JP2000074863A - Liquid sample high-pressure differential scanning calorimeter device - Google Patents

Liquid sample high-pressure differential scanning calorimeter device

Info

Publication number
JP2000074863A
JP2000074863A JP10259365A JP25936598A JP2000074863A JP 2000074863 A JP2000074863 A JP 2000074863A JP 10259365 A JP10259365 A JP 10259365A JP 25936598 A JP25936598 A JP 25936598A JP 2000074863 A JP2000074863 A JP 2000074863A
Authority
JP
Japan
Prior art keywords
pressure
vessel
sample
differential scanning
scanning calorimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10259365A
Other languages
Japanese (ja)
Inventor
Shoji Kawai
昭治 河井
Kaoru Obuchi
薫 大淵
Masakazu Namikawa
正和 並川
Masamitsu Matsumoto
雅光 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Teramecs Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Teramecs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Teramecs Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP10259365A priority Critical patent/JP2000074863A/en
Publication of JP2000074863A publication Critical patent/JP2000074863A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the thermal physical property of protein under high pressure condition at real time by providing a sample vessel and reference vessel having pressure tightness of at least a specified value, and providing a high-pressure connector for simultaneously and similarly pressurizing both the pressure vessels and a high- pressure pump to be connected thereto. SOLUTION: A sample vessel 2 and a reference vessel 3 have pressure tightness of at least 10 MPa, and the reason for simultaneously and similarly pressurizing both the pressure vessels is that it is necessary to simultaneously raise the pressure to the same pressure since both the sample and reference vessels must be placed in the same environment. A high-pressure connector 4 connects a high-pressure pump 5 to the vessel 2 and the vessel 3. The vessel 2 is connected to the vessel 3, whereby both of them can be laid in the same pressure, and are connected to the pump 5, whereby both vessels can be simultaneously pressurized. This device is provided with the connector 4 for pressurizing the vessel 2 and the vessel 3, the high-pressure pump 5 and a pressure gauge 6. After the pressurization is performed to a prescribed pressure by this high-pressure pump 5, a general differential scanning calorie measurement is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、示差走査熱量測定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential scanning calorimeter.

【0002】[0002]

【従来の技術】示差走査熱量測定装置とは、測定すべき
試料(液体の場合では、測定する物質を液体中に溶かし
たものや、懸濁したもの)と、測定する物質を入れない
液体(リファレンスという)を断熱室に入れ、その断熱
室を徐々に昇温する。試料に相変化や反応がなければ、
試料とリファレンスは同じように昇温する。そして、例
えば試料に吸熱的な反応があれば試料はリファレンスと
同様に昇温せず、温度上昇が押さえられる。これを、試
料側に設けられたサブヒーターによってリファレンスと
同じ温度まで昇温する。そして、このサブヒーターによ
って与えた熱量を、その時の断熱室の温度を横軸とし、
縦軸に表示する。この測定によって、何度で相変化等の
反応が生じたかが分かる。このような測定装置が示差走
査熱量測定装置である。
2. Description of the Related Art A differential scanning calorimeter includes a sample to be measured (in the case of a liquid, a substance in which a substance to be measured is dissolved or suspended in a liquid) and a liquid in which a substance to be measured is not contained ( (Referred to as a reference) in an insulated room, and the temperature of the insulated room is gradually increased. If there is no phase change or reaction in the sample,
The sample and the reference are similarly heated. Then, for example, if the sample has an endothermic reaction, the temperature of the sample does not rise like the reference, and the temperature rise is suppressed. This is heated to the same temperature as the reference by a sub-heater provided on the sample side. Then, the amount of heat given by this sub-heater is plotted on the horizontal axis with the temperature of the heat-insulating chamber at that time,
Display on the vertical axis. From this measurement, it is possible to know how many times a reaction such as a phase change has occurred. Such a measuring device is a differential scanning calorimeter.

【0003】ここで、液体試料用示差走査熱量測定装置
の概要について、図6を用いて説明する。示差走査熱量
測定装置11は、断熱室12、室内昇温用メインヒータ
ー13、試料容器S、リファレンス容器R、及び試料と
リファレンスを個別に昇温できるサブヒーター14、1
5を有している。更に、試料容器S、リファレンス容器
Rには温度センサー16、17が設けられている。図示
していないが、ヒーター13、14、15への電流量を
制御する装置や温度センサー等はコンピューターによっ
て集中制御されている。
Here, an outline of a differential scanning calorimeter for a liquid sample will be described with reference to FIG. The differential scanning calorimeter 11 includes an adiabatic chamber 12, a main heater 13 for raising the temperature of a room, a sample container S, a reference container R, and a sub-heater 14, 1 for individually heating the sample and the reference.
Five. Further, temperature sensors 16 and 17 are provided in the sample container S and the reference container R, respectively. Although not shown, devices for controlling the amount of current to the heaters 13, 14, 15 and temperature sensors are controlled centrally by a computer.

【0004】装置に試料とリファレンスを入れ、メイン
ヒーター13によって徐々に昇温する。そして、試料と
リファレンスの温度上昇をそれぞれの温度センサーによ
って検知する。温度に差が出れば、その差を補償するた
め低い方のサブヒーターに通電し同じ温度にする。この
時の通電量を記録する。この動作をしながら、断熱室を
昇温していく。これによって、室内温度(即ち試料温
度)と、その時のリファレンスとの吸収熱量差が検出で
き、分子構造の変化等が生じたことが分かる。
A sample and a reference are put in an apparatus, and the temperature is gradually raised by a main heater 13. Then, the temperature rise of the sample and the reference is detected by the respective temperature sensors. If there is a difference in temperature, the lower sub-heater is energized to the same temperature to compensate for the difference. The amount of current at this time is recorded. While performing this operation, the temperature of the heat insulating chamber is raised. Thereby, the difference in the amount of absorbed heat between the room temperature (that is, the sample temperature) and the reference at that time can be detected, and it can be seen that the molecular structure has changed.

【0005】これは、高分子物質の分野で広く利用され
ており、特にタンパク質の変成が解析できることで、生
体高分子や生化学の分野でも利用されている。
[0005] This is widely used in the field of high molecular substances, in particular, in the field of biopolymers and biochemistry because it can analyze protein denaturation.

【0006】また、近年高圧環境下での物質の挙動に関
心が高まってきている。例えば、タンパク質の圧力変成
に関する研究が盛んに行なわれている。天然のタンパク
質に200MPa程度の超高圧を加えると、分子の立体
構造が変化して変成を生じる。このような圧力変成を利
用すれば、尿素などの変成試薬を加える必要がなく、ま
た不要な分解産物を生じないので、目的物質の抽出や精
製が容易となる。
In recent years, there has been increasing interest in the behavior of substances in a high-pressure environment. For example, research on the pressure alteration of proteins has been actively conducted. When an ultra-high pressure of about 200 MPa is applied to a natural protein, the three-dimensional structure of the molecule changes and denaturation occurs. If such a pressure modification is used, there is no need to add a modification reagent such as urea, and no unnecessary decomposition products are generated, so that the extraction and purification of the target substance are facilitated.

【0007】更に、タンパク質の圧力変成、或いは化学
合成における圧力効果・基礎的な機構の解明は、より有
用な物質、医薬、食品等の開発或いは生産に有用であ
る。
[0007] Further, elucidation of the pressure effect and the basic mechanism in chemical denaturation or chemical synthesis of proteins is useful for the development or production of more useful substances, drugs, foods and the like.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来の液体試
料用示差走査熱量測定装置では、加圧できないため上記
のような圧力変成の研究は非常に手間のかかるものであ
った。しかし、例えばタンパク質分子の圧力変成に関す
る研究を推進するためには、高圧下条件におけるタンパ
ク質の熱物性をリアルタイムに測定する必要がある。つ
まり、高圧下において示差走査熱量測定を実施すること
が望まれるのである。
However, the conventional differential scanning calorimeter for liquid samples cannot be pressurized, so that the study of the above-mentioned pressure alteration is very troublesome. However, it is necessary to measure the thermophysical properties of proteins under high-pressure conditions in real time, for example, in order to promote research on pressure metamorphosis of protein molecules. In other words, it is desired to perform differential scanning calorimetry under high pressure.

【0009】[0009]

【課題を解決するための手段】そこで、本発明者は鋭意
研究の結果本発明液体試料用示差走査熱量測定装置を完
成させたものであり、その特徴とするところは、試料容
器及びリファレンス容器が少なくとも10MPa(約1
00Kgf/cm2 )の耐圧性を有し、且つ該2つの耐圧容
器に同時、且つ同様に加圧するための高圧コネクター及
びそれに接続する高圧ポンプを有する点にある。
Accordingly, the present inventor has completed the differential scanning calorimeter for liquid samples of the present invention as a result of intensive studies, and the feature thereof is that a sample container and a reference container are used. At least 10 MPa (about 1
(00 kgf / cm 2 ), and a high-pressure connector for simultaneously and similarly applying pressure to the two pressure-resistant containers and a high-pressure pump connected thereto.

【0010】試料容器は、10MPa(約100Kgf/
cm2 )の耐圧性を有することを必要とするが、その他に
ついては特別限定しない。10MPaとしたのは、これ
以上は高圧であり、通常の容器では耐えられないためで
ある。材質は、示差走査熱量測定装置に使用できればよ
く、各種ステンレス、鉄、銅、アルミニュウム、チタ
ン、或いは合金等である。
The sample container has a pressure of 10 MPa (about 100 kgf /
cm 2 ), but the others are not particularly limited. The reason why the pressure is set to 10 MPa is that the pressure is higher than this and cannot be tolerated in a normal container. The material may be any material that can be used for the differential scanning calorimeter, and includes various stainless steels, irons, coppers, aluminums, titaniums, and alloys.

【0011】サイズも基本的には自由であるが、温度を
厳密に制御、測定するものであるため、熱容量を小さく
するため肉厚は、耐圧があればできるだけ小さい方がよ
い。試料の温度均一にするため通常は内径も小さいほう
がよい。数mm以下、0.5〜2.0mm程度である。
Although the size is basically free, since the temperature is strictly controlled and measured, the wall thickness should be as small as possible if there is a withstand voltage in order to reduce the heat capacity. Normally, the smaller the inner diameter, the better the temperature of the sample becomes. It is several mm or less, about 0.5 to 2.0 mm.

【0012】この試料容器は、片側は高圧ポンプに接続
するため開放であるが、他方は封止しなければならな
い。この封止法も、熱容量が小さく、熱伝導が良く、耐
圧のある方法でなければならない。好ましいのは、容器
の側壁肉厚と同じ程度の肉厚で底面とする方法である。
しかし、単に底板を溶接する方法では、高圧には耐える
ことは難しい。勿論、これらの方法で10MPaに耐え
られれ、且つ熱容量や熱伝導の問題がなければ使用でき
る。本発明者は、この点についても容器の片側を絞り加
工を施し、開口部を非常に小さくした後、その開口部を
溶接する方法で耐圧を高めることに思い到った。この方
法では、底面部は湾曲した形状になり、且つ全体として
同じ程度の肉厚となった。このため、熱容量や熱伝導の
点については非常に良い。
This sample container is open on one side for connection to a high-pressure pump, while the other must be sealed. This sealing method also needs to be a method having a small heat capacity, good heat conduction, and high pressure resistance. A preferred method is to make the bottom surface as thick as the side wall thickness of the container.
However, it is difficult to withstand high pressure by simply welding the bottom plate. Of course, these methods can withstand 10 MPa and can be used if there is no problem of heat capacity or heat conduction. The inventor of the present invention has also come to think that, with respect to this point as well, after one side of the container is subjected to drawing processing to make the opening very small, the pressure resistance is increased by welding the opening. In this method, the bottom portion had a curved shape, and had the same thickness as a whole. Therefore, the heat capacity and the heat conduction are very good.

【0013】2つの耐圧容器に同時、且つ同様に加圧す
るのは、試料とリファレンスとは同じ環境に置く必要が
あるため、圧も同時に且つ同圧に昇圧する必要があるた
めである。従来、このような高圧装置は存在しなかった
ため、このような考え方は不要であった。
The reason why the two pressure vessels are simultaneously and similarly pressurized is that the sample and the reference must be placed in the same environment, and the pressure must be increased simultaneously and to the same pressure. Conventionally, such a high-pressure device did not exist, and thus such a concept was unnecessary.

【0014】高圧コネクターとは、高圧ポンプと試料容
器及びリファレンス容器を接続するものである。これ
は、試料容器とリファレンス容器を連結して同圧とし、
かつポンプと接続することによって、同時に加圧できる
ようしたものである。
The high-pressure connector connects the high-pressure pump to the sample container and the reference container. This is done by connecting the sample container and the reference container to the same pressure,
In addition, by connecting to a pump, pressurization can be performed at the same time.

【0015】高圧ポンプは、どのようなものでもよく手
動式でも自動式でもよい。特に、圧は変えずに一定の高
圧で行なうものでは手動でも十分である。圧力媒体は、
通常用いられる水、シリコンオイル、ケロシン、グリセ
リン、アルコール等でよく、リファレンスに用いる液で
もよい。
The high-pressure pump may be of any type and may be manual or automatic. In particular, manual operation at a constant high pressure without changing the pressure is sufficient. The pressure medium is
It may be water, silicon oil, kerosene, glycerin, alcohol, or the like, which is usually used, or a liquid used for reference.

【0016】更に、本発明装置は、圧を一定にして温度
を変えて示差熱を測定するだけでなく、温度を一定にし
て圧力を変えて示差熱を測定することもできる。これは
従来になかった測定方法であるが、高圧測定ができる装
置によって実現したものである。測定法としては、メイ
ンヒーターによって、温度を一定にし(例えば、50
℃)、圧力を自動ポンプによって徐々に上げる。圧力を
上げることによって、例えば分子構造の変化等の吸熱反
応があれば、試料温度センサーがその反応による温度下
降を検知し、コンピューターに入力される。この断熱室
内温度との差を補償するため、試料サブヒーターに通電
され温度を一定に戻す。この通電量が記録される。この
ようにして、各圧力での示差熱が測定できる。
Further, the apparatus of the present invention can measure not only the differential heat by changing the temperature while keeping the pressure constant but also the differential heat by changing the pressure while keeping the temperature constant. This is a measurement method that has not existed in the past, but is realized by an apparatus capable of measuring high pressure. As a measuring method, the temperature is kept constant by a main heater (for example, 50
° C), the pressure is gradually increased by an automatic pump. If there is an endothermic reaction such as a change in molecular structure due to an increase in pressure, the sample temperature sensor detects a decrease in temperature due to the reaction and is input to a computer. In order to compensate for this difference from the temperature in the adiabatic room, the sample sub-heater is energized to return the temperature to a constant value. The amount of current is recorded. In this way, the differential heat at each pressure can be measured.

【0017】[0017]

【発明の実施の形態】次に図面に示す実施の形態に基づ
き、本発明をより詳細に説明する。図1は、本発明液体
試料用高圧示差走査熱量測定装置1の概要を示す概略図
である。試料容器2及びリファレンス容器3に加圧する
ためのコネクター4、高圧ポンプ5、及び圧力計6が設
けられている。これ以外については、通常の液体用示差
走査熱量測定装置と同様である。この高圧ポンプ5によ
って所定の圧まで加圧し、後は通常の示差走査熱量測定
を行なえばよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the embodiments shown in the drawings. FIG. 1 is a schematic diagram showing an outline of a high-pressure differential scanning calorimeter 1 for a liquid sample of the present invention. A connector 4 for pressurizing the sample container 2 and the reference container 3, a high-pressure pump 5, and a pressure gauge 6 are provided. Other than this, it is the same as the ordinary differential scanning calorimeter for liquids. The pressure is increased to a predetermined pressure by the high-pressure pump 5, and thereafter, ordinary differential scanning calorimetry may be performed.

【0018】図2は、本発明液体試料用高圧示差走査熱
量測定装置1に用いる試料容器2、リファレンス容器
3、高圧コネクター4近傍の部分断面図である。断熱室
7は試料容器2とリファレンス容器3が入るだけの容積
を有している。温度を厳密に制御するためと、断熱性の
ためこの例では非常に厚い金属容器となっている。この
例では、コネクター4は断熱室7の蓋8と一体として構
成されている。即ち、蓋8に下方から縦方向の2本の細
孔を彫り、その2本の細孔と連結するように左右に貫通
孔を開ける。
FIG. 2 is a partial sectional view showing the vicinity of a sample container 2, a reference container 3, and a high-pressure connector 4 used in the high-pressure differential scanning calorimeter 1 for a liquid sample of the present invention. The heat insulation chamber 7 has a volume enough to accommodate the sample container 2 and the reference container 3. In this example, a very thick metal container is used for strict control of the temperature and for heat insulation. In this example, the connector 4 is formed integrally with the lid 8 of the heat insulating chamber 7. That is, two vertical pores are formed in the lid 8 from below, and through holes are formed on the left and right so as to be connected to the two pores.

【0019】縦方向の細孔に試料容器とリファレンス容
器が接続され、左右の貫通孔の一方には高圧ポンプから
のラインが接続され、他方はニードルとネジによって密
閉されている。蓋8はボルト9によって断熱室容器10
に固定されている。その他の要素、例えばヒーターや温
度センサー等は省略している。
A sample container and a reference container are connected to the vertical pores, a line from a high-pressure pump is connected to one of the left and right through holes, and the other is sealed with a needle and a screw. The lid 8 is bolted to the insulation chamber container 10
It is fixed to. Other elements such as a heater and a temperature sensor are omitted.

【0020】この例では、コネクター4自身、その構造
から非常に大きな耐圧性を有している。且つ、試料容器
2とリファレンス容器3を同時に、同等に加圧できる構
造となっている。
In this example, the connector 4 itself has a very high pressure resistance due to its structure. Further, the sample container 2 and the reference container 3 can be simultaneously and equally pressurized.

【0021】図3は、図2で用いた試料容器及びリファ
レンス容器の底部の加工方法の1例を示す拡大断面図で
ある。(a)は加工前を示し、(b)は絞り始め、
(c)は絞り完了の状態を示す。この状態で先端に残存
する開口部を溶接で埋めれば完成である。この方法によ
り、底面部は湾曲した形状になり、且つ全体として同じ
程度の肉厚となった。このため、熱容量や熱伝導の点に
ついては非常に良い。この例では、外径1.26mm、
内径0.9mm、長さ134mmのSUS316製パイ
プを用いた。この例では、250MPaまで測定可能で
あった。
FIG. 3 is an enlarged sectional view showing one example of a method of processing the bottom of the sample container and the reference container used in FIG. (A) shows before processing, (b) starts drawing,
(C) shows a state where the drawing is completed. In this state, the opening remaining at the tip is filled with welding to complete the process. According to this method, the bottom portion has a curved shape and the same thickness as a whole. Therefore, the heat capacity and the heat conduction are very good. In this example, the outer diameter is 1.26 mm,
A SUS316 pipe having an inner diameter of 0.9 mm and a length of 134 mm was used. In this example, measurement was possible up to 250 MPa.

【0022】次に、図3の例によって、30℃で培養し
対数増加期に集菌した酵母を試料として、常圧及び14
0MPa(約1400気圧)の加圧下における示差走査
熱量測定を行い、その結果を図4、図5に示す。図4及
び図5は、温度・定圧比熱曲線を示す。菌体の示差走査
熱量測定において、定圧比熱の量はその温度で変成しつ
つあるタンパク質の量を示すと考えられる。この2つの
グラフから、常圧と高圧とでは、変成する温度領域及び
その組成が異なることが理解できる。
Next, according to the example shown in FIG. 3, the yeast cultured at 30 ° C. and collected during the logarithmic growth phase was used as a sample at normal pressure and 14 ° C.
Differential scanning calorimetry was performed under a pressure of 0 MPa (about 1400 atm), and the results are shown in FIGS. 4 and 5 show temperature / constant pressure specific heat curves. In differential scanning calorimetry of cells, the amount of specific heat at constant pressure is considered to indicate the amount of protein that is denaturing at that temperature. From these two graphs, it can be understood that the metamorphic temperature range and the composition thereof are different between normal pressure and high pressure.

【0023】[0023]

【発明の効果】天然のタンパク質分子は、規則的なヘリ
ックス構造や折り畳み構造を多数含んだ特異的な立体構
造を有している。この立体構造は、加熱することやpH
を変えること、また尿素などの変成試薬を添加すること
で変化させることができるが、高圧を用いることによっ
ても同様の効果を得ることができると考えられている。
本発明高圧示差走査熱量測定装置を用いれば、それを科
学的に実証する手段となるばかりでなく、様々なタンパ
ク質分子等の圧力変成の模様をリアルタイムに観測でき
る手段を提供でき、産業上の利用価値の高いものであ
る。
The natural protein molecule has a specific three-dimensional structure including many regular helical structures and folded structures. This three-dimensional structure can be heated or
Can be changed by adding a denaturing reagent such as urea, but it is considered that the same effect can be obtained by using a high pressure.
The use of the high-pressure differential scanning calorimeter of the present invention not only provides a means for scientifically verifying it, but also provides a means for observing the pattern of pressure alteration of various protein molecules and the like in real time, and is useful for industrial applications. It is of high value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明液体試料用高圧示差走査熱量測定装置の
概要を示す概略図である。
FIG. 1 is a schematic diagram showing an outline of a high-pressure differential scanning calorimeter for liquid samples of the present invention.

【図2】本発明液体試料用高圧示差走査熱量測定装置に
用いる試料容器、リファレンス容器、高圧コネクター近
傍の部分断面図である。
FIG. 2 is a partial sectional view showing the vicinity of a sample container, a reference container, and a high-pressure connector used in the high-pressure differential scanning calorimeter for liquid samples of the present invention.

【図3】図2で用いた試料容器及びリファレンス容器の
底部の加工方法の1例を示す拡大断面図である。
FIG. 3 is an enlarged sectional view showing an example of a method of processing the bottom of the sample container and the reference container used in FIG.

【図4】温度・定圧比熱曲線を示すグラフである。FIG. 4 is a graph showing a temperature / constant pressure specific heat curve.

【図5】温度・定圧比熱曲線を示すグラフである。FIG. 5 is a graph showing a temperature / constant pressure specific heat curve.

【図6】従来の液体試料用示差走査熱量測定装置を示す
概略断面図である。
FIG. 6 is a schematic sectional view showing a conventional differential scanning calorimeter for liquid samples.

【符号の説明】[Explanation of symbols]

1 本発明液体試料用高圧示差走査熱量測定装置 2 試料容器 3 リファレンス容器 4 コネクター 5 高圧ポンプ 6 圧力計 7 断熱室 8 蓋 9 ボルト 10 断熱室容器 11 従来の液体試料用示差走査熱量測定装置 12 断熱室 13 室内昇温用メインヒーター 14、15 サブヒーター 16、17 温度センサー S 試料容器 DESCRIPTION OF SYMBOLS 1 High pressure differential scanning calorimeter for liquid sample of the present invention 2 Sample container 3 Reference container 4 Connector 5 High pressure pump 6 Pressure gauge 7 Insulated chamber 8 Lid 9 Bolt 10 Insulated chamber container 11 Conventional differential scanning calorimeter for liquid sample 12 Thermal insulation Room 13 Main heater for indoor temperature rise 14, 15 Sub-heater 16, 17 Temperature sensor S Sample container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大淵 薫 茨城県つくば市東1丁目1番3 工業技術 院生命工学工業技術研究所内 (72)発明者 並川 正和 京都府乙訓郡大山崎町字下植野小字代理分 10−2 (72)発明者 松本 雅光 大阪府三島郡島本町山崎4丁目20番5− 909号 Fターム(参考) 2F056 YF04 2G040 AB12 BA02 BA24 CA02 CA10 CB03 CB08 CB14 DA02 DA14 EA02 EA11 EB02 EC09 FA01 GA04 GA08 HA06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kaoru Obuchi 1-3-1 Higashi, Tsukuba City, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology Min. 10-2 (72) Inventor Masamitsu Matsumoto 4-20-5-909 Yamazaki, Shimamoto-cho, Mishima-gun, Osaka Prefecture F-term (reference) 2F056 YF04 2G040 AB12 BA02 BA24 CA02 CA10 CB03 CB08 CB14 DA02 DA14 EA02 EA11 EB02 EC09 FA01 GA04 GA08 HA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料容器及びリファレンス容器が少なく
とも10MPa(約100Kgf/cm2 )の耐圧性を有
し、該2つの耐圧容器に同時、且つ同様に加圧するため
の高圧コネクター及びそれに接続する高圧ポンプを有す
ることを特徴とする液体試料用高圧示差走査熱量測定装
置。
1. A high-pressure connector for connecting a sample container and a reference container to at least 10 MPa (approximately 100 kgf / cm 2 ) simultaneously and similarly to the two pressure-resistant containers, and a high-pressure pump connected thereto. A high-pressure differential scanning calorimeter for a liquid sample, comprising:
【請求項2】 該2つの圧力容器が、金属製で肉厚が
0.5mm以下、外径が3mm以下であり、且つ容器底
部は湾曲加工及び点溶接されたものである請求項1記載
の液体試料用高圧示差走査熱量測定装置。
2. The pressure vessel according to claim 1, wherein the two pressure vessels are made of metal, have a wall thickness of 0.5 mm or less, an outer diameter of 3 mm or less, and have a vessel bottom curved and spot-welded. High pressure differential scanning calorimeter for liquid samples.
【請求項3】 試料容器及びリファレンス容器が少なく
とも10MPa(約100Kgf/cm2 )の耐圧性を有
し、該2つの耐圧容器に同時、且つ同様に加圧するため
の高圧コネクター及びそれに接続する高圧ポンプを有
し、試料の圧力を変化させ、その圧力ごとの示差熱量を
測定することを特徴とする圧力走査型高圧示差走査熱量
測定装置
3. A high-pressure connector for simultaneously and similarly applying pressure to the two pressure-resistant containers, wherein the sample container and the reference container have a pressure resistance of at least 10 MPa (about 100 kgf / cm 2 ), and a high-pressure pump connected thereto. A pressure-scanning high-pressure differential scanning calorimeter that changes the pressure of the sample and measures the differential calorie for each pressure
JP10259365A 1998-08-27 1998-08-27 Liquid sample high-pressure differential scanning calorimeter device Pending JP2000074863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10259365A JP2000074863A (en) 1998-08-27 1998-08-27 Liquid sample high-pressure differential scanning calorimeter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10259365A JP2000074863A (en) 1998-08-27 1998-08-27 Liquid sample high-pressure differential scanning calorimeter device

Publications (1)

Publication Number Publication Date
JP2000074863A true JP2000074863A (en) 2000-03-14

Family

ID=17333112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10259365A Pending JP2000074863A (en) 1998-08-27 1998-08-27 Liquid sample high-pressure differential scanning calorimeter device

Country Status (1)

Country Link
JP (1) JP2000074863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530560A (en) * 2005-02-10 2008-08-07 パーキンエルマー・エルエーエス・インコーポレーテッド Differential scanning calorimeter (DSC) with temperature controlled furnace
CN106706700A (en) * 2016-11-11 2017-05-24 四川天策聚材科技有限公司 Online monitoring system and method for phase change-resistance relation of conductive polymer composite material
JP2019514029A (en) * 2016-04-19 2019-05-30 マルバーン パナリティカル インコーポレイテッド Differential scanning calorimetry method and differential scanning calorimetry apparatus
CN111504796A (en) * 2020-04-29 2020-08-07 李俊 Local compressive property detection device for pressure vessel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677795B2 (en) 2004-02-10 2010-03-16 Perkinelmer Las, Inc. Differential scanning calorimeter (DSC) with temperature controlled furnace
JP2008530560A (en) * 2005-02-10 2008-08-07 パーキンエルマー・エルエーエス・インコーポレーテッド Differential scanning calorimeter (DSC) with temperature controlled furnace
JP2019514029A (en) * 2016-04-19 2019-05-30 マルバーン パナリティカル インコーポレイテッド Differential scanning calorimetry method and differential scanning calorimetry apparatus
CN106706700A (en) * 2016-11-11 2017-05-24 四川天策聚材科技有限公司 Online monitoring system and method for phase change-resistance relation of conductive polymer composite material
CN111504796A (en) * 2020-04-29 2020-08-07 李俊 Local compressive property detection device for pressure vessel

Similar Documents

Publication Publication Date Title
Arlabosse et al. Comparison between static and dynamic methods for sorption isotherm measurements
Fang et al. Temperature measured close to the interface of an evaporating liquid
Mohan et al. Solubility measurement using differential scanning calorimetry
Lebovka et al. Temperature enhanced electroporation under the pulsed electric field treatment of food tissue
Katekawa et al. On the influence of glass transition on shrinkage in convective drying of fruits: a case study of banana drying
Fu et al. Drying kinetics of skim milk with 50 wt.% initial solids
Andrieu et al. A review on experimental determination and optimization of physical quality factors during pharmaceuticals freeze-drying cycles
US6485173B2 (en) Pressure perturbation calorimetry instruments and methods
Garden et al. Highly sensitive ac nanocalorimeter for microliter-scale liquids or biological samples
Kordikowski et al. Probing vapor/liquid equilibria of near-critical binary gas mixtures by acoustic measurements
CN107884435B (en) Device for measuring heat conductivity coefficient of material under high-pressure gas environment
JP2002539419A (en) Alignable thermal assay
Splinter et al. Fast differential scanning calorimetry of liquid samples with chips
US9612167B2 (en) Method for determining adsorption heat and wetting heat of a surface and a measuring cell of a calorimeter
CN104374800A (en) In-situ heat conductivity coefficient testing device and method for gas hydrate
JP2000074863A (en) Liquid sample high-pressure differential scanning calorimeter device
Hottot et al. Experimental study and modeling of freeze-drying in syringe configuration. Part II: Mass and heat transfer parameters and sublimation end-points
CN106706701A (en) Device for measuring heat conductivity coefficient of powder on basis of transient plane heat source method
JPH0239213A (en) Detection of generating temperature of high voltage/ temperature device for synthesization and synthetic temperature control method
Ferrasse et al. Simultaneous heat-flow differential calorimetry and thermogravimetry for fast determination of sorption isotherms and heat of sorption in environmental or food engineering
Lo et al. PVT Behavior of Ethyl Alcohol at Elevated Pressures and Temperatures
Acosta et al. Dew and bubble point measurements for carbon dioxide-propane mixtures
Hiaki et al. Vapor–liquid equilibria for supercritical carbon dioxide+ butanol systems at 313.2 K
Dadarlat et al. Photopyroelectric determination of thermophysical parameters and detection of phase transitions in fatty acids and triglycerides. Part II: Temperature dependence of thermophysical parameters
Arabas et al. New technique for kinetic studies of pressure-temperature induced changes of biological materials