JP2000077321A - Projection exposure method and projection aligner - Google Patents

Projection exposure method and projection aligner

Info

Publication number
JP2000077321A
JP2000077321A JP10262431A JP26243198A JP2000077321A JP 2000077321 A JP2000077321 A JP 2000077321A JP 10262431 A JP10262431 A JP 10262431A JP 26243198 A JP26243198 A JP 26243198A JP 2000077321 A JP2000077321 A JP 2000077321A
Authority
JP
Japan
Prior art keywords
reticle
projection exposure
projection
exposure apparatus
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10262431A
Other languages
Japanese (ja)
Inventor
Osamu Konuma
修 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10262431A priority Critical patent/JP2000077321A/en
Publication of JP2000077321A publication Critical patent/JP2000077321A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of projection exposure and a projection aligner with a stable focus image which has a large depth of focus by compensating distortion in an image face, that is changed in each illumination mode shifted by an illumination-light deforming means or a distortion of the image face caused by an exposure environment or exposure history. SOLUTION: A reticle is illuminated by an illuminating system, and a pattern is formed on the reticle. Then, the pattern is transcribed by exposure on a photosensitive substrate by a projection optical system. In this case, when the distribution of the strength of light on a pupil face in the projection optical system is changed by an illumination-light deforming means, the reticle is deformed for each deformed state of illumination light through a reticle deforming means to compensate the distortion of the image face of the transcribed pattern.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレチクル上の回路パ
ターンを投影光学系を通して感光基板上に投影露光し転
写する投影露光方法及び投影露光装置に関し、特に投影
光学系の像面歪の補正を行う投影露光方法及び投影露光
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure method and a projection exposure apparatus for projecting and exposing a circuit pattern on a reticle onto a photosensitive substrate through a projection optical system and transferring the same, and more particularly, to correcting image plane distortion of the projection optical system. The present invention relates to a projection exposure method and a projection exposure apparatus.

【0002】[0002]

【従来の技術】近年、集積回路の最小線幅はサブミクロ
ンのオーダーに達し、投影露光装置に対する解像線幅や
重ね合せ精度への要求はますます厳しくなっている。こ
うした要求に答えるため、投影露光技術では多方面から
様々な技術革新がなされてきた。例えば解像度向上では
投影レンズの開口数の拡大とともに、使用波長の短波長
化が行なわれ、更に種々の超解像技術が提案、利用され
てきた。
2. Description of the Related Art In recent years, the minimum line width of an integrated circuit has reached the order of submicrons, and the demand for a resolution line width and overlay accuracy for a projection exposure apparatus has become increasingly severe. In order to respond to such demands, various technological innovations have been made in projection exposure technology from various aspects. For example, to improve the resolution, the numerical aperture of the projection lens has been increased and the wavelength used has been shortened, and various super-resolution techniques have been proposed and used.

【0003】超解像技術としてはハーフトーン型やレベ
ンソン型の位相シフトマスク等のマスク(レチクル)技
術、可変σ値、輪帯照明、斜照明及び4 開口照明等の変
形照明技術、結像系の瞳を操作する瞳フィルター技術、
更にはそれらの組み合わせ技術があげられる。
[0003] Super-resolution techniques include mask (reticle) techniques such as halftone and Levenson type phase shift masks, variable σ values, modified illumination techniques such as annular illumination, oblique illumination and four-aperture illumination, and imaging systems. Pupil filter technology to control the pupil of the eye,
Further, there may be mentioned a combination technique thereof.

【0004】これらの技術革新により、多様化する回路
パターン形状を高解像で形成することが可能となった。
[0004] These technological innovations have made it possible to form diversified circuit pattern shapes with high resolution.

【0005】解像性能の向上は一方で、投影光学系に厳
しいレベルの製造技術と安定性を求めることとなった。
そのため、製造精度の向上は勿論のこと、製造公差によ
って生じたエラーをいかに修正するかといった問題や、
気圧や温度等の露光環境の影響をいかに補正するかに多
大な努力がなされている。
[0005] On the other hand, the improvement of the resolution performance has demanded a severe level of manufacturing technology and stability in the projection optical system.
As a result, there are issues such as how to correct errors caused by manufacturing tolerances, as well as improving manufacturing accuracy,
A great deal of effort has been made to compensate for the effects of exposure environments such as atmospheric pressure and temperature.

【0006】[0006]

【発明が解決しようとする課題】ところで投影光学系の
重要な結像性能の一つに像面の歪、中でも像面湾曲とい
われ、平面である基板上に結像面が湾曲されて投影され
る収差がある。像面湾曲量が焦点深度を越えて大きい場
合には1 ショットの露光領域の一部がぼけて転写され、
露光領域全体で均一な線幅が得られず、好ましくない。
もともと像面湾曲は投影光学系のレンズ設計の段階では
許容範囲に入る十分小さな値に収められているが、実際
のレンズでは製造誤差や露光環境変化、レチクル(マス
ク)の自重たわみ等により残存する像面湾曲が発生す
る。残存像面湾曲の量は近年の解像線幅の微細化ととも
に無視できない量となってきた。
One of the important imaging performances of the projection optical system is distortion of an image plane, particularly, curvature of field, and the image plane is curved and projected on a flat substrate. There are aberrations. If the curvature of field is large beyond the depth of focus, a part of the exposure area of one shot is transferred with blurring,
A uniform line width cannot be obtained over the entire exposure area, which is not preferable.
Originally, the field curvature is set to a sufficiently small value within an allowable range at the stage of designing the lens of the projection optical system, but the actual lens remains due to a manufacturing error, a change in exposure environment, a deflection of the reticle (mask) under its own weight, and the like. Field curvature occurs. The amount of the residual field curvature has become a non-negligible amount with the recent reduction in the resolution line width.

【0007】像面湾曲を補正する時は、他の光学系の
歪、例えば球面収差やコマ収差、歪曲収差等を悪化させ
ることなく補正する必要がある。従来の投影光学系では
構成するレンズ群の間隔、あるいはレンズ間の密閉され
気圧室の圧力を微小変化させて補正を行なっているが、
投影光学系に仕込む機構そのものが複雑になったり、補
正に要する工数が増大したりして問題が多い。
When correcting the curvature of field, it is necessary to correct the distortion of other optical systems without deteriorating, for example, spherical aberration, coma, distortion and the like. In the conventional projection optical system, correction is performed by slightly changing the pressure of the pressure chamber which is closed between the lens groups constituting the lens or between the lenses.
There are many problems, such as a complicated mechanism for charging the projection optical system itself and an increase in the number of steps required for correction.

【0008】更に近年は上述したように様々な超解像技
術が組み合わせて利用される。従って投影光学系は使用
されるそれぞれの超解像技術の適用下でも最適な収差状
態を発揮する必要がある。特に変形照明による超解像技
術では有効光源が異なるため各照明方法(以下、照明モ
ードと略す)毎に、投影光学系の瞳の中で結像に預かる
領域が変化し、結像性能が微小変化するという問題があ
る。
In recent years, various super-resolution techniques have been used in combination as described above. Therefore, the projection optical system needs to exhibit an optimal aberration state even under the application of each super-resolution technique used. In particular, in the super-resolution technique based on the deformed illumination, the effective light source is different, so the area to be imaged in the pupil of the projection optical system changes for each illumination method (hereinafter, abbreviated as illumination mode), and the imaging performance is minute. There is a problem of change.

【0009】像面湾曲も照明モード毎に微小変化するた
め、照明モード毎に像面湾曲量を計測し補正する機構を
設けたり、全照明モードを考慮してトータルとして像面
湾曲が最適となる条件を探して補正したりしている。
Since the curvature of field also changes minutely for each illumination mode, a mechanism for measuring and correcting the amount of curvature of field for each illumination mode is provided, or the curvature of field is optimized as a whole in consideration of all illumination modes. They look for the conditions and make corrections.

【0010】しかしながら前者は補正機構そのものが複
雑化し、後者では厳しい像面幅の規格に対応できず、最
終的に焦点深度規格を満足できないという問題がある。
However, the former has a problem that the correction mechanism itself becomes complicated, and the latter cannot cope with a strict standard of the image plane width, and eventually cannot satisfy the standard of depth of focus.

【0011】像面湾曲補正の問題点を解決する提案には
例えば特開平5-326367、特開平8-95229 、特開平9-1677
36に開示されているように、像面湾曲が補正されるよう
にレチクル形状を変形させるものがある。これらの先行
技術はいずれも投影光学系に対応し固定されたレチクル
形状とするもので、上述した照明モードによる像面の変
化にダイナミックに対応することができなかった。
Proposals for solving the problem of the field curvature correction include, for example, JP-A-5-326367, JP-A-8-95229, and JP-A-9-1677.
As disclosed in U.S. Pat. No. 36, the reticle shape is modified so that the curvature of field is corrected. Each of these prior arts has a fixed reticle shape corresponding to the projection optical system, and cannot respond dynamically to the change in the image plane due to the above-described illumination mode.

【0012】また別の方法として特開平9-509543では、
石英と蛍石で構成された投影光学系の蛍石の温度制御に
より像面補正を行なう技術が開示されているが、機構そ
のものが複雑化するとともに温度変化を制御するため時
間応答にも問題がある。
As another method, Japanese Patent Application Laid-Open No. 9-509543 discloses that
Techniques for correcting the image plane by controlling the temperature of fluorite in a projection optical system composed of quartz and fluorite have been disclosed, but the mechanism itself becomes complicated and there is also a problem with the time response because the temperature change is controlled. is there.

【0013】以上に鑑みて、本発明では機構を複雑化す
ることなく、照明モードに合わせて像面湾曲を補正でき
る投影露光方法及び投影露光装置を提供することを目的
としている。さらに、照明モード間の像面歪の変化には
像面湾曲だけでなく、像面の傾きも含まれることがあ
る。本発明では像面湾曲と像面傾きを含めた像面歪を補
正できる投影露光方法及び投影露光装置を提供すること
を目的としている。
In view of the above, it is an object of the present invention to provide a projection exposure method and a projection exposure apparatus capable of correcting a field curvature in accordance with an illumination mode without complicating the mechanism. Further, the change in the image plane distortion between the illumination modes may include not only the field curvature but also the inclination of the image plane. SUMMARY OF THE INVENTION It is an object of the present invention to provide a projection exposure method and a projection exposure apparatus that can correct image plane distortion including field curvature and image plane tilt.

【0014】[0014]

【課題を解決するための手段】上記問題点を解決するた
め、本発明の投影露光装置においてはレチクルを照明す
る照明系と、レチクル上に形成されたパターンを感光基
板上に露光転写する投影光学系、前記照明系が投影光学
系の瞳面上に形成する光の強度分布を変形させる照明光
変形手段、及び前記照明光変形手段による照明光の変形
状態毎に前記投影光学系の発生する像面歪を打ち消すよ
うに前記レチクルを歪ませるレチクル変形手段を有する
ことを特徴としている。
In order to solve the above problems, in a projection exposure apparatus according to the present invention, an illumination system for illuminating a reticle, and a projection optical system for exposing and transferring a pattern formed on the reticle onto a photosensitive substrate. Illumination system, illumination light deforming means for deforming the intensity distribution of light formed on the pupil plane of the projection optical system by the illumination system, and an image generated by the projection optical system for each deformation state of the illumination light by the illumination light deformation means It is characterized by having reticle deformation means for distorting the reticle so as to cancel the surface distortion.

【0015】更に本発明を適用する投影露光装置は、走
査型投影露光装置に適用すると好適である。走査型の投
影露光装置では照明光がレチクル上でスリット形状で、
レチクルと露光対象の感光基板は照明光のスリットの短
手方向に同期走査される。
The projection exposure apparatus to which the present invention is applied is preferably applied to a scanning projection exposure apparatus. In a scanning projection exposure apparatus, the illumination light is slit-shaped on the reticle,
The reticle and the photosensitive substrate to be exposed are synchronously scanned in the short direction of the slit of the illumination light.

【0016】またレチクル変形手段は照明光のスリット
の長手方向にレチクルを歪ませ、更に前記レチクル変形
手段によるレチクル変形に起因した投影光学系の倍率変
化を補正する倍率補正手段、あるいは投影光学系の像面
歪の発生に付随して生ずる投影光学系の他の光学特性を
補正する手段を有することを特徴としている。
The reticle deformation means distorts the reticle in the longitudinal direction of the slit of the illumination light, and further corrects the magnification change of the projection optical system caused by the reticle deformation by the reticle deformation means, or the projection optical system. The projection optical system is characterized in that it has means for correcting other optical characteristics of the projection optical system caused by the occurrence of the image plane distortion.

【0017】本発明による投影露光方法においては照明
系でレチクルを照明してレチクル上に形成されたパター
ンを投影光学系で感光基板上に露光転写する際、前記照
明系に内蔵された照明光変形手段により投影光学系の瞳
面上に形成する光の強度分布を変えた時に、照明光の変
形状態毎にレチクル変形手段によりレチクルを歪ませて
転写パターンの像面歪を補正することを特徴としてい
る。
In the projection exposure method according to the present invention, when the reticle is illuminated by the illumination system and the pattern formed on the reticle is exposed and transferred on the photosensitive substrate by the projection optical system, the illumination light built in the illumination system is deformed. When the intensity distribution of light formed on the pupil plane of the projection optical system is changed by the means, the reticle is distorted by the reticle deforming means for each deformation state of the illumination light to correct the image plane distortion of the transfer pattern. I have.

【0018】本発明の投影露光方法は走査型投影露光装
置に適用すると好適である。走査型の投影露光装置では
照明光がレチクル上でスリット形状で、レチクルと露光
対象の感光基板は照明光のスリットの短手方向に同期走
査される。レチクルを変形させる方向を照明光のスリッ
トの長手方向と一致させ、更に変形させる際にレチクル
変形に起因した投影光学系の倍率変化を補正することが
本投影露光方法の特徴である。
The projection exposure method of the present invention is suitably applied to a scanning projection exposure apparatus. In a scanning type projection exposure apparatus, illumination light has a slit shape on a reticle, and a reticle and a photosensitive substrate to be exposed are synchronously scanned in the short direction of the slit of the illumination light. It is a feature of the projection exposure method that the direction in which the reticle is deformed is made coincident with the longitudinal direction of the slit of the illumination light, and when the reticle is further deformed, the magnification change of the projection optical system due to the reticle deformation is corrected.

【0019】[0019]

【発明の実施の形態】図1 は本発明の投影露光方法及び
投影露光装置の動作原理を図示したもので、物体面と投
影光学系と像面を概念的に描いたものである。物体面o
は回路パターンの描かれたレチクル、物体面i は感光基
板の置かれる位置に相当する。例えばある照明モードa
の下でほぼ平面に結像している像面1 は、他の異なる照
明モードb の下では曲率を持って歪んだ像面2 となり、
更に異なる照明モードc では傾きと曲率を持って歪んだ
像面3 となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates the principle of operation of a projection exposure method and a projection exposure apparatus according to the present invention, and conceptually depicts an object plane, a projection optical system, and an image plane. Object plane o
Denotes a reticle on which a circuit pattern is drawn, and an object plane i corresponds to a position where a photosensitive substrate is placed. For example, a certain lighting mode a
The image plane 1 which forms a substantially flat surface under is an image plane 2 which is distorted with a curvature under another different illumination mode b, and
Further, in a different illumination mode c, the image plane 3 is distorted with inclination and curvature.

【0020】上記のように照明モード毎に変化する像面
歪を補正するため、本発明においては像面歪を打ち消す
方向に物体面を変形させる、即ちレチクルを変形させる
補正を行なうことを特徴としている。例えば、傾きと曲
率を持った像面3 を補正するにはレチクルを図1-(d) の
o ‘のように傾かせるとともに、像面の曲率の発生して
いる方向と逆向きの方向に曲率を持つ様に変形させる。
In order to correct the image plane distortion that changes for each illumination mode as described above, the present invention is characterized in that the object plane is deformed in a direction to cancel the image plane distortion, that is, the correction for deforming the reticle is performed. I have. For example, to correct the image plane 3 with tilt and curvature, the reticle must be
In addition to tilting it as o ', it is deformed so that it has a curvature in the direction opposite to the direction in which the curvature of the image plane occurs.

【0021】本発明によれば照明モードに関わりなく感
光基板を常に平面となる像面で結像させることが可能な
ため、露光領域全体で常に良好な結像性能を確保するこ
とができる。
According to the present invention, since a photosensitive substrate can always be formed on a plane image plane regardless of the illumination mode, good imaging performance can always be ensured over the entire exposure area.

【0022】図2 は図1 で説明した概念に基づいて構成
した本発明の実施形態1の投影露光装置を示したもので
ある。光源11からの光は照明系内のレンズ12、13、ミラ
ー14を介して回路パターンの描かれたレチクル16を照明
する。レチクル16はレチクルステージ15で保持されてい
る。レチクル16上の回路パターンにより透過及び回折さ
れた光は、投影光学系17によりxyz 方向に移動する感光
基板ステージ18上に置かれたシリコンウェハ等の感光基
板19上に結像された状態で露光が行なわれる。感光基板
ステージ18は露光が終了するとステップして次のショッ
トへ移動する動作を繰り返し、感光基板上に逐次、回路
パターンを転写する。
FIG. 2 shows a projection exposure apparatus according to the first embodiment of the present invention constructed on the basis of the concept described with reference to FIG. Light from a light source 11 illuminates a reticle 16 on which a circuit pattern is drawn via lenses 12 and 13 and a mirror 14 in the illumination system. Reticle 16 is held on reticle stage 15. The light transmitted and diffracted by the circuit pattern on the reticle 16 is exposed by the projection optical system 17 while being imaged on a photosensitive substrate 19 such as a silicon wafer placed on a photosensitive substrate stage 18 moving in the xyz directions. Is performed. When the exposure is completed, the photosensitive substrate stage 18 repeats the operation of stepping and moving to the next shot, and sequentially transfers the circuit pattern onto the photosensitive substrate.

【0023】照明系内には投影光学系17の瞳と共役な位
置に照明光の強度分布を変形させる変形手段20が備えら
れ、同時にレチクルにはレチクルを変形させる機構を持
ったレチクル変形手段21が備えられていることが本発明
の特徴である。
In the illumination system, a deformation means 20 for deforming the intensity distribution of the illumination light is provided at a position conjugate with the pupil of the projection optical system 17, and a reticle deformation means 21 having a mechanism for deforming the reticle is provided on the reticle. Is a feature of the present invention.

【0024】照明光が投影光学系17の瞳面上で持つ強度
分布は照明変形手段20により図3(a)、(b) 、(c) のごと
く変形される。強度分布の変形は実際には図3 の形状を
持った絞りを照明系の明るさ絞りに相当する位置、つま
り投影光学系17の瞳と共役な位置に配置することにより
達成される。図3 の絞り形状では白い部分が光を透過す
る部分、黒い部分が光を透過しない部分に相当する。
The intensity distribution of the illumination light on the pupil plane of the projection optical system 17 is transformed by the illumination transformation means 20 as shown in FIGS. 3 (a), 3 (b) and 3 (c). The deformation of the intensity distribution is actually achieved by disposing a stop having the shape shown in FIG. 3 at a position corresponding to the brightness stop of the illumination system, that is, at a position conjugate with the pupil of the projection optical system 17. In the aperture shape of FIG. 3, a white portion corresponds to a portion that transmits light, and a black portion corresponds to a portion that does not transmit light.

【0025】図3 において図3(a)は瞳の中心部のみ光が
透過し周辺部が遮蔽されるので小σ照明、図3(b)は逆に
瞳の中心部を遮蔽し、周辺部のみを透過させるので輪帯
照明、図3(c)は瞳を4 分割し、互いに対称となる円領域
のみの光を透過させるため4重極照明に対応する。投影
露光においては回路パターンの形状や線幅、あるいはプ
ロセス条件により、上記に代表される種々の照明モード
を適宜選択して露光が行なわれ、解像力、焦点深度の向
上が図られる。
In FIG. 3, FIG. 3 (a) shows a small σ illumination because light is transmitted only through the central portion of the pupil and the peripheral portion is shielded, and FIG. 3 (b) conversely shields the central portion of the pupil and removes the peripheral portion. In FIG. 3 (c), the pupil is divided into four parts, and only the circular regions which are symmetric with each other are transmitted. In the projection exposure, exposure is performed by appropriately selecting various illumination modes represented by the above depending on the shape and line width of the circuit pattern or process conditions, thereby improving resolution and depth of focus.

【0026】本発明は上記様々な照明モードにより微小
に変化する投影光学系の像面の歪みに対応するものであ
る。
The present invention addresses the distortion of the image plane of the projection optical system, which changes minutely due to the various illumination modes described above.

【0027】レチクル変形手段26は発生した微小な像面
の歪みを補正・制御するために設けたものである。レチ
クル変形量は選択された照明モードによる像面歪み量を
打ち消すように演算手段21により算出され、26の駆動が
行なわれる。レチクル変形量については予め計測してお
いた像面歪とレチクル変形量の関係の実測値や、設計シ
ミュレーションしたデータが基礎テーブルとして用いら
れる。
The reticle deforming means 26 is provided for correcting and controlling a minute distortion of the image plane generated. The reticle deformation amount is calculated by the calculating means 21 so as to cancel out the image plane distortion amount by the selected illumination mode, and the driving of 26 is performed. Regarding the reticle deformation amount, an actually measured value of the relationship between the image plane distortion and the reticle deformation amount, which has been measured in advance, and data obtained by design simulation are used as a basic table.

【0028】照明モードと像面歪の変化量の関係は予め
実計測したり、設計シミュレーションしたデータテーブ
ルをもとに知ることができる。該変化量と前記基礎テー
ブルを用いて演算すれば像面歪の補正を行なうことがで
きる。また別の方法として、照明モードを変更する毎に
感光基板ステージ18上にある不図示の像面歪計測パター
ンを計測し、該計測データと前記基礎テーブルを参照し
て演算を行い、像面歪を補正することもできる。
The relationship between the illumination mode and the amount of change in the image plane distortion can be known based on a data table obtained by actual measurement or design simulation. By calculating using the amount of change and the basic table, it is possible to correct the image plane distortion. As another method, every time the illumination mode is changed, an image plane distortion measurement pattern (not shown) on the photosensitive substrate stage 18 is measured, and an operation is performed with reference to the measurement data and the basic table to perform image plane distortion. Can also be corrected.

【0029】本発明の投影露光方法及び投影露光装置は
投影露光の方式に関わらず適用可能であるが、以下に露
光方式の違いによる効果を説明する。
Although the projection exposure method and the projection exposure apparatus of the present invention can be applied regardless of the type of projection exposure, the effects of the different exposure methods will be described below.

【0030】図4 は露光方式による違いを説明したもの
で、図4(a)は一括露光、図4(b)はスキャン露光における
1 ショット毎の露光方法を図示している。図4(a)の一括
露光ではレチクル16a 上の露光領域23a 全体を照明系10
a からの照明光22a により照明し、投影光学系17a を介
して感光基板19a に一回で露光する。
FIGS. 4A and 4B illustrate the differences depending on the exposure method. FIG. 4A shows a batch exposure, and FIG. 4B shows a scan exposure.
An exposure method for each shot is illustrated. In the batch exposure shown in FIG. 4A, the entire exposure area 23a on the reticle 16a is
Illumination is performed by the illumination light 22a from a, and the photosensitive substrate 19a is exposed at one time via the projection optical system 17a.

【0031】一方、図4(b)のスキャン露光では照明系10
b からの照明光22b がレチクル16bをスリット形状に照
明する。点線で示した所望の露光領域23b 全体の露光
は、レチクル16b と感光基板19b の載ったステージの各
々を、図中の矢印の方向に投影光学系の投影倍率に応じ
た速度比で逆方向に同期走査(スキャン)することによ
り行なわれる。スキャンの効果で走査方向、即ちスリッ
トの短手方向に投影光学系の露光領域を拡げることがで
きるので、スキャン露光は近年の高解像力化かつ露光領
域の拡大に適した露光方法として注目されている。
On the other hand, in the scan exposure shown in FIG.
Illumination light 22b from b illuminates reticle 16b in a slit shape. Exposure of the entire desired exposure area 23b indicated by the dotted line is performed by moving each of the stages on which the reticle 16b and the photosensitive substrate 19b are mounted in the direction opposite to the arrow at a speed ratio corresponding to the projection magnification of the projection optical system. This is performed by synchronous scanning (scanning). Because the effect of scanning makes it possible to expand the exposure area of the projection optical system in the scanning direction, that is, in the short direction of the slit, scan exposure has recently attracted attention as an exposure method suitable for increasing the resolution and expanding the exposure area. .

【0032】図5 は露光を行なう1 ショットで発生する
像面の歪みを模式的に示したものである。図5 では簡単
のため、像面の傾きとデフォーカスはなく、像面湾曲の
みが生じた場合を考える。図4(a)の一括露光の場合に生
じる像面湾曲は、図5(a)のように点線で表わした理想の
像面である平面に対し、像高に対して2次以上の関数で
近似できる湾曲した像24a となる。
FIG. 5 schematically shows the distortion of the image plane generated in one shot for exposure. In FIG. 5, for simplicity, it is assumed that there is no tilt and defocus of the image plane, and only the field curvature occurs. The field curvature that occurs in the case of the batch exposure in FIG. 4A is a function of a second or higher order with respect to the image height with respect to a plane which is an ideal image plane represented by a dotted line as shown in FIG. 5A. A curved image 24a that can be approximated is obtained.

【0033】一方、像4(b)のスキャン露光の場合に生じ
る像面湾曲は、スリットの短手方向の幅の影響が小さい
ため、図中矢印で示した走査方向に直交する方向、即ち
スリットの長手方向にのみ像高の2 次以上の関数で近似
できる湾曲した円筒状の像24b で近似することができ
る。従って、図4(b)のようなスキャン露光での照明モー
ドによる像面の歪みの変化はスリットの長手方向のみを
考えればよい。
On the other hand, the field curvature generated in the scanning exposure of the image 4 (b) has a small influence on the width in the short direction of the slit, and therefore, the direction orthogonal to the scanning direction indicated by the arrow in the drawing, ie, the slit Can be approximated by a curved cylindrical image 24b that can be approximated by a function of the second or higher order of the image height only in the longitudinal direction. Therefore, the change in the distortion of the image plane due to the illumination mode in the scanning exposure as shown in FIG. 4B may be considered only in the longitudinal direction of the slit.

【0034】即ち、スキャン露光ではレチクル変形手段
によるレチクル変形をスリットの長手方向の一方向のみ
行なうことで、照明モードに応じた像面の補正を行うこ
とができる。補正を一方向のみに限定できることでレチ
クル周りの変形機構の複雑化が回避でき、一括露光より
も簡素な形態で変形機構を実現することができる。
That is, in scan exposure, reticle deformation by the reticle deformation means is performed only in one direction in the longitudinal direction of the slit, so that the image plane can be corrected according to the illumination mode. Since the correction can be limited to only one direction, the deformation mechanism around the reticle can be prevented from becoming complicated, and the deformation mechanism can be realized in a simpler form than the collective exposure.

【0035】図6 はスリットの長手方向にのみレチクル
を変形させる手段の一例を模式的に示したものである。
図中、16はレチクル、25は該レチクルに対して真空吸着
ノズルが装着される位置、矢印はスキャン露光の方向を
表わす。スキャンと直交する方向のレチクルの側面161
、162 を固定し、スキャンと平行な方向でレチクルの
露光範囲外の位置25に設けられた真空吸着ノズルにより
レチクルを吸着すれば、レチクルは図に示す如く、スキ
ャン方向と平行な方向に母線を持つ円筒面状に変形させ
ることができる。吸着ノズルは少なくとも4 個以上の複
数個必要とされる。図6 ではレチクルの中心を通る走査
方向の軸に対して対称に6 個の吸着ノズルが設けられ、
該複数個の吸着ノズルの吸着圧により変形量が調整され
る。図では下に凸となる変形形状を示したが、逆に上に
凸の形状変形を起こすには、不図示であるがレチクル下
に設けた逆方向に変形させる真空吸着ノズルで吸着が行
なわれる。
FIG. 6 schematically shows an example of means for deforming the reticle only in the longitudinal direction of the slit.
In the figure, 16 is a reticle, 25 is a position where a vacuum suction nozzle is mounted on the reticle, and an arrow indicates the direction of scan exposure. Side 161 of reticle in direction perpendicular to scan
, 162 is fixed, and the reticle is sucked by the vacuum suction nozzle provided at the position 25 outside the exposure range of the reticle in the direction parallel to the scan, so that the reticle moves the generatrix in the direction parallel to the scan direction as shown in the figure. It can be deformed into a cylindrical shape. At least four or more suction nozzles are required. In FIG. 6, six suction nozzles are provided symmetrically with respect to an axis in the scanning direction passing through the center of the reticle.
The amount of deformation is adjusted by the suction pressure of the plurality of suction nozzles. In the figure, a deformed shape that is convex downward is shown. Conversely, in order to cause a deformed shape that is convex upward, suction is performed by a vacuum suction nozzle (not shown) that is deformed in the opposite direction provided below the reticle. .

【0036】また、像面の歪みに傾斜成分が含まれてい
る場合は、レチクル16を保持するレチクルステージ15を
像面傾斜を打ち消す方向に傾斜させる。
If the image plane distortion includes a tilt component, the reticle stage 15 holding the reticle 16 is tilted in a direction to cancel the image plane tilt.

【0037】即ち本発明では図1(c)のように像面の歪み
が照明モードにより曲率と傾斜を持った成分よりなる場
合、レチクルの曲面状の変形と、レチクルステージの傾
斜を同時に与えて像面歪の補正を行なうことを特徴とし
ている。尚、本発明では「像面歪」を像面の傾きと湾
曲、「レチクル変形」をレチクルの曲面状の変形と傾き
を含む広い意味で使用している。
That is, in the present invention, when the distortion of the image plane is composed of components having a curvature and an inclination depending on the illumination mode as shown in FIG. 1 (c), the curved surface of the reticle and the inclination of the reticle stage are simultaneously given. It is characterized in that the image plane distortion is corrected. In the present invention, "image surface distortion" is used in a broad sense including inclination and curvature of an image surface, and "reticle deformation" is included in a curved surface deformation and inclination of a reticle.

【0038】例えば図2 に示す投影露光装置において、
投影光学系のNAを0.6 、スリット露光領域の長手方向を
26mm、倍率を1/4X、光源波長を248nm とした場合、照明
モードによる像面歪の変化量は露光領域の最周辺で0.3
μm 程度に達する。この像面歪が像面湾曲であるとし、
該湾曲を0.1 μm 補正する場合に必要なレチクルの変形
量は最周辺で1.6 μm となる。1.6 μm の変形量は前述
した真空吸着法で十分に実現可能な値である。
For example, in the projection exposure apparatus shown in FIG.
Set the NA of the projection optical system to 0.6,
When 26 mm, magnification is 1 / 4X, and light source wavelength is 248 nm, the amount of change in image plane distortion due to the illumination mode is 0.3 mm at the outermost periphery of the exposure area.
It reaches about μm. Assuming that this field distortion is field curvature,
The reticle deformation required for correcting the curvature by 0.1 μm is 1.6 μm at the outermost periphery. The deformation of 1.6 μm is a value that can be sufficiently realized by the vacuum adsorption method described above.

【0039】さらにスキャン露光では一方向のみのレチ
クル変形によって生じる縦方向と横方向の倍率差、いわ
ゆる縦横倍率差が無視できるため、倍率に関する補正が
簡略化できる利点がある。倍率の補正は一括露光の場合
と同様に、例えば投影露光系に含まれるレチクルに近い
複数のレンズを光軸方向に所定量駆動することにより他
の収差を悪化させることなく補正することができる。補
正はスリットの長手方向の倍率に対して適用される。縦
横倍率差を考慮する必要がないため、機構が簡略化で
き、調整工数も低減することができる。
Further, in the scanning exposure, since the magnification difference between the vertical and horizontal directions caused by the reticle deformation in only one direction, that is, the so-called vertical / horizontal magnification difference can be ignored, there is an advantage that the correction relating to the magnification can be simplified. As in the case of the batch exposure, magnification can be corrected without deteriorating other aberrations, for example, by driving a plurality of lenses near the reticle included in the projection exposure system by a predetermined amount in the optical axis direction. The correction is applied to the longitudinal magnification of the slit. Since there is no need to consider the difference between the vertical and horizontal magnifications, the mechanism can be simplified and the number of adjustment steps can be reduced.

【0040】図7 は本発明による投影露光方法及び投影
露光装置における照明モードの選択から露光までの一連
の手順を示したものである。図7(a)の場合は照明モード
の選択により予めメモリー内に格納してあった、照明モ
ードによる像面歪み量を読み出し、該像面歪み量を打ち
消すレチクル変形量を演算した後、レチクルが変形さ
れ、露光が行なわれる。
FIG. 7 shows a series of procedures from selection of an illumination mode to exposure in the projection exposure method and projection exposure apparatus according to the present invention. In the case of FIG. 7 (a), by reading the image surface distortion amount by the illumination mode, which was previously stored in the memory by selecting the illumination mode, and calculating the reticle deformation amount to cancel the image surface distortion amount, It is deformed and exposure is performed.

【0041】なお、像面補正のためのレチクル変形によ
り倍率誤差が発生した場合には、該倍率誤差を補正した
後に露光が行われる。レチクル変形あるいは倍率補正に
より倍率以外の他の性能変化が生じた場合も、補正でき
る場合は該変化を補正した後、露光を行う。例えば上記
補正を行った後に、像面のフォーカス位置が投影光学系
の光軸方向であるz 軸方向にずれる場合がある。ずれ量
は予め求めておくことができるので、感光基板ステージ
18のz 方向に所定のオフセットを与えれば、フォーカス
位置を補正することが可能である。
When a magnification error occurs due to reticle deformation for image plane correction, exposure is performed after correcting the magnification error. When a change in performance other than magnification occurs due to reticle deformation or magnification correction, if the correction can be made, the change is corrected before exposure is performed. For example, after performing the above correction, the focus position on the image plane may shift in the z-axis direction, which is the optical axis direction of the projection optical system. Since the amount of displacement can be determined in advance, the photosensitive substrate stage
If a predetermined offset is given in the z direction of 18, the focus position can be corrected.

【0042】図7(b)は照明モードを選択する毎に像面計
測を行って補正を行うシステムの例である。像面の歪み
は例えば感光基板ステージ18上に配置した像面計測パタ
ーンを用いて露光領域内の複数箇所で計測することによ
り算出することができる。像面歪に対する該算出データ
と、予めメモリー内に格納してある像面歪とレチクル変
形量の関係を示した基礎テーブルより、レチクル変形量
を演算して実際にレチクルを変形させた後、露光が行わ
れる。
FIG. 7B shows an example of a system which performs image plane measurement and correction each time an illumination mode is selected. The distortion of the image plane can be calculated, for example, by measuring at a plurality of positions in the exposure area using an image plane measurement pattern arranged on the photosensitive substrate stage 18. After calculating the reticle deformation amount from the calculated data for the image surface distortion and the basic table previously stored in the memory and showing the relationship between the image surface distortion and the reticle deformation amount, and then deforming the reticle, the exposure is performed. Is performed.

【0043】なお、像面歪補正のためのレチクル変形に
より倍率誤差が発生した場合には、該倍率誤差を補正し
た後のに露光が行われる。レチクル変形あるいは倍率補
正後に倍率以外の他の性能変化が生じた場合も、該変化
が補正できる場合は補正を行った後、露光が行われるの
は図7(a)と同様である。
When a magnification error occurs due to reticle deformation for correcting image plane distortion, exposure is performed after correcting the magnification error. Also in the case where a change in performance other than magnification occurs after reticle deformation or magnification correction, if the change can be corrected, exposure is performed after correction is performed as in FIG. 7A.

【0044】実際の露光においては露光環境である気圧
や温度の変化、あるいは露光光の熱吸収等による露光履
歴等のため、投影光学系のレンズに熱膨張変形、屈折率
変化、鏡筒の熱膨張変形等が発生し、像面の歪みがさら
に複雑に変化する。本発明の投影露光方法及び投影露光
装置においては、図3(a)、(b) 、(c) に示したような照
明モード毎に上述の露光履歴あるいは環境変化による像
面歪の変化を考慮し、レチクル変形手段を制御して該像
面歪を補正することを特徴としている。
In actual exposure, the lens of the projection optical system undergoes thermal expansion deformation, refractive index change, and heat of the lens barrel due to changes in the atmospheric pressure and temperature, which are the exposure environment, or exposure history due to heat absorption of the exposure light. Expansion deformation and the like occur, and the distortion of the image plane changes more complicatedly. In the projection exposure method and the projection exposure apparatus of the present invention, a change in image plane distortion due to the above-described exposure history or environmental change is considered for each illumination mode as shown in FIGS. 3 (a), (b) and (c). The reticle deformation means is controlled to correct the image plane distortion.

【0045】レチクル変形手段の制御は図7(a)、(b) と
同様なフローで行うことができる。露光履歴を例にとる
と、照明モード毎に像面歪の変化量を予めメモリー内に
用意する、あるいは露光中に逐次像面歪みを計測してフ
ィードバックをかけてもよい。像面歪みは最終的にレチ
クル変形量に換算され、レチクル変形手段によりレチク
ル形状を変形させて補正を行う。
The control of the reticle deformation means can be performed according to the same flow as in FIGS. 7 (a) and 7 (b). Taking the exposure history as an example, the amount of change of the image plane distortion may be prepared in advance in the memory for each illumination mode, or the image plane distortion may be sequentially measured during the exposure and fed back. The image plane distortion is finally converted into a reticle deformation amount, and correction is performed by deforming the reticle shape by reticle deformation means.

【0046】前者のように露光光の熱吸収による影響を
予め記憶したデータにより制御するには、ある照明モー
ドについて投影光学系のレンズと鏡筒に与えられる露光
光のエネルギーを露光時間の関数として求めておく一方
で、露光光のエネルギー吸収による像面歪みの変化をシ
ミュレーションや実験等で求めておく。また、像面歪み
とそれを打ち消すレチクル変形量も予めシミュレーショ
ン等で求めておく。これらの事前データにより、一つの
照明モードにおける露光時間とレチクル変形量の関係を
得ることができる。計算に必要なデータは予めメモリー
内に格納しておき、露光条件により適宜演算を行うこと
により、一つの照明モード下での露光履歴による像面歪
みの補正が制御可能となる。
In order to control the influence of the heat absorption of the exposure light by pre-stored data as in the former, the energy of the exposure light given to the lens and the barrel of the projection optical system for a certain illumination mode as a function of the exposure time. On the other hand, the change in the image plane distortion due to the energy absorption of the exposure light is obtained by simulation or experiment. Further, the image plane distortion and the reticle deformation amount for canceling the image plane distortion are obtained in advance by simulation or the like. From these preliminary data, the relationship between the exposure time and the reticle deformation amount in one illumination mode can be obtained. Data necessary for the calculation is stored in a memory in advance, and by appropriately performing calculations according to the exposure conditions, it is possible to control the correction of the image plane distortion based on the exposure history under one illumination mode.

【0047】以上のデータベースを別の照明モードにつ
いても個別に行えば照明モード毎に露光履歴によって発
生する像面歪みの補正が可能となる。
If the above-mentioned database is individually executed for another illumination mode, it is possible to correct the image plane distortion caused by the exposure history for each illumination mode.

【0048】また投影露光装置内において露光光のエネ
ルギーを計測し、直接、露光光のエネルギーとレチクル
変形量を関係づけて像面歪の補正を行うことも可能であ
る。
It is also possible to measure the energy of the exposure light in the projection exposure apparatus and directly correct the image plane distortion by associating the energy of the exposure light with the amount of reticle deformation.

【0049】後者の実施形態では露光による投影光学系
17の像面歪みを実測して補正をかけるため、システムの
フローは図7(b)と全く同一となる。
In the latter embodiment, a projection optical system by exposure is used.
Since the image plane distortion of 17 is actually measured and corrected, the system flow is exactly the same as that of FIG. 7 (b).

【0050】なお、像面歪補正のためのレチクル変形に
より倍率誤差が発生した場合には、該倍率誤差を補正し
た後のに露光が行われる。レチクル変形あるいは倍率補
正後にも倍率以外の他の性能変化が残る場合は、該変化
が補正できる場合は補正を行って、露光を行うのは図7
(a)と同様である。
When a magnification error occurs due to reticle deformation for correcting image plane distortion, exposure is performed after correcting the magnification error. If performance changes other than magnification remain after reticle deformation or magnification correction, the change is corrected if the change can be corrected, and exposure is performed as shown in FIG.
Same as (a).

【0051】以上の実施形態ではレチクル側を変形させ
るものを示したが、該変形は等価的にウェハ側でも同様
に行うことができる。ウェハ側で変形を行う場合、曲率
の変化はウェハの保持具にアクチュエータを配置し、該
アクチュエータを投影光学系の光軸方向であるz 軸方向
に駆動して補正することができる。一方、傾きについて
はウェハ保持具を傾けることによって容易に補正するこ
とができる。
In the above embodiment, the reticle side is deformed. However, the deformation can be equivalently performed on the wafer side. When deformation is performed on the wafer side, the change in curvature can be corrected by arranging an actuator on a holder for the wafer and driving the actuator in the z-axis direction, which is the optical axis direction of the projection optical system. On the other hand, the tilt can be easily corrected by tilting the wafer holder.

【0052】ウェハの変形による像面歪の補正はレチク
ル変形を行うのと全く等価であり、照明モードや露光履
歴、露光環境の変化で生じた像面歪について予めデータ
テーブルを持つ、あるいはフィードバックループで像面
歪を計測して補正をかける等の実施形態となる。
The correction of the image plane distortion due to the deformation of the wafer is completely equivalent to the reticle deformation. A data table is previously provided for the image plane distortion caused by the change of the illumination mode, the exposure history, and the exposure environment, or a feedback loop is provided. In this embodiment, the image distortion is measured and correction is performed.

【0053】またウエハの変形による補正がスキャン露
光に適していることも同様で、像面歪をスリットの長手
方向に対し補正すること、及び補正の際に発生する倍率
を投影光学系で補正して露光することも同様である。な
お、倍率の補正はスリットの長手方向の倍率に対し行わ
れる。
In the same manner, the correction by the deformation of the wafer is suitable for the scanning exposure. The image surface distortion is corrected in the longitudinal direction of the slit, and the magnification generated at the time of the correction is corrected by the projection optical system. Exposure is the same. The magnification is corrected for the magnification in the longitudinal direction of the slit.

【0054】以上説明した像面歪みの補正は完全にゼロ
とする必要は必ずしもなく、投影光学系の焦点深度内に
露光領域が入ればよい。以上のような補正を行うことに
よって焦点深度は確実に向上する。
The correction of the image plane distortion described above does not always have to be completely zero, but it is sufficient that the exposure area falls within the depth of focus of the projection optical system. By performing the correction as described above, the depth of focus is surely improved.

【0055】[0055]

【発明の効果】以上説明した様に、本発明の投影露光方
法及び投影露光装置では、照明光変形手段によって変更
される照明モード毎に変化する像面歪、あるいは露光環
境、露光履歴等によって生じる像面歪を、レチクル変形
手段によりレチクルを該像面歪を打ち消すように変形さ
せて補正することにより、平坦な像面特性実現し、焦点
深度を増大させるを特徴としている。変形はウェハ側で
行っても同様の効果が得られる。
As described above, in the projection exposure method and the projection exposure apparatus according to the present invention, the image exposure distortion, the exposure environment, the exposure history, etc., which change for each illumination mode changed by the illumination light deformation means. The image distortion is corrected by deforming the reticle by the reticle deformation means so as to cancel the image distortion, thereby realizing a flat image surface characteristic and increasing the depth of focus. The same effect can be obtained even if the deformation is performed on the wafer side.

【0056】レチクルあるいはウェハを変形させて、高
精度に組み立てられている投影光学系をいじらないた
め、複雑な補正機構を用いなくても、常に露光領域全体
で良好な結像特性を得ることができる。
Since the projection optical system assembled with high precision is not manipulated by deforming the reticle or wafer, it is possible to always obtain good imaging characteristics over the entire exposure area without using a complicated correction mechanism. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の像面歪み及び補正の概念図、FIG. 1 is a conceptual diagram of image surface distortion and correction of the present invention,

【図2】 本発明を適用した投影露光装置の実施形態を
示す図、
FIG. 2 is a diagram showing an embodiment of a projection exposure apparatus to which the present invention is applied,

【図3】 照明光及び絞りの形状を示す図、FIG. 3 is a diagram showing shapes of illumination light and an aperture;

【図4】 一括露光及びスキャン露光の説明図、FIG. 4 is an explanatory view of batch exposure and scan exposure,

【図5】 一括露光及びスキャン露光で発生する像面歪
みを示す図、
FIG. 5 is a diagram showing image surface distortion generated by batch exposure and scan exposure;

【図6】 本発明によるレチクル変形手段の実施形態、FIG. 6 shows an embodiment of a reticle deformation means according to the present invention,

【図7】 本発明による像面歪みの補正を実施する際の
フロー
FIG. 7 is a flowchart for correcting image plane distortion according to the present invention.

【符号の説明】[Explanation of symbols]

1〜4 種々の照明モードによる像面、 10 照明系、 11 光源、 12、13 レンズ、 14 ミラー、 15 レチクルステージ、 16 レチクル、 17 投影光学系、 18 感光基板ステージ、 19 感光基板、 20 照明光の強度分布変形手段、 21 演算手段、 22 照明光、 23 露光領域、 24 像面歪み、 25 真空吸着ノズルの装着位置、 26 レチクル変形手段、 161 、162 レチクルの側面 1-4 Image plane by various illumination modes, 10 illumination system, 11 light sources, 12, 13 lens, 14 mirror, 15 reticle stage, 16 reticle, 17 projection optical system, 18 photosensitive substrate stage, 19 photosensitive substrate, 20 illumination light 21 Intensity distribution deformation means, 21 Calculation means, 22 Illumination light, 23 Exposure area, 24 Image surface distortion, 25 Mounting position of vacuum suction nozzle, 26 Reticle deformation means, 161 and 162 Side of reticle

Claims (43)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子を製造する投影露光装置にお
いて、前記投影露光装置がレチクルを照明する照明系、
前記レチクル上に形成されたパターンを感光基板上に露
光転写する投影光学系、前記照明系が前記投影光学系の
瞳面上に形成する光の強度分布を変形させる照明光変形
手段、及び前記レチクルを歪ませるレチクル変形手段を
有することを特徴する投影露光装置。
A projection exposure apparatus for manufacturing a semiconductor element, wherein the projection exposure apparatus illuminates a reticle;
A projection optical system for exposing and transferring a pattern formed on the reticle onto a photosensitive substrate, illumination light deforming means for deforming an intensity distribution of light formed by the illumination system on a pupil plane of the projection optical system, and the reticle A reticle deforming means for distorting the light.
【請求項2】 前記レチクル変形手段が前記投影光学系
が発生する像面歪を打ち消すように制御されることを特
徴とする請求項1記載の投影露光装置。
2. The projection exposure apparatus according to claim 1, wherein said reticle deformation means is controlled so as to cancel image plane distortion generated by said projection optical system.
【請求項3】 前記像面歪が像面湾曲と像面の傾き成分
を含むことを特徴とする請求項2 記載の投影露光装置。
3. The projection exposure apparatus according to claim 2, wherein the field distortion includes a field curvature and a field inclination component.
【請求項4】 前記像面湾曲を前記レチクルを変形さ
せ、前記像面の傾きを前記レチクルを傾けて補正するこ
とを特徴とする請求項3 記載の投影露光装置。
4. The projection exposure apparatus according to claim 3, wherein the field curvature is corrected by deforming the reticle, and the inclination of the image plane is corrected by tilting the reticle.
【請求項5】 前記レチクル変形手段によるレチクル変
形量と前記投影光学系の像面歪量の関係を予め記憶して
おくことを特徴とする請求項4 記載の投影露光装置。
5. The projection exposure apparatus according to claim 4, wherein a relationship between a reticle deformation amount by said reticle deformation means and an image plane distortion amount of said projection optical system is stored in advance.
【請求項6】 前記投影光学系が発生する像面歪の発生
量を予めデータテーブルとして記憶しておくことを特徴
とする請求項5 記載の投影露光装置。
6. The projection exposure apparatus according to claim 5, wherein the amount of image plane distortion generated by the projection optical system is stored in advance as a data table.
【請求項7】 前記投影光学系が発生する像面歪の発生
量を計測し、該計測結果に基づいて補正を行うことを特
徴とする請求項5 記載の投影露光装置。
7. The projection exposure apparatus according to claim 5, wherein an amount of image plane distortion generated by the projection optical system is measured, and correction is performed based on the measurement result.
【請求項8】 前記レチクル変形手段を前記照明光変形
手段による照明光の変形に応じて駆動することを特徴と
する請求項7 記載の投影露光装置。
8. The projection exposure apparatus according to claim 7, wherein said reticle deformation means is driven in accordance with deformation of illumination light by said illumination light deformation means.
【請求項9】 前記レチクル変形手段を前記投影光学系
の露光履歴に応じて駆動することを特徴とする請求項8
記載の投影露光装置。
9. The apparatus according to claim 8, wherein said reticle deforming means is driven in accordance with an exposure history of said projection optical system.
The projection exposure apparatus according to claim 1.
【請求項10】 前記レチクル変形手段を前記投影露光
装置の露光環境の変化に応じて駆動することを特徴とす
る請求項9 記載の投影露光装置。
10. The projection exposure apparatus according to claim 9, wherein said reticle deformation means is driven in accordance with a change in an exposure environment of said projection exposure apparatus.
【請求項11】 前記投影露光装置がスキャン露光を行
う装置であることを特徴とする請求項1 〜10記載の投影
露光装置。
11. The projection exposure apparatus according to claim 1, wherein the projection exposure apparatus is an apparatus that performs scan exposure.
【請求項12】 前記レチクル変形手段は前記照明系に
より照射されるスリット形状の照明領域のスリットの長
手方向にのみ前記レチクルを変形させることを特徴とす
る請求項11記載の投影露光装置。
12. The projection exposure apparatus according to claim 11, wherein the reticle deformation means deforms the reticle only in a longitudinal direction of a slit in a slit-shaped illumination area irradiated by the illumination system.
【請求項13】 前記レチクル変形手段により前記レチ
クルを変形させた時に生じる倍率変化を補正する手段を
備えていることを特徴とする請求項12記載の投影露光装
置。
13. The projection exposure apparatus according to claim 12, further comprising: means for correcting a change in magnification that occurs when the reticle is deformed by the reticle deforming means.
【請求項14】 前記倍率変化の補正を前記スリット形
状の照明領域の長手方向の倍率について行うことを特徴
とする請求項13記載の投影露光装置。
14. The projection exposure apparatus according to claim 13, wherein the magnification change is corrected for a longitudinal magnification of the slit-shaped illumination area.
【請求項15】 前記倍率変化を補正した後に残る前記
投影光学系の変化を補正することを特徴とする請求項14
記載の投影露光装置。
15. The method according to claim 14, wherein a change in the projection optical system remaining after correcting the change in magnification is corrected.
The projection exposure apparatus according to claim 1.
【請求項16】 前記レチクル変形手段はスキャン露光
を行う方向に吸着ノズルを複数個有することを特徴とす
る請求項15記載の投影露光装置。
16. The projection exposure apparatus according to claim 15, wherein said reticle deformation means has a plurality of suction nozzles in a direction in which scan exposure is performed.
【請求項17】 前記レチクル変形手段は前記吸着ノズ
ルの吸着圧を変えて変形量を制御することを特徴とする
請求項16記載の投影露光装置。
17. The projection exposure apparatus according to claim 16, wherein the reticle deforming means controls a deformation amount by changing a suction pressure of the suction nozzle.
【請求項18】 半導体素子を製造する投影露光装置に
おいて、前記投影露光装置はレチクルを照明する照明
系、前記レチクル上に形成されたパターンを感光基板で
あるウェハ上に露光転写する投影光学系、前記照明系が
前記投影光学系の瞳面上に形成する光の強度分布を変形
させる照明光変形手段、及び前記ウェハを歪ませるウェ
ハ変形手段を有することを特徴する投影露光装置。
18. A projection exposure apparatus for manufacturing a semiconductor device, wherein the projection exposure apparatus illuminates a reticle, a projection optical system which exposes and transfers a pattern formed on the reticle onto a wafer serving as a photosensitive substrate, A projection exposure apparatus, comprising: an illumination light deforming unit that deforms an intensity distribution of light formed on a pupil plane of the projection optical system, and a wafer deforming unit that warps the wafer.
【請求項19】 前記ウェハ変形手段が前記投影光学系
が発生する像面歪を打ち消すように制御されることを特
徴とする請求項18記載の投影露光装置。
19. The projection exposure apparatus according to claim 18, wherein said wafer deforming means is controlled so as to cancel image plane distortion generated by said projection optical system.
【請求項20】 前記像面歪が像面湾曲と像面の傾き成
分を含むことを特徴とする請求項19記載の投影露光装
置。
20. The projection exposure apparatus according to claim 19, wherein the field distortion includes a field curvature and a field inclination component.
【請求項21】 前記像面湾曲を前記ウェハを変形さ
せ、前記像面の傾きを前記ウェハを傾けて補正すること
を特徴とする請求項20記載の投影露光装置。
21. The projection exposure apparatus according to claim 20, wherein the curvature of field is deformed on the wafer, and the inclination of the image plane is corrected by tilting the wafer.
【請求項22】 前記投影光学系が発生する像面歪の発
生量を予めデータテーブルとして記憶しておくことを特
徴とする請求項21記載の投影露光装置。
22. The projection exposure apparatus according to claim 21, wherein an amount of image plane distortion generated by said projection optical system is stored in advance as a data table.
【請求項23】 前記投影光学系が発生する像面歪の発
生量を計測し、該計測値に基づいて補正を行うことを特
徴とする請求項21記載の投影露光装置。
23. The projection exposure apparatus according to claim 21, wherein an amount of image plane distortion generated by the projection optical system is measured, and correction is performed based on the measured value.
【請求項24】 前記ウェハ変形手段を前記照明光変形
手段による照明光の変形状態に応じて駆動することを特
徴とする請求項22、23記載の投影露光装置。
24. The projection exposure apparatus according to claim 22, wherein said wafer deforming means is driven in accordance with a state of deformation of the illumination light by said illumination light deforming means.
【請求項25】 前記ウェハ変形手段を前記投影光学系
の露光履歴に応じて駆動することを特徴とする請求項24
記載の投影露光装置。
25. The apparatus according to claim 24, wherein said wafer deforming means is driven in accordance with an exposure history of said projection optical system.
The projection exposure apparatus according to claim 1.
【請求項26】 前記ウェハ変形手段を前記投影露光装
置の露光環境の変化に応じて駆動することを特徴とする
請求項25記載の投影露光装置。
26. The projection exposure apparatus according to claim 25, wherein said wafer deformation means is driven according to a change in an exposure environment of said projection exposure apparatus.
【請求項27】 前記投影露光装置がスキャン露光を行
う装置であることを特徴とする請求項18〜26記載の投影
露光装置。
27. A projection exposure apparatus according to claim 18, wherein said projection exposure apparatus is an apparatus for performing scan exposure.
【請求項28】 前記ウェハ変形手段は前記照明系によ
り照射されるスリット形状の照明領域のスリットの長手
方向にのみ前記ウェハを変形させることを特徴とする請
求項27記載の投影露光装置。
28. The projection exposure apparatus according to claim 27, wherein the wafer deformation means deforms the wafer only in a longitudinal direction of a slit in a slit-shaped illumination area irradiated by the illumination system.
【請求項29】 前記ウェハ変形手段により前記ウェハ
を変形させた時に生じる倍率の変化を補正する手段を備
えていることを特徴とする請求項28記載の投影露光装
置。
29. The projection exposure apparatus according to claim 28, further comprising means for correcting a change in magnification that occurs when the wafer is deformed by the wafer deforming means.
【請求項30】 前記倍率変化の補正を前記スリット形
状の照明領域の長手方向の倍率について行うことを特徴
とする請求項29記載の投影露光装置。
30. The projection exposure apparatus according to claim 29, wherein the magnification change is corrected for a longitudinal magnification of the slit-shaped illumination area.
【請求項31】 前記倍率変化を補正した後に残る前記
投影光学系の変化を補正することを特徴とする請求項30
記載の投影露光装置。
31. The projection optical system according to claim 30, wherein a change in the projection optical system remaining after correcting the change in magnification is corrected.
The projection exposure apparatus according to claim 1.
【請求項32】 半導体素子を製造する投影露光方法に
おいて、照明光変形手段を有する照明系によりレチクル
を照明し、前記レチクル上に形成されたパターンを投影
光学系によりウェハ上に露光転写する際、前記投影光学
系に対する露光状態の変化に対応して前記レチクルまた
はウェハを変形させることを特徴する投影露光方法。
32. In a projection exposure method for manufacturing a semiconductor element, when a reticle is illuminated by an illumination system having illumination light deforming means and a pattern formed on the reticle is exposed and transferred onto a wafer by a projection optical system, A projection exposure method, wherein the reticle or the wafer is deformed in response to a change in an exposure state of the projection optical system.
【請求項33】 前記レチクルまたはウェハの変形を前
記投影光学系が発生する像面歪を打ち消すように制御す
ることを特徴とする請求項32記載の投影露光方法。
33. The projection exposure method according to claim 32, wherein the deformation of the reticle or the wafer is controlled so as to cancel the image plane distortion generated by the projection optical system.
【請求項34】 前記露光状態の変化が照明光変形手段
による照明状態の変化であることを特徴とする請求項33
記載の投影露光方法。
34. The method according to claim 33, wherein the change in the exposure state is a change in the illumination state by the illumination light deforming means.
The projection exposure method as described in the above.
【請求項35】 前記露光状態の変化が露光履歴による
前記投影光学系の変化であることを特徴とする請求項33
記載の投影露光方法。
35. The method according to claim 33, wherein the change in the exposure state is a change in the projection optical system due to an exposure history.
The projection exposure method as described in the above.
【請求項36】 前記露光状態の変化が前記投影光学系
に対する露光環境の変化であることを特徴とする請求項
33記載の投影露光方法。
36. The change in the exposure state is a change in an exposure environment for the projection optical system.
33. The projection exposure method according to 33.
【請求項37】 前記投影露光方法がスキャン露光で行
う方法であることを特徴とする請求項33〜36記載の投影
露光方法。
37. The projection exposure method according to claim 33, wherein the projection exposure method is a method performed by scan exposure.
【請求項38】 前記投影露光方法において前記レチク
ルまたはウェハの変形が前記照明系により照射されるス
リット形状の照明領域のスリットの長手方向に対する補
正を行うことを特徴とする請求項37記載の投影露光方
法。
38. The projection exposure method according to claim 37, wherein in the projection exposure method, the deformation of the reticle or the wafer is corrected in a longitudinal direction of the slit in a slit-shaped illumination area irradiated by the illumination system. Method.
【請求項39】 前記レチクルまたはウェハの変形によ
り生じる倍率の変化を補正することを特徴とする請求項
38記載の投影露光方法。
39. A method according to claim 39, wherein a change in magnification caused by deformation of said reticle or wafer is corrected.
38. The projection exposure method according to 38.
【請求項40】 前記倍率変化の補正を前記スリット形
状の照明領域の長手方向の倍率について行うことを特徴
とする請求項39記載の投影露光方法。
40. The projection exposure method according to claim 39, wherein the change in magnification is corrected for a magnification in a longitudinal direction of the slit-shaped illumination area.
【請求項41】 前記倍率変化を補正した後に残る前記
投影光学系の変化を補正することを特徴とする請求項40
記載の投影露光方法。
41. A method according to claim 40, wherein a change in said projection optical system remaining after correcting said change in magnification is corrected.
The projection exposure method as described in the above.
【請求項42】 前記投影光学系が発生する像面歪の量
を予めデータテーブルとして記憶しておくことを特徴と
する請求項37〜41記載の投影露光方法。
42. The projection exposure method according to claim 37, wherein the amount of image plane distortion generated by said projection optical system is stored in advance as a data table.
【請求項43】 前記投影光学系が発生する像面歪の量
を計測し、該計測値に基づいて補正することを特徴とす
る請求項37〜41記載の投影露光方法。
43. The projection exposure method according to claim 37, wherein an amount of image plane distortion generated by the projection optical system is measured, and correction is performed based on the measured value.
JP10262431A 1998-08-31 1998-08-31 Projection exposure method and projection aligner Pending JP2000077321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10262431A JP2000077321A (en) 1998-08-31 1998-08-31 Projection exposure method and projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10262431A JP2000077321A (en) 1998-08-31 1998-08-31 Projection exposure method and projection aligner

Publications (1)

Publication Number Publication Date
JP2000077321A true JP2000077321A (en) 2000-03-14

Family

ID=17375701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10262431A Pending JP2000077321A (en) 1998-08-31 1998-08-31 Projection exposure method and projection aligner

Country Status (1)

Country Link
JP (1) JP2000077321A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139848A1 (en) * 2007-05-09 2008-11-20 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
JP2010067794A (en) * 2008-09-11 2010-03-25 Canon Inc Exposure device and method of manufacturing device
JP2011192987A (en) * 2010-03-11 2011-09-29 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4833211B2 (en) * 2004-08-06 2011-12-07 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective for microlithography

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833211B2 (en) * 2004-08-06 2011-12-07 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective for microlithography
WO2008139848A1 (en) * 2007-05-09 2008-11-20 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
US8153336B2 (en) 2007-05-09 2012-04-10 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate fabricating method, photomask, and exposing method that uses the photomask
CN101681092B (en) * 2007-05-09 2012-07-25 株式会社尼康 Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
JP5304644B2 (en) * 2007-05-09 2013-10-02 株式会社ニコン PHOTOMASK SUBSTRATE, PHOTOMASK SUBSTRATE MOLDING MEMBER, PHOTOMASK SUBSTRATE MANUFACTURING METHOD, PHOTOMASK, AND EXPOSURE METHOD USING PHOTOMASK
KR101497886B1 (en) * 2007-05-09 2015-03-04 가부시키가이샤 니콘 Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
JP2010067794A (en) * 2008-09-11 2010-03-25 Canon Inc Exposure device and method of manufacturing device
JP2011192987A (en) * 2010-03-11 2011-09-29 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8755030B2 (en) 2010-03-11 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
US6788389B2 (en) Production method of projection optical system
US6337162B1 (en) Method of exposure, photomask, method of production of photomask, microdevice, and method of production of microdevice
JP3368091B2 (en) Projection exposure apparatus and device manufacturing method
KR100285030B1 (en) Projection exposure apparatus and device manufacturing method
US6333776B1 (en) Projection exposure apparatus
JP4310816B2 (en) Illumination apparatus, projection exposure apparatus, device manufacturing method, and projection exposure apparatus adjustment method
US20060176461A1 (en) Projection optical system and exposure apparatus having the same
JPWO2002054036A1 (en) Imaging characteristic measuring method, imaging characteristic adjusting method, exposure method and apparatus, program and recording medium, and device manufacturing method
JP2003243276A (en) Aligner, exposure method and device manufacturing method using the same
US7385672B2 (en) Exposure apparatus and method
US8077288B2 (en) Exposure apparatus
JP3599629B2 (en) Illumination optical system and exposure apparatus using the illumination optical system
US6127095A (en) Illuminating optical device and semiconductor device manufacturing method
JP4692862B2 (en) Inspection apparatus, exposure apparatus provided with the inspection apparatus, and method for manufacturing microdevice
US20040157143A1 (en) Exposure method and lithography system, exposure apparatus and method of making the apparatus, and method of manufacturing device
EP1024522A1 (en) Exposure method and aligner
JP3200244B2 (en) Scanning exposure equipment
JP2897345B2 (en) Projection exposure equipment
JPH0926554A (en) Projection aligner
JP2000077321A (en) Projection exposure method and projection aligner
JP3652325B2 (en) Projection exposure apparatus and device manufacturing method
US7619716B2 (en) Exposure method
JPH09223661A (en) Aligner
JP3261960B2 (en) Scanning exposure apparatus and device manufacturing method using the same
JPH02160237A (en) Mask substrate, production of mask and exposing method by using this mask substrate