JP2000077730A - Porous thermoelectric conversion element - Google Patents

Porous thermoelectric conversion element

Info

Publication number
JP2000077730A
JP2000077730A JP10243560A JP24356098A JP2000077730A JP 2000077730 A JP2000077730 A JP 2000077730A JP 10243560 A JP10243560 A JP 10243560A JP 24356098 A JP24356098 A JP 24356098A JP 2000077730 A JP2000077730 A JP 2000077730A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
insulator
type
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10243560A
Other languages
Japanese (ja)
Other versions
JP3509572B2 (en
Inventor
Futoshi Katsuki
太 香月
Toshiro Tomita
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24356098A priority Critical patent/JP3509572B2/en
Publication of JP2000077730A publication Critical patent/JP2000077730A/en
Application granted granted Critical
Publication of JP3509572B2 publication Critical patent/JP3509572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To contrive to raise the strength of a thermoelectric conversion element consisting of porous semiconductor layers by a method wherein an inorganic functional fiber, which is used as an insulator, is provided between the P-type porous semiconductor layer and the N-type porous semiconductor layer. SOLUTION: An insulation between a P-type porous semiconductor layer 9 of a conductive form and an N-type porous semiconductor layer 10 of a conductive form is made by an inorganic functional fiber 8, which is used as an insulator, to form a P-N junction part 3. One thermoelectric conversion element is formed of the layers 9 and 10, the insulator 8 and an electrode 6 is installed on the element on the uppermost part on the low-temperature contact part side 5 of a branch end on the opposite side to the high-temperature contact part side 4 of the P-N junction part 3, and the electrode 6 is made to connect with the outside. Moreover, elements, which are formed into the entirely same constitution and respectively consist of semiconductor layers 13 and 14 and an insulator 8, are put separately from each other by the same inorganic functional fibers 15 as one used for the insulation between both semiconductor layers of the element under this one thermoelectric conversion element, and are respectively connected with the upper elements through conductors 12 at the low-temperature contact parts of the branch ends.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガス燃焼式の熱電発
電に用いる多孔構造の熱電変換素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion element having a porous structure for use in gas-fired thermoelectric power generation.

【0002】[0002]

【従来の技術】近年、環境問題に関連してエネルギーの
有効利用の観点から、様々なエネルギー変換技術の開発
が進められている。それらの中に、温度差を効果的に電
力に変換し得る可能性のある手段の一つとして熱電発電
がある。熱電とは、例えば温度計測に活用されている熱
電対のように、異種の電気伝導体を接合し接合部の一方
を高温、他方の両分岐端を低温とすると電流が発生する
現象で、現在、より電流発生効率の大きいp型とn型の
半導体による熱電対が、宇宙開発から民生用器具にま
で、様々な形で利用されている。
2. Description of the Related Art In recent years, various energy conversion technologies have been developed from the viewpoint of effective use of energy in relation to environmental problems. Among them, there is thermoelectric power generation as one of the means capable of effectively converting the temperature difference into electric power. Thermoelectricity is a phenomenon in which different types of electrical conductors are joined together, such as thermocouples used for temperature measurement, and current is generated when one of the junctions is set to high temperature and the other end is set to low temperature. Thermocouples of p-type and n-type semiconductors having higher current generation efficiency have been used in various forms from space development to consumer appliances.

【0003】この熱電現象を発電に利用しようとするの
が熱電発電であり、そのための熱電変換用の素子が種々
検討されている。図1は熱電変換用素子の構造を円柱形
状として模式的に示したものであるが、p型(またはn
型)の半導体1とn型(またはp型)の半導体2が、接
合面3によってp−n接合されている。ここで接合面3
と直交する右側の面4を加熱し、分岐端となっている左
側の面5を冷却すると、熱起電力が発生し、電極6によ
って電流を取り出すことができる。右側の面4が高温接
点部であり、左側の面5が低温接点部である。この場
合、高温接点部は平面で、その面からp型およびn型の
半導体の足がぶら下がる形となるので、π型熱電変換素
子とも呼ばれる。
The use of this thermoelectric phenomenon for power generation is thermoelectric power generation, and various thermoelectric conversion elements have been studied. FIG. 1 schematically shows the structure of a thermoelectric conversion element as a columnar shape.
(Type) semiconductor 1 and an n-type (or p-type) semiconductor 2 are pn-joined by a junction surface 3. Here, joining surface 3
When the right side surface 4 orthogonal to the above is heated and the left side surface 5 serving as a branch end is cooled, a thermoelectromotive force is generated and current can be taken out by the electrode 6. The right surface 4 is a high-temperature contact portion, and the left surface 5 is a low-temperature contact portion. In this case, the high-temperature contact portion is a flat surface and the legs of the p-type and n-type semiconductors hang from the surface, and thus are also called π-type thermoelectric conversion elements.

【0004】発電効率から高温接点部と低温接点部の温
度差を大きくしなければならないが、熱伝導による温度
差減少を避けるため、図1の素子の長さLはある程度の
長さが必要である。一方、接合面3は加熱面と直交して
いるので、このp−n接合面の平均温度を高くしておく
には、図1のTを大きくすることはできない。発電など
に用いる場合、耐熱性にすぐれていることが望ましいの
で、半導体には珪化物が選ばれるが、このような材料は
通常極めて脆く、この図1のようなπ字型形状では、接
合部分3に応力が集中し、使用中や素子の製造工程など
におけるわずかな変形で破壊してしまう。このため、p
型とn型の半導体の間の空隙7に絶縁体を挿入し、これ
を回避することがおこなわれる。
The temperature difference between the high-temperature contact portion and the low-temperature contact portion must be increased in view of the power generation efficiency. However, in order to avoid a decrease in the temperature difference due to heat conduction, the length L of FIG. is there. On the other hand, since the bonding surface 3 is orthogonal to the heating surface, T in FIG. 1 cannot be increased to keep the average temperature of the pn bonding surface high. When used for power generation or the like, it is desirable that the semiconductor has excellent heat resistance. Therefore, a silicide is selected for the semiconductor. However, such a material is usually extremely brittle, and the π-shaped shape shown in FIG. The stress concentrates on 3 and is destroyed by a slight deformation during use or in the manufacturing process of the element. Therefore, p
An insulator is inserted into the gap 7 between the type and n-type semiconductors to avoid this.

【0005】例えば、特公昭54-41315号公報には、図1
に示したような素子の空隙7に、絶縁体を挿入する素子
の製造方法の発明を開示している。これは、まず焼結用
の型内に図1の2に対応する半導体化合物粉末を装入
し、その上に空隙に対応する絶縁体粉末と、絶縁体粉末
の層と同じ厚さの接合部に対応する発熱性の複合化合物
粉末を装入し、さらに図1の1に対応する、2とは異な
る電導型の半導体化合物粉末を装入して、これらを加圧
焼結し一体化するものである。また、特開平3-293783号
公報には、半導体としてp型の鉄珪化物(FeSi2
とn型の鉄珪化物を用い、絶縁体にはフォルステライト
(Mg2SiO4)に少量のB23を添加したものを使用
する発明が開示されている。これは、半導体の鉄珪化物
と絶縁体の熱膨張率がほぼ等しいので、加熱冷却など使
用時の熱による応力の発生を抑止し、空隙を埋めること
とも相まって、破損の生じにくい素子とすることができ
るものである。熱膨張率が等しいため、半導体および絶
縁体の原料粉末をホットプレスし熱処理するという製造
過程でも、熱歪みによる割れを生じることなく、良好な
素子を得ることができるとしている。
For example, Japanese Patent Publication No. 54-41315 discloses FIG.
Discloses an invention of a method for manufacturing an element in which an insulator is inserted into the gap 7 of the element as shown in FIG. First, a semiconductor compound powder corresponding to 2 in FIG. 1 is charged into a mold for sintering, and an insulating powder corresponding to a gap and a bonding portion having the same thickness as the insulating powder layer are placed thereon. A heat-generating compound compound powder corresponding to the above is charged, and a conductive compound semiconductor powder different from 2 corresponding to 1 in FIG. 1 is further charged, and these are sintered by pressure and integrated. It is. Japanese Patent Laid-Open Publication No. Hei 3-293783 discloses that a p-type iron silicide (FeSi 2 ) is used as a semiconductor.
And an n-type iron silicide, and an invention using forsterite (Mg 2 SiO 4 ) to which a small amount of B 2 O 3 is added as an insulator. This is because the thermal expansion coefficient of the iron silicide of the semiconductor and that of the insulator are almost equal, so that the generation of stress due to heat during use such as heating and cooling is suppressed, and the element is hardly damaged due to the filling of voids. Can be done. It is stated that since the thermal expansion coefficients are equal, even in a manufacturing process of hot pressing and heat-treating the raw material powder of the semiconductor and the insulator, a good element can be obtained without cracking due to thermal strain.

【0006】この熱電変換素子の温度による熱起電力の
変化、すなわち熱電能は、使用材料によって決定される
ので、できるだけ熱電能のすぐれた材料を使用する必要
がある。このため熱電能の大きい材料の開発努力が種々
おこなわれてきたが、現状ではほぼ限界に近いところま
で改良されているようである。
The change in thermoelectromotive force due to the temperature of the thermoelectric conversion element, that is, the thermoelectric power is determined by the material to be used. Therefore, it is necessary to use a material having as high a thermoelectric power as possible. For this reason, various efforts have been made to develop a material having a large thermoelectric power. However, it seems that the material has been improved to almost the limit at present.

【0007】ところが最近、同じ熱電変換用材料を用い
る場合でも、高温接点部と低温接点部の温度差を大きく
するとともに、温度勾配をできるだけ急峻にすると、電
気出力および発電効率を著しく向上させ得る可能性が明
らかにされた。それによれば、素子の半導体を緻密な固
体からガスの流通できる多孔質の焼結体とし、例えば図
2に示すような素子の場合、円柱の左側の面から多孔質
体に低温の燃料混合ガスを流し込み、右側の面の表面に
て燃焼させる。そうすると、左側の低温接点側は混合ガ
スによって冷却され、右側の高温接点側は火炎により直
接加熱されて、熱伝導率の悪い多孔質体がその間にある
こともあって、高温接点部と低温接点部との間の温度勾
配を著しく大きくすることができ、発電効率を大幅に向
上させ得るのである。このような構造の熱電変換素子を
用いることにより、高効率のガス燃焼式熱発電装置を作
り出すことが期待されている。
However, recently, even when the same thermoelectric conversion material is used, by increasing the temperature difference between the high-temperature junction and the low-temperature junction and making the temperature gradient as steep as possible, the electric output and the power generation efficiency can be significantly improved. Sex was revealed. According to this, the semiconductor of the element is a porous sintered body through which gas can flow from a dense solid. For example, in the case of an element as shown in FIG. 2, a low-temperature fuel mixed gas is applied to the porous body from the left side of the column. And burn on the right side surface. Then, the low-temperature contact side on the left side is cooled by the mixed gas, and the high-temperature contact side on the right side is directly heated by the flame, and there may be a porous body with poor thermal conductivity between them. This makes it possible to significantly increase the temperature gradient between the power generation section and the power generation section, thereby greatly improving the power generation efficiency. By using a thermoelectric conversion element having such a structure, it is expected to produce a highly efficient gas-fired thermoelectric generator.

【0008】気体を十分導通させるには、気孔率が50%
以上必要である。このような多孔質体を製造する方法
は、ある程度大きさの揃った半導体粒子をまず作製し、
これらの粒子同志を加圧焼結することになるが、気孔率
が大きくなれば粒子間の密着部の面積が低下し、多孔質
体の強度は低下してくる。高熱に耐える半導体として珪
化物を用いると、脆い材料を多孔質体とするため、この
熱電変換素子は、緻密な固体を用いるよりも強度が大き
く低下する。ことに、図1のような形状の熱電変換素子
を作ろうとすれば、その接合部分は、わずかな応力で破
壊してしまう。このため、これまでの緻密な固体で構成
された熱電変換素子の場合よりも、その構造、絶縁体の
材質やその使用方法、あるいは素子の製造方法等により
一層の注意を払う必要がある。
In order to conduct gas sufficiently, the porosity must be 50%.
It is necessary. The method of manufacturing such a porous body is to first prepare semiconductor particles having a certain size,
These particles are sintered under pressure. However, if the porosity increases, the area of the adhesion portion between the particles decreases, and the strength of the porous body decreases. When a silicide is used as a semiconductor that withstands high heat, a brittle material is used as a porous body, so that the strength of this thermoelectric conversion element is greatly reduced as compared with the case of using a dense solid. In particular, if a thermoelectric conversion element having a shape as shown in FIG. 1 is to be manufactured, the joint is broken by a slight stress. For this reason, it is necessary to pay more attention to the structure, the material of the insulator, the method of using the same, the method of manufacturing the element, and the like than in the case of the thermoelectric conversion element composed of a dense solid.

【0009】熱電対に用いられるクロメルとアルメルの
金属粒子にてこの多孔質体の熱電変換素子を作製した実
験例がある。この場合、例えば図2に示したような構造
の多孔質体とした円柱形状の熱電変換素子では、上半分
をクロメル、下半分をアルメルとし、円柱の中心軸を通
る半割り縦断面が接合界面である多孔質の焼結体を作
り、円柱右端の熱電対接合端となる厚さTの部分のみ残
して、接合界面の部分を放電加工またはダイヤモンドカ
ッタにて除去し、空隙としている。
[0009] There is an experimental example in which a thermoelectric conversion element of this porous body was manufactured using chromel and alumel metal particles used for a thermocouple. In this case, for example, in a cylindrical thermoelectric conversion element made of a porous body having a structure as shown in FIG. 2, the upper half is made of chromel and the lower half is made of alumel. A porous sintered body is prepared, and only the portion of the thickness T serving as the thermocouple junction end at the right end of the cylinder is left, and the junction interface is removed by electric discharge machining or a diamond cutter to form a void.

【0010】しかしながら、このクロメル−アルメルに
よる熱電変換素子は、その熱起電力が小さく、到底実用
的熱発電装置に使用できるものではない。熱起電力の大
きさと、そのコストの点から、素子用材料は鉄珪化物が
最適と考えられるが、この材料は極めて脆く、Niを主
とする金属合金であるクロメル−アルメルの場合のよう
な、切削などの加工はまず不可能である。このような問
題に対して、例えば特開平9-237920号公報には、多孔質
のp型半導体およびn型半導体を用いた熱電変換素子に
おいて、各半導体の間の空隙、ないしは絶縁部分にセラ
ミック系接着剤を充填させる発明が提示されている。こ
の場合、図2の円柱形の素子として説明すれば、まずp
型またはn型の半導体の粉末にて、所定長さ(L−T)
の円柱をほぼ縦半割りにした形状のブロック9または1
0、および両半導体の粉末にて接合部の層厚Tに相当す
る半円状の両半導体を突き合わせた、p−n接合を含む
同径の円盤状ブロック11を、をそれぞれ焼結して製造
する。円柱を半割りにした形状のp型9およびn型10
のブロックの、円柱半割り面部に絶縁体となるセラミッ
ク系接着剤を塗布して貼り合わせ、円柱とする。セラミ
ック系接着剤は加熱により絶縁体8となる。この円柱底
面に、p−n接合面が貼り合わせ面と平行で、かつ円柱
の円盤の導電型が一致するようにして円盤11を重ね、
仕上げの密着用焼結をおこなって素子を完成させる。こ
の方法により、脆い材料の多孔質体にて、十分使用に耐
える熱変換素子を得ている。またセラミック系接着剤
は、熱膨張率が多孔質半導体と同程度であることが好ま
しいとしている。
However, the thermoelectric conversion element of chromel-alumel has a small thermoelectromotive force and cannot be used for a practical thermoelectric generator. From the viewpoint of the magnitude of the thermoelectromotive force and its cost, the material for the element is considered to be optimally iron silicide. However, this material is extremely brittle, and is similar to the case of chromel-alumel which is a metal alloy mainly composed of Ni. Processing such as cutting is impossible at first. To cope with such a problem, for example, Japanese Patent Application Laid-Open No. 9-237920 discloses that in a thermoelectric conversion element using a porous p-type semiconductor and an n-type semiconductor, a ceramic-based material is used in a gap between semiconductors or in an insulating portion. An invention for filling with an adhesive has been proposed. In this case, if it is described as a cylindrical element in FIG.
-Type or n-type semiconductor powder, predetermined length (LT)
Block 9 or 1 in the shape of a half-column
0, and disc-shaped blocks 11 of the same diameter including a pn junction, in which both semi-circular semiconductors corresponding to the layer thickness T of the junction are abutted with powders of both semiconductors, and manufactured by sintering. I do. P-type 9 and n-type 10 in the shape of a half cylinder
A ceramic adhesive as an insulator is applied to and bonded to the cylinder half-split surface portion of the block to form a cylinder. The ceramic adhesive becomes the insulator 8 by heating. The disk 11 is overlaid on the bottom surface of the cylinder so that the pn junction surface is parallel to the bonding surface, and the conductivity type of the cylinder disk matches.
The element is completed by performing sintering for close adhesion. According to this method, a porous body made of a brittle material is used to obtain a heat conversion element that can sufficiently withstand use. Further, the ceramic adhesive preferably has a coefficient of thermal expansion approximately equal to that of the porous semiconductor.

【0011】このように、多孔質半導体を用いる熱電変
換素子は、脆い材料を用いて形状的に弱い部分を有する
構造にせざるを得ないので、その構成についてはより信
頼性が高い素子を必要とし、そしてより容易な製造方法
が望まれる。
As described above, a thermoelectric conversion element using a porous semiconductor is inevitably made to have a structure having a weak portion in shape using a brittle material. Therefore, the structure requires a more reliable element. A simpler manufacturing method is desired.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、構造
的に十分な強度を有し、かつ性能の優れた多孔質の半導
体を用いる熱電変換素子と、それを容易に製造する方法
の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermoelectric conversion element using a porous semiconductor having a structurally sufficient strength and excellent performance, and a method for easily manufacturing the same. It is in.

【0013】[0013]

【課題を解決するための手段】発電用の熱電変換素子に
用いる半導体は、発電の効率を高めるために、高温の使
用に耐える耐熱性の高い材料でなければならず、そして
ガスが流通し得る多孔質である必要がある。そして、通
過したガスを表面で燃焼させ、高温とするにはガスの導
通がよく、気孔率が50%以上なければならない。
The semiconductor used for the thermoelectric conversion element for power generation must be made of a material having high heat resistance that can withstand high-temperature use in order to increase the efficiency of power generation, and gas can flow therethrough. It must be porous. Then, in order to burn the passed gas on the surface and raise the temperature to a high temperature, gas conduction must be good and the porosity must be 50% or more.

【0014】高温に耐える半導体としてはFeSi2
ど珪化物が使用されるが、これらは材質的に脆く、焼結
して多孔質体にすれば、切削など加工は殆ど不可能であ
る。また素子は、前述のように接合面に応力が集中しや
すい形状なので、半導体の間に絶縁体を埋め込む形で補
強する必要がある。半導体は、FeSi2の場合、少量
添加する元素によりp型またはn型に変化するので、2
種の半導体の間には熱膨張率の差はないが、半導体の間
に入る絶縁体は、その熱膨張率が、半導体と同じでなけ
れば、温度変化により応力が発生し、素子を破壊するこ
とになる。すなわち、得られた素子がわずかな衝撃で破
壊するようなことはあってはならない。
As a semiconductor that can withstand high temperatures, silicides such as FeSi 2 are used. However, these materials are brittle in material, and if sintered into a porous material, machining such as cutting is almost impossible. Since the element has a shape in which stress tends to concentrate on the bonding surface as described above, it is necessary to reinforce the element by embedding an insulator between semiconductors. In the case of FeSi 2, the semiconductor changes to p-type or n-type depending on the element added in a small amount.
Although there is no difference in the coefficient of thermal expansion between the semiconductors, if the coefficient of thermal expansion of the insulator between the semiconductors is not the same as that of the semiconductor, stress is generated due to temperature change and the element is destroyed. Will be. That is, the obtained element must not be destroyed by a slight impact.

【0015】本発明者らは、このような熱電変換素子の
様々な要求に対し、とくに半導体間に挿入する絶縁体に
着目して種々検討をおこなった。熱電変換素子を製造す
る際、前述の特公昭54-41315号公報の方法のように、焼
結用の型の中に、原料粉末を半導体層、絶縁層および結
合部の層、その上にもう一つの半導体層、と装入して、
これらを加圧焼結し一体化する方法では、多孔質体の場
合、絶縁体層および接合層の形成に不安がある。ことに
絶縁体層を薄くしたい場合、絶縁層の形成が不十分とな
り、屡々絶縁不良を生じることがあった。また、各半導
体層および絶縁体等をあらかじめそれぞれ所要形状のブ
ロックに仮焼結し、これらを組み立てて最終構成とし加
圧本焼結すれば、このような不安はなくなるが、気孔率
を十分確保しようとすると、仮焼結後のブロックがきわ
めて不安定で、良品を得ること困難であった。その上こ
の方法は製造工程が大幅に増大する。このような検討の
結果、絶縁体に無機系機能繊維を利用することが好適で
あることを見出した。
The present inventors have conducted various studies on such various requirements for thermoelectric conversion elements, paying particular attention to an insulator inserted between semiconductors. When manufacturing a thermoelectric conversion element, as in the method of Japanese Patent Publication No. 54-41315 described above, the raw material powder is placed in a sintering mold, and the semiconductor layer, the insulating layer, the layer of the bonding portion, and the Charge with one semiconductor layer,
In the method of integrating these by pressure sintering, in the case of a porous body, there is anxiety about formation of the insulating layer and the bonding layer. In particular, when it is desired to reduce the thickness of the insulating layer, the formation of the insulating layer becomes insufficient, and the insulating failure often occurs. If each semiconductor layer, insulator, etc. are preliminarily sintered into blocks each having a required shape in advance and assembled to form a final structure and subjected to pressure main sintering, such anxiety disappears, but sufficient porosity is secured. If this is attempted, the block after the preliminary sintering is extremely unstable, and it is difficult to obtain a good product. In addition, this method greatly increases the manufacturing steps. As a result of such studies, it has been found that it is preferable to use inorganic functional fibers for the insulator.

【0016】ここで、無機系機能繊維というのは、シー
トないしはブランケット状に成型してある、耐熱温度が
1200℃以上の耐熱セラミック繊維のことである。このシ
ートを用い、例えば図2に示す形態の熱電変換素子を製
造する場合、型内に一方の半導体の原料粉末を装入し、
その上に、p−n接合部を残した長さとした所要厚さの
無機系機能繊維シートを置き、次いでもう一方の半導体
の原料粉末を装入して、多孔質体が得られるように加圧
焼結をおこなう。それによって使用上十分な強度を有
し、製造時、および使用時の加熱冷却などの熱衝撃にも
破損のおそれのない、多孔質電熱変換素子を得ることが
できるのである。
Here, the inorganic functional fiber is formed into a sheet or a blanket and has a heat resistant temperature.
Heat resistant ceramic fiber of 1200 ° C or higher. Using this sheet, for example, when manufacturing a thermoelectric conversion element of the form shown in FIG. 2, the raw material powder of one semiconductor is charged into a mold,
On top of this, an inorganic functional fiber sheet having a required thickness with the pn junction remaining is placed, and then another semiconductor raw material powder is charged so that a porous body is obtained. Perform pressure sintering. This makes it possible to obtain a porous electrothermal conversion element which has sufficient strength in use and is not likely to be damaged by thermal shock such as heating and cooling during production and use.

【0017】無機系機能繊維を熱電変換素子の絶縁体と
して用いると、まず十分な電気絶縁性を有することは言
うまでもないが、多孔質半導体と同等ないしはそれ以上
の通気性があるので、その使用によるガスの導通阻害が
なく、さらに多少の変形が可能なため、昇温降温時の多
孔質半導体の膨張収縮を吸収することができ、絶縁体と
の熱膨張率の相違による破損のおそれがなくなる。ま
た、加圧焼結時に半導体粒子が繊維にめり込むことから
機械的な結合も得られ、その際のわずかな変形は、二つ
の半導体の接合面におけるp−n接合を確実にする効果
もあると考えられた。
When the inorganic functional fiber is used as an insulator of a thermoelectric conversion element, it is needless to say that it has sufficient electric insulation, but it has air permeability equal to or higher than that of a porous semiconductor. Since there is no gas conduction hindrance and some deformation is possible, the expansion and contraction of the porous semiconductor at the time of heating and cooling can be absorbed, and there is no risk of breakage due to the difference in the coefficient of thermal expansion from the insulator. In addition, mechanical bonding is also obtained because the semiconductor particles sink into the fibers during pressure sintering, and a slight deformation at that time also has the effect of ensuring the pn junction at the bonding surface of the two semiconductors. it was thought.

【0018】このように、無機系機能繊維を絶縁体とし
て利用することにより、多孔質半導体による熱電変換素
子の強度を向上させることができ、しかも1回の焼結工
程にて、素子を製造することができるようになる。そこ
でこの手法を用いて、図3にその一例を模式的に示すよ
うに、熱電変換素子を複数個直列に接続した積層素子の
作製を試みた。これは、p型またはn型の相互に電導型
の異なる半導体を、間に無機系機能繊維の絶縁体を挟ん
で交互に順に積み上げた構造になっており、高温側には
p−n接合、低温側には導体接合を設置し、高温接点部
と低温接点部を同一方向にして、直列に接続したもので
ある。図では5ヶの素子を直列に接続した場合を示す
が、得られる電圧を高くするため素子の直列接続数を増
したい場合は、同様にして積み上げていけばよい。この
ようにして、複数個の素子を焼結用の型内にて、半導体
粒子粉、無機系機能繊維シート、導電体用粉末等の素材
を積層して直列接続となるように構成させ、焼結をおこ
なえば、一度に一体化焼結が可能であることが確認でき
たのである。
As described above, by using the inorganic functional fiber as the insulator, the strength of the thermoelectric conversion element made of the porous semiconductor can be improved, and the element can be manufactured by one sintering step. Will be able to do it. Thus, using this technique, an attempt was made to fabricate a laminated element in which a plurality of thermoelectric conversion elements were connected in series, as schematically shown in FIG. This has a structure in which p-type or n-type semiconductors having mutually different conductivity types are alternately stacked in order with an insulator made of inorganic functional fiber interposed therebetween, and a pn junction, A conductor joint is provided on the low-temperature side, and the high-temperature contact section and the low-temperature contact section are connected in series with the same direction. The figure shows a case in which five elements are connected in series. However, if it is desired to increase the number of serially connected elements in order to increase the obtained voltage, they may be stacked in the same manner. In this way, a plurality of elements are stacked in a sintering mold to form a series connection by laminating materials such as semiconductor particle powder, inorganic functional fiber sheet, and conductor powder. By sintering, it was confirmed that integrated sintering was possible at once.

【0019】この積層素子は、素子内および素子間に用
いる絶縁体に通気性があるため、積層素子全体としてガ
スの導通に対する抵抗が少なく、ガス燃焼式の熱発電に
好適である。また、積層体としても、製造過程や使用時
の加熱冷却により、破損を生じることはなく、十分な強
度を有していることがわかった。
In this laminated element, since the insulator used in and between the elements has air permeability, the laminated element as a whole has low resistance to gas conduction, and is suitable for gas-fired thermal power generation. It was also found that the laminate did not break due to heating and cooling during the manufacturing process or during use, and had sufficient strength.

【0020】以上のような検討結果に基づく本発明の要
旨は、次のとおりである。
The gist of the present invention based on the above study results is as follows.

【0021】(1)p型多孔質半導体とn型多孔質半導体
との接合部を有する熱電変換素子であって、上記各半導
体の間に設けられた絶縁体が無機系機能繊維からなるこ
とを特徴とする多孔質熱電変換素子。
(1) A thermoelectric conversion element having a junction between a p-type porous semiconductor and an n-type porous semiconductor, wherein an insulator provided between the semiconductors is made of an inorganic functional fiber. Characteristic porous thermoelectric conversion element.

【0022】(2) 上記(1)の熱電変換素子が、隣り合う
素子間の絶縁体として無機系機能繊維を挟んで、複数個
積層されていることを特徴とする多孔質熱電変換素子。
(2) A porous thermoelectric conversion element, wherein a plurality of the thermoelectric conversion elements of the above (1) are stacked with an inorganic functional fiber interposed therebetween as an insulator between adjacent elements.

【0023】(3) p型およびn型の多孔質半導体の素材
と、シート状の無機系機能繊維とを積層した状態にて型
内に配置し、一体化焼結をおこなうことを特徴とする上
記(1)または(2)の多孔質熱電変換素子の製造方法。
(3) The material is characterized in that p-type and n-type porous semiconductor materials and sheet-like inorganic functional fibers are placed in a laminated state in a mold and integrated sintering is performed. The method for producing a porous thermoelectric conversion element according to the above (1) or (2).

【0024】[0024]

【発明の実施の形態】本発明の実施の形態を具体例にて
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to specific examples.

【0025】熱電変換素子に用いる半導体の種類は、と
くに限定するものではないが、熱電能が高く、高温に耐
えると言う点で珪化物の適用が好ましく、その中でも、
コスト的にも有利と言う点で、FeSi2の使用が望ま
しい。FeSi2の場合、通常おこなわれているように
Feの一部をCoに置き換えるとp型、Mnに置き換え
るとn型の半導体をそれぞれ得ることができる。これら
の組成の素材を溶製し、ガスアトマイズ法などによって
焼結用原料の球状粒子の粉末を製造する。必要とする焼
結体の強度や気孔率により、粒子径を選定すればよい。
The type of semiconductor used for the thermoelectric conversion element is not particularly limited, but it is preferable to use a silicide in terms of high thermoelectric power and enduring high temperature.
The use of FeSi 2 is desirable in terms of cost advantage. In the case of FeSi 2 , p-type and n-type semiconductors can be obtained by replacing part of Fe with Co and Mn, respectively, as usual. Materials having these compositions are melted, and powder of spherical particles as a raw material for sintering is produced by a gas atomizing method or the like. The particle size may be selected according to the required strength and porosity of the sintered body.

【0026】無機系機能繊維は、通常耐熱セラミックス
繊維と呼ばれるもので、広く使用されている純度の高い
アルミナとシリカを重量比でほぼ半々に配合し溶融紡糸
した繊維を、シート状に加工したものを用いる。耐熱温
度が1200℃以上で、かさ密度0.30g/cc以下、加熱によ
る線収縮率が2.0%以下(1100℃、2時間加熱)であれ
ばよい。
The inorganic functional fiber is usually called a heat-resistant ceramic fiber, and is obtained by blending widely used high-purity alumina and silica in a weight ratio of about half and melt-spinning the fiber into a sheet. Is used. It suffices if the heat resistance temperature is 1200 ° C. or more, the bulk density is 0.30 g / cc or less, and the linear shrinkage rate by heating is 2.0% or less (1100 ° C., heating for 2 hours).

【0027】図2に示す形状の、外径30mm、高さ20mmの
円柱状素子を作製した。焼結用のカーボン型内に、径約
500μmのp型またはn型のFeSi2半導体9、10
(この場合は、円盤11との境界はなく、一体とする)
の粒子粉と、幅30mm、長さ17mmの厚さ2mmの無機系機能
繊維シート(東芝モノフラックス(株)製、FIBERFRAX
−型番:ペーパー#300)8を装入配置し、加圧力を50k
gf/cm2、加熱温度780℃、加熱時間5分として焼結をお
こなった。p−n接合部分3の面積は幅30mm、長さ3mm
である。焼結後の素子を型から取りだして観察した結果
では、亀裂、破損等は全く見いだせなかった。分岐端側
にAgの薄帯を置き同時に焼結して電極6を形成させ
た。 起電力の測定のため、得られた素子のp−n接点
側をホットプレートにて加熱し、分岐端側を液体窒素で
冷却した容器に接触させた。素子の高温接点部と低温接
点部の温度を測定した結果を図4に示すが、高温部は22
0℃、低温部は−30℃でほぼ温度平衡に達した。その際
の高温部と低温部との温度差と、熱起電力の測定結果を
図5に示す。温度差がほぼ平衡に達した時の起電力は、
328μV/℃であった。温度差に対応して電圧値が増大
していて、熱起電力がFeSi2のゼーベック係数(熱
電能)350μV/℃とよく対応していることから、この
無機系機能繊維シートを絶縁体として用いた構造の熱電
変換素子の熱電性能は、十分満足すべきものであること
が明らかであった。
A columnar element having an outer diameter of 30 mm and a height of 20 mm having the shape shown in FIG. 2 was produced. Approximate diameter in carbon mold for sintering
500 μm p-type or n-type FeSi 2 semiconductors 9, 10
(In this case, there is no boundary with the disk 11 and it is integrated)
Particle powder and inorganic functional fiber sheet of 30 mm width, 17 mm length and 2 mm thickness (manufactured by Toshiba Monoflux Co., Ltd., FIBERFRAX
-Model number: Paper # 300) 8 is placed and the pressure is 50k
Sintering was performed at gf / cm 2 , a heating temperature of 780 ° C., and a heating time of 5 minutes. The area of the pn junction 3 is 30 mm wide and 3 mm long
It is. As a result of taking out the element after sintering from the mold and observing it, no crack, breakage or the like was found at all. An electrode 6 was formed by placing an Ag ribbon on the branch end side and sintering at the same time. To measure the electromotive force, the pn contact side of the obtained device was heated with a hot plate, and the branch end side was brought into contact with a container cooled with liquid nitrogen. FIG. 4 shows the results of measuring the temperatures of the high-temperature contact portion and the low-temperature contact portion of the device.
At 0 ° C, the temperature in the low temperature part reached almost temperature equilibrium at -30 ° C. FIG. 5 shows the measurement result of the temperature difference between the high temperature part and the low temperature part and the thermoelectromotive force at that time. The electromotive force when the temperature difference almost reaches equilibrium is
328 μV / ° C. Since the voltage value increases in response to the temperature difference and the thermoelectromotive force well corresponds to the Seebeck coefficient (thermoelectric power) of 350 μV / ° C of FeSi 2 , this inorganic functional fiber sheet is used as an insulator. It was clear that the thermoelectric performance of the thermoelectric conversion element having the above structure was sufficiently satisfactory.

【0028】つぎに、これら熱電変換素子を複数個直列
に接続して積層する構造の素子について説明する。図3
にその形状を模式的に示す。この図で、9または10と
して示すのはp型またはn型の導電形式の異なる多孔質
半導体で、無機系機能繊維8によって絶縁され、3にお
いてp−n接合を形成する。したがって、半導体9、1
0,および絶縁体8で一つの熱電変換素子を形成し、p
−n接合部の高温接点部側4とは反対側の分岐端の低温
接点部側5の最上部の素子には電極6を設置し外部と接
続させる。この下に全く同じ構成の半導体13、14、
および絶縁体8からなる素子を、素子の両半導体の絶縁
に用いたものと同じ無機系機能繊維15で分離して置
き、分岐端の低温接点部にて、導電体12によって上の
素子と接続する。これによって、2つの熱電変換素子
を、高温接点部と低温接点部との向きが揃うようにし
て、直列に接続できる。これを繰り返せば、さらに多数
個の積層素子が得られる。
Next, an element having a structure in which a plurality of these thermoelectric conversion elements are connected in series and stacked will be described. FIG.
Fig. 2 schematically shows the shape. In this figure, reference numerals 9 and 10 denote p-type or n-type porous semiconductors having different conductive types, which are insulated by the inorganic functional fibers 8 and form a pn junction at 3. Therefore, the semiconductors 9, 1
0 and the insulator 8 to form one thermoelectric conversion element, and p
An electrode 6 is provided on the uppermost element on the low-temperature contact portion side 5 at the branch end opposite to the high-temperature contact portion side 4 of the -n junction and connected to the outside. Below this, semiconductors 13, 14 of exactly the same configuration,
And the element composed of the insulator 8 are separated by the same inorganic functional fiber 15 used for insulating both semiconductors of the element, and connected to the upper element by the conductor 12 at the low-temperature contact portion at the branch end. I do. Thereby, two thermoelectric conversion elements can be connected in series such that the directions of the high-temperature contact portion and the low-temperature contact portion are aligned. By repeating this, a larger number of laminated elements can be obtained.

【0029】この図3に示した構造の、3個の素子を直
列に接続した素子を試作し、起電力を測定した。素子の
幅は30mm、長さは30mmとし、それぞれの半導体の厚さは
いずれも5mmで、p−n接合部3の幅は3mmとした。した
がって絶縁体として挿入する無機系機能繊維シート8は
厚さ2mm、幅30mm、長さ27mmである。隣接する素子との
絶縁体15にも同じシートを用い、p−n接合部3とは
反対側の分岐端部には、Ag導電体12を挿入した。す
なわち隣接する素子の直列接続のための導電体の寸法
は、幅3mm長さ30mmである。また、得られた積層素子の
高さは、3素子複合して40mmである。
An element having the structure shown in FIG. 3 and having three elements connected in series was prototyped, and the electromotive force was measured. The width of the element was 30 mm, the length was 30 mm, the thickness of each semiconductor was 5 mm, and the width of the pn junction 3 was 3 mm. Therefore, the inorganic functional fiber sheet 8 inserted as an insulator has a thickness of 2 mm, a width of 30 mm, and a length of 27 mm. The same sheet was used for the insulator 15 with the adjacent element, and the Ag conductor 12 was inserted at the branch end opposite to the pn junction 3. That is, the size of the conductor for connecting the adjacent elements in series is 3 mm in width and 30 mm in length. Further, the height of the obtained laminated element is 40 mm in a composite of three elements.

【0030】この積層素子の作製は、前述の単体の素子
と同様、径約500μmのp型またはn型のFeSi2半導
体粒子粉と、前記の無機系機能繊維シートを用い、カー
ボン型内にこれらを図3の状態に積層装入した。導電体
の素材としてはAgの薄帯を用いた。これらを先の単体
と同様、加圧力を50kgf/cm2、加熱温度780℃、加熱時
間5分として焼結をおこなった。焼結後、積層素子を型
から取りだし、亀裂、破損等等の有無を調査したが、い
ずれも全く認められなかった。
As in the case of the above-described single element, this laminated element is manufactured by using p-type or n-type FeSi 2 semiconductor particle powder having a diameter of about 500 μm and the above-mentioned inorganic functional fiber sheet in a carbon mold. Was stacked and charged in the state shown in FIG. An Ag ribbon was used as the material of the conductor. These were sintered in the same manner as in the case of the simple substance, with a pressing force of 50 kgf / cm 2 , a heating temperature of 780 ° C., and a heating time of 5 minutes. After sintering, the laminated element was removed from the mold and examined for cracks, breakage, and the like, but none of them was recognized.

【0031】先の単体素子と同様、ホットプレートと冷
却容器を用いて、この積層素子に温度差を印加し熱起電
力を測定した結果を図6に示す。温度差の増大とともに
起電力が増加しており、温度差250℃における熱起電力
は、0.25Vを示した。これから求まる熱電変換素子1ヶ
当たりのゼーベック係数は、333μV/℃で、いずれの
素子も問題なく作動していることがわかる。
FIG. 6 shows the results of measuring the thermoelectromotive force by applying a temperature difference to this laminated element using a hot plate and a cooling vessel, as in the case of the single element. The electromotive force increased with an increase in the temperature difference, and the thermoelectromotive force at a temperature difference of 250 ° C. was 0.25 V. The Seebeck coefficient per thermoelectric conversion element determined from this is 333 μV / ° C., and it can be seen that all elements operate without any problem.

【0032】このように、絶縁体として無機系機能繊維
シートを用いることによって、熱電変換素子を一定の体
積内に多数配置することができ、しかも、一度の焼結工
程で一体化させ製造することができる。
As described above, by using an inorganic functional fiber sheet as an insulator, a large number of thermoelectric conversion elements can be arranged in a fixed volume, and furthermore, the thermoelectric conversion elements can be integrated and manufactured in one sintering step. Can be.

【0033】[0033]

【発明の効果】本発明は、従来その製造が容易でなく、
また使用中に破損を生じやすい多孔質の半導体による熱
電変換素子を、その強度を向上させ、かつより少ない焼
結工程で製造できるようにするものである。この素子の
構成は、複数の素子を一体化した積層素子とすることを
容易にし、熱電発電装置の単位体積当たりの起電力を増
大させる効果があり、熱電発電の実用化促進に有意であ
る。
According to the present invention, conventionally, the production thereof has been difficult,
It is another object of the present invention to improve the strength of a thermoelectric conversion element made of a porous semiconductor which is liable to be damaged during use, and to manufacture the thermoelectric conversion element with fewer sintering steps. The configuration of this element has an effect of facilitating the formation of a laminated element in which a plurality of elements are integrated, and has an effect of increasing the electromotive force per unit volume of the thermoelectric generator, which is significant in promoting the practical use of thermoelectric generation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱電変換素子の構造を説明する概念図である。FIG. 1 is a conceptual diagram illustrating the structure of a thermoelectric conversion element.

【図2】多孔質半導体を用いた熱電変換素子の模式図で
ある。
FIG. 2 is a schematic diagram of a thermoelectric conversion element using a porous semiconductor.

【図3】多孔質半導体を用いた複数素子による積層型の
熱電変換素子の模式図である。
FIG. 3 is a schematic diagram of a stacked thermoelectric conversion element including a plurality of elements using a porous semiconductor.

【図4】試作した多孔質半導体による熱電変換素子の試
験時の高温接点部と低温接点部の温度変化を示す図であ
る。
FIG. 4 is a diagram showing a change in temperature between a high-temperature contact portion and a low-temperature contact portion during a test of a thermoelectric conversion element made of a trial porous semiconductor.

【図5】多孔質半導体による熱電変換素子の、高、低温
部の温度差と起電力を示す図である。
FIG. 5 is a diagram showing a temperature difference and an electromotive force at high and low temperature portions of a thermoelectric conversion element made of a porous semiconductor.

【図6】熱電変換素子を3ヶ用いた積層型熱電変換素子
の高、低温部の温度差と起電力を示す図である。
FIG. 6 is a diagram showing a temperature difference and an electromotive force at high and low temperature portions of a laminated thermoelectric conversion element using three thermoelectric conversion elements.

【符号の説明】[Explanation of symbols]

1 p型(またはn型)半導体 2 n型(またはp型)半導体 3 p−n接合面 4 高温接点面 5 低温接点面 6 電極 7 半導体間の空隙 8 絶縁体 9 p型(またはn型)多孔質半導体 10 n型(またはp型)多孔質半導体 11 中央部にp−n接合面を有する半円状のp型およ
びn型多孔質半導体を突き合わせた円盤 12 導電体 13 p型(またはn型)多孔質半導体 14 n型(またはp型)多孔質半導体 15 絶縁体
Reference Signs List 1 p-type (or n-type) semiconductor 2 n-type (or p-type) semiconductor 3 pn junction surface 4 high-temperature contact surface 5 low-temperature contact surface 6 electrode 7 gap between semiconductors 8 insulator 9 p-type (or n-type) Porous semiconductor 10 n-type (or p-type) porous semiconductor 11 Disk formed by abutting semicircular p-type and n-type porous semiconductors having a pn junction surface at the center 12 Conductor 13 p-type (or n) Type) porous semiconductor 14 n-type (or p-type) porous semiconductor 15 insulator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】p型多孔質半導体とn型多孔質半導体との
接合部を有する熱電変換素子であって、上記各半導体の
間に設けられた絶縁体が無機系機能繊維からなることを
特徴とする多孔質熱電変換素子。
1. A thermoelectric conversion element having a junction between a p-type porous semiconductor and an n-type porous semiconductor, wherein an insulator provided between the semiconductors is made of an inorganic functional fiber. Porous thermoelectric conversion element.
【請求項2】請求項1に記載の熱電変換素子が、隣り合
う素子間の絶縁体として無機系機能繊維を挟んで、複数
個積層されていることを特徴とする多孔質熱電変換素
子。
2. A porous thermoelectric conversion element, wherein a plurality of the thermoelectric conversion elements according to claim 1 are laminated with an inorganic functional fiber interposed therebetween as an insulator between adjacent elements.
【請求項3】p型およびn型の多孔質半導体の素材と、
シート状の無機系機能繊維とを積層した状態にて型内に
配置し、一体化焼結をおこなうことを特徴とする請求項
1または2に記載の多孔質熱電変換素子の製造方法。
3. A p-type and n-type porous semiconductor material,
The method for producing a porous thermoelectric conversion element according to claim 1, wherein the porous thermoelectric conversion element is arranged in a mold in a state where the inorganic functional fiber in a sheet form is laminated, and integrated sintering is performed.
JP24356098A 1998-08-28 1998-08-28 Porous thermoelectric conversion element Expired - Fee Related JP3509572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24356098A JP3509572B2 (en) 1998-08-28 1998-08-28 Porous thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24356098A JP3509572B2 (en) 1998-08-28 1998-08-28 Porous thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2000077730A true JP2000077730A (en) 2000-03-14
JP3509572B2 JP3509572B2 (en) 2004-03-22

Family

ID=17105671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24356098A Expired - Fee Related JP3509572B2 (en) 1998-08-28 1998-08-28 Porous thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3509572B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298128A (en) * 2002-03-28 2003-10-17 Shizuoka Prefecture Method of manufacturing thermoelectric conversion element
WO2010003629A2 (en) * 2008-07-08 2010-01-14 Max-Planck-Gesellschaft Zur Förderung Der Wissenschaft E. V. Thermoelectric apparatus and methods of manufacturing the same
JP2010205883A (en) * 2009-03-03 2010-09-16 Tokyo Univ Of Science Thermoelectric conversion element and thermoelectric conversion module
JP2014090101A (en) * 2012-10-30 2014-05-15 Shigeyuki Tsurumi Thermoelectric conversion element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221353A (en) * 1994-02-08 1995-08-18 Isuzu Motors Ltd Thermoelectric element
JPH0832128A (en) * 1994-07-12 1996-02-02 Mitsubishi Materials Corp Thermoelectric element
JPH08222771A (en) * 1995-02-10 1996-08-30 Tokyo Gas Co Ltd Thermoelectric power generation element and thermoelectric power generation equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221353A (en) * 1994-02-08 1995-08-18 Isuzu Motors Ltd Thermoelectric element
JPH0832128A (en) * 1994-07-12 1996-02-02 Mitsubishi Materials Corp Thermoelectric element
JPH08222771A (en) * 1995-02-10 1996-08-30 Tokyo Gas Co Ltd Thermoelectric power generation element and thermoelectric power generation equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298128A (en) * 2002-03-28 2003-10-17 Shizuoka Prefecture Method of manufacturing thermoelectric conversion element
WO2010003629A2 (en) * 2008-07-08 2010-01-14 Max-Planck-Gesellschaft Zur Förderung Der Wissenschaft E. V. Thermoelectric apparatus and methods of manufacturing the same
WO2010003629A3 (en) * 2008-07-08 2010-05-27 Max-Planck-Gesellschaft Zur Förderung Der Wissenschaft E. V. Thermoelectric apparatus and methods of manufacturing the same
JP2010205883A (en) * 2009-03-03 2010-09-16 Tokyo Univ Of Science Thermoelectric conversion element and thermoelectric conversion module
JP2014090101A (en) * 2012-10-30 2014-05-15 Shigeyuki Tsurumi Thermoelectric conversion element

Also Published As

Publication number Publication date
JP3509572B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP2001210879A (en) High-output porous thermoelectric conversion element
RU2550799C2 (en) High-temperature high performance thermoelectric module
CN101711436B (en) Glass-ceramic thermoelectric module
JP2013510417A5 (en)
TWI505522B (en) Method for manufacturing thermoelectric conversion module
US3400452A (en) Process for producing thermoelectric elements
US20020189661A1 (en) Thermoelectric unicouple used for power generation
JPH1052077A (en) Thermoelectric module
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
JP2013026334A (en) Stacked thermoelectric conversion module
KR20140021522A (en) Thermogenerator and process for producing a thermogenerator
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
CN105470379A (en) Thermoelectric generator, in particular for motor vehicle
CN102891248B (en) Flexible thermoelectric conversion system and manufacturing method thereof
JP3509572B2 (en) Porous thermoelectric conversion element
JP6778968B2 (en) Thermoelectric cell and thermoelectric module
JP2000232244A (en) Thermionic generation device
JP2884068B2 (en) Manufacturing method of thermoelectric conversion element
CN102237486A (en) Thermoelectric modules
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
JP3469811B2 (en) Line type thermoelectric conversion module
JP3451456B2 (en) Thermoelectric generator, method of manufacturing the same, and thermoelectric generator
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JPH07221352A (en) Layered thermoelectric conversion device, subunit for thermoelectric power generation, and power generating unit
JP3585565B2 (en) Thermoelectric element using porous metal

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees