745 and JP-A-1-1001-1.
00746, JP-A-1-100747, and JP-A-1-100748. However, in these series of known documents contains as host also Sb 40 Te 60 metal compound composition, is not necessarily focused on Sb 70 Te 30 eutectic composition, thus, Sb 70 Te 30 eutectic composition of specific issues It does not disclose a method for solving the problems of difficulty in initialization and insufficient stability with time to form a more reliable and practical medium.

【0009】SbTe共晶組成近傍の相変化媒体に関し
ては、成膜後の記録層を結晶化させる初期化操作が困難
であるために、生産性が低く実用に供されないという深
刻な問題があった。このため、初期化の容易な金属間化
合物組成近傍の材料、あるいはその疑似2元合金のみ
が、実用的な特性を示すと考えられていた。近年、Sb
70Te30共晶組成近傍にAg,Inを同時に添加するこ
とで、Inによる経時安定性の改善と、Agによる初期
化の容易化が同時に達成されることが報告されている
(特開平4−232779号公報、特開平5−1857
32号公報)。これは、特定の組み合わせの2元または
3元素を適量添加することにより、Sb70Te30共晶組
成2元材料の特性が飛躍的に改善され実用的レベルに達
しうることを示している。このような記録層のうち有用
な材料は、4または5元合金の組み合わせ及び組成をそ
れぞれ最適化する必要から、きわめて限定的な場合にだ
け明らかにされている(特開平8−267926号公報
等)。さらに未知の限定的組み合わせ及び組成があり、
一層の改善が得られることが期待されるが、その発見に
は通常の多元合金の場合と同じく、きわめて多大な労力
を必要とする。
The phase change medium in the vicinity of the SbTe eutectic composition has a serious problem that the productivity is low and it cannot be put to practical use because the initialization operation for crystallizing the recording layer after film formation is difficult. . For this reason, it has been considered that only a material near the intermetallic compound composition that is easy to initialize or a pseudo binary alloy thereof exhibits practical characteristics. In recent years, Sb
It has been reported that simultaneous addition of Ag and In to the vicinity of the eutectic composition of 70 Te 30 can simultaneously improve the stability over time due to In and facilitate the initialization by Ag (Japanese Unexamined Patent Application Publication No. Hei. JP-A-232779, JP-A-5-1857
No. 32). This indicates that by adding a suitable amount of the binary or ternary element in a specific combination, the properties of the binary material of the Sb 70 Te 30 eutectic composition can be dramatically improved and reach a practical level. Useful materials among such recording layers have been clarified only in very limited cases because of the need to optimize the combination and composition of the quaternary or quinary alloys (Japanese Patent Laid-Open No. 8-267926, etc.). ). There are also unknown limited combinations and compositions,
Further improvements are expected, but their discovery requires a great deal of effort, as with ordinary multi-element alloys.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決するためになされたもので、その目的
は、共晶組成の相変化リライタブル特性を生かしつつ、
初期結晶化(初期化)を容易にし、ディスク特性として
ジッタ低減を図ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to make use of the phase change rewritable property of the eutectic composition,
An object is to facilitate initial crystallization (initialization) and reduce jitter as disk characteristics.

【0011】[0011]

【問題点を解決するための手段】本発明者らは、従来の
知られているSbTe共晶近傍組成の内、特定の5種類
の元素を特性範囲で有するものを記録層に用いた場合
に、上記の目的が達せられることを見出し、本発明を完
成した。即ち、本発明の要旨は、基板上に相変化型光記
録層が設けられ、相変化記録層への情報の記録再生が結
晶状態と非晶状態との間の相変化によって行なわれる光
学的情報記録用媒体において、該相変化型光記録層が
Means for Solving the Problems The present inventors have found that when a composition having five specific elements in the characteristic range among the conventionally known compositions near SbTe eutectic is used for the recording layer, The inventors have found that the above objects can be achieved, and have completed the present invention. That is, the gist of the present invention is to provide an optical information in which a phase change type optical recording layer is provided on a substrate, and recording / reproducing of information on the phase change recording layer is performed by a phase change between a crystalline state and an amorphous state. In the recording medium, the phase change type optical recording layer

【0012】[0012]

【化3】 Embedded image

【0013】(ただし、XはAg、Au、Pd、Ptも
しくはZnのうちの少なくとも一種、MはSn,Ge,
Si,Pbのうちの少なくとも一種、0.0≦α≦0.
1、0.001≦β≦0.1、0.01≦χ≦0.1
5、0.5≦δ≦0.7、0.15≦ε≦0.4、0.
03≦β+χ≦0.25、α+β+χ+δ+ε=1.
0)なる組成を有することを特徴とする光学的情報記録
用媒体にある。
(Where X is at least one of Ag, Au, Pd, Pt or Zn, M is Sn, Ge,
At least one of Si and Pb, 0.0 ≦ α ≦ 0.
1, 0.001 ≦ β ≦ 0.1, 0.01 ≦ χ ≦ 0.1
5, 0.5 ≦ δ ≦ 0.7, 0.15 ≦ ε ≦ 0.4, 0.
03 ≦ β + χ ≦ 0.25, α + β + χ + δ + ε = 1.
0) An optical information recording medium characterized by having the following composition:

【0014】[0014]

【発明の実施の形態】本発明におけるディスクの層構成
は、例えば図1に模式的に示すように、基板1上に少な
くとも下部保護層2、相変化型記録層3、上部保護層
4、反射層5を設けてなる。保護層2及び4、記録層
3、反射層5はスパッタリング法などによって形成され
る。記録膜用ターゲット、保護膜用ターゲット、必要な
場合には反射層材料用ターゲットを同一真空チャンバー
内に設置したインライン装置で膜形成を行なうことが各
層間の酸化や汚染を防ぐ点で望ましい。また、生産性の
面からもすぐれている。また、反射層5の上および基板
1の下に、紫外線硬化樹脂からなる保護コートが設けら
れても良い。また、上記層構成以外に相変化記録層3の
上下等に拡散防止層等を設けてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The layer structure of a disc according to the present invention is, as schematically shown in FIG. 1, for example, on a substrate 1, at least a lower protective layer 2, a phase-change recording layer 3, an upper protective layer 4, a reflective A layer 5 is provided. The protective layers 2 and 4, the recording layer 3, and the reflective layer 5 are formed by a sputtering method or the like. It is desirable to form a film using an in-line apparatus in which a target for a recording film, a target for a protective film, and if necessary, a target for a reflective layer material are installed in the same vacuum chamber, from the viewpoint of preventing oxidation and contamination between layers. It is also excellent in productivity. Further, a protective coat made of an ultraviolet curable resin may be provided on the reflective layer 5 and below the substrate 1. Further, in addition to the above-described layer structure, a diffusion preventing layer or the like may be provided above or below the phase change recording layer 3.

【0015】本発明で使用する記録層は、XGaMSb
Te合金薄膜(XはAg、Au、Pd、PtもしくはZ
nのうちの少なくとも一種、MはSn,Ge,Si,P
bのうちの少なくとも一種)であり、SbTe2元合金
系におけるSb70Te30共晶点組成近傍をベースにG
a及びSi,Sn,Ge及びPbのうち少なくとも一
種を特定量添加した点がポイントである。好ましくは
Ag、Au、Pd、Pt及びZnのうちの少なくとも一
種を特定量添加する。
The recording layer used in the present invention is made of XGaMSb.
Te alloy thin film (X is Ag, Au, Pd, Pt or Z
at least one of n, M is Sn, Ge, Si, P
b), and based on the vicinity of the Sb 70 Te 30 eutectic point composition in the SbTe binary alloy system,
The point is that at least one of a, Si, Sn, Ge, and Pb is added in a specific amount. Preferably, a specific amount of at least one of Ag, Au, Pd, Pt and Zn is added.

【0016】本発明の記録媒体では、Sb70Te30比を
一定に示した線上では基本的にSb相とSb2 Te3
が相分離することを逆に利用していると考えられる。即
ち、光記録媒体において非晶質マークを形成するような
非平衡な過冷却状態では、過剰のSbが含まれると再凝
固時にまず微小Sbクラスタが析出する。このSbクラ
スタが結晶核となって非晶質マーク中に残存するため、
以後の非晶質膜の消去(再結晶化)は相分離に時間をか
けることなく短時間で終了するものと考えられる。
It is considered that the recording medium of the present invention basically utilizes the fact that the Sb phase and the Sb 2 Te 3 phase are phase-separated on a line showing a constant Sb 70 Te 30 ratio. That is, in a non-equilibrium supercooled state in which an amorphous mark is formed in an optical recording medium, if excessive Sb is contained, fine Sb clusters first precipitate during resolidification. Since this Sb cluster becomes a crystal nucleus and remains in the amorphous mark,
Subsequent erasing (recrystallization) of the amorphous film is considered to be completed in a short time without taking time for phase separation.

【0017】本発明の記録媒体の記録特性すなわち非晶
質および結晶化の可逆的プロセスは、ほとんどSb/T
e比、すなわち母体となるSb70Te30共晶組成に含ま
れる過剰Sb量で決まる。Sbが多くなれば急冷状態で
析出するSbクラスタサイトが増え、結晶核生成が促進
されると考えられる。これは、各結晶核から同一結晶成
長速度を仮定しても、成長した結晶粒で埋め尽くされる
に要する時間が短縮され、結果として非晶質マークを結
晶化するに要する時間が短縮されることを意味する。従
って、高線速度で短時間のレーザー光照射で消去する場
合に有利である。一方、記録層の冷却速度は記録時の線
速度にも依存する。すなわち、同一層構成であっても低
い線速度ほど冷却速度は低下する。従って、低い線速度
ほど非晶質形成のための臨界冷却速度が小さい組成、す
なわち過剰Sb量の少ない組成が望ましい。まとめると
Sb70Te30共晶組成を基準として、過剰Sb量が多い
組成ほど高線速度に適している。
The recording characteristics of the recording medium of the present invention, that is, the reversible process of amorphous and crystallization is almost Sb / T
It is determined by the e ratio, that is, the amount of excess Sb contained in the eutectic Sb 70 Te 30 eutectic composition. It is considered that when the amount of Sb increases, the number of Sb cluster sites precipitated in a quenched state increases, and the generation of crystal nuclei is promoted. This means that even if the same crystal growth rate is assumed from each crystal nucleus, the time required for filling the grown crystal grains is reduced, and as a result, the time required for crystallization of the amorphous mark is reduced. Means Therefore, it is advantageous when erasing by laser light irradiation at a high linear velocity for a short time. On the other hand, the cooling rate of the recording layer also depends on the linear velocity during recording. That is, even with the same layer configuration, the cooling rate decreases as the linear velocity decreases. Therefore, a composition having a lower critical cooling rate for forming an amorphous phase at a lower linear velocity, that is, a composition having a smaller excess Sb amount is desirable. In summary, based on the Sb 70 Te 30 eutectic composition, a composition having a large excess Sb content is more suitable for a high linear velocity.

【0018】本発明記録層に含まれる各元素の組成は次
の範囲である。すなわち、組成
The composition of each element contained in the recording layer of the present invention is in the following range. That is, the composition

【0019】[0019]

【化4】 Embedded image

【0020】において、αの下限値は0.0、上限値は
0.1、好ましくは0.01以上とするが最も好ましく
は0.06である。またβの下限値は0.001、上限
値は0.1、好ましくは0.03である。χの下限値は
0.01であり、上限値は0.15、好ましくは0.1
0である。δの下限値は0.5、好ましくは0.55で
あり、上限値は0.7、好ましくは0.65である。ε
の下限値は0.15であり、上限値は0.4である。ま
たβ+χとしては、下限値としては0.03であり、上
限値としては0.25、好ましくは0.13である。な
お、上記組成においてα+β+χ+δ+ε=1.0であ
る。要するに、これらの数値は金属の成分比率を示すも
のであり、X又はMについては2種以上の場合もある
が、この場合は合計量をベースとする。本発明者らの検
討によれば、上記のように組成を限定することにより、
特にCDと互換性のあるCD−Eとして高々CD線速の
6倍速程度(7.2〜8.4m/s)でオーバーライト
する場合に、繰り返しオーバーライト耐久性と経時安定
性にすぐれた組成として選択的に用いることができる。
In the formula, the lower limit of α is 0.0 and the upper limit is 0.1, preferably 0.01 or more, and most preferably 0.06. The lower limit of β is 0.001, and the upper limit is 0.1, preferably 0.03. The lower limit of χ is 0.01, and the upper limit is 0.15, preferably 0.1
0. The lower limit of δ is 0.5, preferably 0.55, and the upper limit is 0.7, preferably 0.65. ε
Has a lower limit of 0.15 and an upper limit of 0.4. Β + χ is 0.03 as a lower limit and 0.25, preferably 0.13 as an upper limit. In the above composition, α + β + χ + δ + ε = 1.0. In short, these numerical values indicate the component ratio of the metal, and X or M may be two or more types, but in this case, the total amount is used as a basis. According to the study of the present inventors, by limiting the composition as described above,
Particularly, when the CD-E compatible with a CD is overwritten at most about 6 times the linear velocity of the CD (7.2 to 8.4 m / s), the composition is excellent in repeated overwriting durability and stability over time. Can be used selectively.

【0021】上記組成において、GaとM(Sn,G
e,Si,Pbのうちの少なくとも1種)は結晶化温度
を高め、経時安定性を高める効果を有する。Mのみを添
加した場合には、経時安定性を得るためにはおよそ3原
子%以上が必要であるが、15原子%を越えると経時安
定性の改善と引き替えに、急激に初期結晶化が困難にな
るという問題点がある。一方、Gaを単独で添加した場
合、室温での保存安定性および初期化作業を容易にする
ためには3原子%は必要であるが、10原子%をこえて
含まれると相分離が生じ易く、繰り返しオーバーライト
により偏析が起きるため好ましくない。一方繰り返しオ
ーバーライト耐久性を10000回以上保証するために
は上記Ga添加量を3原子%未満に減らす必要がある
が、一方で非晶質マークの経時安定性および初期化作業
を容易化させるためには不十分である。そこで本発明で
は、Ga及びMを同時に少量添加することにより、初期
化操作を困難にすることなく、また、繰り返しオーバー
ライトによる偏析を招くことなく、非晶質状態の熱的安
定性を改善し、非晶質の記録ビットを経時安定性を高め
る。すなわち、MとGaの合計の添加量については、3
原子%以上25原子%以下である。3原子%未満では経
時安定性の改善効果が不十分であり、25原子%をこえ
るとMもしくはGa量がどのような割合で添加されよう
とも、繰り返しオーバーライトによる偏析や初期化の困
難さを招く。また、GaもしくはM含有量が単独でそれ
ぞれ10原子%もしくは15原子%をこえると上記のよ
うな問題が生じやすいので好ましくない。Mの中ではG
eは結晶化速度の低下を招きにくく、5%以下の少量添
加でも結晶化温度を高め、熱的安定性を改善するのに効
果があり、偏析も生じにくいので、特に好ましい。
In the above composition, Ga and M (Sn, G
e, Si, and Pb) have the effect of increasing the crystallization temperature and increasing the stability over time. When only M is added, about 3 atomic% or more is necessary in order to obtain temporal stability, but if it exceeds 15 atomic%, initial crystallization is rapidly difficult in exchange for improvement of temporal stability. There is a problem that becomes. On the other hand, when Ga is added alone, 3 atomic% is necessary for preserving the storage stability at room temperature and facilitating the initialization operation, but if it exceeds 10 atomic%, phase separation is likely to occur. However, it is not preferable because segregation occurs due to repeated overwriting. On the other hand, in order to guarantee the repetitive overwrite durability of 10,000 times or more, it is necessary to reduce the above-mentioned Ga addition amount to less than 3 atomic%. On the other hand, in order to make the aging stability of the amorphous mark and the initialization work easy. Is not enough. Therefore, in the present invention, by adding a small amount of Ga and M at the same time, it is possible to improve the thermal stability of the amorphous state without making the initialization operation difficult and without causing segregation due to repeated overwriting. In addition, the stability of the amorphous recording bit with time is improved. That is, the total amount of addition of M and Ga is 3
It is at least 25 atomic%. If it is less than 3 atomic%, the effect of improving the stability over time is insufficient, and if it exceeds 25 atomic%, segregation due to repetitive overwriting and difficulty in initialization are caused no matter what ratio of M or Ga content is added. Invite. On the other hand, if the content of Ga or M alone exceeds 10 atomic% or 15 atomic%, respectively, it is not preferable because the above-mentioned problem easily occurs. G in M
e is particularly preferable because addition of a small amount of 5% or less is effective in raising the crystallization temperature and improving thermal stability and hardly causing segregation.

【0022】X(Ag、Au、Pd、Pt、Zn)は成
膜直後の非晶質膜の初期化を容易にする効果がある。初
期化方法にもよるが10原子%未満の添加で十分であ
り、多すぎるとかえって経時安定性を損ねたり、記録マ
ーク端のジッタが悪化したりすることがある。また少な
すぎても効果が十分でない傾向にある。元素Xの添加に
より初期化が容易になるメカニズムは必ずしも明らかで
はないが、Sbクラスタと併せて微細なZnSb相やA
gSb相などのXSb相が析出し結晶核として働くため
と考えられる。中でも、Zn及びAgは結晶化が容易と
なり、かつジッタの悪化も少なく、好ましい。特にAg
はジッタが悪化せず、好ましい。SbTe共晶にX=A
g、Au、Pd、Pt、Zn、さらにM=Si,Sn,
Ge,PbおよびGaを添加することにより、非晶質マ
ークの経時安定性を維持しつつ、初期化操作における結
晶化時間が短縮される。X,M,及びGaの添加によ
り、母体となるSbTeが共晶となるのはSb60Te40
からSb65Te35程度にずれるようである。従って、本
発明で使用する。
X (Ag, Au, Pd, Pt, Zn) has an effect of facilitating initialization of an amorphous film immediately after film formation. Depending on the initialization method, the addition of less than 10 atomic% is sufficient, and if it is too much, the stability over time may be rather deteriorated, or the jitter at the end of the recording mark may be worsened. Also, if the amount is too small, the effect tends to be insufficient. Although the mechanism by which the addition of the element X facilitates the initialization is not necessarily clear, the fine ZnSb phase and the A
It is considered that an XSb phase such as a gSb phase precipitates and functions as a crystal nucleus. Above all, Zn and Ag are preferable because they can be easily crystallized and the jitter is hardly deteriorated. Especially Ag
Is preferable because jitter does not deteriorate. X = A for SbTe eutectic
g, Au, Pd, Pt, Zn, and M = Si, Sn,
By adding Ge, Pb and Ga, the crystallization time in the initialization operation is shortened while maintaining the stability of the amorphous mark with time. By adding X, M, and Ga, the base SbTe becomes eutectic because of Sb 60 Te 40
From seem shifted about Sb 65 Te 35. Therefore, it is used in the present invention.

【0023】[0023]

【化5】 Embedded image

【0024】合金全体としての線速依存性は上記のよう
にこの組成をベースに過剰のSbをどれだけ含むかによ
って決まる。高線速に対応させるには、前述のように過
剰なSb量を増やせばよいが、あまり増やすと非晶質ビ
ットの安定性が損なわれるので、0.5≦δ≦0.7で
あることが好ましい。より好ましくは、0.55≦δ≦
0.65である。
The linear velocity dependency of the alloy as a whole depends on the amount of excess Sb based on this composition as described above. To cope with a high linear velocity, it is sufficient to increase the excess Sb amount as described above, but if too much, the stability of the amorphous bit is impaired, so that 0.5 ≦ δ ≦ 0.7 Is preferred. More preferably, 0.55 ≦ δ ≦
0.65.

【0025】なお、記録層は上記の5種の元素以外の元
素を含んでいてもよい。また、記録層の膜厚は通常5−
40nm、好ましくは15−30nmである。本発明に
おける記録媒体の基板としては、ガラス、プラスチッ
ク、ガラス上に光硬化性樹脂を設けたもの等のいずれで
あってもよいが、成型の容易さからプラスチックが好ま
しく、特にコストを含む生産性の面でポリカーボネート
樹脂が好ましい。記録層の上下に用いることができる保
護層の材料は、屈折率、熱伝導率、化学的安定性、機械
的強度、密着性等に留意して決定される。一般的には透
明性が高く高融点である誘電体であり、特にMg,C
a,Sr,Y,La,Ce,Ho,Er,Yb,Ti,
Zr,Hf,V,Nb,Ta,Zn,Al,Si,G
e,Pb等の酸化物、硫化物、窒化物、炭化物やCa,
Mg,Li等のフッ化物を用いることができる。これら
の酸化物、硫化物、窒化物、炭化物、フッ化物は必ずし
も化学量論的組成をとる必要はなく、屈折率等の制御の
ために組成を制御したり、混合して用いることも有効で
ある。繰り返し記録特性を考慮すると誘電体の混合物が
よい。より具体的にはZnSや希土類硫化物と酸化物、
窒化物、炭化物等の耐熱化合物の混合物が挙げられる。
記録層と基板との間に設けられた下部保護層は、特にプ
ラスチック基板の熱変形を抑える機能も求められるの
で、その膜厚は通常50nm以上であるが、あまり厚い
と内部応力によりクラックが生じ易くなるので好ましく
は50−500nmである。通常はこの範囲から、光干
渉効果を考慮して反射率や、記録前後の反射率差、位相
差が適当な値になるように選ばれる。記録層と反射層と
の間に設けられる上部保護層も同様の材料が使用される
が、その膜厚範囲は通常10以上50nm以下である。
その最大の理由は、反射層への放熱を有効に作用させる
ためである。放熱を促進し、記録層再凝固時の冷却速度
を高める層構成を採用することで、再結晶化の問題を回
避しつつ、高速結晶化による高消去比を実現する。上部
保護層の膜厚が大きすぎると、記録層の熱が反射層に到
達する時間が長くなり、反射層による放熱効果が有効に
作用しないことがある。すなわち、反射層は熱を汲みだ
すポンプであり、上部保護層はポンプへ熱流を伝える配
管であると見なせる。保護層が厚いということは配管が
長いということであり、いくらポンプの性能が高くても
(即ち反射層の熱伝導が大きくても)有効に作用しな
い。配管の流量は配管の太さ、つまり上部保護層の熱伝
導率にも作用されるが、一般に100nm未満の薄膜の
熱伝導率はバルクの熱伝導率より2−3桁以上小さく大
差はないから、厚さが重要な因子となる。一方、上部保
護層が薄すぎると、記録層の溶融時の変形等によって破
壊されやすく好ましくないことがある。また、放熱効果
が大きすぎて記録に要するパワーが不必要に大きくなる
傾向にある。
The recording layer may contain an element other than the above five elements. The thickness of the recording layer is usually 5-
It is 40 nm, preferably 15-30 nm. The substrate of the recording medium in the present invention may be any one of glass, plastic, and a substrate provided with a photocurable resin on glass. However, plastic is preferable because of ease of molding, and particularly, productivity including cost. In view of the above, a polycarbonate resin is preferable. The material of the protective layer that can be used above and below the recording layer is determined in consideration of the refractive index, thermal conductivity, chemical stability, mechanical strength, adhesion, and the like. Generally, it is a dielectric material having high transparency and a high melting point.
a, Sr, Y, La, Ce, Ho, Er, Yb, Ti,
Zr, Hf, V, Nb, Ta, Zn, Al, Si, G
e, oxides such as Pb, sulfides, nitrides, carbides and Ca,
Fluorides such as Mg and Li can be used. These oxides, sulfides, nitrides, carbides and fluorides do not necessarily have to have a stoichiometric composition, and it is effective to control the composition for controlling the refractive index and the like, or to use a mixture thereof. is there. Considering the repetitive recording characteristics, a mixture of dielectrics is preferred. More specifically, ZnS or rare earth sulfide and oxide,
Mixtures of heat-resistant compounds such as nitrides and carbides may be used.
The lower protective layer provided between the recording layer and the substrate is also required to have a function of suppressing the thermal deformation of the plastic substrate in particular. Therefore, the film thickness is usually 50 nm or more. Preferably, the thickness is 50 to 500 nm because it becomes easy. Usually, from this range, the reflectance, the reflectance difference before and after recording, and the phase difference are selected in consideration of the optical interference effect so as to have appropriate values. The same material is used for the upper protective layer provided between the recording layer and the reflective layer, and the thickness range is usually 10 to 50 nm.
The greatest reason is that heat radiation to the reflective layer is effectively applied. By adopting a layer configuration that promotes heat radiation and increases the cooling rate during resolidification of the recording layer, a high erasing ratio can be realized by high-speed crystallization while avoiding the problem of recrystallization. If the thickness of the upper protective layer is too large, the time for the heat of the recording layer to reach the reflective layer becomes longer, and the heat radiation effect by the reflective layer may not work effectively. That is, it can be considered that the reflection layer is a pump for drawing out heat, and the upper protective layer is a pipe for transmitting a heat flow to the pump. The thick protective layer means that the piping is long, and no matter how high the performance of the pump (that is, even if the heat conduction of the reflective layer is large), it does not work effectively. The flow rate of the pipe is also affected by the thickness of the pipe, that is, the thermal conductivity of the upper protective layer. However, since the thermal conductivity of a thin film having a thickness of less than 100 nm is generally two to three orders of magnitude smaller than the bulk thermal conductivity, there is no significant difference. , Thickness is an important factor. On the other hand, if the upper protective layer is too thin, the recording layer may be undesirably broken easily due to deformation or the like during melting. In addition, the heat dissipation effect is so large that the power required for recording tends to be unnecessarily large.

【0026】反射層の材質としては反射率の大きい物質
が好ましく、通常はAu、Ag、Al等の金属である。
特に熱伝導率が大きく上部誘電体層を介しても放熱効果
が大きいAu、Ag及びAlからなる群から選ばれる少
なくとも一種を90原子%以上含む金属が好ましい。反
射層自体の熱伝導度制御、耐腐蝕性改善のためTa、T
i、Cr、Mo、Mg、V、Nb、Zr等を少量加えて
もよい。特にAlx Ta1-x (0.9<x<1)なる合
金は、耐腐蝕性に優れており媒体の信頼性を向上させる
上で効果である。反射層の膜厚としては、透過光がなく
完全に入射光を反射させるために50nm以上が望まし
い。また、膜厚が大きすぎると、放熱効果に変化はなく
いたずらに生産性を悪くし、また、クラックが発生しや
すくなるので500nm以下とするのが望ましい。上部
保護層の膜厚が40以上50nm以下の場合には特に、
反射層を高熱伝導率にするため、含まれる不純物量を2
原子%未満とするのが好ましい。
As the material of the reflection layer, a substance having a high reflectance is preferable, and is usually a metal such as Au, Ag, or Al.
In particular, a metal containing 90 at% or more of at least one selected from the group consisting of Au, Ag, and Al which has a large thermal conductivity and a large heat dissipation effect even through the upper dielectric layer is preferable. Ta, T for controlling the thermal conductivity of the reflective layer itself and improving the corrosion resistance
A small amount of i, Cr, Mo, Mg, V, Nb, Zr, etc. may be added. In particular, an alloy of Al x Ta 1-x (0.9 <x <1) has excellent corrosion resistance and is effective in improving the reliability of the medium. The thickness of the reflective layer is preferably 50 nm or more in order to completely reflect incident light without transmitted light. On the other hand, if the film thickness is too large, there is no change in the heat radiation effect and the productivity is unnecessarily deteriorated, and cracks are easily generated. Particularly when the thickness of the upper protective layer is 40 to 50 nm,
In order to increase the thermal conductivity of the reflective layer, the amount of impurities contained should be 2
It is preferred to be less than atomic%.

【0027】上記のような放熱を促進させる層構成は、
相変化媒体では「急冷構造」と呼ばれ、それ自体は公知
である(特開平2−56746号公報、Jpn.J.A
ppl.Phys.,Vol.28(1989),su
ppl.28−3,123ページ)。記録方法として
は、本発明の相変化媒体はこれまでGeTe−Sb2
3 疑似2元合金系で用いられてきた記録パワーPwと
消去パワーPeの2値で変調する場合よりも、オフパル
ス区間を設けることが望ましい。
The layer structure for promoting heat radiation as described above is as follows.
The phase change medium is called a “quenched structure” and is known per se (JP-A-2-56746, Jpn.JA).
ppl. Phys. , Vol. 28 (1989), su
ppl. 28-3, page 123). As a recording method, the phase change medium of the present invention has been GeTe-Sb 2 T
than when modulated by two values of recording power Pw and the erasing power Pe, which has been used in e 3 pseudo binary alloy system, it is desirable to provide a off pulse section.

【0028】2値変調のオーバーライトも可能ではある
が、本発明においては図2に示すようなオフパルス区間
を設けた3値変調方式を用いることで、パワーマージ
ン、記録時線速マージンを広げることができる。具体的
には、本発明では、上記のような媒体に、さらに以下の
記録方法を合わせ用い、記録層の再凝固時の冷却速度を
正確に制御することで、マーク長記録に適した本発明記
録層材料の特徴をさらに遺憾なく発揮させることができ
る。 さらに遺憾なく発揮させることが可能となる。図
2に光記録時のレーザーパワーの照射パターンの好まし
い例を示す。
Although overwriting of binary modulation is possible, in the present invention, a power margin and a linear velocity margin during recording can be increased by using a ternary modulation method having an off-pulse section as shown in FIG. Can be. Specifically, in the present invention, by using the above-described medium in combination with the following recording method, and accurately controlling the cooling rate during resolidification of the recording layer, the present invention is suitable for mark length recording. The characteristics of the recording layer material can be more fully exhibited. It will be possible to show it even more without regret. FIG. 2 shows a preferred example of a laser power irradiation pattern during optical recording.

【0029】長さnT(Tは基準クロック周期、nは自
然数)のマークを形成する際には、時間nTを、以下の
ようにn−k個にパルス分割し、
When forming a mark having a length nT (T is a reference clock cycle, n is a natural number), the time nT is divided into nk pulses as follows.

【0030】[0030]

【化6】 α1 T、β1 T、α2 T、β2 T、・・・、αm T、βm T、Embedded image α 1 T, β 1 T, α 2 T, β 2 T,..., Α m T, β m T,

【0031】(但し、n−j=α1 +β1 ・・・αm
βm (0≦j≦2)、m=n−k(k=0,1,2)か
つnmin −k≧1) α1 T(1≦i≦m)なる時間に記録層を溶融させるに
足る記録パワーPw(>Pe)を照射し、β1 T(1≦
i≦m)なる時間には、0<Pb≦0.5Pe(ただ
し、βm Tにおいては、0<Pb≦Peとなりうる)な
るバイアスパワーPbを照射してオーバーライトする。
(However, n−j = α 1 + β 1 ... Α m +
β m (0 ≦ j ≦ 2), m = nk (k = 0, 1, 2) and n min −k ≧ 1) Melting the recording layer at the time of α 1 T (1 ≦ i ≦ m) And sufficient recording power Pw (> Pe), and β 1 T (1 ≦
At the time of i ≦ m), bias power Pb of 0 <Pb ≦ 0.5 Pe (however, at β m T, 0 <Pb ≦ Pe) is applied to perform overwriting.

【0032】図3に(a)Pb=Peとした場合と、
(b)Pb=0(極端な場合)とした場合の記録層の温
度変化を模式的に示した。3個に分割された分割パルス
の、1番目のパルスP1と2番目のパルスP2が照射さ
れる間の位置を想定している。図3(a)では後続の記
録パルスによる加熱の影響が前方に及ぶために、1番目
の記録パルス照射後の冷却速度が遅く、かつオフパルス
区間でもPeが照射されるため、オフパルス区間での温
度降下で到達する最低温度TLが融点近傍に留まってい
る。一方、図3(b)では、オフパルス区間のPbがほ
とんど0のため、TLは融点から十分下がった点まで下
がり、かつ、途中の冷却速度も大きい。非晶質マークは
1番目のパルス照射時に溶解し、その後のオフパルス時
の急冷によって形成される。
FIG. 3A shows a case where Pb = Pe,
(B) The temperature change of the recording layer when Pb = 0 (extreme case) is schematically shown. The position between the first pulse P1 and the second pulse P2 of the three divided pulses is assumed. In FIG. 3A, the influence of heating by the subsequent recording pulse extends forward, so that the cooling rate after the first recording pulse irradiation is slow, and Pe is irradiated even in the off pulse section, so that the temperature in the off pulse section is low. The lowest temperature TL reached by the drop remains near the melting point. On the other hand, in FIG. 3B, since Pb in the off-pulse section is almost 0, the TL drops to a point sufficiently lower than the melting point, and the cooling rate in the middle is high. The amorphous mark is melted during the first pulse irradiation, and is formed by rapid cooling during the subsequent off-pulse.

【0033】前述のように、本発明の相変化記録層のよ
うなSbTe共晶近傍の組成には融点近傍でのみ大きな
結晶化速度を示すと考えられる。従って、図3(a)に
示す温度プロファイルをとることは、再結晶化を抑制
し、良好な非晶質マークを得る上で重要なことである。
逆に、冷却速度及びTL を制御することで再結晶化をほ
ぼ完全に抑制し、溶融領域とほぼ一致するクリアな輪郭
を有する非晶質マークが得られるためマーク端において
低ジッタが得られる。一方、従来のGeTe−Sb2
3 疑似2元系合金では、図3(a),(b)いずれの
温度プロファイルでも非晶質マーク形成プロセスに大差
がない。なぜなら、広い温度範囲で速度は若干遅いもの
の再結晶化を示すからである。この場合、パルス分割方
法によらずある程度の再結晶化が生じ、これが非晶質マ
ーク周辺の粗大グレインとなってマーク端でのジッタを
悪化させる傾向がある。この記録層組成では、オフパル
スは必須ではなく、むしろ従来の2値変調によるオーバ
ーライトが単純で望ましい。すなわち、このような3値
変調方式は本発明の媒体に対して特有の効果を生じるの
である。
As described above, it is considered that a composition near the SbTe eutectic, such as the phase change recording layer of the present invention, shows a large crystallization rate only near the melting point. Therefore, taking the temperature profile shown in FIG. 3A is important for suppressing recrystallization and obtaining a good amorphous mark.
Conversely, by controlling the cooling rate and T L , recrystallization is almost completely suppressed, and an amorphous mark having a clear contour substantially matching the molten region is obtained, so that low jitter is obtained at the mark edge. . On the other hand, the conventional GeTe-Sb 2 T
In the case of the e 3 pseudo binary alloy, there is no significant difference in the amorphous mark forming process in any of the temperature profiles of FIGS. 3 (a) and 3 (b). The reason for this is that although the rate is slightly slower over a wide temperature range, recrystallization occurs. In this case, a certain degree of recrystallization occurs regardless of the pulse division method, which tends to result in coarse grains around the amorphous mark and deteriorate the jitter at the mark end. In this composition of the recording layer, the off-pulse is not indispensable, but rather the overwriting by the conventional binary modulation is simple and desirable. That is, such a ternary modulation method produces a specific effect on the medium of the present invention.

【0034】SbTe共晶を用いた記録層を結晶化温度
以上で固相にて結晶化させる初期結晶化では、結晶化が
遅く生産性が良くないことは既に述べた。これは、成膜
直後の非晶質状態から、いったん相分離させ安定な結晶
状態を形成する必要があるためと考えられる。通常この
相分離には固相(融点以下)では1μ秒以上の加熱が必
要である。例えば記録層としてGe2 Sb2 Te5 を用
いた場合に成膜後(as−depositedあるいは
as−depo.状態)のディスクを十分高速に結晶化
できる条件で、Ge10Sb66Te24等の記録層のディス
クの初期結晶化を試みると多くの部分が結晶化しないま
まアモルファス状態として残ってしまう。しかしなが
ら、本発明者らの知見によれば、いったん初期化してし
まえば、以後は高速で結晶化(消去)できるようにな
る。as−depo.状態の膜が、結晶化しにくい原因
の一つはas−depoのアモルファスの状態が記録マ
ークのアモルファスの状態と異なり結晶化しにくいため
と考えられる。また、結晶核がas−depo状態の記
録層にはほとんどないことが結晶化しにくい原因となっ
ていることが考えられる。実際、光学顕微鏡で初期結晶
化を試みた部分の観察をすると、結晶化のすすんだ部分
が高反射率の島状に観察される。これは結晶核のできた
部分でのみ結晶化がすすんでいるとすれば理解できる。
It has already been mentioned that the initial crystallization in which the recording layer using SbTe eutectic is crystallized in a solid phase at a temperature higher than the crystallization temperature is slow in crystallization and poor in productivity. This is considered to be because it is necessary to once separate phases from the amorphous state immediately after the film formation to form a stable crystalline state. Normally, this phase separation requires heating for 1 μsec or more in the solid phase (below the melting point). For example, when Ge 2 Sb 2 Te 5 is used as a recording layer, recording of Ge 10 Sb 66 Te 24 or the like is performed under a condition that a disk after film formation (as-deposited or as-deposited) can be crystallized at a sufficiently high speed. When the initial crystallization of the disk of the layer is attempted, many parts remain in an amorphous state without being crystallized. However, according to the knowledge of the present inventors, once initialized, crystallization (erasing) can be performed at a high speed thereafter. as-depo. One of the reasons that the film in the state is difficult to crystallize is considered to be that the as-depo amorphous state is unlikely to be crystallized unlike the amorphous state of the recording mark. Further, it is considered that the fact that crystal nuclei hardly exist in the recording layer in the as-depo state is a cause of difficulty in crystallization. In fact, when observing the portion where the initial crystallization was attempted with an optical microscope, the advanced portion of the crystallization is observed in the form of an island having a high reflectance. This can be understood from the fact that crystallization has progressed only in the portion where the crystal nuclei are formed.

【0035】しかしながら、本発明においては、特定組
成の記録層を用いることにより上記の問題を解決でき
る。さらに、初期化に要する時間を短縮し、確実に1回
の光ビームの照射で初期化するための方法として、本発
明では溶融初期化が有効である。例えば、直径10〜数
百μm程度に集束した光ビーム(ガスもしくは半導体レ
ーザー光)あるいは長軸50〜数百μm短軸1〜10μ
m程度の楕円状に集光した光ビームを用いて局所的に加
熱し、ビーム中心部に限定して溶融させる。その結果、
記録媒体が破壊されるおそれがない一方で、加えて、ビ
ーム周辺部の加熱により、溶融部が余熱されるため冷却
速度が遅くなり、良好な再結晶化が行われる。溶融初期
化自体は公知の方法であるが、本発明にとっては特に有
効である。この方法を用いれば、例えば、従来の固相結
晶化に対して10分の1に初期化時間を短縮でき、生産
性が大幅に短縮できるとともに、オーバーライト後の消
去時に結晶性の変化を防止できる。
However, in the present invention, the above problem can be solved by using a recording layer having a specific composition. Further, in the present invention, melting initialization is effective as a method for shortening the time required for initialization and surely performing initialization by one light beam irradiation. For example, a light beam (gas or semiconductor laser light) focused to a diameter of about 10 to several hundred μm or a long axis of 50 to several hundred μm and a short axis of 1 to 10 μm
Heating is locally performed using a light beam converged in an elliptical shape of about m, and is melted only at the center of the beam. as a result,
While there is no danger of the recording medium being destroyed, in addition, the heating at the periphery of the beam causes the molten portion to be preheated, so that the cooling rate is reduced, and favorable recrystallization is performed. Although the melt initialization itself is a known method, it is particularly effective for the present invention. By using this method, for example, the initialization time can be reduced to one tenth of that of the conventional solid-phase crystallization, the productivity can be significantly reduced, and a change in crystallinity during erasing after overwriting is prevented. it can.

【0036】[0036]

【実施例】以下実施例をもって本発明を詳細に説明す
る。以下では書き換え可能CDにおける標準的な評価方
法・基準を用いているが、本発明の媒体は必ずしも特定
のフォーマットの媒体に限定されるものではない。以下
で示す合金記録層の検討にあたっては、Ag5 Ga2
3 Sb63Te27、Ag5 Ga5 Ge3 Sb61Te26
Ag5 Ga5 Sb63Te27、Zn5 In2Sb63
30、Ga5 Sb65Te30合金ターゲットと、Sb、G
e、AgもしくはSb2 Te3 等の合金のうちの少なく
とも2種のターゲットでコスパッタを利用した。各ター
ゲットの放電パワーを調製することで組成の調製を行っ
た。得られた合金薄膜の組成は、化学分析によって構成
された蛍光X線強度で測定した。
The present invention will be described in detail with reference to the following examples. In the following, standard evaluation methods and standards for rewritable CDs are used, but the medium of the present invention is not necessarily limited to a medium of a specific format. In examining the alloy recording layer shown below, Ag 5 Ga 2 G
e 3 Sb 63 Te 27 , Ag 5 Ga 5 Ge 3 Sb 61 Te 26 ,
Ag 5 Ga 5 Sb 63 Te 27 , Zn 5 In 2 Sb 63 T
e 30 , Ga 5 Sb 65 Te 30 alloy target, Sb, G
Cosputter was used with at least two types of targets among e, Ag, and alloys such as Sb 2 Te 3 . The composition was adjusted by adjusting the discharge power of each target. The composition of the obtained alloy thin film was measured by X-ray fluorescence intensity constituted by chemical analysis.

【0037】実施例1 ポリカーボネート基板上に(ZnS)80(SiO2 20
層を103nm、記録層としてAg4.4 Ga1.7 Ge
5.6 Sb64.8Te23.5層を16nm、(ZnS) 80(S
iO2 20層を41nm、Al99Ta1 合金層を200
nm、順次マグネトロンスパッタリング法にて積層し、
さらに紫外線硬化樹脂を4μm設けディスクを作成し
た。このディスクを、楕円形の照射ビームの長軸の長さ
を108μm短軸の長さを1.5μm程度とした光ディ
スク初期化装置を用い、線速度4m/s、ビーム送り速
度(ディスク半径方向)40μm/回転、レーザーパワ
ー350mWで3回走査し、さらに、光ディスク評価装
置(レーザー波長780nm、NA=0.55)を用い
て、2.4m/sの線速度で8mWのDC光をランドと
グループそれぞれ1回ずつトラッキングをかけて照射し
初期結晶化を行った。初期結晶化は問題なく行なえた。
記録は図2のような方法で行なった。即ち、光ディスク
評価装置(レーザー波長780nm、NA0.55)を
用いて、1.2m/sから4.8m/sまでの線速度で
EFMランダム信号(クロック周波数4.32MHzを
その都度線速度にあわせて、記録線速度/1.2倍とし
た)の記録を行なった。記録時にはα1 =1、αi
0.5(i≧2)、βi =0.5(i≧1)とし、Pe
/Pw=0.5で一定とし、Pwを8mWから17mW
まで振って記録を行なった。なお、この際のPbは0.
8mWで一定とし、m=n−1とした。ジッタの測定は
2.4m/sで行なった。このときの結果を図4に示
す。図4より良好な特性が得られていることが分かる。
さらに、記録された信号は、温度80℃、80%RHの
環境下に100時間放置後も全く劣化がみられなかっ
た。
Example 1 (ZnS) on a polycarbonate substrate80(SiOTwo)20
103 nm layer, Ag as recording layer4.4Ga1.7Ge
5.6Sb64.8Te23.516 nm layer, (ZnS) 80(S
iOTwo)20Layer 41 nm, Al99Ta1200 alloy layers
nm, sequentially laminated by magnetron sputtering method,
Further, a disk is made by providing an ultraviolet curable resin of 4 μm.
Was. This disc is the length of the major axis of the elliptical illumination beam.
With a short axis of about 1.5 μm
Linear velocity 4m / s, beam feed speed using disk initialization device
Degree (disc radial direction) 40μm / rotation, laser power
-Scan at 350mW three times, and then
(Laser wavelength 780 nm, NA = 0.55)
And 8 mW DC light at a linear velocity of 2.4 m / s
Irradiate with tracking once for each group
Initial crystallization was performed. Initial crystallization was performed without any problem.
Recording was performed by the method as shown in FIG. That is, the optical disk
Evaluation equipment (laser wavelength 780nm, NA 0.55)
At a linear velocity from 1.2 m / s to 4.8 m / s
EFM random signal (clock frequency 4.32 MHz
In each case, set the recording linear velocity / 1.2 times according to the linear velocity.
Was recorded. Α during recording1= 1, αi=
0.5 (i ≧ 2), βi= 0.5 (i ≧ 1) and Pe
/Pw=0.5, constant, and Pw from 8 mW to 17 mW
Shake to record. In this case, Pb is 0.1.
It was constant at 8 mW, and m = n-1. Jitter measurement
The measurement was performed at 2.4 m / s. The results at this time are shown in FIG.
You. It can be seen from FIG. 4 that good characteristics are obtained.
Further, the recorded signal was at a temperature of 80 ° C. and 80% RH.
No degradation after 100 hours in the environment
Was.

【0038】実施例2 ポリカーボネート基板上に(ZnS)80(SiO2 20
層を103nm、記録層としてAg4.8 Ga4.8 Ge
5.5 Sb59.9Te25.0層を16nm、(ZnS) 80(S
iO2 20層を41nm、Al99Ta1 合金層を200
nm、順次マグネトロンスパッタリング法にて積層し、
さらに紫外線硬化樹脂を4μm設けディスクを作成し
た。このディスクを、楕円形の照射ビームの長軸の長さ
を108μm短軸の長さを1.5μm程度とした光ディ
スク初期化装置を用い、線速度4m/s、ビーム送り速
度(ディスク半径方向)40μm/回転、レーザーパワ
ー360mWで3回走査し、さらに、光ディスク評価装
置(レーザー波長780nm、NA=0.55)を用い
て、2.4m/sの線速度で9mWのDC光をランドと
グループそれぞれ1回ずつトラッキングをかけて照射し
初期結晶化を行なった。初期結晶化は問題なく行なえ
た。記録は図2のような方法で行なった。即ち、光ディ
スク評価装置(レーザー波長780nm、NA0.5
5)を用いて、1.2m/sから4.8m/sまでの線
速度でEFMランダム信号(クロック周波数4.32M
Hzをその都度線速度にあわせて、記録線速度/1.2
倍とした)の記録を行なった。記録時にはα1 =1、α
i =0.5(i≧2)、βi =0.5(i≧1)とし、
Pe/Pw=0.5で一定とし、Pwを8mWから17
mWまで振って記録を行った。なお、この際のPbは
0.8mWで一定とし、m=n−1とした。ジッタの測
定は2.4m/sで行なった。このときの結果を図5に
示す。図5より良好な特性が得られていることが分か
る。ただし、記録された信号について、温度80℃、8
0%RHの環境下に100時間放置後、1分間の測定中
におけるClエラーの最大値が17ブロック/秒から9
9ブロック/秒に増加した。
Example 2 (ZnS) on a polycarbonate substrate80(SiOTwo)20
103 nm layer, Ag as recording layer4.8Ga4.8Ge
5.5Sb59.9Te25.016 nm layer, (ZnS) 80(S
iOTwo)20Layer 41 nm, Al99Ta1200 alloy layers
nm, sequentially laminated by magnetron sputtering method,
Further, a disk is made by providing an ultraviolet curable resin of 4 μm.
Was. This disc is the length of the major axis of the elliptical illumination beam.
With a short axis of about 1.5 μm
Linear velocity 4m / s, beam feed speed using disk initialization device
Degree (disc radial direction) 40μm / rotation, laser power
-Scan at 360mW three times, and then
(Laser wavelength 780 nm, NA = 0.55)
9mW DC light at a linear velocity of 2.4m / s
Irradiate with tracking once for each group
Initial crystallization was performed. Initial crystallization can be performed without problems
Was. Recording was performed by the method as shown in FIG. That is,
Disk evaluation device (laser wavelength 780 nm, NA 0.5
Using 5), a line from 1.2 m / s to 4.8 m / s
EFM random signal (clock frequency 4.32M) at speed
Hz to the linear velocity each time, and the recording linear velocity / 1.2
Was doubled). Α during recording1= 1, α
i= 0.5 (i ≧ 2), βi= 0.5 (i ≧ 1),
Pe / Pw = 0.5 is constant and Pw is 17 from 8 mW.
Recording was performed by shaking to mW. In this case, Pb is
It was constant at 0.8 mW, and m = n-1. Jitter measurement
The measurement was performed at 2.4 m / s. The result at this time is shown in FIG.
Show. It can be seen that better characteristics are obtained than in FIG.
You. However, for the recorded signal, a temperature of 80 ° C., 8
After measuring for 1 minute after leaving for 100 hours in an environment of 0% RH
The maximum value of the Cl error is 17 blocks / sec to 9
Increased to 9 blocks / sec.

【0039】比較例1 ポリカーボネート基板上に(ZnS)80(SiO2 20
層を100nm、記録層としてGe12Sb67Te23層を
20nm、(ZnS)80(SiO2 20層を20nm、
Al99.5Ta0.5 合金層を200nm、順次マグネトロ
ンスパッタリング法にて積層し、さらに紫外線硬化樹脂
を4μm設けディスクを作製した。このディスクを、楕
円形の照射ビームの長軸の長さを80μm短軸を1.3
μm程度とした光ディスク初期化装置を用い、実施例と
同様に初期結晶化を試みたが不完全なむらのある初期結
晶化しかできなかった。むらをなくすために高いレーザ
ーパワーを使用したところ熱による劣化のため欠陥が発
生してしまった。
Comparative Example 1 (ZnS) 80 (SiO 2 ) 20 on a polycarbonate substrate
A 100 nm layer, a Ge 12 Sb 67 Te 23 layer as a recording layer of 20 nm, a (ZnS) 80 (SiO 2 ) 20 layer of 20 nm,
An Al 99.5 Ta 0.5 alloy layer was sequentially laminated by magnetron sputtering to a thickness of 200 nm, and a UV-curable resin was further provided with a thickness of 4 μm to produce a disk. The length of the major axis of the elliptical irradiation beam was set to 80 μm and the minor axis was set to 1.3.
Initial crystallization was attempted in the same manner as in the example by using an optical disk initialization apparatus having a size of about μm, but only initial crystallization with incomplete unevenness was obtained. When high laser power was used to eliminate unevenness, defects occurred due to thermal degradation.

【0040】比較例2 ポリカーボネート基板上に(ZnS)80(SiO2 20
層を80nm、記録層としてZn5 In2 Sb62Te31
層を20nm、(ZnS)80(SiO2 20層を20n
m、Al99.5Ta0.5 合金層を200nm、順次マグネ
トロンスパッタリング法にて積層し、さらに紫外線硬化
樹脂を4μm設けディスクを作製した。このディスク
を、楕円形の照射ビームの長軸の長さを80ミクロン、
短軸の長さを1.4μm程度とした光ディスク初期化装
置を用い、線速度4.5m/s、ビーム送り速度50μ
m/回転(ディスク半径方向)レーザーパワー250m
Wで初期結晶化を試みたところ、問題なく初期化ができ
た。光ディスク評価装置(レーザー波長780nm、N
A0.55)を用いて、2.4m/sの線速度でEFM
ランダム信号(クロック周波数4.32MHzを2倍と
した)の記録を行なった。記録は図2のような方法を用
い、α1 =1、αi =0.5(i≧2)、βi=0.5
(i≧1)とし、Pw=13mW、Pe=6.5mw、
Pb=0.8mWとした。実際の信号特性を示すジッタ
の値は最短マーク長でクロック周期の10%未満とな
り、初期特性は良好であった。また、1000回オーバ
ーライト後もジッタもやはりクロック周期の10%未満
で良好であった。しかし、記録された信号は、温度80
℃、湿度80%RHの環境下に100時間放置した後に
劣化し、ジッタがクロック周期の20%に達した。一部
で非晶質ビットが再結晶化し、消えかけていることがわ
かった。
Comparative Example 2 (ZnS) 80 (SiO 2 ) 20 on a polycarbonate substrate
The layer was 80 nm, and the recording layer was Zn 5 In 2 Sb 62 Te 31.
20 nm for the layer and 20 n for the (ZnS) 80 (SiO 2 ) 20 layer.
m, an Al 99.5 Ta 0.5 alloy layer was sequentially laminated by a magnetron sputtering method to a thickness of 200 nm, and a UV-curable resin was further provided at 4 μm to produce a disk. This disc was prepared by setting the major axis of the elliptical irradiation beam to 80 microns,
Using an optical disk initialization device having a short axis length of about 1.4 μm, a linear velocity of 4.5 m / s and a beam feed rate of 50 μm
m / rotation (disc radial direction) laser power 250m
When the initial crystallization was attempted with W, the initial crystallization was successful. Optical disk evaluation device (laser wavelength 780 nm, N
A0.55) using EFM at a linear velocity of 2.4 m / s
Recording of a random signal (clock frequency 4.32 MHz was doubled) was performed. The recording is performed by using a method as shown in FIG. 2, and α 1 = 1, α i = 0.5 (i ≧ 2), β i = 0.5
(I ≧ 1), Pw = 13 mW, Pe = 6.5 mw,
Pb was set to 0.8 mW. The value of the jitter indicating the actual signal characteristics was less than 10% of the clock cycle at the shortest mark length, and the initial characteristics were good. Also, after overwriting 1000 times, the jitter was also good at less than 10% of the clock cycle. However, the recorded signal is at a temperature of 80
It deteriorated after being left for 100 hours in an environment of 80 ° C. and 80% RH, and jitter reached 20% of the clock cycle. It was found that the amorphous bits partially recrystallized and disappeared.

【0041】比較例3 ポリカーボネート基板上に(ZnS)80(SiO2 20
層を103nm、記録層としてAg5 Ga5 Sb63Te
27300Wに0.03AのSb2 Te3 でコスパッタし
た層を16nm、(ZnS)80(SiO2 20層を41
nm、Al99Ta1 合金層を200nm、順次マグネト
ロンスパッタリング法にて積層し、さらに紫外線硬化樹
脂を4μm設けディスクを作製した。このディスクを、
長軸の長さ108μm、短軸の長さ1.5μm程度の楕
円形の照射ビームを用いた光ディスク評価装置を用い、
線速度4m/s、ビーム送り速度(ディスク半径方向)
40μm/回転で3回走査し、さらに光ディスク評価装
置(レーザー波長780nm、NA0.55)を用い
て、2.4m/sの線速度で9.5mWのDC光をラン
ドとグループそれぞれ1回ずつトラッキングをかけて照
射し初期結晶化を行なった。初期結晶化は問題なく行な
えた。光ディスク評価装置(レーザー波長780nm、
NA0.55)を用いて1.2m/sから4.8m/s
までの線速度でEFMランダム信号(クロック周波数
4.32MHzをその都度線速度にあわせて、記録線速
度/1.2倍とした)の記録を行なった。記録は図2の
ような方法を用い、α1 =1、αi =0.5(i≧
2)、βi =0.5(i≧1)とし、Pe/Pw=0.
5で一定とし、Pwを8mWから17mW振って記録を
行なった。なお、この際のPbは0.8mWで一定と
し、m−n−1とした。ジッタの測定は2.4m/sで
行なった。このときの結果を図6に示す。図6から良好
な特性が得られていることが分かる。しかしながら記録
された信号は80℃、80%RHの高温高湿下で100
時間経った後、結晶化し消え始めていた。
Comparative Example 3 (ZnS) 80 (SiO 2 ) 20 on a polycarbonate substrate
The layer was 103 nm, and the recording layer was Ag 5 Ga 5 Sb 63 Te.
27 A layer co-sputtered with 0.03 A of Sb 2 Te 3 at 300 W is 16 nm, and a (ZnS) 80 (SiO 2 ) 20 layer is 41
A 200 nm thick Al 99 Ta 1 alloy layer was sequentially laminated by magnetron sputtering, and a 4 μm ultraviolet curable resin was further provided to produce a disk. This disc,
Using an optical disc evaluation device using an elliptical irradiation beam having a major axis length of 108 μm and a minor axis length of about 1.5 μm,
Linear speed 4m / s, beam feed speed (disc radial direction)
Scan three times at 40 μm / rotation, and further track 9.5 mW DC light once at each land and group at a linear velocity of 2.4 m / s using an optical disk evaluation device (laser wavelength 780 nm, NA 0.55). To perform initial crystallization. Initial crystallization was performed without any problem. Optical disk evaluation device (laser wavelength 780 nm,
1.2 m / s to 4.8 m / s using NA 0.55)
An EFM random signal was recorded at a linear velocity of up to (recording linear velocity / 1.2 times the clock frequency of 4.32 MHz in accordance with the linear velocity in each case). The recording is performed by using a method as shown in FIG. 2, and α 1 = 1, α i = 0.5 (i ≧
2), β i = 0.5 (i ≧ 1), and Pe / Pw = 0.
The recording was performed while Pw was kept constant at 5 and the Pw was varied from 8 mW to 17 mW. In this case, Pb was constant at 0.8 mW, and mn-1. The jitter was measured at 2.4 m / s. FIG. 6 shows the result at this time. FIG. 6 shows that good characteristics are obtained. However, the recorded signal was 100 ° C under high temperature and high humidity of 80 ° C and 80% RH.
After some time, it had begun to crystallize and disappear.

【0042】実施例3 ポリカーボネート基板上に(ZnS)80(SiO2 20
層を103nm、記録層としてAg4.7 Ga4.7 Ge
4.6 Sb613 Te247 層を16nm、(ZnS)80
(SiO2 20層を41nm、Al99.5Ta0.5 合金層
を200nm、順次マグネトロンスパッタリング法にて
積層し、さらに紫外線硬化樹脂を4μm設けディスクを
作製した。このディスクを、楕円形の照射ビームの長軸
の長さを108μm短軸の長さを1.5μm程度とした
光ディスク初期化装置を用い、線速度4m/s、ビーム
送り速度(ディスク半径方向)40μm/回転、レーザ
ーパワー230mWで3回走査し、さらに、光ディスク
評価装置(レーザー波長637nm、NA0.60)を
用いて、3.5m/sの線速度で5mWのDC光をラン
ドとグループそれぞれ1回ずつトラッキングをかけて照
射し初期結晶化を行なった。光ディスク評価装置(レー
ザー波長637nm、NA0.60)を用いて、3.0
m/sの線速度で基本クロック周波数26.2MHzの
8−16変調ランダム信号の記録を行なった。記録は図
2のような方法を用い、α1 =0.3、αi =0.25
(i≧2)、βi =0.25(i≧1)とし、Pw=1
0mW、Pe=5mWで記録を行なった。ジッタの測定
には3.5m/sで再生しσ/T=10.5%が得られ
た。
Example 3 (ZnS) 80 (SiO 2 ) 20 on a polycarbonate substrate
The layer is 103 nm, and the recording layer is Ag 4.7 Ga 4.7 Ge
4.6 Sb 61 . 3 Te 24 . 7 layers of 16 nm, (ZnS) 80
20 layers of (SiO 2 ) and an Al 99.5 Ta 0.5 alloy layer were sequentially laminated by magnetron sputtering at a thickness of 41 nm and an Al 99.5 Ta 0.5 alloy layer. This disk was subjected to a linear velocity of 4 m / s and a beam feed rate (radial direction of the disk) using an optical disk initialization device in which the major axis of the elliptical irradiation beam was 108 μm and the minor axis was about 1.5 μm. Scanning was performed three times at 40 μm / rotation and a laser power of 230 mW. Further, using an optical disk evaluation device (laser wavelength: 637 nm, NA: 0.60), DC light of 5 mW at a linear velocity of 3.5 m / s was applied to each of the land and the group. The initial crystallization was performed by irradiating with tracking each time. Using an optical disk evaluation device (laser wavelength 637 nm, NA 0.60), 3.0
An 8-16 modulated random signal having a basic clock frequency of 26.2 MHz was recorded at a linear velocity of m / s. The recording was performed using the method as shown in FIG. 2, and α 1 = 0.3 and α i = 0.25
(I ≧ 2), β i = 0.25 (i ≧ 1), and Pw = 1
Recording was performed at 0 mW and Pe = 5 mW. For the measurement of jitter, reproduction was performed at 3.5 m / s, and σ / T = 10.5% was obtained.

【0043】[0043]

【発明の効果】本発明によれば、共晶組成のリライタブ
ル特性を生かしつつ、初期結晶化を容易にし、ジッタ低
減を図ることができる。
According to the present invention, initial crystallization can be facilitated and jitter can be reduced while utilizing the rewritable characteristics of the eutectic composition.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学的情報記録用媒体の層構成の一例
を示す模式的断面図
FIG. 1 is a schematic sectional view showing an example of a layer configuration of an optical information recording medium of the present invention.

【図2】本発明の光学的情報記録用媒体への光記録時の
レーザーパワーの照射パターンの一例を示す説明図
FIG. 2 is an explanatory diagram showing an example of a laser power irradiation pattern during optical recording on an optical information recording medium according to the present invention.

【図3】記録層の温度プロファイルの説明図FIG. 3 is an explanatory diagram of a temperature profile of a recording layer.

【図4】実施例1のマークジッタの等高線図FIG. 4 is a contour diagram of a mark jitter according to the first embodiment.

【図5】実施例2のマークジッタの等高線図FIG. 5 is a contour diagram of mark jitter according to the second embodiment.

【図6】比較例3のマークジッタの等高線図FIG. 6 is a contour diagram of mark jitter of Comparative Example 3.

【符号の説明】[Explanation of symbols]

1 基板 2 下部保護層 3 相変化型記録層 4 上部保護層 5 反射層 6 保護コート層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower protective layer 3 Phase change type recording layer 4 Upper protective layer 5 Reflective layer 6 Protective coat layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板上に相変化型光記録層が設けられ、
相変化記録層への情報の記録再生が結晶状態と非晶状態
との間の相変化によって行なわれる光学的情報記録用媒
体において、該相変化型光記録層が 【化1】 (ただし、XはAg、Au、Pd、PtもしくはZnの
うちの少なくとも一種、MはSn,Ge,Si,Pbの
うちの少なくとも一種、0.0≦α≦0.1、0.00
1≦β≦0.1、0.01≦χ≦0.15、0.5≦δ
≦0.7、0.15≦ε≦0.4、0.03≦β+χ≦
0.25、α+β+χ+δ+ε=1.0)なる組成を有
することを特徴とする光学的情報記録用媒体。
1. A phase-change optical recording layer is provided on a substrate,
In an optical information recording medium in which recording / reproduction of information to / from a phase change recording layer is performed by a phase change between a crystalline state and an amorphous state, the phase change type optical recording layer has the following structure. (Where X is at least one of Ag, Au, Pd, Pt or Zn, M is at least one of Sn, Ge, Si and Pb, 0.0 ≦ α ≦ 0.1, 0.00
1 ≦ β ≦ 0.1, 0.01 ≦ χ ≦ 0.15, 0.5 ≦ δ
≦ 0.7, 0.15 ≦ ε ≦ 0.4, 0.03 ≦ β + χ ≦
0.25, α + β + χ + δ + ε = 1.0).
【請求項2】 基板上に、少なくとも下部保護層、相変
化型光記録層、上部保護層及び反射層が設けられ、結晶
状態を未記録状態、非晶質状態を記録状態とし、少なく
とも強弱2値の光強度の変調により非晶質ビットの重ね
書きをする請求項1に記載の光学的情報記録用媒体。
2. A method according to claim 1, wherein at least a lower protective layer, a phase-change optical recording layer, an upper protective layer, and a reflective layer are provided on the substrate, wherein the crystalline state is an unrecorded state, and the amorphous state is a recorded state. 2. The optical information recording medium according to claim 1, wherein amorphous bits are overwritten by modulating the light intensity of the value.
【請求項3】 MがGeである請求項1又は2に記載の
光学的情報記録用媒体。
3. The optical information recording medium according to claim 1, wherein M is Ge.
【請求項4】 反射層が、Au,Ag及びAlからなる
群から選ばれた少なくとも一種を90原子%以上含む金
属からなる請求項2又は3に記載の光学的情報記録用媒
体。
4. The optical information recording medium according to claim 2, wherein the reflection layer is made of a metal containing at least one atom selected from the group consisting of Au, Ag, and Al in an amount of 90 atomic% or more.
【請求項5】 記録層の厚みが15−30nm、上部保
護層の厚みが10−50nm、反射層が厚みが50−5
00nmである請求項2乃至4のいずれか1つに記載の
光学的情報記録用媒体。
5. The recording layer has a thickness of 15-30 nm, the upper protective layer has a thickness of 10-50 nm, and the reflective layer has a thickness of 50-5.
The optical information recording medium according to any one of claims 2 to 4, which has a thickness of 00 nm.
【請求項6】 請求項1乃至5のいずれか1つに記載の
記録媒体への記録方法であって、記録を、オフパルス区
間を設けた3値変調方式にて行なう記録方法。
6. The recording method according to claim 1, wherein the recording is performed by a ternary modulation method having an off-pulse section.
【請求項7】 オフパルス時のバイアスパワーPbを消
去パワーPeに対して0<Pb≦0.5Peとする請求
項6に記載の記録方法。
7. The recording method according to claim 6, wherein the bias power Pb at the time of the off-pulse is set to 0 <Pb ≦ 0.5 Pe with respect to the erase power Pe.
【請求項8】 集束された光ビームを照射してマーク長
変調された情報を記録するにあたって、長さnT(Tは
基準クロック周期、nは2以上の自然数)の非晶質マー
クを形成する際に、マーク間では非晶質マークを再結
晶化しうる消去パワーPeを照射し、nTマークを形
成する際には、時間nTを以下のようにn−k個にパル
ス分割し 【化2】 α1 T、β1 T、α2 T、β2 T、・・・、αm T、βm T、 (ただし、α1 +β1 +α2 +β2 +・・・αm +βm
=n−j(0≦j≦2)、m=n−k(k=0,1,
2)且つnの最小値はk+1以上)、α1 T(1≦i≦
m)なる時間に記録層を溶融させるに足る記録パワーP
w(>Pe)を照射し、β1 T(1≦i≦m)なる時間
には、0<Pb≦0.5Pe(ただし、βmTにおいて
は、0<Pb≦Peとなってもよい)なるバイアスパワ
ーPbを照射する請求項6に記載の記録方法。
8. An amorphous mark having a length of nT (T is a reference clock cycle and n is a natural number of 2 or more) is formed when recording information with mark length modulation by irradiating a focused light beam. At this time, an erasing power Pe capable of recrystallizing the amorphous mark is applied between the marks, and when forming an nT mark, the time nT is pulse-divided into nk pulses as follows. α 1 T, β 1 T, α 2 T, β 2 T,..., α m T, β m T, (however, α 1 + β 1 + α 2 + β 2 +... α m + β m
= N−j (0 ≦ j ≦ 2), m = nk (k = 0, 1,
2) and the minimum value of n is k + 1 or more), α 1 T (1 ≦ i ≦
m) Recording power P sufficient to melt the recording layer at a certain time
Irradiation with w (> Pe), 0 <Pb ≦ 0.5Pe in the time of β 1 T (1 ≦ i ≦ m) (However, in β m T, 0 <Pb ≦ Pe may be satisfied. 7. The recording method according to claim 6, wherein the bias power Pb is applied.
【請求項9】 請求項1乃至5のいずれか1つに記載の
記録媒体の製造方法であって、相変化型記録層を成膜
後、該記録層にエネルギービームを照射して結晶化せし
める初期化操作を行うにあたり、該記録層を局所的に溶
融せしめ再凝固することによって結晶化させることを特
徴とする光学的情報記録用媒体の製造方法。
9. The method for manufacturing a recording medium according to claim 1, wherein after forming the phase-change recording layer, the recording layer is irradiated with an energy beam to be crystallized. A method for producing an optical information recording medium, characterized in that when performing an initialization operation, the recording layer is locally melted and crystallized by resolidification.
JP18124999A 1998-07-01 1999-06-28 Optical information recording medium, recording method, and method for manufacturing optical information recording medium Expired - Fee Related JP3419347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18124999A JP3419347B2 (en) 1998-07-01 1999-06-28 Optical information recording medium, recording method, and method for manufacturing optical information recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18609998 1998-07-01
JP10-186099 1998-07-01
JP18124999A JP3419347B2 (en) 1998-07-01 1999-06-28 Optical information recording medium, recording method, and method for manufacturing optical information recording medium

Publications (2)

Publication Number Publication Date
JP2000079761A true JP2000079761A (en) 2000-03-21
JP3419347B2 JP3419347B2 (en) 2003-06-23

Family

ID=26500504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18124999A Expired - Fee Related JP3419347B2 (en) 1998-07-01 1999-06-28 Optical information recording medium, recording method, and method for manufacturing optical information recording medium

Country Status (1)

Country Link
JP (1) JP3419347B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097218A1 (en) * 2000-06-16 2001-12-20 Mitsubishi Chemical Corporation Optical information recording medium
US6770346B2 (en) 2001-05-21 2004-08-03 Ricoh Company, Ltd. Optical recording medium and recording method
US6790592B2 (en) * 2000-09-14 2004-09-14 Ricoh Company, Ltd. Phase-change optical information recording medium
US7081289B2 (en) 2003-03-24 2006-07-25 Mitsubishi Kagaku Media Co., Ltd. Phase-change recording material and information recording medium
US7105217B2 (en) 2003-04-30 2006-09-12 Mitsubishi Chemical Corporation Phase-change recording material and information recording medium
US7166415B2 (en) 2002-03-05 2007-01-23 Mitsubishi Kagaku Media Co., Ltd. Phase-change recording material used for information recording medium and information recording medium employing it
JP2007511024A (en) * 2003-11-03 2007-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Rewritable optical data storage medium and use of such medium
US7313070B2 (en) 2002-02-13 2007-12-25 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method
US7507523B2 (en) * 2000-09-28 2009-03-24 Ricoh Company, Ltd Optical information recording medium, method of manufacturing the optical information recording medium, and method of and apparatus for recording/reproducing optical information

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723410B2 (en) 2000-06-16 2004-04-20 Mitsubishi Chemical Corporation Optical recording medium
WO2001097218A1 (en) * 2000-06-16 2001-12-20 Mitsubishi Chemical Corporation Optical information recording medium
US6790592B2 (en) * 2000-09-14 2004-09-14 Ricoh Company, Ltd. Phase-change optical information recording medium
US7507523B2 (en) * 2000-09-28 2009-03-24 Ricoh Company, Ltd Optical information recording medium, method of manufacturing the optical information recording medium, and method of and apparatus for recording/reproducing optical information
US6770346B2 (en) 2001-05-21 2004-08-03 Ricoh Company, Ltd. Optical recording medium and recording method
US7313070B2 (en) 2002-02-13 2007-12-25 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method
US7609603B2 (en) 2002-02-13 2009-10-27 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method
US7858167B2 (en) 2002-02-13 2010-12-28 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method
US7166415B2 (en) 2002-03-05 2007-01-23 Mitsubishi Kagaku Media Co., Ltd. Phase-change recording material used for information recording medium and information recording medium employing it
US7659049B2 (en) 2002-03-05 2010-02-09 Mitsubishi Kagaku Media Co., Ltd. Phase-change recording material used for information recording medium and information recording medium employing it
JP2010030303A (en) * 2002-03-05 2010-02-12 Mitsubishi Kagaku Media Co Ltd Phase-change recording material used for information recording medium and information recording medium using the same
US7081289B2 (en) 2003-03-24 2006-07-25 Mitsubishi Kagaku Media Co., Ltd. Phase-change recording material and information recording medium
US7105217B2 (en) 2003-04-30 2006-09-12 Mitsubishi Chemical Corporation Phase-change recording material and information recording medium
JP2007511024A (en) * 2003-11-03 2007-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Rewritable optical data storage medium and use of such medium

Also Published As

Publication number Publication date
JP3419347B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
EP1398778B1 (en) Optical information recording medium and optical recording method
TWI248612B (en) Phase-change recording material used for information recording medium and information recording medium employing it
JP2000229478A (en) Optical recording body
JPH10241211A (en) Production of optical recording medium
EP1684987A1 (en) Optical recording medium and process for producing the same, spattering target, using process of optical recording medium, and optical recording apparatus
JP3899770B2 (en) Optical information recording medium, reproducing method and recording method thereof
JP3419347B2 (en) Optical information recording medium, recording method, and method for manufacturing optical information recording medium
JP3584634B2 (en) Optical information recording medium
JP2002074741A (en) Optical information recording medium
JP3651231B2 (en) Optical information recording medium
JP3819193B2 (en) Optical recording method
JP2005153338A (en) Optical recording medium
US7532555B2 (en) Phase-change recording layer optical recording method
JP2001039031A (en) Optical information recording medium and method for optical recording
JP3731372B2 (en) Optical information recording medium, reproducing method and recording method thereof
JP3493913B2 (en) Optical information recording medium
JP4248323B2 (en) Phase change optical recording medium, manufacturing method thereof, and recording method
JP3235503B2 (en) Optical information recording medium and optical recording method
JP3433641B2 (en) Optical information recording medium and optical recording method
JPH11232698A (en) Medium for optical information recording and manufacture thereof
JP3955007B2 (en) Phase change optical recording medium
JP2001199166A (en) Optical recording medium
JP2007038685A (en) Medium for optical information recording, its reproduction method, and recording method
JP2002347349A (en) Sputtering target and optical recording medium
JP2004055113A (en) Optical recording medium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3419347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees