JP2000070836A - Water/oil-repellent coating film and its formation - Google Patents

Water/oil-repellent coating film and its formation

Info

Publication number
JP2000070836A
JP2000070836A JP10246984A JP24698498A JP2000070836A JP 2000070836 A JP2000070836 A JP 2000070836A JP 10246984 A JP10246984 A JP 10246984A JP 24698498 A JP24698498 A JP 24698498A JP 2000070836 A JP2000070836 A JP 2000070836A
Authority
JP
Japan
Prior art keywords
water
oil
film
repellent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10246984A
Other languages
Japanese (ja)
Inventor
Yoshikazu Arase
良和 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10246984A priority Critical patent/JP2000070836A/en
Publication of JP2000070836A publication Critical patent/JP2000070836A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a water/oil-repellent coating film on the surface of a metal or glass. SOLUTION: A water/oil-repellent coating film forming method has a process for forming a thin graphite film 2 on the surface of a base material 1 by either one of a sputtering method, an ion plating method and a CVD method and a process for chemically bonding radical fluorine atoms generated by low temp,. plasma treatment using CF4 gas to carbon on the surface of the graphite film 2 to densely form CF3 groups 3 on the surface of the graphite film 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガラス、金属、セラ
ミックスなどの表面処理により、はっ水、はつ油性の被
膜を有する製品およびその形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a product having a water-repellent or oil-repellent coating by surface treatment of glass, metal, ceramics or the like, and a method for forming the same.

【0002】[0002]

【従来の技術】乗物のフロントガラス、光学レンズなど
のガラス製品、衛生陶器、食器などのセラミックス製
品、ロストワックス法における金型などの金属製品には
強いはっ水、はつ油性が求められることがある。
2. Description of the Related Art Strong water repellency and oil repellency are required for glass products such as vehicle windshields and optical lenses, ceramic products such as sanitary ware and tableware, and metal products such as molds in the lost wax method. There is.

【0003】これらの基材にはっ水、はつ油被膜を形成
するのに、例えば、次のような方法が知られている。 (1)基材表面にポリテトラフロロエチレン(PTF
E、テフロン)などのフッ素系樹脂塗料またはシリコン
系樹脂塗料を塗布する。塗膜表面のはっ水性を水の接触
角で表すと約110°が得られる。このはっ水性は、P
TFE表面のCF2基(表面エネルギ18dyne/c
m)のはっ水性によるものである。 (2)末端までフッ素化した粒径約4μmのPTFE微
粒子をフッ化ビニリデン(PVdF)樹脂中に分散混合
した塗料を基材表面に塗布する(防錆管理39(11)
P389(1995))。塗膜表面のはっ水性を水の接
触角で表すと約145°が得られるが、このはっ水性は
PTFE微粒子表面のCF2基のはっ水性と微粒子の凹
凸の相乗効果によって得られる。自然界の蓮の葉は表面
に分泌されるはっ水物質と表面の突起との相乗効果によ
るが上記と同じである。 (3)ガラス板などの基材の表面に0.1μm程度の凹
凸を形成し、次に例えばCF3 (CF27 (CH
22 SiCl3 などの界面活性剤を有機溶媒に希釈し
たものに浸潰する。基材の表面は自然酸化膜が形成され
ており、その酸化膜表面には水酸基が多数含まれている
ので、脱塩酸反応が生じ、フッ化炭素系単分子膜がシロ
キサン結合を介して基体表面に形成される(特開平4−
249146号)。この処理によるはっ水性は水の接触
角で表すと約155°であり、このはっ水性は、単分子
膜末端のCF3 基(表面エネルギ:6dyne/cm)
によるはっ水性と凹凸加工の形状との相乗効果によって
得られるものであるが、凹凸加工をしない平滑面では接
触角は112°と低下し、PTFEのCF2 基と同程度
になる。 (4)炭素の微粉を300〜500℃でフッ素ガスと直
接反応して生成するフッ化グラファイトの微粉とカチオ
ン系界面活性剤とを混合し、金属板を陰極とし、Ni板
を陽極とするメッキ浴槽中に加えて攪拌し、金属板表面
にNiメッキとフッ化グラファイト微粉を付着させた超
はっ水性表面がある。フッ化グラファイトのはっ水性と
Niメッキ中の微粉による凹凸との相乗効果により、接
触角が173°という極限に近いはっ水性が得られる
(化学46(7)P477(1991))。
[0003] For forming a water-repellent or oil-repellent film on these substrates, for example, the following methods are known. (1) Polytetrafluoroethylene (PTF)
E, Teflon) or a fluororesin paint or a silicone resin paint. When the water repellency of the coating film surface is represented by the contact angle of water, about 110 ° is obtained. This water repellency is P
CF 2 group on TFE surface (surface energy 18 dyne / c
m) is due to the water repellency. (2) A paint in which PTFE fine particles having a particle diameter of about 4 μm fluorinated to the terminal are dispersed and mixed in vinylidene fluoride (PVdF) resin is applied to the surface of the base material (rust prevention control 39 (11))
P389 (1995)). Although about 145 ° to represent the water repellency of the coating film surface in the contact angle of water is obtained, the water repellent is obtained by the synergistic effect of the repellent aqueous and particulate unevenness of CF 2 groups PTFE fine particle surface. Natural lotus leaves are the same as above, depending on the synergistic effect of water repellent substances secreted on the surface and projections on the surface. (3) Unevenness of about 0.1 μm is formed on the surface of a substrate such as a glass plate, and then, for example, CF 3 (CF 2 ) 7 (CH
Tsubusuru immersion surfactants such as 2) 2 SiCl 3 in diluted to an organic solvent. A natural oxide film is formed on the surface of the substrate, and the surface of the oxide film contains a large number of hydroxyl groups, so a dehydrochlorination reaction occurs, and the fluorocarbon-based monomolecular film is formed on the surface of the substrate via siloxane bonds. (Japanese Unexamined Patent Publication No.
249146). The water repellency by this treatment is about 155 ° in terms of the contact angle of water, and the water repellency is determined by the CF 3 group at the end of the monolayer (surface energy: 6 dyne / cm).
Is obtained by the synergistic effect of the water repellency and the shape of the unevenness, but the contact angle is reduced to 112 ° on a smooth surface without the unevenness, which is almost the same as that of the CF 2 group of PTFE. (4) Fine powder of graphite fluoride, which is produced by directly reacting carbon fine powder with fluorine gas at 300 to 500 ° C., and a cationic surfactant are mixed, and plating is performed using a metal plate as a cathode and a Ni plate as an anode. There is an ultra-water-repellent surface with Ni plating and graphite fluoride fine powder adhered to the surface of the metal plate with stirring in a bath. Due to the synergistic effect of the water repellency of graphite fluoride and the irregularities due to the fine powder in the Ni plating, a water repellency close to the limit of a contact angle of 173 ° is obtained (Chemical 46 (7) P477 (1991)).

【0004】[0004]

【発明が解決しようとする課題】以上知られている従来
のはっ水、はつ油被膜には、それぞれ次のような問題が
ある。なお、以下の番号は上記従来技術の項で述べた番
号に対応している。 (1)このようなフッ素系樹脂塗料やシリコン系樹脂塗
料は、本来有しているはっ水性やはつ油性のための基材
表面との結合力が弱く、耐侯性や耐摩擦性が劣ってい
る。また、表面エネルギでも十分低いとはいえず、水の
接触角が約110°であり十分大きいとはいえない。 (2)このようにPTFE微粒子をフッ化ビニリデン樹
脂中に分散混合した塗料は145°という大きな水の接
触角を得られるが、使用中に微粒子の変形や離脱が起る
のではっ水性能が低下するとともに塗付厚さが約200
μmと厚いことが問題となる場合がある。 (3)このように基材表面に微小な凹凸を形成し、その
上にフッ化炭素系単分子膜を形成したものは155°と
いう大きな水の接触角を得られるが、基材表面に微小な
凹凸を形成するための手間と費用がかかりコストアップ
になる。 (4)このようにフッ化炭素の微粉末を金属表面にNi
メッキとともに付着される方法では、接触角が173°
という極限に近い水の接触角が得られるが、メッキを利
用しているので、基材は導電性のある金属に限られてガ
ラスやセラミックスに応用することはできないし、使用
中にフッ化炭素の微粉末が離脱しやすくはっ水性能が低
下するという問題がある。
The above-mentioned conventional water repellent and oil-in-oil coatings have the following problems. The following numbers correspond to the numbers described in the section of the related art. (1) Such a fluorine-based resin paint or silicone-based resin paint has a weak bonding force with a substrate surface due to its inherent water repellency or oiliness, and is inferior in weather resistance and friction resistance. ing. Further, the surface energy is not sufficiently low, and the contact angle of water is about 110 °, which is not sufficiently large. (2) The paint in which the PTFE fine particles are dispersed and mixed in the vinylidene fluoride resin can obtain a large water contact angle of 145 °, but the fine particles are deformed or detached during use, so that the water repellency is poor. The coating thickness is reduced to about 200
In some cases, the thickness as thick as μm may cause a problem. (3) In the case where minute irregularities are formed on the surface of the base material and a fluorocarbon monomolecular film is formed thereon, a large water contact angle of 155 ° can be obtained. It takes time and effort to form the irregularities, which increases the cost. (4) As described above, the fine powder of fluorocarbon is coated on the metal surface with Ni.
In the method of attaching with plating, the contact angle is 173 °
Although the contact angle of water can be obtained close to the limit, since plating is used, the substrate is limited to conductive metals and cannot be applied to glass and ceramics. There is a problem that the fine powder is easily separated and the water repellency is lowered.

【0005】本発明は以上述べた従来技術の問題点に鑑
み案出したもので、基材表面に薄い炭素膜を形成し、そ
の表面に高密度にCF3 基を形成することにより、はっ
水、はつ油性が高く、耐摩擦性が高く、成膜による寸法
変化が無視でき、きわめて薄いため透光ガラス面へ適用
した場合に透光性が失われないはっ水、はつ油被膜およ
びその形成方法を提供することを目的とする。
The present invention has been devised in view of the above-mentioned problems of the prior art, and has been developed by forming a thin carbon film on the surface of a base material and forming CF 3 groups at a high density on the surface. Highly water- and oil-repellent, high friction resistance, negligible dimensional change due to film formation, extremely thin, water-repellent, oil-repellent coating that does not lose light transmission when applied to translucent glass And a method for forming the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
請求項1記載発明のはっ水、はつ油被膜は基材の表面に
形成した薄い黒鉛膜の表面に高密度にCF3 基を形成し
たものである。
According to the first aspect of the present invention, a water repellent or oil-repellent film is formed on a thin graphite film formed on a surface of a base material with a CF 3 group at a high density. It is formed.

【0007】上記基材は金属、ガラス、セラミックスの
いずれかであるのがよく、黒鉛膜の厚さは50〜100
0nmであるのが好ましい。
The substrate is preferably made of one of metal, glass and ceramics, and the graphite film has a thickness of 50 to 100.
It is preferably 0 nm.

【0008】請求項3記載発明のはっ水、はつ油被膜の
形成方法は、スパッタ法、イオンプレーティング法、C
VD法のいずれかにより基材表面に薄い黒鉛膜を形成す
る工程と、CF4 ガスを用いた低温プラズマ処理によっ
て発生するラジカルなフッ素原子を上記黒鉛膜表面の炭
素と化学結合させて黒鉛膜表面にCF3 基を密に形成す
る工程とを有する。
The method for forming a water-repellent or oil-repellent oil film according to the third aspect of the present invention includes a sputtering method, an ion plating method, and a C method.
A step of forming a thin graphite film on the surface of the base material by any of the VD method, and chemically bonding radical fluorine atoms generated by low-temperature plasma treatment using CF 4 gas with carbon on the surface of the graphite film, Forming a CF 3 group densely.

【0009】次に本発明の作用を説明する。基材表面に
黒鉛薄膜を形成する。基材は金属、ガラスまたはセラミ
ックスであり、炭素の膜厚は50〜1000nmとす
る。黒鉛膜の形成にはスパッタ法、イオンプレーティン
グ法またはCVD法を用いる。スパッタ法は容器内の圧
力を10-2〜10-3Torrに保ち、炭素のターゲット
にアルゴンなどの不活性ガスイオンを衝突させて炭素原
子を放出させ、基材をその付近に配置して、放出させた
炭素原子を基材表面に付着させるものである。イオンプ
レーティング法はスパッタ法と同様に不活性ガスイオン
を炭素のターゲットに衝突させるとともにターゲットと
基材の間に直流電圧を印加して放出された炭素イオンを
加速して基材に衝突させて基材表面に強固に付着させる
ものである。
Next, the operation of the present invention will be described. A graphite thin film is formed on a substrate surface. The base material is metal, glass or ceramics, and the thickness of carbon is 50 to 1000 nm. The graphite film is formed by a sputtering method, an ion plating method, or a CVD method. In the sputtering method, the pressure in the container is kept at 10 −2 to 10 −3 Torr, and a carbon target is bombarded with an inert gas ion such as argon to emit carbon atoms, and the base material is arranged in the vicinity thereof. The released carbon atoms are attached to the substrate surface. In the ion plating method, as in the sputtering method, inert gas ions collide with a carbon target, and a DC voltage is applied between the target and the substrate to accelerate the released carbon ions and collide with the substrate. It is to adhere firmly to the substrate surface.

【0010】CVD法には熱CVD法とプラズマCVD
法がある。熱CVD法は基材を500℃程度に加熱し、
5気圧程度に加圧したCOガスを送ると加熱により次の
反応によりCを析出し、基材表面に付着させるものであ
る。 2CO=C+CO2
The CVD method includes a thermal CVD method and a plasma CVD method.
There is a law. The thermal CVD method heats the substrate to about 500 ° C,
When a CO gas pressurized to about 5 atm is sent, C is deposited by the following reaction by heating, and is deposited on the substrate surface. 2CO = C + CO 2

【0011】プラズマCVDは、容器内を0.1〜1T
orr程度の圧力に保ち、メタンなどの炭化水素ガスを
送り、基材とそれに対峙する電極との間でグロー放電を
起させると、炭化水素は炭素と水素に分離し、炭素が基
材表面に付着するものである。なお、この場合基材の温
度は常温である。
In the plasma CVD, the inside of the container is 0.1 to 1 T
By maintaining a pressure of about orr and sending a hydrocarbon gas such as methane to cause glow discharge between the substrate and the electrode facing it, the hydrocarbons are separated into carbon and hydrogen, and the carbon is deposited on the surface of the substrate. It will adhere. In this case, the temperature of the substrate is room temperature.

【0012】次にCF4 ガスを用いた低温プラズマ処理
する。低温プラズマ処理は、容器の圧力を1〜10To
rr程度に保ちフッ化炭素(CF4 )ガスを送り、基材
とそれに対峙する電極との間でグロー放電を起させるも
のである。なお、この場合基材の温度は常温である。低
温プラズマ処理によりCF4 からラジカルなフッ素原子
が生じるが、これが黒鉛膜表面の炭素と化学結合し、黒
鉛膜表面に密にCF3基が形成される。CF3 基はフッ
素が強力に炭素と結合しているので表面エネルギが6d
yne/cmと低く、はっ水、はつ油被膜が得られる。
得られた被膜の水との接触角は145°程度と大きい。
Next, low-temperature plasma processing using CF 4 gas is performed. The low-temperature plasma treatment is performed by setting the pressure of the container to 1 to 10 To.
This is to send a fluorocarbon (CF 4 ) gas while maintaining the temperature at about rr to cause a glow discharge between the base material and the electrode facing the base material. In this case, the temperature of the substrate is room temperature. Radical fluorine atoms are generated from CF 4 by the low-temperature plasma treatment, and the fluorine atoms are chemically bonded to carbon on the surface of the graphite film to form CF 3 groups densely on the surface of the graphite film. The CF 3 group has a surface energy of 6 d because fluorine is strongly bonded to carbon.
yne / cm and a water-repellent, oil-repellent film is obtained.
The contact angle of the obtained film with water is as large as about 145 °.

【0013】[0013]

【発明の実施の形態】以下本発明の1実施形態について
図面を参照しつつ説明する。図1は本発明のはっ水、は
つ油被膜の構造図である。図において、1は金属、ガラ
スまたはセラミックスなどの基材である。2は黒鉛膜で
あり、厚さは50〜1000nmである。3はCF3
で黒鉛膜2表面に密に形成されている。4ははっ水、は
つ油被膜である。図2ははっ水、はつ油被膜上の水滴の
図面である。5は水滴であり、θは水滴とはっ水、はつ
油被膜4との接触角である。なお、水の表面エネルギは
70dyne/cm、油は30dyne/cm程度であ
り、CF3 基の表面エネルギは6dyne/cm程度で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a structural view of a water-repellent and oil-repellent oil film of the present invention. In the figure, reference numeral 1 denotes a base material such as metal, glass or ceramic. Reference numeral 2 denotes a graphite film having a thickness of 50 to 1000 nm. Reference numeral 3 denotes a CF 3 group which is densely formed on the surface of the graphite film 2. Numeral 4 is a water repellent and oily oil film. FIG. 2 is a drawing of water repellency and water droplets on the oil film. Numeral 5 denotes a water droplet, and θ denotes a contact angle between the water droplet, the water repellency, and the oil film 4. The surface energy of water is about 70 dyne / cm, the oil is about 30 dyne / cm, and the surface energy of CF 3 group is about 6 dyne / cm.

【0014】次に本実施形態の作用を説明する。基材1
の表面に薄い黒鉛膜2を形成する。黒鉛膜2を形成する
にはスパッタ法、イオンプレーティング法、CVD法な
どの方法があるがそのいずれでもよい。黒鉛膜2を形成
した後、CF4 ガスを用いた低温プラズマ処理によって
発生するラジカルなフッ素原子を黒鉛膜2表面の炭素と
化学結合させて、黒鉛膜2表面にCF3 基を密に形成す
ることにより、はっ水、はつ油被膜4を形成する。
Next, the operation of the present embodiment will be described. Substrate 1
A thin graphite film 2 is formed on the surface. The graphite film 2 can be formed by a method such as a sputtering method, an ion plating method, or a CVD method, and any of them may be used. After the graphite film 2 is formed, radical fluorine atoms generated by low-temperature plasma treatment using CF 4 gas are chemically bonded to carbon on the surface of the graphite film 2 to form CF 3 groups densely on the surface of the graphite film 2. Thereby, the water-repellent and oil-repellent oil film 4 is formed.

【0015】このような方法によれば、厚さ50〜10
00nmの黒鉛(炭素)膜の表面に数オングストローム
オーダーの極薄のCF3 基の膜を有するはっ水、はつ油
4が得られる。このように黒鉛膜2のフッ化による被膜
では、フッ化物微粒子のCF 2 基や吸着試薬の単分子膜
の密度の薄いCF3 基に比べて、より密にCF3 基をパ
ッキングできるので、表面の凹凸加工をすることなし
で、水の接触角で表すと145°が得られる。なお、基
材表面に凹凸加工したものに本発明のはっ水、はつ油被
膜を形成すれば、さらに強いはっ水、はつ油性が得られ
る。
According to such a method, a thickness of 50 to 10
Several Angstroms on the surface of a 00 nm graphite (carbon) film
Ultra thin CF of orderThree Water-repellent, base oil with base membrane
4 is obtained. Thus, the coating of the graphite film 2 by fluorination
Then, fluoride fine particles CF Two Monolayer of base and adsorption reagent
CF with low densityThree CF more densely thanThree Group
As it can be locked, there is no need to process the surface
In this case, 145 ° can be obtained in terms of the contact angle of water. In addition,
Water repellency and oil grease coated on the surface of the material
If a film is formed, stronger water repellency and oiliness can be obtained.
You.

【0016】[0016]

【実施例】15mm×15mm×2mmtの鉄板製の基
材をアセトン中で超音波洗浄により脱脂した後、鉄表面
の酸化物を除去するため水素雰囲気下で30℃/mim
の温度勾配で500℃まで昇温して10分間保った。基
板温度を500℃に保った状態で5気圧のCOガスを流
入させ、熱CVD法により基板状に炭素を析出させて基
板上に黒鉛膜を形成した。この反応時間を10分間とし
て自然冷却し、黒鉛膜の厚さを計ったところ500nm
であった。次に、この基材を放電管中に設置し、CF4
ガスを流量25cm3 /mimで流し、圧力を5Tor
rに保ち基材を負極とし、約25mm離れて対峙させた
正極との間で直流グロー放電を行った。放電電流10m
A、放電時間5分で処理した後、基材を放電管から取り
出した。水滴を基材上に滴下し、水と基材間の接触角を
測定したところ接触角145°を得た。
EXAMPLE A 15 mm × 15 mm × 2 mmt iron plate base material was degreased by ultrasonic cleaning in acetone, and then 30 ° C./min in a hydrogen atmosphere to remove oxides on the iron surface.
The temperature was raised to 500 ° C. with a temperature gradient of and kept for 10 minutes. While keeping the substrate temperature at 500 ° C., a CO gas of 5 atm was introduced, and carbon was deposited in a substrate shape by a thermal CVD method to form a graphite film on the substrate. The reaction time was set to 10 minutes, the mixture was naturally cooled, and the thickness of the graphite film was measured to be 500 nm.
Met. Next, this substrate was placed in a discharge tube, and CF 4
Gas is flowed at a flow rate of 25 cm 3 / mim, and the pressure is 5 Torr.
r, and the substrate was used as a negative electrode, and a direct current glow discharge was performed between the substrate and a positive electrode facing each other at a distance of about 25 mm. Discharge current 10m
A, After the treatment for 5 minutes, the substrate was taken out of the discharge tube. A water drop was dropped on the substrate, and the contact angle between water and the substrate was measured. As a result, a contact angle of 145 ° was obtained.

【0017】本発明は、以上説明した実施形態や実施例
に限定されるものではなく、発明の要旨を逸脱しない範
囲で種々の変更が可能である。
The present invention is not limited to the embodiments and examples described above, and various changes can be made without departing from the gist of the invention.

【0018】[0018]

【発明の効果】以上述べたように本発明のはっ水、はつ
油被膜は基材の表面に形成した薄い黒鉛膜の表面に高密
度にCF3 基を形成したものなので、次のような優れた
効果を有する。 (1)基材に強固に結合している炭素原子にフッ素が化
学結合するため、はっ水、はつ油膜の変形、離脱がな
い。 (2)数十〜数百nmの極薄炭素膜なので、塗付等に比
べて膜厚による寸法変化が無視できる。 (3)特に、炭素膜厚さを数十nmオーダーとすること
で光の透過性の低下が防げるので、はっ水、はつ油効果
の高い透光ガラスが得られる。 (4)炭素膜表面に、密度高くCF3 基をパッキングで
きるので、表面の凹凸加工をすることなく、接触角14
5度が得られ、凹凸加工のコスト削減が可能である。
As described above, the water-repellent, oil-repellent film of the present invention is formed by forming CF 3 groups at a high density on the surface of a thin graphite film formed on the surface of a substrate. Has excellent effects. (1) Since fluorine is chemically bonded to carbon atoms firmly bonded to the base material, there is no deformation or detachment of the water repellent or oil film. (2) Since it is an ultra-thin carbon film having a thickness of several tens to several hundreds of nm, a dimensional change due to the film thickness can be ignored as compared with coating or the like. (3) In particular, by setting the carbon film thickness on the order of several tens of nm, a decrease in light transmittance can be prevented, so that a light-transmitting glass having high water-repellent and oil-repellent effects can be obtained. (4) Since CF 3 groups can be densely packed on the surface of the carbon film, the contact angle can be reduced to 14 without any surface unevenness processing.
5 degrees can be obtained, and the cost of the unevenness processing can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のはっ水、はつ油被膜の構造図である。FIG. 1 is a structural diagram of a water-repellent and oil-repellent film of the present invention.

【図2】はっ水、はつ油被膜上の水滴の図面である。FIG. 2 is a drawing of water repellency and water droplets on the oil film.

【符号の説明】[Explanation of symbols]

1 基材 2 黒鉛膜 3 CF3 基 4 はっ水、はつ油被膜1 substrate 2 graphite film 3 CF 3 group 4 water repellent, Hatsu oil film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08G 85/00 C08G 85/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C08G 85/00 C08G 85/00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基材の表面に形成した薄い黒鉛膜の表面
に高密度にCF3 基を形成したことを特徴とするはっ
水、はつ油被膜。
1. A water-repellent, oil-repellent film comprising a thin graphite film formed on the surface of a base material and a CF 3 group formed at a high density on the surface thereof.
【請求項2】 基材は金属、ガラス、セラミックスのい
ずれかであり、黒鉛膜の厚さは50〜1000nmであ
る請求項1記載のはっ水、はつ油被膜。
2. The water-repellent, oil-repellent film according to claim 1, wherein the substrate is any one of metal, glass and ceramics, and the thickness of the graphite film is 50 to 1000 nm.
【請求項3】 スパッタ法、イオンプレーテイング法、
CVD法のいずれかにより基材表面に薄い黒鉛膜を形成
する工程と、CF4 ガスを用いた低温プラズマ処理によ
って発生するラジカルなフッ素原子を上記黒鉛膜表面の
炭素と化学結合させて黒鉛膜表面にCF3 基を密に形成
する工程とを有することを特徴とするはっ水、はつ油被
膜の形成方法。
3. A sputtering method, an ion plating method,
A step of forming a thin graphite film on the base material surface by any one of the CVD methods, and a method of chemically bonding radical fluorine atoms generated by low-temperature plasma treatment using CF 4 gas with carbon on the graphite film surface to form a graphite film surface And a step of densely forming a CF 3 group on the substrate.
JP10246984A 1998-09-01 1998-09-01 Water/oil-repellent coating film and its formation Pending JP2000070836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10246984A JP2000070836A (en) 1998-09-01 1998-09-01 Water/oil-repellent coating film and its formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10246984A JP2000070836A (en) 1998-09-01 1998-09-01 Water/oil-repellent coating film and its formation

Publications (1)

Publication Number Publication Date
JP2000070836A true JP2000070836A (en) 2000-03-07

Family

ID=17156647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10246984A Pending JP2000070836A (en) 1998-09-01 1998-09-01 Water/oil-repellent coating film and its formation

Country Status (1)

Country Link
JP (1) JP2000070836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453788C (en) * 2004-09-14 2009-01-21 日产自动车株式会社 Member for internal combustion engine and production method thereof
JP2015010030A (en) * 2013-07-02 2015-01-19 東京応化工業株式会社 Carbon fluoride, method for producing carbon fluoride and use of the same
JP2015524379A (en) * 2012-07-27 2015-08-24 アップル インコーポレイテッド Sapphire window

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453788C (en) * 2004-09-14 2009-01-21 日产自动车株式会社 Member for internal combustion engine and production method thereof
JP2015524379A (en) * 2012-07-27 2015-08-24 アップル インコーポレイテッド Sapphire window
JP2015010030A (en) * 2013-07-02 2015-01-19 東京応化工業株式会社 Carbon fluoride, method for producing carbon fluoride and use of the same

Similar Documents

Publication Publication Date Title
JPH04288349A (en) Water-repellent and oil-repellent film and its production
Teare et al. Pulsed plasma deposition of super-hydrophobic nanospheres
JP4924038B2 (en) Method for producing fluorocarbon film
JP3358131B2 (en) Water / oil repellent film and method for producing the same
JPH04239633A (en) Water and repelling film and manufacture thereof
JP2000070836A (en) Water/oil-repellent coating film and its formation
JP2007213715A (en) Method for forming fluorinated diamondlike carbon thin film, and fluorinated diamondlike carbon thin film obtained thereby
JP3165672B2 (en) Article having water / oil repellent coating and method for producing the same
CN110465203A (en) The method for improving the adhesive force of anti-pollution film
JPH04359031A (en) Water-and-oil repellent film
JP2004323593A (en) Fluororesin powder and modification method therefor
JPH07256820A (en) Slide member
JP7095276B2 (en) Fluororesin coating and its manufacturing method
US20040091750A1 (en) Coating for a handle
KR20130010557A (en) Hot plate of semiconductor manufacturing apparatus
JP2007137767A (en) Water-repellent and oil-repellent glass substrate
KR100400230B1 (en) Micro-mechanical device having anti-adhesion layer and manufacturing method thereof
JP3017965B2 (en) Article having a water- and oil-repellent coating and method for forming the same
JPH04255343A (en) Water repellent and oil repellent coating film and manufacture thereof
JPS5869743A (en) Electrically conductive glass and its production
JP2004002187A (en) Water repellent and oil repellent coating film
JP2000103007A (en) Article having water-repellent oil-repellent surface and hydrophilic surface and manufacture thereof
JP2010100905A (en) Si-CONTAINING CARBON FILM AND DIE USING THE SAME
EP0784714B1 (en) Low surface energy coatings
JPH10310455A (en) Production comprising glass base body having oil-and water-repellent coating film and its production