JP2000074353A - Ash processing melting furnace and its operation method - Google Patents

Ash processing melting furnace and its operation method

Info

Publication number
JP2000074353A
JP2000074353A JP10262450A JP26245098A JP2000074353A JP 2000074353 A JP2000074353 A JP 2000074353A JP 10262450 A JP10262450 A JP 10262450A JP 26245098 A JP26245098 A JP 26245098A JP 2000074353 A JP2000074353 A JP 2000074353A
Authority
JP
Japan
Prior art keywords
melt
ash
lower electrode
slag
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10262450A
Other languages
Japanese (ja)
Inventor
Ryota Hidaka
亮太 日高
Teiji Hara
禎治 原
Shinji Iwamoto
伸二 岩本
Shuichi Matsumoto
秀一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP10262450A priority Critical patent/JP2000074353A/en
Publication of JP2000074353A publication Critical patent/JP2000074353A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ash processing melting furnace and its operation method in which maintenance work for removal of melts fixedly deposited on a lower electrode is eliminated, with good slag quality and with the low running cost. SOLUTION: There are provided an upper electrode 15 disposed vertically movably, a lower electrode 16 disposed on a hearth side while facing the upper electrode 15 and further disposed vertically movably in response to melting conditions of thrown ash 12, and an electric power supply apparatus 17 between both electrodes 15, 16 for switching an arc power supply 30 between hanging characteristics and a voltage adjustable resistance heating power supply 29 having constant voltage characteristic in response to load conditions for supply of electric power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼却灰や飛灰を溶
融し、溶融物を分離、排出処理する灰処理用溶融炉及び
該灰処理用溶融炉の操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melting furnace for ash processing for melting incinerated ash and fly ash, separating and discharging the melt, and a method for operating the melting furnace for ash processing.

【0002】[0002]

【従来の技術】従来、灰処理用溶融炉においては、電気
抵抗溶融炉本体の炉底側に配置、固定された下部電極
と、この下部電極に対向して昇降自在に設けられた上部
電極との間に焼却灰や飛灰を投入し、アーク用電源や抵
抗加熱用電源を介して、アーク熱やジュール熱を付与し
ながら、焼却灰や飛灰を加熱、溶融し、溶融物であるメ
タル、スラグ及び塩(NaCl、KCl等)に分離し
て、それぞれを各流出口から排出して回収することによ
り、資源の再利用、特にスラグの有効利用を図ってい
る。即ち、下部電極を固定した状態で、上部電極を上下
移動させて、両電極間の抵抗値つまり負荷を変化させ
て、塩をスラグやメタルから分離するように操業してい
る。
2. Description of the Related Art Conventionally, in a melting furnace for ash treatment, a lower electrode disposed and fixed on the furnace bottom side of an electric resistance melting furnace main body, and an upper electrode provided to be movable up and down in opposition to the lower electrode. The incineration ash and fly ash are supplied and the arc heat and the Joule heat are applied through the arc power supply and the resistance heating power supply to heat and melt the incineration ash and fly ash. , Slag, and salt (NaCl, KCl, etc.) are discharged from each of the outlets and collected, thereby reusing resources, particularly effective use of slag. That is, while the lower electrode is fixed, the upper electrode is moved up and down to change the resistance value between the two electrodes, that is, the load, so that the salt is separated from the slag and the metal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の灰処理用溶融炉においては、下部電極を固定した状
態で操業しているので、未だ解決すべき以下のような問
題があった。 下部電極50を炉底上面51に固定して操業する場合
(図5を参照) 設備を立下げた時に、下部電極50の上面52に残留し
た溶融物53が冷えて凝固し、スラグの影響により場合
によっては再起動の時、アークが発生しないことがあ
り、その結果下部電極50上の溶融物53を除去するメ
ンテナンス作業が必要であった。図5中符号54は上部
電極、符号55はメタル排出口、符号56は出滓口、符
号57は出塩口を表す。 下部電極50aを炉底上面51より少し高い位置に固
定して操業する場合(図6を参照) 設備の立上げ、立下げ及び灰の溶融には支障はないが、
塩58が熱対流により溶融物53a(特に、スラグが多
量に含まれる)中に満遍なく存在するので、出滓口56
から出湯するスラグ中の塩濃度が高くなり、スラグの品
質が劣る。また、この熱対流を無くすために抵抗加熱を
停止させた場合には、熱対流が治まると同時に溶融物5
3aの上面53bが空気放熱により冷え固まるため、操
業不能の状態に陥っていた。図6中符号54aは上部電
極、符号59は主電流(熱源)軌跡、符号60は熱対流
軌跡を表す。 下部電極50bを出塩口57付近に固定して操業する
場合(図7を参照) 熱対流が発生しにくい位置に上、下部電極54b、50
bがあるので、溶融物53aを出塩口57まで作成した
後は塩とスラグの比重分離が良好に行われるため、スラ
グの品質は良いが、設備の立上げ時に塩とスラグを比重
分離するために出塩口57のレベルまで溶融物53aを
作成するとき、全てアーク加熱により作成しなければな
らないため、炉底付近で、種湯(抵抗加熱が行われる抵
抗値を有した溶融物)を作成して抵抗加熱により出塩口
57まで溶融物53aを作成する場合に比べてランニン
グコストが非常に高価となる。なお、図7中符号61は
アーク、符号62は灰投入口、符号63は灰を表す。
However, since the conventional ash treatment melting furnace operates with the lower electrode fixed, there are still the following problems to be solved. When the operation is performed with the lower electrode 50 fixed to the furnace bottom upper surface 51 (see FIG. 5). When the equipment is shut down, the melt 53 remaining on the upper surface 52 of the lower electrode 50 cools and solidifies, and is affected by slag. In some cases, no arc is generated at the time of restart, and as a result, maintenance work for removing the melt 53 on the lower electrode 50 is required. In FIG. 5, reference numeral 54 denotes an upper electrode, reference numeral 55 denotes a metal outlet, reference numeral 56 denotes a slag outlet, and reference numeral 57 denotes a salt outlet. When the operation is performed with the lower electrode 50a fixed at a position slightly higher than the furnace bottom upper surface 51 (see FIG. 6).
Since the salt 58 is uniformly present in the melt 53a (particularly, a large amount of slag is contained) due to thermal convection, the slag port 56
The salt concentration in the slag that comes out of the slag is high, and the quality of the slag is inferior. When resistance heating is stopped to eliminate the heat convection, the melt 5
Since the upper surface 53b of 3a is cooled and solidified by the heat radiation from the air, the operation has been disabled. 6, reference numeral 54a denotes an upper electrode, reference numeral 59 denotes a main current (heat source) locus, and reference numeral 60 denotes a thermal convection locus. When operating with the lower electrode 50b fixed near the outlet 57 (see FIG. 7), the upper and lower electrodes 54b, 50 are located at a position where heat convection hardly occurs.
b, after the melt 53a is made up to the outlet 57, the specific gravity separation of salt and slag is performed well, so the quality of slag is good, but the specific gravity of salt and slag is separated when starting up the equipment. Therefore, when the melt 53a is formed up to the level of the salt outlet 57, all the melt 53a must be formed by arc heating. Therefore, near the furnace bottom, a seed metal (a melt having a resistance value at which resistance heating is performed) is supplied. The running cost is much higher than in the case where the melt 53a is formed up to the salt outlet 57 by resistance heating. 7, reference numeral 61 denotes an arc, reference numeral 62 denotes an ash inlet, and reference numeral 63 denotes ash.

【0004】本発明はこのような事情に鑑みてなされた
もので、下部電極に固着した溶融物を除去するメンテナ
ンス作業が不要で、スラグの品質が良好、かつランニン
グコストが廉価な灰処理用溶融炉及びその操業方法を提
供することを目的とする。
The present invention has been made in view of such circumstances, and does not require maintenance work for removing the melt adhered to the lower electrode, has good slag quality, and has a low running cost. An object of the present invention is to provide a furnace and its operation method.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う請求項1
記載の灰処理用溶融炉は、上下に移動可能に配置される
上部電極と、前記上部電極に対向して炉底側に配置さ
れ、しかも投入された灰の溶融状況に応じて上下に移動
可能に配置される下部電極と、前記両電極間に、垂下特
性のアーク用電源と定電圧特性で電圧調整可能な抵抗加
熱用電源を負荷状態に応じて切り換えて電力を供給可能
な電力供給装置とを備える。請求項2記載の灰処理用溶
融炉の操業方法は、上下に移動可能に配置される上部電
極と炉底側に上下に移動可能に配置される下部電極との
間に、電力を供給して投入された灰を溶融処理する灰処
理用溶融炉の操業方法において、立上げ時には、前記下
部電極を炉底上面付近に配置し、垂下特性のアーク用電
源により前記上部電極と前記下部電極との間にアークを
発生させて投入された灰を溶融し、所定量の溶融物が形
成された後は定電圧特性の抵抗加熱用電源を用いて加熱
する。請求項3記載の灰処理用溶融炉の操業方法は、請
求項2記載の灰処理用溶融炉の操業方法において、前記
溶融物が出塩口のレベルを超えたことを確認して、前記
上部電極を前記溶融物の表面付近に移動して前記下部電
極との間に一定の間隔を保ち、前記アーク用電源を用い
て上層の前記溶融物を抵抗加熱又はアーク加熱する。
According to the present invention, there is provided a semiconductor device comprising:
The melting furnace for ash processing described above is arranged on the furnace bottom side facing the upper electrode and the upper electrode movably arranged up and down, and can be moved up and down according to the melting state of the ash inputted. A lower electrode disposed between the two electrodes, a power supply device capable of supplying power by switching an arc power supply having a drooping characteristic and a resistance heating power supply capable of adjusting a voltage with a constant voltage characteristic according to a load state. Is provided. The method for operating a melting furnace for ash treatment according to claim 2 supplies electric power between an upper electrode movably arranged vertically and a lower electrode movably arranged vertically on the furnace bottom side. In the operating method of the melting furnace for ash processing for melting and processing the supplied ash, at the time of start-up, the lower electrode is arranged near the upper surface of the furnace bottom, and the upper electrode and the lower electrode are connected by an arc power supply having a drooping characteristic. An arc is generated in between to melt the supplied ash, and after a predetermined amount of melt is formed, it is heated using a resistance heating power supply having a constant voltage characteristic. The method for operating a ash processing melting furnace according to claim 3 is the method for operating an ash processing melting furnace according to claim 2, wherein it is confirmed that the melt exceeds a level of a salt outlet, and The electrode is moved to the vicinity of the surface of the melt to maintain a certain distance from the lower electrode, and the upper layer of the melt is resistance-heated or arc-heated using the arc power supply.

【0006】請求項4記載の灰処理用溶融炉の操業方法
は、請求項3記載の灰処理用溶融炉の操業方法におい
て、前記両電極間の抵抗率が所定の値以下になって、重
量物であるスラグと軽量物である塩の比重分離が進んだ
後、前記溶融物の上層の塩を前記出塩口から出湯し、次
に、前記上部電極及び下部電極を下げて、前記溶融物を
抵抗加熱によって加熱し、該抵抗加熱によって前記溶融
物中のスラグを出湯可能な温度とした後、出滓口から出
湯する。請求項5記載の灰処理用溶融炉の操業方法は、
請求項4記載の灰処理用溶融炉の操業方法において、前
記溶融物を全量出湯しないで、前記下部電極を炉底上面
付近に配置した状態にして、前記抵抗加熱が可能な量だ
け残し、再度新たな灰を投入し、溶融処理を行う。請求
項6記載の灰処理用溶融炉の操業方法は、請求項2記載
の灰処理用溶融炉の操業方法において、前記溶融物が出
塩口のレベルを超えたことを確認して、前記上部電極を
前記溶融物の表面付近に移動して前記下部電極との間に
一定の間隔を保ち、前記アーク用電源を用いて上層の前
記溶融物を抵抗加熱又はアーク加熱する第1工程と、前
記両電極間の抵抗率が所定の値以下になって、重量物で
あるスラグと軽量物である塩の比重分離が進んだ後、前
記溶融物の上層の塩を前記出塩口から出湯し、次に、前
記上部電極及び下部電極を下げて、前記溶融物を抵抗加
熱によって加熱する第2工程と、前記抵抗加熱によって
前記溶融物中のスラグを出湯可能な温度とした後、出滓
口から出湯する第3工程と、前記抵抗加熱が可能なスラ
グ量だけ残し、再度新たな灰を投入する第4工程とを所
要回数繰り返す。請求項7記載の灰処理用溶融炉の操業
方法は、請求項6記載の灰処理用溶融炉の操業方法にお
いて、最終工程として、前記溶融物を全量出湯する場
合、前記炉底上面に若干残って冷え固まる前記溶融物の
上面より所定の距離だけ高い位置に前記下部電極の上端
面を配置する。
According to a fourth aspect of the present invention, there is provided a method for operating an ash melting furnace according to the third aspect, wherein the resistivity between the two electrodes is equal to or less than a predetermined value and the weight is reduced. After the specific gravity separation of the slag and the light-weight slag, the upper-layer salt of the melt is discharged from the salt outlet, and then the upper electrode and the lower electrode are lowered to remove the melt. Is heated by resistance heating, and the slag in the melt is brought to a temperature at which the slag can be discharged by the resistance heating. The method for operating the ash treatment melting furnace according to claim 5 is:
The method for operating a ash treatment melting furnace according to claim 4, wherein the lower electrode is arranged near the furnace bottom upper surface without leaving the entire amount of the molten material, leaving only an amount capable of performing the resistance heating, and again. Add new ash and perform melting process. The method for operating a ash processing melting furnace according to claim 6 is the method for operating an ash processing melting furnace according to claim 2, wherein it is confirmed that the melt exceeds a level of a salt outlet, and A first step of moving an electrode to a position near the surface of the melt and keeping a constant distance between the lower electrode and the upper layer of the melt by resistance heating or arc heating using the arc power source; After the resistivity between the two electrodes is equal to or less than a predetermined value and the specific gravity separation of the slag which is a heavy material and the salt which is a lightweight material proceeds, the salt in the upper layer of the molten material is discharged from the salt outlet, Next, lowering the upper electrode and the lower electrode, heating the melt by resistance heating, and after the slag in the melt is brought to a temperature at which the slag in the melt can be heated by the resistance heating, from the slag port The third step of tapping and leaving the slag amount capable of resistance heating Repeating the fourth step of re-introducing new ash required number. The method for operating a melting furnace for ash processing according to claim 7 is the method for operating a ash processing melting furnace according to claim 6, wherein, as a final step, when the entire amount of the melt is discharged from the furnace, a small amount remains on the upper surface of the furnace bottom. The upper end surface of the lower electrode is disposed at a position higher than the upper surface of the melt that cools and hardens by a predetermined distance.

【0007】[0007]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の一実施の形
態に係る灰処理用溶融炉の操業方法を適用する灰処理用
溶融炉の全体構成図、図2は同灰処理用溶融炉の操業方
法の種湯作成時の炉内状況の説明図、図3は同灰処理用
溶融炉の操業方法の種湯作成後から所定量の溶融物作成
までの炉内状況の説明図、図4は同灰処理用溶融炉の操
業方法の塩の分離時の炉内状況の説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is an overall configuration diagram of an ash processing melting furnace to which the ash processing melting furnace operation method according to one embodiment of the present invention is applied, and FIG. FIG. 3 is an explanatory view of the inside of the furnace at the time of hot water preparation, FIG. 3 is an explanatory view of the inside of the furnace from the preparation of a seed bath to the preparation of a predetermined amount of molten material in the operation method of the ash processing melting furnace, and FIG. FIG. 3 is an explanatory view of a state in a furnace when a salt is separated in an operation method of a melting furnace for industrial use.

【0008】図1に示すように、本発明の一実施の形態
に係る灰処理用溶融炉10は、灰投入口11から投入さ
れる灰12を加熱、溶融、分離、排出処理する溶融炉本
体13と、溶融炉本体13内の灰12及び溶融物14に
電流を供給する昇降可能な上、下部電極15、16と、
上、下部電極15、16に単相交流電流を供給する電力
供給装置17とを有している。以下、これらについて詳
しく説明する。溶融炉本体13には、灰12が投入され
る灰投入口11の他、炉底部18の上方に下から順番に
メタル排出口19、出滓口20、出塩口21、排気口2
2が形成されている。上部電極15はカーボン製で、炉
蓋44に挿通可能に配置され、上部電極昇降装置23に
より単独で上下に移動可能に構成されている。なお、適
宜上部電極15は図示しない冷却システムによって冷却
されて、溶損を防止している。
As shown in FIG. 1, a melting furnace 10 for ash processing according to an embodiment of the present invention is a melting furnace body for heating, melting, separating and discharging ash 12 supplied from an ash inlet 11. 13, a vertically movable upper and lower electrode 15, 16 for supplying current to the ash 12 and the melt 14 in the melting furnace body 13,
And a power supply device 17 for supplying a single-phase AC current to the upper and lower electrodes 15 and 16. Hereinafter, these will be described in detail. In addition to the ash inlet 11 into which the ash 12 is injected, the metal outlet 19, the slag outlet 20, the salt outlet 21, and the exhaust outlet 2 are arranged above the furnace bottom 18 in order from the bottom.
2 are formed. The upper electrode 15 is made of carbon, is disposed so as to be inserted into the furnace lid 44, and is configured to be independently movable up and down by the upper electrode elevating device 23. The upper electrode 15 is appropriately cooled by a cooling system (not shown) to prevent erosion.

【0009】下部電極16はカーボン製で上部電極15
に対向して炉底側に配置され、下部電極昇降装置を構成
する油圧シリンダー24に絶縁ホルダー25を介して連
結されている。下部電極16も、冷却水配管26、水冷
スリーブ27を介して冷却されている。水冷スリーブ2
7により溶融物14を冷却することにより溶融物14を
シールすると共に、水冷スリーブ27内には、下部電極
16の外面と慴動可能で、灰12のシール用の耐熱パッ
キン28が内蔵されている。電力供給装置17には、定
電圧特性で電圧調整可能な抵抗加熱用電源29と、抵抗
加熱用電源29に垂下特性を持たせたアーク用電源30
とが備えられている。電力供給装置17内の符号31〜
33は遮断器、符号34は電流計、符号35は電圧計を
表す。従って、灰処理用溶融炉10においては、上、下
部電極15、16を任意の位置に配置することができる
と共に、上、下部電極15、16間に、任意のタイミン
グでアーク用電源30又は抵抗加熱用電源29を負荷に
応じて遮断器31〜33を介して切り換えて電力を供給
することができる。
The lower electrode 16 is made of carbon and the upper electrode 15
And is connected to a hydraulic cylinder 24 constituting a lower electrode elevating device via an insulating holder 25 so as to face the furnace bottom. The lower electrode 16 is also cooled via a cooling water pipe 26 and a water cooling sleeve 27. Water cooling sleeve 2
The melt 14 is sealed by cooling the melt 14 with 7, and a heat-resistant packing 28 slidable with the outer surface of the lower electrode 16 and sealing the ash 12 is built in the water-cooled sleeve 27. . The power supply device 17 includes a power supply 29 for resistance heating that can adjust the voltage with a constant voltage characteristic, and a power supply 30 for an arc in which the resistance power supply 29 has a drooping characteristic.
And are provided. Reference numerals 31 to 31 in the power supply device 17
33 is a circuit breaker, 34 is an ammeter, and 35 is a voltmeter. Therefore, in the ash processing melting furnace 10, the upper and lower electrodes 15 and 16 can be arranged at arbitrary positions, and the arc power source 30 or the resistance is provided between the upper and lower electrodes 15 and 16 at arbitrary timing. The power can be supplied by switching the heating power supply 29 via the circuit breakers 31 to 33 according to the load.

【0010】次いで、灰処理用溶融炉10を使用した本
発明の一実施の形態に係る灰処理用溶融炉の操業方法の
作用について、図1〜図4を参照しながら説明する。 種湯の作成(図2参照) 溶融炉本体13内に溶融物14が無い状態から灰12の
溶融を開始する時(立上げ時)には、下部電極16の上
端面36を炉底上面37付近に移動して、垂下特性のア
ーク用電源30を使用して上部電極15と下部電極16
との間にアーク38を発生させた状態で灰12を灰投入
口11から投入し、投入された灰12を溶融していき、
上、下部電極15、16間に所定量の溶融物(メタル、
スラグ及び塩)14からなる種湯を形成する。
Next, the operation of the method for operating the ash melting furnace according to one embodiment of the present invention using the ash melting furnace 10 will be described with reference to FIGS. Preparation of seed water (see FIG. 2) When the melting of the ash 12 is started from the state where there is no melt 14 in the melting furnace main body 13 (at the time of start-up), the upper end surface 36 of the lower electrode 16 is fixed to the furnace bottom upper surface 37. Move to the vicinity, and use the arc power source 30 of the drooping characteristic to use the upper electrode 15 and the lower electrode 16.
The ash 12 is injected from the ash inlet 11 in a state where the arc 38 is generated between the ash 12 and the ash 12 thus melted.
A predetermined amount of molten material (metal,
A seed water comprising slag and salt) 14 is formed.

【0011】上、下部電極15、16間の抵抗値は、
上、下部電極15、16間に介在するスラグのレベル
(厚み)とスラグの温度で略決まるが、種湯ができるま
では、上、下部電極15、16間距離Hを変更して投入
する負荷を変更しようとしても、アーク38が不安定に
なり、切れてしまうので、溶融物14の温度を制御する
目的では、負荷、即ち上部電極15の位置を変更できな
い。結局、上、下部電極15、16間に一定レベル(例
えば、3〜7cm)以上の溶融物14を作成すること
で、種湯の作成が終了する。このように、立上げ時には
下部電極16を炉底上面37付近に移動させた状態で種
湯を作成するため、作成する種湯の量が最少で済むの
で、アーク加熱により灰12を溶融する時間が短くな
り、立上げに要するランニングコストを軽減できる。
The resistance between the upper and lower electrodes 15, 16 is:
The level (thickness) of the slag interposed between the upper and lower electrodes 15 and 16 and the temperature of the slag are substantially determined, but the load applied by changing the distance H between the upper and lower electrodes 15 and 16 until the seed water is formed. However, the load, that is, the position of the upper electrode 15 cannot be changed for the purpose of controlling the temperature of the melt 14 because the arc 38 becomes unstable and cuts. Eventually, by producing the melt 14 at a certain level (for example, 3 to 7 cm) or more between the upper and lower electrodes 15 and 16, the preparation of the seed water is completed. As described above, when starting up, the seed electrode is moved in a state where the lower electrode 16 is moved to the vicinity of the furnace bottom upper surface 37, so that the amount of the seed electrode to be prepared is minimized. And the running cost required for startup can be reduced.

【0012】出塩口レベルを超えた所定量の溶融物の
作成(図3参照) 種湯が形成された時点で、電力供給装置17によりアー
ク用電源30を定電圧特性の抵抗加熱用電源29に切り
換えて抵抗加熱により加熱する。即ち、電力供給装置1
7の遮断器32、33を遮断して、遮断器31を投入す
る。アーク加熱から抵抗加熱に切り換えて灰12を投
入、溶解することにより熱対流が盛んに発生して、溶融
炉本体13内に投入された灰12の溶融物14内への巻
き込みが激しくなり、溶解効率が上昇し、溶融物14の
レベルが上昇する。この溶融物14のレベルが出塩口2
1のレベルを超えるまで抵抗加熱を継続する。図3中符
号39は主電流軌跡、符号40は熱対流軌跡を表わす。
もし、図5に示す従来例のように炉底上面51付近に熱
源となる上、下部電極15、16間の中心を設定する
と、炉底耐火物を必要以上に加熱させ、炉底からの放熱
が促進され好ましくない。一方、熱源を図7に示す従来
例のように溶融物53aの上層へ移動させると、熱対流
が弱まり好ましくない。このように、種湯が作成された
後は、抵抗加熱を行いながら、上、下部電極15、16
間の中心を炉底上面37と溶融物14の上面43との中
間位置に移動させることによって熱対流が発生し、この
結果投入された灰12が溶融物14内に巻き込まれ易く
なり、溶解効率が上がると同時に、出塩口21の上方ま
で溶融物14を作成する際のランニングコストを軽減で
きる。
Preparation of a predetermined amount of molten material exceeding the level of the salt outlet (see FIG. 3) At the time when the seed water is formed, the power supply device 17 switches the arc power supply 30 to the resistance heating power supply 29 having a constant voltage characteristic. And heating by resistance heating. That is, the power supply device 1
Then, the circuit breakers 31 and 33 are closed and the circuit breaker 31 is closed. By switching from arc heating to resistance heating and charging and melting the ash 12, heat convection is actively generated, and the ash 12 charged into the melting furnace body 13 is entrained into the melt 14 and melts. Efficiency increases and the level of melt 14 increases. The level of this melt 14 is
Continue resistance heating until level 1 is exceeded. In FIG. 3, reference numeral 39 denotes a main current locus, and reference numeral 40 denotes a thermal convection locus.
If the center between the lower electrodes 15 and 16 is set as a heat source near the furnace bottom upper surface 51 as in the conventional example shown in FIG. 5, the furnace bottom refractory is heated more than necessary, and the heat radiation from the furnace bottom is performed. Is promoted, which is not preferred. On the other hand, when the heat source is moved to the upper layer of the melt 53a as in the conventional example shown in FIG. 7, heat convection is weakened, which is not preferable. After the seed water is thus prepared, the upper and lower electrodes 15 and 16 are heated while performing resistance heating.
By moving the center between the furnace bottom upper surface 37 and the upper surface 43 of the melt 14 to an intermediate position, heat convection is generated, and as a result, the ash 12 put in becomes easy to be caught in the melt 14 and the melting efficiency is improved. At the same time, the running cost for producing the melt 14 up to above the salt outlet 21 can be reduced.

【0013】塩の分離及びその出湯(第1及び第2工
程、図4参照) 前記において抵抗加熱により出塩口21のレベルを超
える溶融物14を作成した後、上部電極15を溶融物1
4の上面43(即ち表面)付近に移動して、下部電極1
6との間に一定の間隔(例えば2〜3cm程度)を保
ち、アーク用電源30を用いて上層の溶融物14を抵抗
加熱又はアーク加熱する(第1工程)。その結果溶融物
14の上部へ浮上している比重の小さい塩41が加熱さ
れ続け、塩41の流動性が維持されると共に、熱対流が
弱まり塩41とスラグ42が比重分離されて、出塩口2
1より上部に殆どの塩41が集まると同時に、塩41の
上面が冷えて凝固することもないので、出塩口21から
溶融炉本体13内の殆どの塩41が出湯されるため、塩
41の少ないクリーンなスラグ42が残る。なお、抵抗
加熱用電源29からアーク用電源30に切り換えるに
は、遮断器31を遮断して、遮断器32を投入した後、
遮断器33を投入する。
Separation of salt and its tapping (first and second steps, see FIG. 4) In the above, after producing a melt 14 exceeding the level of the salt outlet 21 by resistance heating, the upper electrode 15 is melted.
4 moves to the vicinity of the upper surface 43 (that is, the surface) of the lower electrode 1.
A constant distance (for example, about 2 to 3 cm) is maintained between the molten material 14 and the upper molten material 14 by resistance heating or arc heating using the arc power supply 30 (first step). As a result, the salt 41 having a low specific gravity floating on the upper portion of the melt 14 is continuously heated, the fluidity of the salt 41 is maintained, the heat convection is weakened, and the salt 41 and the slag 42 are separated by specific gravity, and Mouth 2
At the same time, most of the salt 41 is gathered at the upper part of the furnace 1, and at the same time, since the upper surface of the salt 41 does not cool and solidify, most of the salt 41 in the melting furnace body 13 is discharged from the salt outlet 21. A clean slag 42 with little remaining remains. In addition, in order to switch from the power supply 29 for resistance heating to the power supply 30 for arc, after breaking the circuit breaker 31 and turning on the circuit breaker 32,
The circuit breaker 33 is turned on.

【0014】出塩口21のレベルを超えて集まる塩41
のレベルは、溶融する灰12の成分により溶融物14中
の塩12の体積が大体計算できるので、その体積を溶融
炉本体13の形状からレベルに換算すればわかる。上、
下部電極15、16間の中心を溶融物14の上面43か
ら一定距離Tにとるが、その理由は、溶融物14の上面
43をスポット的に加熱して熱対流を和らげると言う理
由以外に、上述の説明から判るように、溶融物14の上
面43から一定距離(例えば5cm)には塩41が充満
するので、その間の抵抗値が非常に下がるからである。
即ちその時の両電極15、16間の抵抗率を監視してお
けば、比重分離の進捗が判るが、実際には塩41の抵抗
率が低過ぎて測定が困難となるため、試運転等で、所定
の抵抗率に達した一定時間後に塩41を出湯すれば塩
41が殆ど出湯されたかどうかの確認を行っておくと、
所定の抵抗率と一定時間との関係がだいたい判る。
Salt 41 gathering above the level of the outlet 21
Since the volume of the salt 12 in the melt 14 can be roughly calculated based on the components of the ash 12 to be melted, the level can be determined by converting the volume from the shape of the melting furnace body 13 to a level. Up,
The center between the lower electrodes 15 and 16 is set at a fixed distance T from the upper surface 43 of the melt 14, except for the fact that the upper surface 43 of the melt 14 is spot-likely heated to reduce thermal convection. As can be seen from the above description, since the salt 41 is filled at a certain distance (for example, 5 cm) from the upper surface 43 of the melt 14, the resistance value during that time is greatly reduced.
That is, if the resistivity between the two electrodes 15 and 16 at that time is monitored, the progress of the specific gravity separation can be known, but in practice, the resistivity of the salt 41 is too low to make the measurement difficult. If the salt 41 is discharged after a certain period of time after reaching the predetermined resistivity, it is confirmed that the salt 41 is almost completely discharged.
The relationship between the predetermined resistivity and the certain time can be generally understood.

【0015】アーク用電源30を使用する理由として
は、塩41の抵抗率は溶融物14に比べて非常に小さい
(スラグの1000分の1程度)ので、抵抗加熱用電源
29では過負荷になるため、予め短絡状態にも耐え得る
アーク用電源30に切り換えておくと機器に損害を与え
ずに済むからである。このように、溶融物14が出塩口
21のレベル上方まで作成された後、上部電極15を溶
融物14の上面43付近に移動させて、抵抗加熱又はア
ーク加熱を行うと、塩41の空気放熱による冷え固まり
がなく、また熱対流が小さいため、量物であるスラグ
42と軽量物である塩41との比重分離が容易となり、
効率良く塩41を分離、出湯できる。従って、クリーン
なスラグ42を得ることができる。次いで、両電極1
5、16間の抵抗率が所定の値以下になってから所定時
間経過した後、溶融物14の上層の塩41を出塩口21
から出湯し、次に、上部電極15及び下部電極16を下
げて、溶融物14を抵抗加熱によって加熱する(第2工
程)。
The reason for using the arc power supply 30 is that the resistivity of the salt 41 is much smaller than that of the molten material 14 (about one thousandth of slag), so that the resistance heating power supply 29 is overloaded. For this reason, if the power supply is switched to the arc power supply 30 that can withstand the short circuit state in advance, it is not necessary to damage the equipment. As described above, after the melt 14 is formed up to the level above the salt outlet 21, the upper electrode 15 is moved to the vicinity of the upper surface 43 of the melt 14 and resistance heating or arc heating is performed. no cold mass by heat radiation, and because thermal convection is small, it is easy to gravity separation of the salt 41 is the slag 42 and weight thereof is heavy amount thereof,
The salt 41 can be separated and discharged efficiently. Therefore, a clean slag 42 can be obtained. Then, both electrodes 1
After a lapse of a predetermined time since the resistivity between 5 and 16 has become equal to or less than a predetermined value, the salt 41 in the upper layer of the melt 14 is discharged from the outlet 21.
Then, the upper electrode 15 and the lower electrode 16 are lowered, and the melt 14 is heated by resistance heating (second step).

【0016】スラグの加熱及びその出湯(第3工程) 残されたクリーンなスラグ42を出湯に適した温度に前
記抵抗加熱によって昇温するため、図3に示すように、
上、下部電極15、16の中心、つまり熱源が炉底上面
37と溶融物14の上面43の中間になるように移動し
て抵抗加熱用電源29に切り換える。これにより、熱対
流によりスラグ42が全体的に加熱されるのと、抵抗加
熱用電源29の方が大きい出力が得られるので、短時間
で昇温が可能である。スラグ42は、汎用的な放射温度
計等でスラグ表面温度等を監視して出湯最適温度となっ
たところで、出滓口20から出湯を行う。
Heating of slag and tapping of slag (third step) In order to raise the temperature of the remaining clean slag 42 to a temperature suitable for tapping by the resistance heating, as shown in FIG.
The center of the upper and lower electrodes 15 and 16, that is, the heat source is moved so as to be located between the furnace bottom upper surface 37 and the upper surface 43 of the melt 14 and switched to the resistance heating power supply 29. Thereby, the slag 42 is entirely heated by the heat convection, and the resistance heating power supply 29 provides a larger output, so that the temperature can be raised in a short time. The slag 42 monitors the slag surface temperature and the like with a general-purpose radiation thermometer or the like, and discharges the slag from the slag port 20 when the slag 42 reaches the optimum tapping temperature.

【0017】次回用の種湯残し(第4工程) 次のバッチ処理を行う予定の時は、スラグ42を全量出
湯せずに次回用の種湯として、スラグ42の一部を残し
ておく。下部電極16を炉底上面37付近に配置した状
態にして、抵抗加熱が可能な量だけ残し、再度新たな灰
を投入し、溶融処理を行うことができる。これにより、
アーク用電源30にて種湯を作成する割合のランニング
コストや余計な時間を浪費せずに済み効率的である。通
常運転負荷が掛かる程度の上、下部電極15、16間距
離Hで、かつ下部電極16を炉底上面37付近に移動し
た状態でスラグ42の出湯を開始して、電流計34を監
視していれば、上部電極15とスラグ42の接触面積が
減少してくると(つまり、種湯が十分でなくなると)、
電流が下がり始めるので、その時が必要最少限の種湯を
残すために出湯を停止するタイミングである。この時出
湯されるスラグ42は塩や重金属濃度が従来より低い上
に、ランニングコストも低くなる。
Leaving seed water for next use (fourth step) When the next batch process is to be performed, a part of slag 42 is left as seed water for next use without discharging the entire amount of slag 42. With the lower electrode 16 placed in the vicinity of the furnace bottom upper surface 37, a new amount of ash can be charged again and the melting process can be performed, leaving only an amount capable of resistance heating. This allows
It is efficient and does not waste running cost or extra time for preparing the seed water by the arc power supply 30. The tapping of the slag 42 is started in a state where the normal operation load is applied, the distance H between the lower electrodes 15 and 16 and the lower electrode 16 is moved near the furnace bottom upper surface 37, and the ammeter 34 is monitored. Then, when the contact area between the upper electrode 15 and the slag 42 decreases (that is, when the seed water becomes insufficient),
Since the current starts to drop, it is time to stop tapping in order to leave the necessary minimum seed water. The slag 42 discharged at this time has a lower salt and heavy metal concentration than before, and also has a low running cost.

【0018】所定の灰処理量の確保 前記〜のバッチ処理を繰り返すことにより、希望の
灰処理量を満足することができる。 設備の完全立下げ 希望の灰処理量を確保した後、最終工程として溶融物
(主にスラグ)を全量出湯して設備を完全に立下げるバ
ッチ操業の場合は、前記まで終了してスラグを出湯す
る前に、下部電極16の上端面36を炉底上面37に若
干残って冷え固まる溶融物の上面より数cm以上高いレ
ベルに移動させておいて、スラグをメタル排出口19よ
り全量出湯すれば、下部電極16は炉底上面37に若干
残って冷え固まるスラグの影響を受けることが無いの
で、次回の設備の立上げ時に下部電極16の上端面36
をメンテナンスする必要は無いため、立上げが容易とな
る。
Ensuring a predetermined ash processing amount By repeating the above batch processes, a desired ash processing amount can be satisfied. Complete shut down of equipment After securing the desired ash treatment volume, if the batch operation is to finish the equipment completely by tapping all of the molten material (mainly slag) as the final step, the slag is discharged after finishing the above. Before carrying out, the upper end surface 36 of the lower electrode 16 is moved to a level several cm or more higher than the upper surface of the molten material which slightly remains on the furnace bottom upper surface 37 and cools down. Since the lower electrode 16 is not affected by the slag that slightly remains on the furnace bottom upper surface 37 and cools down, the upper end surface 36 of the lower electrode 16 will be used at the next startup of the equipment.
Since there is no need to perform maintenance, startup is easy.

【0019】前記実施の形態においては、加熱用電源
は、交流としたが、それに限定されず、直流でもよい。
また、下部電極昇降装置を油圧シリンダーとしたが、電
動式スクリュージャッキ等を使用することもできる。
上、下部電極のストローク検出について言及しなかった
が、既知のストローク検出器を用いることができる。
In the above embodiment, the heating power supply is an alternating current, but is not limited thereto, and may be a direct current.
Although the lower electrode lifting device is a hydraulic cylinder, an electric screw jack or the like may be used.
Although the stroke detection of the upper and lower electrodes has not been described, a known stroke detector can be used.

【0020】[0020]

【発明の効果】請求項1記載の灰処理用溶融炉において
は、上下に移動可能に配置される上部電極に対向して炉
底側に配置され、しかも投入された灰の溶融状況に応じ
て上下に移動可能に配置される下部電極と、両電極間
に、垂下特性のアーク用電源と定電圧特性で電圧調整可
能な抵抗加熱用電源を負荷状態に応じて切り換えて電力
を供給可能な電力供給装置とを備えているので、 立上げ時には下部電極を炉底上面付近に移動させた状
態で、種湯を作成するため、アーク加熱により灰を溶融
する時間が短くなり、この結果ランニングコストが下が
る。 種湯が作成された後は、抵抗加熱を行いながら、上、
下部電極間の中心を炉底上面と溶融物の上面との中間位
置に移動させることによって熱対流が発生し、この結
果、投入された灰が溶融物内に巻き込まれ易くなるた
め、溶解効率が上がると同時に、出塩口レベルの上方ま
で溶融物を作成する際、ランニングコストを軽減でき
る。 上、下部電極間の中心を出塩口のレベル付近まで移動
させて、アーク用電源を使用してアーク加熱又は抵抗加
熱を行うと、塩の空気放熱による冷え固まりがなく、ま
た熱対流が小さいため、塩とスラグとの比重分離が容易
となり、効率良く塩を分離、出湯でき、従って、クリー
ンなスラグを得ることができる。
According to the ash treatment melting furnace of the present invention, the ash processing furnace is disposed on the furnace bottom side opposite to the upper electrode movably arranged up and down, and according to the melting state of the ash supplied. Power that can be supplied by switching between a lower electrode that can be moved up and down and an arc power supply with a drooping characteristic and a resistance heating power supply that can adjust the voltage with a constant voltage characteristic according to the load state between both electrodes. Since the equipment is equipped with a supply device, the time required to melt the ash by arc heating is reduced because the lower electrode is moved to the vicinity of the upper surface of the furnace when starting up. Go down. After the seed water is created, while performing resistance heating,
By moving the center between the lower electrodes to an intermediate position between the upper surface of the furnace bottom and the upper surface of the melt, heat convection occurs, and as a result, the ash that is thrown in easily becomes entangled in the melt, thereby improving the melting efficiency. At the same time, the running cost can be reduced when the melt is formed to above the level of the spout. When the center between the upper and lower electrodes is moved to near the level of the salt outlet and arc heating or resistance heating is performed using an arc power supply, there is no cooling and consolidation due to the radiation of air from the salt, and the heat convection is small. Therefore, specific gravity separation between salt and slag becomes easy, salt can be efficiently separated and hot water can be obtained, and thus clean slag can be obtained.

【0021】請求項2〜7記載の灰処理用溶融炉の操業
方法においては、上下に移動可能に配置される上部電極
と炉底側に上下に移動可能に配置される下部電極との間
に、電力を供給して投入された灰を溶融処理する灰処理
用溶融炉の操業方法において、立上げ時の種湯の作成に
おいて、下部電極を炉底上面付近に配置し、垂下特性の
アーク用電源により上部電極と下部電極との間にアーク
を発生させて投入された灰を溶融し、所定量の溶融物が
形成された後は定電圧特性の抵抗加熱用電源を用いて加
熱するので、アーク加熱により灰を溶融する時間が短く
なり、この結果ランニングコストが下がる。さらに、種
湯の作成後、抵抗加熱によって、溶融物の熱対流が発生
し、この結果、投入された灰が溶融物内に巻き込まれ易
くなるため、溶解効率が上がると同時に、出塩口の上方
まで溶融物を作成する際のランニングコストを軽減でき
る。特に、請求項3記載の灰処理用溶融炉の操業方法に
おいては、溶融物が出塩口のレベルを超えたことを確認
して、上部電極を溶融物の表面付近に移動して下部電極
との間に一定の間隔を保ち、アーク用電源を用いて上層
の溶融物を抵抗加熱又はアーク加熱するので、塩の空気
放熱による冷え固まりがなく、また熱対流が小さいた
め、塩とスラグとの比重分離が容易となり、効率良く塩
を分離できる。
In the method for operating a ash treatment melting furnace according to any one of claims 2 to 7, between the upper electrode movably arranged vertically and the lower electrode movably arranged vertically at the furnace bottom side. In the method of operating a melting furnace for ash processing, which melts ash supplied by supplying electric power, the lower electrode is arranged near the upper surface of the furnace bottom in the preparation of seed water at the time of start-up, and an arc having a drooping characteristic is used. An arc is generated between the upper electrode and the lower electrode by the power supply to melt the supplied ash, and after a predetermined amount of melt is formed, heating is performed using a resistance heating power supply having a constant voltage characteristic. The time required to melt the ash by the arc heating is shortened, and as a result, the running cost is reduced. Furthermore, after the preparation of the seed water, thermal convection of the melt is generated by resistance heating, and as a result, the ash that is thrown in becomes easy to be caught in the melt. The running cost when producing the melt to the upper part can be reduced. In particular, in the operation method of the ash treatment melting furnace according to claim 3, it is confirmed that the melt exceeds the level of the salt outlet, and the upper electrode is moved to the vicinity of the surface of the melt to be in contact with the lower electrode. Since the upper layer melt is heated by resistance or arc using an arc power supply, there is no cooling and solidification due to heat radiation of the salt, and the heat convection is small, so the salt and slag Separation of specific gravity becomes easy, and salts can be efficiently separated.

【0022】請求項4記載の灰処理用溶融炉の操業方法
においては、両電極間の抵抗率が所定の値以下になっ
て、重量物であるスラグと軽量物である塩の比重分離が
進んだ後、溶融物の上層の塩を出塩口から出湯すれば、
炉内にクリーンなスラグを得ることができる。次に、上
部電極及び下部電極を下げて、溶融物を抵抗加熱によっ
て加熱するので、熱対流によりスラグが全体的に加熱さ
れると共に、より短時間で昇温が可能である。さらに、
抵抗加熱によって溶融物中のスラグを出湯可能な温度と
した後、出滓口から出湯するので、出滓口の閉塞を確実
に防止できる。請求項5記載の灰処理用溶融炉の操業方
法においては、溶融物を全量出湯しないで、下部電極を
炉底上面付近に配置した状態にして、抵抗加熱が可能な
量だけ残し、再度新たな灰を投入し、溶融処理を行うの
で、アーク加熱にて種湯を作成する割合のランニングコ
ストや余計な時間を浪費せずに済み効率的である。請求
項6記載の灰処理用溶融炉の操業方法においては、第1
工程〜第4工程を所要回数繰り返すので、所定の量の灰
を処理することができる。請求項7記載の灰処理用溶融
炉の操業方法においては、溶融物を全量出湯する場合、
炉底上面に若干残って冷え固まる溶融物の上面より所定
の距離だけ高い位置に下部電極の上端面を配置するの
で、次回の設備の立上げ時に下部電極の上端面をメンテ
ナンスする必要が無いため、立上げが容易となる。
In the operation method of the ash treatment melting furnace according to the fourth aspect, the resistivity between the two electrodes becomes equal to or less than a predetermined value, and the specific gravity separation of the heavy slag and the light weight salt proceeds. After that, if the salt in the upper layer of the melt is poured out of the outlet,
Clean slag can be obtained in the furnace. Next, since the upper electrode and the lower electrode are lowered and the melt is heated by resistance heating, the slag is entirely heated by thermal convection, and the temperature can be raised in a shorter time. further,
After the slag in the melt is brought to a temperature at which the slag in the melt can be discharged by resistance heating, the slag is discharged from the slag port, so that the block of the slag port can be reliably prevented. In the method for operating the ash treatment melting furnace according to claim 5, the lower electrode is arranged near the upper surface of the furnace bottom without leaving the entire molten material, leaving only an amount capable of resistance heating, and renewing a new one. Since the ash is introduced and the melting process is performed, the running cost and the extra time required for preparing the seed water by arc heating are not wasted and the process is efficient. In the method for operating a melting furnace for ash treatment according to claim 6, the first method comprises:
Since the steps to the fourth step are repeated a required number of times, a predetermined amount of ash can be processed. In the method for operating a ash treatment melting furnace according to claim 7, when the entire amount of the molten material is discharged,
Since the upper end surface of the lower electrode is located a predetermined distance above the upper surface of the molten material that slightly remains on the furnace bottom and cools down, there is no need to maintain the upper end surface of the lower electrode at the next startup of equipment. , The start-up becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る灰処理用溶融炉の
操業方法を適用する灰処理用溶融炉の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of an ash processing melting furnace to which an operation method of an ash processing melting furnace according to an embodiment of the present invention is applied.

【図2】同灰処理用溶融炉の操業方法の種湯作成時の炉
内状況の説明図である。
FIG. 2 is an explanatory view of the inside of a furnace at the time of preparing a seed bath in the method for operating the ash processing melting furnace.

【図3】同灰処理用溶融炉の操業方法の種湯作成後から
所定量の溶融物作成までの炉内状況の説明図である。
FIG. 3 is an explanatory view of the inside of the furnace from the preparation of a seed bath to the preparation of a predetermined amount of molten material in the method for operating the ash processing melting furnace.

【図4】同灰処理用溶融炉の操業方法の塩の分離時の炉
内状況の説明図である。
FIG. 4 is an explanatory view of the inside of the furnace when the salt is separated in the method of operating the ash processing melting furnace.

【図5】従来例の灰処理用溶融炉の操業方法において、
下部電極を炉底上面付近に固定して操業する場合の説明
図である。
FIG. 5 shows a conventional method of operating a melting furnace for ash treatment,
It is explanatory drawing in the case of fixing and operating a lower electrode near the furnace bottom upper surface.

【図6】同下部電極を炉底上面より少し高い位置に固定
して操業する場合の説明図である。
FIG. 6 is an explanatory view in a case where the lower electrode is operated at a position slightly higher than the furnace bottom upper surface.

【図7】同下部電極を出塩口付近に固定して操業する場
合の説明図である。
FIG. 7 is an explanatory diagram in a case where the lower electrode is fixed to a vicinity of a salt outlet and operated.

【符号の説明】[Explanation of symbols]

10 灰処理用溶融炉 11 灰投入口 12 灰 13 溶融炉本
体 14 溶融物 15 上部電極 16 下部電極 17 電力供給
装置 18 炉底部 19 メタル排
出口 20 出滓口 21 出塩口 22 排気口 23 上部電極
昇降装置 24 油圧シリンダー 25 絶縁ホル
ダー 26 冷却水配管 27 水冷スリ
ーブ 28 耐熱パッキン 29 抵抗加熱
用電源 30 アーク用電源 31 遮断器 32 遮断器 33 遮断器 34 電流計 35 電圧計 36 上端面 37 炉底上面 38 アーク 39 主電流軌
跡 40 熱対流軌跡 41 塩 42 スラグ 43 上面 44 炉蓋
DESCRIPTION OF SYMBOLS 10 Ash melting furnace 11 Ash inlet 12 Ash 13 Melting furnace main body 14 Melt 15 Upper electrode 16 Lower electrode 17 Power supply device 18 Furnace bottom 19 Metal outlet 20 Slag outlet 21 Salt outlet 22 Exhaust port 23 Upper electrode Lifting device 24 Hydraulic cylinder 25 Insulating holder 26 Cooling water pipe 27 Water cooling sleeve 28 Heat resistant packing 29 Resistance heating power supply 30 Arc power supply 31 Circuit breaker 32 Circuit breaker 33 Circuit breaker 34 Ammeter 35 Voltmeter 36 Upper end surface 37 Furnace bottom upper surface 38 Arc 39 Main current locus 40 Heat convection locus 41 Salt 42 Slag 43 Upper surface 44 Furnace lid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27D 11/08 B09B 3/00 303L (72)発明者 原 禎治 福岡県北九州市戸畑区大字中原46−59 新 日本製鐵株式会社エンジニアリング事業本 部内 (72)発明者 岩本 伸二 福岡県北九州市戸畑区大字中原46番地59 日鐵プラント設計株式会社内 (72)発明者 松本 秀一 福岡県北九州市戸畑区大字中原46番地59 日鐵プラント設計株式会社内 Fターム(参考) 3K061 BA05 NB02 NB30 4K045 AA04 BA07 DA02 RB02 RB04 4K063 AA04 AA12 BA13 CA01 CA02 FA55 FA64 FA73 FA78 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F27D 11/08 B09B 3/00 303L (72) Inventor Sadaharu Hara 46-59 Ohara Nakahara, Tobata-ku, Kitakyushu, Fukuoka Prefecture Nippon Steel Corporation Engineering Business Division (72) Inventor Shinji Iwamoto 46-46 Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka 59 Nippon Steel Plant Design Co., Ltd. (72) Inventor Shuichi Matsumoto Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka 46 No. 59 Nippon Steel Plant Design Co., Ltd. F term (reference) 3K061 BA05 NB02 NB30 4K045 AA04 BA07 DA02 RB02 RB04 4K063 AA04 AA12 BA13 CA01 CA02 FA55 FA64 FA73 FA78

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 上下に移動可能に配置される上部電極
と、 前記上部電極に対向して炉底側に配置され、しかも投入
された灰の溶融状況に応じて上下に移動可能に配置され
る下部電極と、 前記両電極間に、垂下特性のアーク用電源と定電圧特性
で電圧調整可能な抵抗加熱用電源を負荷状態に応じて切
り換えて電力を供給可能な電力供給装置とを備えること
を特徴とする灰処理用溶融炉。
An upper electrode movably arranged up and down, and an upper electrode arranged on a furnace bottom side opposite to the upper electrode, and movably arranged up and down according to a melting state of ash inputted. A lower electrode, and a power supply device capable of supplying power by switching between a power supply for arc having a drooping characteristic and a resistance heating power supply capable of adjusting a voltage with a constant voltage characteristic according to a load state, between the two electrodes. Melting furnace for ash treatment.
【請求項2】 上下に移動可能に配置される上部電極と
炉底側に上下に移動可能に配置される下部電極との間
に、電力を供給して投入された灰を溶融処理する灰処理
用溶融炉の操業方法において、 立上げ時には、前記下部電極を炉底上面付近に配置し、
垂下特性のアーク用電源により前記上部電極と前記下部
電極との間にアークを発生させて投入された灰を溶融
し、所定量の溶融物が形成された後は定電圧特性の抵抗
加熱用電源を用いて加熱することを特徴とする灰処理用
溶融炉の操業方法。
2. An ash process for supplying electric power between an upper electrode movably arranged vertically and a lower electrode movably arranged vertically at the furnace bottom side to melt ash supplied. In the method for operating a melting furnace for use, at the time of startup, the lower electrode is disposed near the upper surface of the furnace bottom,
An arc power supply with a drooping characteristic generates an arc between the upper electrode and the lower electrode to melt the ash that has been thrown in, and after a predetermined amount of melt is formed, a constant-voltage characteristic resistance heating power supply A method for operating a melting furnace for ash treatment, characterized by heating using ash.
【請求項3】 前記溶融物が出塩口のレベルを超えたこ
とを確認して、前記上部電極を前記溶融物の表面付近に
移動して前記下部電極との間に一定の間隔を保ち、前記
アーク用電源を用いて上層の前記溶融物を抵抗加熱又は
アーク加熱する請求項2記載の灰処理用溶融炉の操業方
法。
3. Confirming that the melt has exceeded the level of the salt outlet, moving the upper electrode to a position near the surface of the melt and keeping a constant distance from the lower electrode, The method for operating a ash treatment melting furnace according to claim 2, wherein the upper layer of the melt is resistance-heated or arc-heated using the arc power supply.
【請求項4】 前記両電極間の抵抗率が所定の値以下に
なって、重量物であるスラグと軽量物である塩の比重分
離が進んだ後、前記溶融物の上層の塩を前記出塩口から
出湯し、次に、前記上部電極及び下部電極を下げて、前
記溶融物を抵抗加熱によって加熱し、該抵抗加熱によっ
て前記溶融物中のスラグを出湯可能な温度とした後、出
滓口から出湯する請求項3記載の灰処理用溶融炉の操業
方法。
4. After the resistivity between the two electrodes becomes equal to or less than a predetermined value and the specific gravity of slag, which is a heavy material, and salt, which is a light material, proceed, the salt in the upper layer of the melt is discharged. The molten metal is heated from the salt port, then the lower electrode and the lower electrode are lowered, and the melt is heated by resistance heating. The method for operating a melting furnace for ash treatment according to claim 3, wherein the hot water is discharged from a mouth.
【請求項5】 前記溶融物を全量出湯しないで、前記下
部電極を炉底上面付近に配置した状態にして、前記抵抗
加熱が可能な量だけ残し、再度新たな灰を投入し、溶融
処理を行う請求項4記載の灰処理用溶融炉の操業方法。
5. The molten metal is not poured in its entirety, the lower electrode is arranged near the furnace bottom upper surface, the amount capable of resistance heating is left, fresh ash is charged again, and the melting process is performed. The method for operating a ash treatment melting furnace according to claim 4.
【請求項6】 前記溶融物が出塩口のレベルを超えたこ
とを確認して、前記上部電極を前記溶融物の表面付近に
移動して前記下部電極との間に一定の間隔を保ち、前記
アーク用電源を用いて上層の前記溶融物を抵抗加熱又は
アーク加熱する第1工程と、 前記両電極間の抵抗率が所定の値以下になって、重量物
であるスラグと軽量物である塩の比重分離が進んだ後、
前記溶融物の上層の塩を前記出塩口から出湯し、次に、
前記上部電極及び下部電極を下げて、前記溶融物を抵抗
加熱によって加熱する第2工程と、 前記抵抗加熱によって前記溶融物中のスラグを出湯可能
な温度とした後、出滓口から出湯する第3工程と、 前記抵抗加熱が可能なスラグ量だけ残し、再度新たな灰
を投入する第4工程とを所要回数繰り返す請求項2記載
の灰処理用溶融炉の操業方法。
6. Confirming that the melt has exceeded the level of the salt outlet, moving the upper electrode to a position near the surface of the melt and maintaining a constant distance between the lower electrode and the lower electrode, A first step of resistance-heating or arc-heating the upper layer of the melt using the arc power supply; and a resistivity between the two electrodes being a predetermined value or less, a heavy slag and a light weight. After the specific gravity separation of the salt has progressed,
Tapping the salt in the upper layer of the melt from the salt outlet,
A second step of lowering the upper electrode and the lower electrode and heating the melt by resistance heating; and setting the slag in the melt to a temperature at which tapping can be performed by the resistance heating, and then discharging the slag from the slag port. 3. The method for operating an ash treatment melting furnace according to claim 2, wherein three steps and a fourth step of re-feeding new ash while leaving the slag amount capable of resistance heating are repeated a required number of times.
【請求項7】 最終工程として、前記溶融物を全量出湯
する場合、前記炉底上面に若干残って冷え固まる前記溶
融物の上面より所定の距離だけ高い位置に前記下部電極
の上端面を配置する請求項6記載の灰処理用溶融炉の操
業方法。
7. As a final step, when the entire amount of the molten material is discharged, the upper end surface of the lower electrode is disposed at a position higher than the upper surface of the molten material that slightly remains on the upper surface of the furnace bottom by a predetermined distance. An operating method of the melting furnace for ash treatment according to claim 6.
JP10262450A 1998-08-31 1998-08-31 Ash processing melting furnace and its operation method Withdrawn JP2000074353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10262450A JP2000074353A (en) 1998-08-31 1998-08-31 Ash processing melting furnace and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10262450A JP2000074353A (en) 1998-08-31 1998-08-31 Ash processing melting furnace and its operation method

Publications (1)

Publication Number Publication Date
JP2000074353A true JP2000074353A (en) 2000-03-14

Family

ID=17375963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10262450A Withdrawn JP2000074353A (en) 1998-08-31 1998-08-31 Ash processing melting furnace and its operation method

Country Status (1)

Country Link
JP (1) JP2000074353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300348A (en) * 2005-04-15 2006-11-02 Fuji Electric Systems Co Ltd Burned ash melting electric furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300348A (en) * 2005-04-15 2006-11-02 Fuji Electric Systems Co Ltd Burned ash melting electric furnace
JP4563241B2 (en) * 2005-04-15 2010-10-13 メタウォーター株式会社 Incineration ash melting electric furnace

Similar Documents

Publication Publication Date Title
US3469968A (en) Electroslag melting
JP2000074353A (en) Ash processing melting furnace and its operation method
JP2002115831A (en) Furnace wall structure and method for cooling furnace wall
US4612649A (en) Process for refining metal
JP3746921B2 (en) Operation method of electric melting furnace
JP3671099B2 (en) Method and apparatus for melting and separating aluminum from raw materials containing aluminum and a metal having a higher melting point
JP4095774B2 (en) How to restart the plasma ash melting furnace
JPS61168719A (en) Slag discharging equipment of waste melting furnace
RU2661322C2 (en) Method for manufacture of bimetallic electrode by electroslag cladding
JPS5840791A (en) Sludge exhausting method
JP2004522852A (en) Method for producing metal ingot or billet by melting electrodes in conductive slag bath and apparatus for performing the same
KR980010120A (en) Method and apparatus for dissolving incineration residues
JP2975239B2 (en) Electric resistance type melting furnace and its operation method
JPH0374359B2 (en)
RU2060292C1 (en) Method for preparation of electric furnace for smelting ferrosilicon after prolonged shutdown
JP2008178908A (en) Process for electroslag remelting of metal and ingot mold used therefor
JP2001264491A (en) Treatment device for melting/solidifying and treatment method
SU114263A1 (en) Vacuum electric arc furnace of double remelting with consumable electrode
JP2000213728A (en) Temperature rise controller and control method for electric resistance type ash melting furnace
JP3714383B2 (en) Ash melting furnace and method of operating the same
JPH1019230A (en) Method for melting treatment of refuse inclineration ash and melting furnace therefor
JP2000028126A (en) Electric melting furnace for ash treatment and operation method thereof
RU2258759C1 (en) Pyro-metallurgic plant for concentration of titanium-silica concentrates
JP4185667B2 (en) Operating method of plasma ash melting furnace
JP2002013719A (en) Ash melting furnace and method of melting ashes

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101