JP2000078752A - Voltage/reactive-power controller - Google Patents

Voltage/reactive-power controller

Info

Publication number
JP2000078752A
JP2000078752A JP10240808A JP24080898A JP2000078752A JP 2000078752 A JP2000078752 A JP 2000078752A JP 10240808 A JP10240808 A JP 10240808A JP 24080898 A JP24080898 A JP 24080898A JP 2000078752 A JP2000078752 A JP 2000078752A
Authority
JP
Japan
Prior art keywords
reactive power
voltage
power
control
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10240808A
Other languages
Japanese (ja)
Other versions
JP3490302B2 (en
Inventor
Akihito Iwamaru
明史 岩丸
Kenji Kobayashi
健治 小林
Jinji Ichihara
尋司 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Chubu Electric Power Co Inc
Priority to JP24080898A priority Critical patent/JP3490302B2/en
Publication of JP2000078752A publication Critical patent/JP2000078752A/en
Application granted granted Critical
Publication of JP3490302B2 publication Critical patent/JP3490302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit reactive power fed from a synchronous phase modifier by recognizing a reactive-power output supplied from the synchronous phase modifier by a voltage/reactive-power controller without adding a control circuit to synchronous phase modifier itself, and generating reactive power by controlling a power phase modifying equipment in an electric power substation. SOLUTION: Reactive power Qrc and voltage V2 are integrated and processed by a reactive-power integrating relay 17 and a voltage integrating relay 18 only in an AVR operation mode. Whether or not integrating processing exceeds a decision value and the state of the operation of a power phase modifying equipment is required is decided by a control-equipment selector circuit 19. Presence in any quadrant of a VQ control plane of an equipment needed for operation is judged. A synchronous phase modifier RC1 and a power phase modifying equipment capable of inhibiting the reactive power of the synchronous phase modifier RC1 in each quadrant most effectively are selected by the control-equipment selector circuit 19 in the first quadrant (V2+, Qrc+), the second quadrant (V2+, Qrc-), the third quadrant (V2-, Qrc-), and the fourth quadrant (V2--, Qrc+), and controlled by an LR control circuit 20 and an SC, ShR control circuit 21.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統におけ
る無効電力と系統電圧の変動を検出し、変圧器の負荷時
切り替えタップおよび電力系統に適用された電力調相設
備を制御することにより、無効電力と系統電圧の安定を
図る電圧・無効電力制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects reactive power and system voltage fluctuations in a power system, and controls a switching tap at the time of load of a transformer and a power phase adjusting device applied to the power system. The present invention relates to a voltage / reactive power control device for stabilizing power and system voltage.

【0002】[0002]

【従来の技術】図5は、たとえば、電力系統に接続さ
れ、電力系統の系統電圧と無効電力出力を変化すること
が可能な同期調相機(以下、RCと称す)と電圧・無効
電力制御装置(以下、VQCと称す)を示す、ある電力
系統変電所における従来の電圧・無効電力制御装置の制
御ブロック図である。
2. Description of the Related Art FIG. 5 shows, for example, a synchronous phase adjuster (hereinafter referred to as RC) connected to a power system and capable of changing the system voltage and the reactive power output of the power system, and a voltage / reactive power control device. FIG. 2 is a control block diagram of a conventional voltage / reactive power control device in a certain power system substation, showing the power supply (hereinafter, referred to as VQC).

【0003】図5において、100はVQC、101は
RC、102は変電所の系統1次母線、103は変電所
の系統2次母線、104は1次母線電圧検出器、105
は2次母線電圧検出器、106は変圧器107の2次電
流検出器、108は変圧器107の負荷時切り替えタッ
プ(以下、LRと称する)である。109は変圧器タッ
プ値検出回路、110はRC運転モードであるかを判定
するモード判定回路、120は電力調相設備であるスタ
ティックコンデンサ(以下、SCと称する)、121は
電力調相設備であるシャントリアクトル(以下、ShR
と称する)である。
In FIG. 5, 100 is VQC, 101 is RC, 102 is a primary bus of a substation system, 103 is a secondary bus of a substation system, 104 is a primary bus voltage detector, 105
Is a secondary bus voltage detector, 106 is a secondary current detector of the transformer 107, and 108 is a load switching tap (hereinafter referred to as LR) of the transformer 107. 109 is a transformer tap value detection circuit, 110 is a mode determination circuit for determining whether the operation mode is the RC operation mode, 120 is a static capacitor (hereinafter, referred to as SC) which is a power phase adjustment device, and 121 is a power phase adjustment device. Shunt Reactor (hereinafter, ShR)
).

【0004】上記VQC100は、RC101が電圧維
持モード(以下AVRモードと称す。)か無効電力維持
モード(以下AQRモードと称す。)かを判定する判定
回路111、正弦波電圧v2 と正弦波電流i2 を入力し
無効電力Q2 を計測する交流計測回路122、正弦波電
圧v2 を入力し電圧V2 を計測する交流計測回路12
3、目標基準電圧V2sと目標基準無効電力Q1s及び
積分演算結果判定値の設定と記憶を司る記憶手段として
のプログラム設定器124、無効電力Q2 とプログラム
設定器124の目標基準無効電力Q1sとの偏差を積分
演算し、あらかじめ設定された判定量との比較を行い判
定結果を出力する無効電力積分リレー125、電圧V2
とプログラム設定器124の目標基準電圧V2sとの偏
差を積分演算し、あらかじめ設定された判定量との比較
を行い判定結果を出力する電圧積分リレー126、前記
無効電力積分リレー125及び電圧積分リレー126の
出力結果により最適な電力調相設備を選択する操作機器
判定回路127、変圧器107のLRタップ108を制
御するLR制御回路128、電力調相設備SC120、
ShR121を制御するSC,ShR制御回路129等
により構成されている。
The VQC 100 includes a determination circuit 111 for determining whether the RC 101 is in a voltage maintaining mode (hereinafter, referred to as AVR mode) or a reactive power maintaining mode (hereinafter, referred to as AQR mode), a sine wave voltage v 2 and a sine wave current. AC measurement circuit 122 inputs the i 2 for measuring the reactive power Q 2, AC measurement circuit for measuring the voltage V 2 to a sine wave input voltage v 2 12
3, the target reference voltage V2s and the target reference reactive power Q1s and result of integral calculation program setter 124 as storage means for governing the setting and storage of the judgment value, the reactive power Q 2 and program setter 124 target standard reactive power Q1s deviation integrating operation, reactive power integration relay 125 for outputting a judgment result to compare with the preset determination amount, the voltage V 2
Voltage integration relay 126, which integrates the deviation between the voltage and the target reference voltage V2s of the program setting unit 124, compares the deviation with a predetermined determination amount, and outputs the determination result, the reactive power integration relay 125, and the voltage integration relay 126. An operation device determination circuit 127 for selecting an optimal power phase adjustment device based on the output result of the above, an LR control circuit 128 for controlling the LR tap 108 of the transformer 107, a power phase adjustment device SC120,
It is composed of an SC that controls the ShR 121, an ShR control circuit 129, and the like.

【0005】図6は前記VQC100の操作機器判定回
路127内のVQC制御平面説明図である。図6におい
て、501はVQC制御平面における第一象限で、系統
電圧を低下させることと、無効電力を滅少させることが
可能な電力用機器である変圧器107のタップ位置を下
げる制御により系統電圧の変動が抑制される領域、50
2は第二象限で、系統電圧を低下させることと無効電力
を増加させることが可能な電力用機器であるSC120
を電力系統から開放するか、もしくは電力用機器である
ShR121を電力系統に投入する制御をする事により
系統電圧の変動が抑制される領域、503は第三象限で
前記第一象限501と逆の制御(タッブ位置上げ)を行
う領域、504は第四象限で前記第二象限502と逆の
制御(SCの開放、ShRの投入)を行う領域、505
は制御を行わない不感帯領域である。
FIG. 6 is an explanatory diagram of a VQC control plane in the operating device determination circuit 127 of the VQC 100. In FIG. 6, reference numeral 501 denotes a first quadrant in a VQC control plane. The first quadrant is used to lower the system voltage and control the lowering of the tap position of the transformer 107, which is a power device capable of reducing reactive power. 50 where the fluctuation of
Reference numeral 2 denotes a second quadrant, which is a power device SC120 capable of lowering system voltage and increasing reactive power.
The region 503 is a third quadrant which is opposite to the first quadrant 501 in which the fluctuation of the system voltage is suppressed by opening the power system from the power system or controlling the power supply device ShR121 into the power system. A region 504 for performing control (raising the tab position), a region 504 for performing control (opening of SC, inputting of ShR) in the fourth quadrant, which is the reverse of the second quadrant 502, and 505
Is a dead zone where no control is performed.

【0006】次に動作について説明する。ここでは、代
表の電力系統の電圧抑制方法を図7について述べる。無
効電力積分リレー125と、電圧積分リレー126の動
作結果を、操作機器判定回路127に入力することによ
り(ステップST101)、第二象限502の領域で操
作実施の判定結果がなされた場合、SC,ShR制御回
路129によりSC120の開放を行い、電力系統の変
動を抑制する。上記の判定はたとえば、次のようにして
行う。電圧積分リレー126の偏差記憶結果ΣV2 (単
位V秒)が予め設定されていたV2 積分動作判定値Zに
対してΣV2 =Zとなったときが動作判定レベルを逸脱
したと判定する。ΣV2 の演算条件は、VQC制御平面
の各象限毎に実施する。つまり、V2 の実値が第一象限
にある時は第一象限でのみ積分演算を実施する。もし、
積分演算中にV2 実値が、他の象限に移動すれば、即座
に現在積分演算している、積分結果ΣV2 を0にリセッ
トし、移動先の象限で積分を開始する。
Next, the operation will be described. Here, a voltage suppression method of a representative power system will be described with reference to FIG. By inputting the operation results of the reactive power integration relay 125 and the voltage integration relay 126 to the operation device determination circuit 127 (step ST101), if the operation execution determination result is obtained in the area of the second quadrant 502, SC, The SC 120 is opened by the ShR control circuit 129 to suppress fluctuations in the power system. The above determination is performed, for example, as follows. When the difference storage result ΔV 2 (unit: V seconds) of the voltage integration relay 126 becomes ΔV 2 = Z with respect to the preset V 2 integration operation determination value Z, it is determined that the deviation has exceeded the operation determination level. The calculation condition of ΣV 2 is implemented for each quadrant of the VQC control plane. That is, when the actual value of V 2 is in the first quadrant is performed only integration operation in the first quadrant. if,
If the actual V 2 value moves to another quadrant during the integration operation, the integration result ΔV 2 currently being integrated is immediately reset to 0, and the integration is started in the destination quadrant.

【0007】つまり、VQC100が制御目標とする、
ある時間断面の目標電圧値Vvqc と同期調相機が制御目
標とする、ある時間断面の目標電圧値Vrcはある時間断
面で同期していない、つまり、ある時間断面で目標電圧
値Vvqc と目標電圧値Vrcが異なる。たとえば、 VQCは12:00の電圧制御目標値がVvqc =27
5.1KV RCの12:00の電圧制御目標値がVrc=274.9
KV の場合が生じる可能性がある。
That is, the VQC 100 sets a control target.
The target voltage value V vqc of a certain time section and the target voltage value V rc of a certain time section which are controlled by the synchronous phase shifter are not synchronized in a certain time section, that is, the target voltage value V vqc is not synchronized in a certain time section. The target voltage value Vrc is different. For example, the voltage control target value of 12:00 is V vqc = 27.
The target voltage control value of 5.1 KV RC at 12:00 is V rc = 274.9.
The case of KV may occur.

【0008】このとき、VQCが装置ロックしていなけ
れば系統電圧V2が275.0KVの場合、VQCはV
2<Vvqc のため、電圧引き上げ制御、RCはV2>V
rcのため、電圧下げ制御を実施する。このため、同一変
電所で制御方向が異なる制御を同時に2装置から実施
し、結果的に系統電圧に変動(動揺)を生じる。
At this time, if the system voltage V2 is 275.0 KV unless VQC is locked, the VQC becomes V
2 <V vqc , voltage raising control, RC is V2> V
Voltage reduction control is performed for rc . For this reason, control with different control directions is performed simultaneously from two devices in the same substation, and as a result, a fluctuation (oscillation) occurs in the system voltage.

【0009】しかしながら、前記モード判定回路111
により、RC101がAVRモードであるか判定し(ス
テップST102)、AVRモードでなければVQ制御
処理を行う(ステップST103)。一方、AVRモー
ドになったことが判定された場合、RC101の系統電
圧抑制制御とVQC100の系統電圧抑制制御が競合
し、系統電圧に動揺を与えることになるため、無効電力
積分リレー125及び電圧積分リレー126の積分結果
を0に固定して積分演算をロックし、結果的にVQCの
制御をロックする(ステップST104)。
However, the mode determination circuit 111
Thus, it is determined whether the RC 101 is in the AVR mode (step ST102), and if not, the VQ control process is performed (step ST103). On the other hand, if it is determined that the AVR mode has been set, the system voltage suppression control of the RC 101 and the system voltage suppression control of the VQC 100 compete with each other, causing fluctuations in the system voltage. The integration result of the relay 126 is fixed to 0 to lock the integration operation, and as a result, the VQC control is locked (step ST104).

【0010】[0010]

【発明が解決しようとする課題】従来の電圧・無効電力
制御装置は、以上のように構成されているので、RCが
AVRモードで運転した場合は、VQCの積分演算をロ
ックしなければならず、RCの無効電力供給量に限界が
きた場合には、操作員が手動で電力調相設備を操作する
必要があるなどの課題があった。また、RCが無効電力
維持モード(以下AQRモードと称す。)で運転した場
合は、各々単独で無効電力出力の制御を行っていたた
め、変電所総合での無効電力の細かな制御は困難である
という課題があった。
Since the conventional voltage / reactive power control device is configured as described above, when the RC is operated in the AVR mode, the integral operation of VQC must be locked. However, when the amount of reactive power supplied by the RC reaches its limit, there is a problem that an operator must manually operate the power phase adjustment equipment. In addition, when the RC is operated in the reactive power maintenance mode (hereinafter, referred to as AQR mode), since the reactive power output is controlled independently, it is difficult to finely control the reactive power in the substation as a whole. There was a problem that.

【0011】この発明は上記のような課題を解決するた
めになされたものであり、RC自身に制御回路を付加す
ることなく、VQCがRCと協調して電力系統の電圧変
動を抑制することができるとともに、RCの供給してい
る無効電力をVQCが認識することで、変電所内の電力
調相設備を制御し無効電力を発生させ、RCの供給無効
電力を常時抑制させ、緊急時にRCの無効電力出力が十
分発揮可能とするVQCを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is possible for a VQC to cooperate with an RC to suppress a voltage fluctuation of a power system without adding a control circuit to the RC itself. The VQC recognizes the reactive power supplied by the RC, and controls the power phase adjustment equipment in the substation to generate reactive power, constantly suppresses the reactive power supplied to the RC, and disables the RC in an emergency. An object of the present invention is to obtain a VQC capable of sufficiently exhibiting a power output.

【0012】[0012]

【課題を解決するための手段】この発明に係る電圧・無
効電力制御装置は、電力系統に接続された変電所に無効
電力を供給する同期調相機と、前記変電所の1次母線電
圧と2次母線電圧ならびに変圧器通過無効電力を、予め
設定された2次電圧基準値と2次無効電力基準値の近傍
となるように制御するために、前記変電所の変圧器の負
荷時切り替えタップおよび、前記電力系統に投入または
解放する電力調相設備とを有する電圧・無効電力制御装
置において、前記同期調相機が供給している無効電力を
検出する無効電力検出手段を備え、電圧・無効電力主演
算手段は前記検出された無効電力に基づいて前記電力調
相設備から供給する無効電力を制御するものである。
A voltage / reactive power control device according to the present invention comprises: a synchronous phase shifter for supplying reactive power to a substation connected to an electric power system; In order to control the secondary bus voltage and the reactive power passing through the transformer so as to be in the vicinity of a preset secondary voltage reference value and a secondary reactive power reference value, a load switching tap of the transformer of the substation and A voltage / reactive power control device having a power phase adjusting device to be supplied to or released from the power system, comprising: a reactive power detecting means for detecting the reactive power supplied by the synchronous phase adjuster; The computing means controls the reactive power supplied from the power phase adjustment equipment based on the detected reactive power.

【0013】この発明に係る電圧・無効電力制御装置の
電圧・無効電力主演算手段は、同期調相機の供給してい
る無効電力と同量の無効電力を供給するように変圧器に
設けられたタップ切替器のタップの上げ下げ制御と電力
調相設備の開放、投入を制御するものである。
The voltage / reactive power main calculation means of the voltage / reactive power control device according to the present invention is provided in the transformer so as to supply the same amount of reactive power as the reactive power supplied by the synchronous phase adjuster. It controls the raising and lowering of the tap of the tap changer and the opening and closing of the power phase adjustment equipment.

【0014】この発明に係る電圧・無効電力制御装置
は、同期調相機が供給している無効電力を検出する無効
電力検出手段と、前記同期調相機の制御モードを認識す
るモード認識手段と、前記同期調相機の出力する無効電
力と系統電圧の制御目標値を記憶しておく記憶手段とを
備え、電圧・無効電力主演算手段は目標値範囲外の偏差
量を演算し、前記制御目標値内に無効電力出力と系統電
圧を制御するため、変圧器に設けられたタップ切替器の
タップの上げ下げ制御指令と電力用調相設備の開放、投
入制御指令を送出するものである。
The voltage / reactive power control device according to the present invention comprises: a reactive power detecting means for detecting a reactive power supplied by a synchronous phase shifter; a mode recognizing means for recognizing a control mode of the synchronous phase shifter; Storage means for storing the reactive power output from the synchronous phase adjuster and the control target value of the system voltage, wherein the voltage / reactive power main calculation means calculates a deviation amount outside the target value range, and In order to control the reactive power output and the system voltage, a control command for raising and lowering the tap of a tap changer provided in the transformer and a control command for opening and closing the power phase adjustment equipment are transmitted.

【0015】この発明に係る電圧・無効電力制御装置の
電力調相設備は、変電所に接続されたスタティックコン
デンサもしくはシャントリアクトルである。
The power phase adjustment equipment of the voltage / reactive power control device according to the present invention is a static capacitor or a shunt reactor connected to a substation.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1は、この発明の実施の形態1による
VQCを適用し、電力系統の電圧と無効電力を調整する
機能を備えた、ある電力系統変電所の制御ブロック図で
ある。図1において、50はVQC、1はRC、2は変
電所の1次母線、3は変電所の2次母線、4は1次母線
電圧検出器、5は2次母線電圧検出器、6は変圧器2次
電流検出器、8は変圧器7の負荷時切り替え(以下、L
Rと称する)タップ、9は変圧器7のタップ値検出回
路、10はRC制御回路、12はSC,13はShRで
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. Embodiment 1 FIG. FIG. 1 is a control block diagram of a certain power system substation having a function of adjusting the voltage and reactive power of the power system by applying VQC according to the first embodiment of the present invention. In FIG. 1, 50 is VQC, 1 is RC, 2 is a primary bus of a substation, 3 is a secondary bus of a substation, 4 is a primary bus voltage detector, 5 is a secondary bus voltage detector, and 6 is a secondary bus voltage detector. The transformer secondary current detector 8 switches the load of the transformer 7 under load (hereinafter, L
R is a tap), 9 is a tap value detection circuit of the transformer 7, 10 is an RC control circuit, 12 is SC, and 13 is ShR.

【0017】11は、例えばRC制御回路10がAVR
モードである場合の状態を、接点(AVR=ON)で判
定するモード判定回路、14は正弦波電圧V1 と正弦波
電流iRCを入力して無効電力QRCを計測する交流計測回
路、15は正弦波電圧v2 を入力して系統電圧V2 を計
測する交流計測回路、16は目標基準電圧V2sと目標
基準無効電力QRCS 及び積分演算結果判定値の設定を記
憶する記憶手段としてのプログラム設定器、17は目標
基準無効電力QRCとプログラム設定器16の目標基準無
効電力QRCS との偏差を積分演算し、あらかじめ設定さ
れた判定量との比較を行い判定結果を出力する無効電力
積分リレー、18は電圧V2 とプログラム設定器16の
目標電圧値v2 との偏差を積分演算し、あらかじめ設定
された判定量との比較を行い判定結果を出力する電圧積
分リレー、19は前記無効電力積分リレー17及び電圧
積分リレー18の出力結果により最適な電力用設備を選
択する制御機器選択回路、20は変圧器7のLRタップ
8を制御するLR制御回路、21は電力調相設備SC1
2、ShR13を制御するSC、ShR制御回路、22
は変流器である。そして、上記符号11、14〜21の
構成要素によりVQC50を構成している。また、上記
符号17〜19の構成要素により電圧・無効電力主演算
手段51を構成している。
Reference numeral 11 denotes, for example, the RC control circuit 10
A state where a mode determines the mode determination circuit in contact (AVR = ON), 14 is an AC measurement circuit for measuring the reactive power Q RC with a sine wave input voltage V 1 and sinusoidal current i RC, 15 AC measurement circuit that measures the grid voltage V 2 by a sine wave input voltage v 2, 16 is a program as a storage means for storing the setting of the target reference voltage V2s and the target reference reactive power Q RCS and integral calculation result judging value setter, 17 a deviation between the target reference reactive power Q RCS target standard reactive power Q RC program setter 16 and integral calculation, makes a comparison with a preset threshold quantity determination result to output reactive power integration relay 18 is the deviation integral calculation of the target voltage value v 2 of the voltage V 2 and the program setting unit 16, the voltage integrator relay for outputting compares the determination result of the preset determination amount, 19 the Mu Control device selection circuit which selects the optimum power equipment by the output result of the power integrated relay 17 and the voltage integral relays 18, 20 LR control circuit for controlling the LR tap 8 of the transformer 7, 21 power phase modifying equipment SC1
2. SC for controlling ShR13, ShR control circuit, 22
Is a current transformer. The components 11, 14 to 21 constitute the VQC 50. The components indicated by the reference numerals 17 to 19 constitute the voltage / reactive power main calculation means 51.

【0018】図2は制御機器選択回路19内のVQC制
御平面説明図であり、前記図5に示す従来の場合とは2
次母線電圧V2 線を軸に左右反転させた状態となってい
る。つまり、VQC50から見たRC1の無効電力符号
方向は通常のVQC制御の無効電力方向とは逆となる。
通常VQCは変圧器二次の無効電力量を検出し、この無
効電力を変電所の調相設備で補うように調相を制御す
る。RC1との協調制御VQCでは、RC1の無効電力
出力分をやめさせるために、RC1が出力している無効
電力量と同等の無効電力を発生することができる調相を
選択し、一時的に過剰な無効電力を系統に発生させ、R
C1が自分のは無効電力を出さなくても系統の無効電力
量は十分であると認識させる。
FIG. 2 is an explanatory plan view of the VQC control in the control equipment selection circuit 19, which is different from the conventional case shown in FIG.
Has become a state of being mirror-reversed in the axial next bus voltage V 2-wire. That is, the reactive power sign direction of RC1 as viewed from VQC 50 is opposite to the reactive power direction of normal VQC control.
Normally, the VQC detects the amount of reactive power of the transformer secondary, and controls the phase adjustment so that the reactive power is supplemented by the phase adjustment equipment of the substation. In the VQC cooperative control with RC1, in order to stop the reactive power output of RC1, a phase adjustment capable of generating reactive power equivalent to the reactive power output by RC1 is selected, and the excess is temporarily set. Generate reactive power in the system
Even if C1 does not output its own reactive power, it is recognized that the reactive power of the system is sufficient.

【0019】図2において、201は第一象限で、系統
電圧を低下させることと無効電力を増加させることが可
能な電力調相設備であるSC12を電力系統から開放す
るか、もしくは電力調相設備であるShR13を電力系
統に投入する制御をする事により系統電圧の変動が抑制
される領域、202はVQC制御平面における第二象限
で、系統電圧を低下させることと、無効電力を減少させ
ることが可能な電力調相設備である変圧器7のタップ位
置を下げる制御により系統電圧の変動が抑制される領
域、203は第三象限で前記第一象限201と逆の制御
(SC12の開放、ShR13の投入)を行う領域、2
04は第四象限で前記第二象限202と逆の制御(タッ
プ位置上げ)を行う領域、205は制御を行わない不感
帯領域である。
In FIG. 2, reference numeral 201 denotes a first quadrant, which releases the SC12, which is a power phase adjusting device capable of lowering the system voltage and increasing the reactive power, from the power system, or In the area where the fluctuation of the system voltage is suppressed by controlling the input of the ShR13 into the power system, reference numeral 202 denotes a second quadrant in the VQC control plane, in which the system voltage can be reduced and the reactive power can be reduced. A region in which the fluctuation of the system voltage is suppressed by the control for lowering the tap position of the transformer 7, which is a possible power phase adjusting device, is a third quadrant 203 which is a control opposite to the first quadrant 201 (opening of the SC12, opening of the ShR13). Input) area, 2
Reference numeral 04 denotes a fourth quadrant in which control is performed in the opposite direction to the second quadrant 202 (increase of the tap position), and reference numeral 205 denotes a dead zone in which no control is performed.

【0020】次に動作について説明する。ここでは、図
3、図4のフローチャートに従って説明する。VQC5
0内の交流計測回路14と交流計測回路15は、RC1
の無効電力出力QrCと2次電圧V2 を入力する(ステッ
プST1)。次にRC1がAVR運転モードで運転中で
あることをモード判定回路11で確認する(ステップS
T2)。
Next, the operation will be described. Here, the description will be given according to the flowcharts of FIGS. VQC5
The AC measurement circuit 14 and the AC measurement circuit 15 within 0 are RC1
The reactive power output Q rC and the secondary voltage V 2 are input (step ST1). Next, the mode determination circuit 11 confirms that the RC1 is operating in the AVR operation mode (Step S).
T2).

【0021】AVR運転モード中であれば、無効電力積
分リレー17及電圧積分リレー18により無効電力QrC
及び電圧V2 の積分演算処理を実施する(ステップST
3、ST4)。次いで、制御機器選択回路19にて積分
演算結果が積分判定値を越え、電力調相設備を操作する
に必要な状態であるかを判定する(ステップST5)。
なお、詳細の積分演算判定方法については、先願である
特願平4−43022号(特開平5−244719号)
ならびに、特願平5−49540号(特開平6−259
155号)に開示されているので省略する。
During the AVR operation mode, the reactive power Q rC is supplied by the reactive power integrating relay 17 and the voltage integrating relay 18.
And performing the integration processing operation of the voltage V 2 (step ST
3, ST4). Next, the control device selection circuit 19 determines whether or not the result of the integration operation exceeds the integration determination value and is in a state necessary for operating the power phase adjustment equipment (step ST5).
For a detailed method of determining the integral operation, see Japanese Patent Application No. 4-43022 (Japanese Patent Application Laid-Open No. 5-244719).
And Japanese Patent Application No. 5-49540 (JP-A-6-259).
155).

【0022】次に積分判定結果により、操作に必要な機
器がVQ制御平面のどの象限に位置しているかを判定す
る(ステップST6)。つまり、積分動作判定結果が動
作判定を下したときの電圧V2 と無効電力QrCの符号N
o.状態により現在どの象限にいるかを判別する。その
条件は 第一象限:V2 +,QrC+ 第二象限:V2 +,QrC− 第三象限:V2 −,QrC− 第四象限:V2 −,QrC
Next, based on the result of the integration determination, it is determined in which quadrant of the VQ control plane the equipment required for the operation is located (step ST6). In other words, the sign V of the voltage V 2 and the reactive power Q rC when the result of the integration operation determination indicates an operation determination.
o. Based on the state, it is determined which quadrant is currently located. The conditions are as follows: First quadrant: V 2 +, Q rC + Second quadrant: V 2 +, Q rC − Third quadrant: V 2 −, Q rC − Fourth quadrant: V 2 −, Q rC +

【0023】第一象限判定(ステップST7)、第二象
限判定(ステップST8)、第三象限判定(ステップS
T9)、第四象限判定(ステップST9)の各象限判定
にて各象限でRC1の無効電力出力を最も効果的に抑制
(低減)できるLRタップおよび電力調相設備を制御機
器選択回路19で選択し、この選択された電力調相設備
に対して、LR制御回路20およびSC,ShR制御回
路21にて制御を実施する。
First quadrant judgment (step ST7), second quadrant judgment (step ST8), third quadrant judgment (step S7)
T9) The control device selection circuit 19 selects an LR tap and a power phase adjustment device that can most effectively suppress (reduce) the reactive power output of the RC1 in each quadrant in the fourth quadrant determination (step ST9). Then, the LR control circuit 20 and the SC and ShR control circuits 21 control the selected power phase equipment.

【0024】第一象限であれば無効電力QrCの発生の抑
制と系統2次電圧V2 を低下させるために、ShR13
の投入もしくは、SC12の開放を実施(ステップST
11)、第二象限であれば無効電力−QrCの発生の抑制
と系統2次電圧V2 を低下させるために、タップ下げ操
作を実施(ステップST12)、第三象限であれば無効
電力−QrCの発生の抑制と系統2次電圧V2 を上昇させ
るために、SC12の投入もしくは、ShR13の開放
を実施(ステップST13)、第四象限判定であれば無
効電力QrCの発生の抑制と2次母線電圧V2 を上昇させ
るためにタップの上げ操作を実施(ステップST1
4)。
In the first quadrant, ShR13 is used to suppress the generation of the reactive power Q rC and reduce the system secondary voltage V 2.
Or opening SC12 (step ST
11), in order to reduce the suppressed and the system secondary voltage V 2 of the generation of reactive power -Q rC if the second quadrant, carried a tap lowering operation (step ST12), the reactive power if the third quadrant - In order to suppress the occurrence of Q rC and increase the system secondary voltage V 2 , the SC 12 is turned on or the ShR 13 is opened (step ST 13). If the determination is in the fourth quadrant, the generation of the reactive power Q rC is suppressed. implementing the raising operation of the tap in order to increase the secondary bus voltage V 2 (step ST1
4).

【0025】次にVQC50がこれらの制御を実施し、
電力調相設備が動作したことを確認し(ステップST1
5)、正常に動作すれば、次の演算を開始するために最
初の演算へ(ステップST1)戻る(ステップST1
6)。
Next, the VQC 50 performs these controls,
It is confirmed that the power phase adjustment equipment has been operated (step ST1).
5) If the operation is normal, the process returns to the first operation (step ST1) to start the next operation (step ST1).
6).

【0026】[0026]

【発明の効果】以上のように、この発明によれば、RC
自身に制御回路を付加することなく、RCの供給してい
る無効電力出力をVQCが認識することで、変電所内の
電力調相設備を制御し無効電力を発生させ、RCの供給
している無効電力出力を抑制するように構成したので、
RCが電力系統事故発生などの緊急時に無効電力を即座
に供給可能にするとともに、VQCがRCと協調してハ
ンチングなどを生じさせずに電力系統電圧の変動を高精
度に抑制し、母線電圧と無効電力を目標範囲内にするこ
とができるVQC装置を得ることができる効果がある。
As described above, according to the present invention, RC
VQC recognizes the reactive power output supplied by RC without adding a control circuit to itself, controls the power phase adjustment equipment in the substation, generates reactive power, and disables the reactive power supplied by RC. Because it was configured to suppress the power output,
The RC enables immediate supply of reactive power in an emergency such as the occurrence of a power system accident, and the VQC cooperates with the RC to suppress power system voltage fluctuations without causing hunting, etc. There is an effect that a VQC device capable of keeping the reactive power within the target range can be obtained.

【0027】この発明によれば、同期調相機の供給して
いる無効電力と同量の無効電力を供給するように変圧器
に設けられたタップ切替器のタップの上げ下げ制御と電
力調相設備の開放、投入を制御するように構成したの
で、電力系統電圧の変動をより高精度に抑制することが
できる効果がある。
According to the present invention, the tap change of the tap of the tap changer provided in the transformer so as to supply the same amount of reactive power as the reactive power supplied by the synchronous phase shifter, and the control of the power phase adjusting equipment. Since the opening and closing are controlled, the fluctuation of the power system voltage can be suppressed with higher accuracy.

【0028】この発明によれば、RCがAVRモードで
運転であることを認識すると、RCの出力している無効
電力出力を計測し、あらかじめVQCに設定されていた
系統電圧と無効電力目標値と計測値との偏差を演算し、
偏差量が制御実施目標値より過大のとき、変圧器に設け
られたタップ切替器のタップの上げ下げ制御指令また
は、電力用調相設備SC,ShRの開放、投入制御指令
を行うように構成したので、もっとも効果的な電力調相
設備を選択し制御指令を送出し、前記制御目標値内に無
効電力と系統電圧を制御することができるVQC装置を
得ることができる効果がある。
According to the present invention, upon recognizing that the RC is operating in the AVR mode, the reactive power output from the RC is measured, and the system voltage and the reactive power target value set in advance to VQC are determined. Calculate the deviation from the measured value,
When the deviation amount is larger than the control execution target value, the control is performed such that the tap up / down control command of the tap of the tap changer provided in the transformer or the opening / closing control command of the power phase adjusting devices SC and ShR is performed. In addition, there is an effect that a VQC device capable of selecting the most effective power phase adjustment equipment, transmitting a control command, and controlling the reactive power and the system voltage within the control target value can be obtained.

【0029】この発明によれば、電力調相設備として、
変圧器に設けられたタップ切替器、変電所に接続された
スタティックコンデンサもしくはシャントリアクトルを
用いるように構成したので、その制御を容易に行うこと
ができる効果がある。
According to the present invention, as the power phase adjustment equipment,
Since the tap changer provided in the transformer, the static capacitor or the shunt reactor connected to the substation is used, the control can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1によるVQC装置を
適用した電力系統変電所の制御ブロック図である。
FIG. 1 is a control block diagram of a power system substation to which a VQC device according to a first embodiment of the present invention is applied.

【図2】 この実施の形態1によるVQC制御平面説明
図である。
FIG. 2 is an explanatory plan view of a VQC control according to the first embodiment.

【図3】 この発明の実施の形態1によるVQC装置の
制御処理のフローチャートである。
FIG. 3 is a flowchart of a control process of the VQC device according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1によるVQC装置の
制御処理の図3につづくフローチャートである。
FIG. 4 is a flowchart following FIG. 3 of the control processing of the VQC device according to the first embodiment of the present invention.

【図5】 従来のある電力系統変電所の制御ブロック図
である。
FIG. 5 is a control block diagram of a conventional power system substation.

【図6】 従来のVQC装置の制御平面説明図である。FIG. 6 is an explanatory diagram of a control plane of a conventional VQC device.

【図7】 従来のVQC装置の制御処理のフローチャー
トである。
FIG. 7 is a flowchart of a control process of a conventional VQC device.

【符号の説明】[Explanation of symbols]

1 同期調相機、7 変圧器、8 LRタップ、11
判定回路、12 スタティックコンデンサ、13 シャ
ントリアクトル、14,15 交流計測回路、16 プ
ログラム設定器(記憶手段)、17 無効電力積分リレ
ー(電圧・無効電力主演算手段)、18 電圧積分リレ
ー(電圧・無効電力主演算手段) 19制御機器選択回
路(電圧・無効電力主演算手段)、20 LR制御回
路、21SC、ShR制御回路、50 電圧・無効電力
制御装置、51 電圧・無効電力主演算手段。
1 Synchronous phase adjuster, 7 transformer, 8 LR tap, 11
Judgment circuit, 12 static capacitor, 13 shunt reactor, 14, 15 AC measurement circuit, 16 program setting unit (storage means), 17 reactive power integration relay (voltage / reactive power main calculation means), 18 voltage integration relay (voltage / inactive (Power main calculation means) 19 control equipment selection circuit (voltage / reactive power main calculation means), 20 LR control circuit, 21SC, ShR control circuit, 50 voltage / reactive power control device, 51 voltage / reactive power main calculation means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 健治 愛知県名古屋市東区東新町1番地 中部電 力株式会社内 (72)発明者 市原 尋司 愛知県名古屋市東区東新町1番地 中部電 力株式会社内 Fターム(参考) 5G066 DA01 DA04 FA01 FB02 FB07 FB17 5H420 BB03 BB16 CC04 DD03 EA30 EB13 FF07 FF22  ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Kenji Kobayashi 1 Higashi-ku, Higashi-ku, Nagoya City, Aichi Prefecture Inside Chubu Electric Power Co. (72) Inventor Hiroshi Ichihara 1 Higashi-Shimmachi, Higashi-ku, Nagoya City, Aichi Prefecture Chubu Electric Power Stock In-house F term (reference) 5G066 DA01 DA04 FA01 FB02 FB07 FB17 5H420 BB03 BB16 CC04 DD03 EA30 EB13 FF07 FF22

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に接続された変電所に無効電力
を供給する同期調相機と、前記変電所の1次母線電圧と
2次母線電圧ならびに変圧器通過無効電力を、予め設定
された2次電圧基準値と2次無効電力基準値の近傍とな
るように制御するために、前記変電所の変圧器の負荷時
切り替えタップおよび、前記電力系統に投入または解放
する電力調相設備とを有する電圧・無効電力制御装置に
おいて、前記同期調相機が供給している無効電力を検出
する無効電力検出手段と、この検出された無効電力に基
づいて前記電力調相設備から供給している無効電力を制
御する電圧・無効電力主演算手段とを備えた電圧・無効
電力制御装置。
1. A synchronous phase shifter for supplying reactive power to a substation connected to a power system, and a primary bus voltage and a secondary bus voltage of the substation and reactive power passing through a transformer are set to a predetermined value. In order to perform control so as to be close to the secondary voltage reference value and the secondary reactive power reference value, there is provided a load switching tap of a transformer of the substation and a power phase adjustment device to be put into or released from the power system. In the voltage / reactive power control device, reactive power detection means for detecting the reactive power supplied by the synchronous phase adjuster, and the reactive power supplied from the power phase adjustment equipment based on the detected reactive power. A voltage / reactive power control device comprising: a voltage / reactive power main calculating means for controlling.
【請求項2】 電圧・無効電力主演算手段は、同期調相
機の供給している無効電力と同量の無効電力を供給する
ように変圧器に設けられたタップ切替器のタップの上げ
下げ制御と電力調相設備の開放、投入を制御することを
特徴とする請求項1記載の電圧・無効電力制御装置。
2. The voltage / reactive power main arithmetic means includes a tap changer for tap change of a tap changer provided in a transformer so as to supply the same amount of reactive power as the reactive power supplied by the synchronous phase adjuster. 2. The voltage / reactive power control device according to claim 1, wherein opening and closing of the power phase adjustment equipment are controlled.
【請求項3】 同期調相機が供給している無効電力を検
出する無効電力検出手段と、前記同期調相機の制御モー
ドを認識するモード認識手段と、前記同期調相機の出力
する無効電力と系統電圧の制御目標値を記憶しておく記
憶手段と、これら目標値範囲外の偏差量を演算し、前記
制御目標値内に無効電力出力と系統電圧を制御するた
め、変圧器に設けられたタップ切替器のタップの上げ下
げ制御指令と電力用調相設備の開放、投入制御指令を送
出する電圧・無効電力主演算手段とを備えたことを特徴
とする請求項1記載の電圧・無効電力制御装置。
3. A reactive power detecting means for detecting a reactive power supplied from the synchronous phase shifter, a mode recognizing means for recognizing a control mode of the synchronous phase shifter, a reactive power output from the synchronous phase shifter and a system. Storage means for storing a voltage control target value, and a tap provided in a transformer for calculating a deviation amount outside these target value ranges and controlling a reactive power output and a system voltage within the control target value. 2. The voltage / reactive power control device according to claim 1, further comprising a voltage / reactive power main arithmetic unit for transmitting a command for raising / lowering a tap of a switch and a command for opening / closing power phase adjustment equipment. .
【請求項4】 電力調相設備は、変電所に接続されたス
タティックコンデンサもしくはシャントリアクトルであ
ることを特徴とする請求項1から請求項3のうちのいず
れか1項記載の電圧・無効電力制御装置。
4. The voltage / reactive power control according to claim 1, wherein the power phase adjustment equipment is a static capacitor or a shunt reactor connected to a substation. apparatus.
JP24080898A 1998-08-26 1998-08-26 Voltage / reactive power control device Expired - Fee Related JP3490302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24080898A JP3490302B2 (en) 1998-08-26 1998-08-26 Voltage / reactive power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24080898A JP3490302B2 (en) 1998-08-26 1998-08-26 Voltage / reactive power control device

Publications (2)

Publication Number Publication Date
JP2000078752A true JP2000078752A (en) 2000-03-14
JP3490302B2 JP3490302B2 (en) 2004-01-26

Family

ID=17065001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24080898A Expired - Fee Related JP3490302B2 (en) 1998-08-26 1998-08-26 Voltage / reactive power control device

Country Status (1)

Country Link
JP (1) JP3490302B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918071B1 (en) 2009-05-06 2009-09-22 주식회사 그린넷파워 Method and module for collaborative control among power compensators
JP2012039818A (en) * 2010-08-10 2012-02-23 Hitachi Ltd Voltage reactive power control system
JP2012123450A (en) * 2010-12-06 2012-06-28 Mitsubishi Electric Corp Reactive power compensator
JP2016178733A (en) * 2015-03-18 2016-10-06 中国電力株式会社 Automatic voltage regulation device and automatic voltage regulation method
JP2017103967A (en) * 2015-12-04 2017-06-08 中国電力株式会社 Power system operation system and power system operation method
CN111162542A (en) * 2018-11-07 2020-05-15 三菱日立电力系统株式会社 Reactive power control device and reactive power control method
CN114069859A (en) * 2021-11-12 2022-02-18 许继集团有限公司 Coordinated power generation control system of new energy power station hybrid distributed machine group

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918071B1 (en) 2009-05-06 2009-09-22 주식회사 그린넷파워 Method and module for collaborative control among power compensators
JP2012039818A (en) * 2010-08-10 2012-02-23 Hitachi Ltd Voltage reactive power control system
JP2012123450A (en) * 2010-12-06 2012-06-28 Mitsubishi Electric Corp Reactive power compensator
JP2016178733A (en) * 2015-03-18 2016-10-06 中国電力株式会社 Automatic voltage regulation device and automatic voltage regulation method
JP2017103967A (en) * 2015-12-04 2017-06-08 中国電力株式会社 Power system operation system and power system operation method
CN111162542A (en) * 2018-11-07 2020-05-15 三菱日立电力系统株式会社 Reactive power control device and reactive power control method
CN114069859A (en) * 2021-11-12 2022-02-18 许继集团有限公司 Coordinated power generation control system of new energy power station hybrid distributed machine group
CN114069859B (en) * 2021-11-12 2024-05-10 许继集团有限公司 Coordinated power generation control system of new energy power station hybrid distributed cluster

Also Published As

Publication number Publication date
JP3490302B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
JP2006223060A (en) Parallel operation controller of power converter
CN111271840A (en) Effective voltage abnormity protection method and device and air conditioning unit
US6657319B2 (en) Electric power system interconnection device
JP2000078752A (en) Voltage/reactive-power controller
JP2012039818A (en) Voltage reactive power control system
JP2008067497A (en) Power supply device for vehicle
CN110380503B (en) Factory power supply fast switching method
JP7155076B2 (en) Controller and power conversion system
JP6658949B1 (en) Uninterruptible power supply system and control method thereof
WO2021117192A1 (en) Power conversion device
JP2006042546A (en) Automatic voltage regulator
JP2001190025A (en) Automatic voltage regulator for power distribution and method of determining cause of reverse power flow
JP4084909B2 (en) Power converter
JPH0937564A (en) Uninterruptible power supply
JP2019146331A (en) Uninterruptible power supply system and control method of the same
JP2656674B2 (en) Power receiving rate control device
JPH0398497A (en) Generator exciter, synchronizer controller, and malfunction detection method for them
JPH05137277A (en) Uninterruptible power supply equipment
JPH08265975A (en) Static reactive power compensator
JPH07336897A (en) Inverter device for distributed power supply and control method thereof
JPH08163781A (en) Self-exciting reactive voltage compensator
JPH10293614A (en) Ltc controller for transformer of power plant
JPH0456096A (en) Power control method for direct current arc furnace
JPH05207650A (en) Controller for dc transmission system
JPH10322912A (en) Stationary type reactive power compensating device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees